CS 580: Algorithm Design and Analysis

Jeremiah Blocki Purdue University Spring 2018

Linear Programming

· Even more general than Network Flow!

- Many Applications
- Network Flow Variants
- Taxation
- Multi-Commodity Flow Problems
- Supply-Chain Optimization
- Operations Research
- Entire Courses Devoted to Linear Programming!
 Our Focus
- Our Focus
- Using Linear Programming as a tool to solve algorithms problems
- . We won't cover algorithms to solve linear programs in any depth

Linear Programming

Theorem: Stockman value achieved at vertex (extreme point)

Definitions: Let F be the set of all function points is a linear program. We say that a point $p \in F$ is an antrone point (surfact) if every line segment $L \subset F$ that lies completely in F and contains p has p as an explosive.

Linear Programming

Theorem: Maximum value achieved at warten (extreme point)

- Definition: Let F be the set of all feasible paints in a linear progress. We say that a point $p \in F$ is an extreme paint (vertex) if every line segment L = F that lies completely in F and contains p has p as an endpoint.
- Observation: Each extreme point lies at the interstaction of (at least) two constitutions.
- Theorem: a vertex is an optimal solution if there is no better mightening vertex.

Finding the Optimal Point with Ellipsoid Algorithm

Gask maximize $\sum_{n \in \mathbb{Z}} w_{n} z_{i}$ (where each w_{i} is a constant)

Key Idea: Binary Search for value of Optimal Solution Add Constraint $\sum_i w_i x_i \ge B$

- . Defensible?
- ⇒Yolus of optimal solutions is less than B
- Featble?
- →Volue of optimal solution is at least B

More Linear Programming Examples

Typical Operations Research Problem

Brewer's Problem: Maximize Profit

- . (1 Barrel) of Ale sells for \$13, but recipe requires
- 6 pounds corn,
- 5 ounces of hops and
- 33 pounds of malt.
- (1 Barrel) of Beer sells for \$23, but recipe requires 16 pounds of corn
- 4 ounces of hops and
- 21 pounds of malt
- Suppose we start off with C= 480 pounds of corn, H=160 ounces of hops and M=1190 pounds of malt.
- Let A (resp. B) denote number of barrels of Ale (resp. Beer)

More Linear Programming Examples

- Bronne's Preizhou: Maximize Profit (1 Berrei) of Ale sells for \$15, but recipe requires
- A pounds corn, 5 execut of hepst and 33 peerds of malt.
- (1 Barrel) of Beer sells for \$27, but recipe requires.
- . 16 paunds of corn, 4 sunces of hops and 21 paunes of melt
- Suppose we start off with C= 480 paints of cars, H=260 cances of hops and M=1090 pounds of wait.
- Let A (map. 8) denote mayber of barrels of Ale (resp. See') ŝ,
- God: modmize 25A+276 (mbject to) .
- $A \ge 0, B \ge 0$ (positive production)
- . 6A+168 ≤ C (Next have enough CORN)
- (Burt Issue enough HOPS) - 6A+4₽≤8
- $33A + 2LB \le N$ (Maart inne energy HOPS)

Linear Programming in Practice

- Many optimization packages available
- Solver (in Excel)
- LINDO
- · CPLEX
- GUROBI (free academic license available)
- Matlab, Mathematica

More Linear Programming Examples

Typical Operations Research Problem

- Brewer's Problem: Maximize Profit
- · (1 Barrel) of Ale sells for \$15, but recipe requires 6 pounds corn,
- 5 ounces of hops and
- 33 pounds of malt.
- (1 Barrel) of Beer sells for \$27, but recipe requires
- 16 pounds of corn
- 4 ounces of hops and
- 21 pounds of malt
- Suppose we start off with C= 480 pounds of corn, H=160 ounces of hops and M=1190 pounds of malt.
- Let A (resp. B) denote number of barrels of Ale (resp. Beer) Goal: maximize 15A+27B

Maximize[{15 A + 27 B,A>= 0, B>= 0, 6A+16B <= 480, 5A + 4B <= 160, 33A+21 B <= 1190},{A,B}]

{6060/7,{A->80/7,B->180/7}}

Profit: \$865.71

Extra Slides

Finding Minimax Optime	al Solution using Linear Programming					
Variables: $p_{\mu}p_{\mu}$ and v (p, is probability of action i) Goal: Associate v (our supercised reserve).						
Construints	Expected reward when					
· m	player 2 takes					
- m + + n = 0	action j					
for all otherse 1 as been	/.					
- La al contrate l'ac vanc						
$\sum_{n=m_1 \ge n}$						
4~~~~						
my daneter reserve when player 1 takes action i and player 2 takes						
astian j.						

	Circulation with Demands		
Circulation with demands. Directed graph G = (V, E). Edge capacities c(e), e ∈ E. Node supply and demands d(v), v ∈ V. demand if d(v) • 0: supply if d(v) • 0; transchipment if d(v) = 0			
 Def. A circulation is a For each e ∈ E: For each v ∈ V: 	function that satisfies: $0 \le f(e) \le c(e)$ $\sum_{e \text{ into } v} f(e) - \sum_{e \text{ out of } v} f(e) = d(v)$	(capacity) (conservation)	
Circulation problem: given (V, E, c, d), does there exist a circulation?			

Integrality theorem. If all capacitie there exists a circulation, then ther valued.	25 and demands are integers, and e exists one that is integer-				
Pf. Follows from max flow formulati max flow.	ion and integrality theorem for				
Characterization. Given (V, E, c, d), there does not exists a circulation iff there exists a node partition (A, B) such that $\sum_{n=0}^{\infty} d_n < cop(A, B) $					
Pf idea. Look at min cut in G'.	demand by nodes in B exceeds supply of nodes in B plus max capacity of edges going from A to B				
40					

Circulation with Demands

Copyright 2000, Kevin Wayne

