CS 580: Algorithm Design and Analysis

2/6/2019

Jeremiah Blocki
Purdue University
Spring 2019

Announcement: Homework 3 due February 14t at 11:59PM (Gradescope)

Recap

Divide and Conquer
Recurrence Relationships
Examples: Merge Sort/Inversions/Integer/Matrix Multiplication

Polynomial Multiplication (Convolution)
FFT (inverse FFT) to convert between coefficient and point
value representation of polynomial A(x)
Divide: evaluate A4y, A, (degree n/2-1) at n/2 inputs
((n/2)™ roots of unity).
Combine solutions to evaluate A(x) of degree n-1 poly at n
inputs (n™ roots of unity)

JOM KLEINBERG - EVA TARDOS

Algorithmic Paradigms

Greedy. Build up a solution incrementally, myopically optimizing
some local criterion.

Divide-and-conquer. Break up a problem into sub-problems, solve
each sub-problem independently, and combine solution to sub-
problems to form solution to original problem.

Dynamic programming. Break up a problem into a series of
overlapping sub-problems, and build up solutions to larger and
larger sub-problems.

Dynamic Programming History

Bellman. [1950s] Pioneered the systematic study of dynamic programming.

Etymology.
- Dynamic programming = planning over time.
. Secretary of Defense was hostile to mathematical research.
- Bellman sought an impressive name to avoid confrontation.

"it's impossible to use dynamic in a pejorative sense"
"something not even a Congressman could object to"

Reference: Bellman, R. E. Eye of the Hurricane, An Autobiography.

Copyright 2000, Kevin Wayne

Dynamic Programming Applications

Areas.

. Bioinformatics.

. Control theory.

. Information theory.

- Operations research.

. Computer science: theory, graphics, AI, compilers, systems,

Some famous dynamic programming algorithms.

- Unix diff for comparing two files.

. Viterbi for hidden Markov models.

. Smith-Waterman for genetic sequence alignment.

- Bellman-Ford for shortest path routing in networks.

. Cocke-Kasami-Younger for parsing context free grammars.

2/6/2019

6.1 Weighted Interval Scheduling

Weighted Interval Scheduling

Weighted interval scheduling problem.
« Job j starts at s, finishes at f;, and has weight or value v; .
. Two jobs compatible if they don't overlap.
. Goal: find maximum weight subset of mutually compatible jobs.

a

Time

Unweighted Interval Scheduling (will cover in Greedy paradigms)

Previously Showed: Greedy algorithm works if all weights are 1.
Solution: Sort requests by finish time (ascending order)

Observation. Greedy algorithm can fail spectacularly if arbitrary
weights are allowed.

weight=999 || b

weight = 1 a

Weighted Interval Scheduling

Notation. Label jobs by finishing time: f; < f, <...<f,.
Def. p(j) = largest index i < j such that job i is compatible with j.

Ex: p(8)=5,p(7) =3, p(2) = 0.

1

Dynamic Programming: Binary Choice

Notation. OPT(j) = value of optimal solution to the problem
consisting of job requests 1,2, ..., j.

. Case 1: OPT selects job .
- collect profit v;
- can't use incompatible jobs { p(j) + 1, p(j) + 2, ..., j- 1}
- must include optimal solution to problem consisting of
remaining compatible jobs 1,2, ..., p(j)
optimal substructure
. Case 2: OPT does not select job .
- must include optimal solution to problem consisting of
remaining compatible jobs 1, 2, ..., j-1

opPT(j)=] ° i =0
= max { v;+OPT(p(})), OPT(j-1)} otherwise

Weighted Interval Scheduling: Brute Force

Brute force algorithm.

Input: n, s;,.,S, Fi,.,Fy Vi,V
Sort jobs by finish times so that f, < f, < ... < f,.
Compute p(1), p(2), .., p(n)

Compute-0pt (i) {

if (= 0)
return O
else

return max(v; + Compute-Opt(p(J)), Compute-Opt(j-1))

T(n) = T(n-1)+T(p(n))+O(1)
T)=1

Copyright 2000, Kevin Wayne

Weighted Interval Scheduling: Brute Force

Observation. Recursive algorithm fails spectacularly because of
redundant sub-problems = exponential algorithms.

Ex. Number of recursive calls for family of “layered" instances grows

like Fibonacci sequence (F, > 1.6M).

T(n) = T(n-1)+T(n-2)+1
=1

3] T
4]

P =0,p(j) = j-2

Key Insight: Do we really need
to repeat this computation?

2/6/2019

Weighted Interval Scheduling: Memoization

Memoization. Store results of each sub-problem in a cache;
lookup as needed.

Input: n, s;,.,S, Fi,..F vi,.,v,

Sort jobs by finish times so that f;, < f, < ... < f.
Compute p(1), p(2), .., p(n)

for j

1ton

MIi1 = empty

M[ol = 0

™ global array

M-Compute-0pt(i) {

it (M[J] is empty)
MLi] = max(v; + M-Compute-Opt(p(i)), M-Compute-Opt(j-1))
return M[j]

Weighted Interval Scheduling: Running Time

Claim. Memoized version of algorithm takes O(n log n) time.
. Sort by finish time: O(n log n).
. Computing p(-): O(n log n) via sorting by start time.

. M-Compute-Opt(j): each invocation takes O(1) time and either
- (i) returns an existing value M[j1
- (ii) fills in one new entry M[j] and makes two recursive calls
- Progress measure ® = # nonempty entries of M[].
- initially ® = 0, throughout ® <n.
- (i) increases ® by 1 = at most 2n recursive calls.

. Overall running time of M-Compute-Opt(n) is O(n).

Remark. O(n) if jobs are pre-sorted by start and finish times.

Weighted Interval Scheduling: Finding a Solution

Q. Dynamic programming algorithms computes optimal value.
What if we want the solution itself?
A. Do some post-processing.

Run M-Compute-Opt(n)
Run Find-Solution(n)

Find-Solution(j) {

if G =0)
output nothing

else if (v; + M[pP(G)]1 > MOJ-1D
print j
Find-Solution(p(i))

else
Find-Solution(j-1)

. # of recursive calls <n = O(n).

Weighted Interval Scheduling: Bottom-Up
Bottom-up dynamic programming. Unwind recursion.

Input: n, s3,.,S, Ty, F Vi,V
Sort jobs by finish times so that f, < f, < ... < f,.
Compute p(1), p(2), .., p(n)
Iterative-Compute-Opt {
M[0] = O

for j=1ton
MO = max(v; + M[pG)1, MLi-11)

6.3 Segmented Least Squares

Copyright 2000, Kevin Wayne

Segmented Least Squares

Least squares.
. Foundational problem in statistic and numerical analysis.
. Given n points in the plane: (xy, 1), (X2, ¥2) (Xn. Yn)-

. Find aliney = ax + b that minimizes the sum of the squared error:

n
SSE = X (y;—ax —b)’
i=1

Solution. Calculus = min error is achieved when

LI ~EREW | DY -an
nExt-Ex) n

2/6/2019

Segmented Least Squares

Segmented least squares.
« Points lie roughly on a sequence of several line segments.
. Given n points in the plane (x, y1), (X2,¥2), (X, Yn) with
« X1< X< ... < Xp, find a sequence of lines that minimizes f(x).

Q. What's a reasonable choice for f(x) to balance accuracy and

arsimony?
p Y goodness of fit

number of lines

Segmented Least Squares

Segmented least squares.
- Points lie roughly on a sequence of several line segments.
- Given n points in the plane (xy, y1), (X2, ¥2), (Xn, Yn) with
« X1<Xp< ... < X, find a sequence of lines that minimizes:
- the sum of the sums of the squared errors E in each segment
- the number of lines L
. Tradeoff function: E +c L, for some constant ¢ > 0.

Dynamic Programming: Multiway Choice

Notation.
« OPT(j) = minimum cost for points py, piy, pj-
- e(i,j) =minimum sum of squares for points p, pi, P

To compute OPT(j):
- Last segment uses points p;, pi.; , . . ., p; for some i.
. Cost = e(i, j) + ¢ + OPT(i-1).

o if j=0
OPT(j)= min_ { e(i,j) +c+OPT(i-1)} otherwise
i<

Segmented Least Squares: Algorithm

INPUT: n, pi,...Py , C

Segmented-Least-Squares() {
M[0] = O
for j=1ton
for i =1 toj
compute the least square error e;; for

the segment p;,..., p;
for j = n
MO = min, ¢ 5 (e + ¢ + MLI-11)

return M[n]

can be improved fo O(n?) by pre-computing various statistics
Running time. O(n®).-—
. Bottleneck = computing e(i, j) for O(n?) pairs, O(n) per pair
using previous formula.

6.4 Knapsack Problem

Copyright 2000, Kevin Wayne

2/6/2019

Knapsack Problem

Knapsack problem.

. Givennobjects and a "knapsack."

. Item i weighs w; > O kilograms and has value v;> 0.
- Knapsack has capacity of W kilograms.

- Goal: fill knapsack so as to maximize total value.

Ex: {3, 4} has value 40.
1 1

1
2 6 2
3 18 5

4 22 6 =
5 28 7

Greedy: repeatedly add item with maximum ratio v; / w;.
Ex: {5, 2,1} achieves only value = 35 => greedy not
optimal.

Dynamic Programming: False Start

Def. OPT(i) = max profit subset of items 1, ..., i.

. Case 1: OPT does not select item i.
- OPT selects best of { 1,2, ..., i-1}

. Case 2: OPT selects item i.
- accepting item i does not immediately imply that we will have
to reject other items
- without knowing what other items were selected before i,
we don't even know if we have enough room for i

Conclusion. Need more sub-problems!

Dynamic Programming: Adding a New Variable

Def. OPT(i, w) = max profit subset of items 1, ..., i with weight limit w.

. Case 1: OPT does not select item i.
- OPT selects best of { 1, 2, ..., i-1} using weight limit w

. Case 2: OPT selects item i.
- new weight limit = w - w;
- OPT selects best of { 1, 2, ..., i-1} using this new weight limit

0 if i=0
OPT(i,w)=1OPT(i—1,w) if wi>w
max {OPT(i—1w), v;+ OPT(i—1,w-w;)} otherwise

Knapsack Problem: Bottom-Up

Knapsack. Fill up an n-by-W array.

Input: n, W, Wy, Wy Vi, Vy

for w=0 to W
M[O, w] = O

for i =1 ton
for w=1to W

it (v >w)
MLi, w] = M[i-1, w]
else

M[i, w] = max {M[i-1, w], v; + M[i-1, w-w; 1}

return M[n, W]

Knapsack Algorithm

W+1

¢
(1) [T T U T S T T S R
et ey QoM ¢ 7 7 7 7 7 7 7 7 7
(1,23) o 1 6 7 7 [l 24 25 25 25 25
(1,2,34) 0 1 6 7 7 18 22 24 28 29 29 [0
(1,2345) 0 1 6 7 7 18 22 28 29 34 34 [40]

wagn [
1 1

1 OPT: {4,3}
2 6 value = 22 + 18 = 40
3 18
4 22
5

2
5
6
28 7

Knapsack Problem: Runhing Time

Running time. ©(n W).
+ Not polynomial in input size!
- Only need log, W bits to encode each weight
- Problem can be encoded with 0(nlog, W) bits
. "Pseudo-polynomial."
- Decision version of Knapsack is NP-complete. [Chapter 8]

Knapsack approximation algorithm. There exists a poly-time algorithm
that produces a feasible solution that has value within 0.01% of
optimum. [Section 11.8]

Copyright 2000, Kevin Wayne

6.5 RNA Secondary Structure

2/6/2019

RNA Secondary Structure
RNA. String B = byb,...b, over alphabet { A, C, 6, U }.

Secondary structure. RNA is single-stranded so it tends to loop back
and form base pairs with itself. This structure is essential for
understanding behavior of molecule.

Ex: GUCGAUUGAGCGAAUGUAACAACGUGGCUACGGCGAGA

c—a
7/ N\
A A
N 7
A--V 6—c
[/ \
C-—-6—U—A—A 6
Vs v A |
6 [j
| A—U—U A
PN | ~c~—
A c—6—cCc—U
' . ' ' 6
I oo _
c 6—C—6—A—G--C
~N 7 11
6
A--U
|
6

RNA Secondary Structure

Secondary structure. A set of pairs S = { (b;, b;) } that satisfy:
.« [Watson-Crick.] S is a matching and each pair in S is a Watson-
Crick complement: A-U, U-A, C-6, or G-C.
« [No sharp turns.] The ends of each pair are separated by at least 4
intervening bases. If (b;, bJ) €S, theni<j-4.
« [Non-crossing.] If (b, b)) and (by, b)) are two pairs in S, then we
cannot have i< k< j<l.

Free energy. Usual hypothesis is that an RNA molecule will form the
secondary structure with the optimum total free energy.
\

approximate by number of base pairs

Goal. Given an RNA molecule B = b;b,...b,, find a secondary structure S
that maximizes the number of base pairs.

RNA Secondary Structure: Examples

Examples.
Al R
c v / N\
N d 6 G
c--6 v/
[c---6
A---U
D -
U-a [
U---A
base pair
AUGUGGCCAU AUGGGG CAU AGUUGGCCAU
—
ok sharp turn crossing

RNA Secondary Structure: Subproblems

First attempt. OPT(j) = maximum number of base pairs in a secondary
structure of the substring bib,...b;.

match b, and b,

OPT(-1)
Difficulty. Results in fwo sub-problems.
- Finding secondary structure in: b;b,...b; ;.
. Finding secondary structure in: by,iby,,...b, ;.

need more sub-problems

Copyright 2000, Kevin Wayne

Dynamic Programming Over Intervals

Notation. OPT(i, j) = maximum number of base pairs in a secondary
structure of the substring biby.;...b;.

- Casel Ifixzj-4.
- OPT(i, j) = 0 by no-sharp turns condition.

. Case 2. Base by is not involved in a pair.
- OPT(i, j) = OPT(i, j-1)

. Case 3. Base b pairs with b, for some i<t <j-4.
- non-crossing constraint decouples resulting sub-problems
- OPT(i, j) = 1+ max, { OPT(i, t-1) + OPT(++1, j-1) }

take max over t such that i <t < j-4 and
b, and b, are Watson-Crick complements

Remark. Same core idea in CKY algorithm to parse context-free
grammars.

3

Q. What order to solve the sub-problems?
A. Do shortest intervals first.

2/6/2019

Bottom Up Dynamic Programming Over Intervals

RNA(D; ,...b) {
for k =

k , 6, ., n-1 4lojojo
for i =1, 2, ., n-k 3lojo
J=1+k [P

Compute M[i, j] A
return M[1, n] using recurrence 6 7 8 9

Running time. O(n3).

Dynamic Programming Summary

Recipe.
. Characterize structure of problem.
« Recursively define value of optimal solution.
« Compute value of optimal solution.
. Construct optimal solution from computed information.

Dynamic programming techniques.

Binary choice: weighted interval scheduling. . .
Multi-way choice: segmented least squares. < 71 spimzes nosmn elnoed,
Adding a new variable: knapsack.

Dynamic programming over intervals: RNA secondary

structure. ~

CKY parsing algorithm for context-free
grammar has similar structure

Top-down vs. bottom-up: different people have different
intuitions.

El

6.6 Sequence Alignment

String Similarity

r H. How similar are two strings?
o ¢ n r nE e « ocurrance

. occurrence
6 mismatches, 1 gap

oc.urrnce

occurance

1mismatch, 1 gap

oc.urr.ance

occurre.nce

0 mismatches, 3 gaps

Edit Distance

Edit distance. [Levenshtein 1966, Needleman-Wunsch 1970]
« Gap penalty & mismatch penalty ap,.
- Cost = sum of gap and mismatch penalties.

Applications.

- Basis for Unix diff.

- Speech recognition.

- Computational biology.

cHOAEc: "~ cBT BcTcaccTAcHT
[l c|7[c[» CEREENEN » R ccToeacHlTAcHT

Ore+ OgT+ Cagt 20ca 25+ acy

Copyright 2000, Kevin Wayne

Sequence Alignment

Goal: Given two strings X = x; X, ... Xpand Y =y; y, . .. y, find
alignment of minimum cost.

Def. Analignment M is a set of ordered pairs x;-y; such that each item
occurs in at most one pair and no crossings.

Def. The pair x-y; and x;-y; cross if i <i', but j > j'.

cost(M) = > Gyy; Y 5+ XY 6

X,y eM i2x unmatched] 1y unmatched
D
‘mismatch &p
X1 Xp X3 X4 X5 X
Ex: CTACCG vs. TACATG. RSN © | - [0

Sol: M = Xp-yq, X3-Y2, X4-Y3, X5-Y4, X6-Ye-
27Y1: X37Y2, X47Y3, X574, X67Ye -T A CT ®

Yio Yz ¥ Ya Y5 Ve

Sequence Alignment: Problem Structure

Def. OPT(i, j) = min cost of aligning strings x; X, ... x;and y;y, ...y}
. Case 1: OPT matches x-y;.
- pay mismatch for x-y; + min cost of aligning two strings
Xy Xz ... Xipandyrya ..y
. Case 2a: OPT leaves x; unmatched.
- pay gap for x; and min cost of aligning x; X ... Xy and y;yz ... y;
« Case 2b: OPT leaves y; unmatched.
- pay gap for y; and min cost of aligning x; X, ... x;and y1 yz . . . yjq

jo if i=0
&y, +OPT(i-1, j-1)
OPT(i, j)=9 min | 5+OPT(i—L, j) otherwise
S5+OPT(, j-1)
is if j=0

2/6/2019

Sequence Alignment: Algorithm

Sequence-Alignment(m, N, X;Xp---Xp, Y1¥Ya---Yns 8, @) {
for i 0 tom

M[i, 0] = i8
for j=0ton
M[O, J1 = j8

for i =1tom
for j=1ton
MLi, §1 = minCalx;, y;1 + M[i-1, j-1],
8 + M[i-1, j],
& + M[i, j-11)
return M[m, n]

Analysis. ©(mn) time and space.

English words or sentences: m, n < 10.

Computational biology: m = n=100,000.
10 billions ops OK, but 10GB array?

6.7 Sequence Alignment in Linear Space

Sequence Alignment: Linear Space

Q. Can we avoid using quadratic space?

Easy. Optimal value in O(m + n) space and O(mn) time.
. Compute OPT(i, *) from OPT(i-1, +).
- No longer a simple way to recover alignment itself.

Theorem. [Hirschberg 1975] Optimal alignment in O(m + n) space and
O(mn) time.

. Clever combination of divide-and-conquer and dynamic programming.

- Inspired by idea of Savitch from complexity theory.

Sequence Alignment: Linear Space

Edit distance graph.
. Let f(i, j) be shortest path from (0,0) to (i,).
. Observation: f(i, j) = OPT(, j).

€ Y1 Y2 Y3 Ya Y5 Ye

O

Xz

% ®

Sequence Alignment: Linear Space

Edit distance graph.
. Let f(i, j) be shortest path from (0,0) to (i, j).
- Can compute f (¢, j) for any j in O(mn) time and O(m + n) space.

& Y Y2 Y3 Ya Ys Ye
€ @ \
Xy —

Xz

% ®

Copyright 2000, Kevin Wayne

Sequence Alignment: Linear Space

Edit distance graph.
. Let g(i, j) be shortest path from (i, j) to (m, n).
- Can compute by reversing the edge orientations and inverting the
roles of (0, 0) and (m, n)

& Y1 Yz Y3 Ya Y5 Yo

‘@

Xy

2/6/2019

Sequence Alignment: Linear Space

Edit distance graph.
. Let g(i, j) be shortest path from (i, j) to (m, n).
. Can compute g(+, j) for any j in O(mn) time and O(m + n) space.

& Y Y2 Y3 Ya Ys Yo

- @

Xy

N

Sequence Alignment: Linear Space

Observation 1. The cost of the shortest path that uses (i, j) is
(0. §)+ 9@, j).

Xz

. —@

Sequence Alignment: Linear Space

Observation 2. let q be an index that minimizes f(q, n/2) + g(q, n/2).
Then, the shortest path from (0, 0) to (m, n) uses (q, n/2).

Xz

% —®

Sequence Alignment: Linear Space

Divide: find index q that minimizes f(q, n/2) + g(q, n/2) using DP.
« Align xg and 2.
Conguer: recursively compute optimal alignment in each piece.

& Y1 Y2 Y3 Ya Y5 Ye

- @

Xz

% ®

Sequence Alignment: Running Time Analysis Warmup

Theorem. Let T(m, n) = max running time of algorithm on strings of
length at most m and n. T(m, n) = O(mn log n).

T(m,n) < 2T(m, n/2) + O(mn) = T(m,n) = O(mn logn)

Remark. Analysis is not tight because two sub-problems are of size
(g, n/2) and (m - q, n/2). In next slide, we save log n factor.

Copyright 2000, Kevin Wayne

Sequence Alignment: Running Time Analysis

Theorem. Let T(m, n) = max running time of algorithm on strings of
length m and n. T(m, n) = O(mn).

Pf. (by induction on n)
- O(mn) time to compute f(+,n/2) and g (+, n/2) and find index q.
. T(q,n/2) + T(m - q, n/2) time for two recursive calls.
. Choose constant ¢ so that:

T(m, 2) < cm
T2, n) < cn
T(m,n) < cmn+T(q, n/2)+T(m-q, n/2)

. Basecasessm=2orn=2.
. Inductive hypothesis: T(m,n)< 2cmn.

< T(q,n/2)+T(m-q,n/2)+cmn
< 2cqn/2+2c(m—q)n/2+cmn
= cgn+cmn—cgn+cmn

T(m,n)

= 2cmn

Copyright 2000, Kevin Wayne

2/6/2019

10

