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Linear Programming

Even more general than Network Flow!

Many Applications
Network Flow Variants

« Taxation

« Multi-Commodity Flow Problems
Supply-Chain Optimization
Operations Research

« Entire Courses Devoted to Linear Programming!
Our Focus
Using Linear Programming as a tool to solve algorithms
problems
We won't cover algorithms to solve linear programs in any
depth
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Motivating Example: Time Allocation

168 Hours in Each Week to Allocate as Follows

Lo
@ &

Studying (S) Partying (P)
Covmtrolniy:
. [M68 Houes] 5+ P + K =38
. [Molwhain SaftyTF +8 =70
- [Survim]) Ex56
- [Pt Comprpems 115 = 50
+  [Pess Soursses Z3 25 + E — 3P = 150 fon it shoeg, sndAer
o icach fewetying Mk it e et T hady)
Question 1: Can we satisfy all of the constraints?
(Maintain Sanity + Pass Courses)
Answer: Yes. One feasible solution is $=80, P=20, E=68

Everything Else (E)

Credit for Example: Avrim Blum

Recap

Network Flow Problems
Max-Flow Min Cut Theorem
Ford Fulkerson

« Augmenting Paths

« Residual Flow Graph

« Integral Solutions (given integral capacities)
Capacity Scaling Algorithm
Dinic's Algorithm
Applications of Maximum Flow
Maximum Bipartite Matching
Marriage Theorem (Hall/Frobenius)
Disjoint Paths [Menger's Theorem]
Baseball Elimination
Circulation with Demands
Many Others...

Copyright 2000, Kevin Wayne

Motivating Example: Time Allocation

168 Hours in Each Week to Allocate as Follows

= 0 o

Studying (S) Partying (P) Everything Else (E)

Carsivaiois:

- [148 Hoars] 5+ P + 8 = 168

= [Mairrhein Sonfty] P+ 8= 79

= [Post Courses 1] 5> 60

- [Poos Corses 2] 25+ B —37 = 150 froa Friie sleep. andfar
L ch portying ms maore diffiait ta shudy)}

s Credit for Example: Avrim Blum

Motivating Example: Time Allocation

168 Hours in Each Week to Allocate as Follows

HELOp
$ R

Studying (S) Partying (P)

Everything Else (E)

(168 Howrs) 5 + P +5 = 168

[Whainlecin Santty) P + £ =70

[Sursive] B = 56

[Peeas Cournes 135 > 50

[Mems Cournen 2] 25 + £ — 3° = 158 {1oa |Hrile sleep, ondior
Tt mikch portying mekes it mene dEfFculr Te study)

Ohjective Famctisa: 2P + £ [Maximiae Hopplasss]
Guestion 2: Zanwe finda fexsible sohition which
Foumcim| 2 tes abyfacties fnctian?




3/26/2018

Linear Program Definition

- Werlohhaw 0t
- Broner oncpesitities [n these verfobles (egpunlihies arw OO
+ Enmmpleg
0Exm Kl
oy g By — Ty X4
» 2642 —3P > 150
- [Khptional) Linmar Gbjective Purction

2
= Eumdale dr, + Iy
» minbmian s + 35y
* vl 2P 4 X
v ol
- il kit e 0, ¢, bafping all inte, and
. Wmdmize the ohjactive
- Pemsibliy Proflen
- o abjacthe foncon

Linear Program Example

Foak Mndwiom ZE

Sabject e

. [68HowalS+5+E=160

+  [Monbein Senity[F + 6 = N0

- [Sardm]E %56

+  [Punk Caurses 118 2 60

»  [Peas Caenes ] 2Y -+ £ — 37 = 150
» [Mon-Nagathitylr =0

5 Credit for Example: Avrim Blum

Network Flow as a Linear Program

Ewmple:
Virisblen X, 2o %o, T Xie o'
10

Goal: wominlee 2y 15 2
Subjuct fw 1 >
DS T sl

a0 g < 1R
- Isag=tl
B r Wi ]
+ 0 xmeSI0d

122 170

+—00ToO O

+ zm=xmtzg  [Flow Consarvatianat nede £]
- dgtrg =gy  [Flow Somervolion st node 2]

Linear Program Definition

» Verleblesin, %,
- Comiraints:  linew insypl i in thess wrichles (epeitiegore

Gif)
- [Options] Linaor Difactiva Fnction

Pwpireamemi
- Al the comtirelters l_wmhm{ﬂ'ﬂ

Eremeepls Wen L Boear Oereivainia:
FE=T0 T &}
-f=1 WP, £} i 20

Network Flow as a Linear Program

Ghmn a directed grogh & with copactries cfe) on cach edqe & we conase.

T pregy Ay o o gink
Viriables: x, far cach xige ¢ {represents flow on odige €}
Objective: Mexmize Ly ucer s
Comriraings:

- {Capacity Constraimts)For wach edke & we hepaz. [ X x, 22 o)
- (Flow Eovsereiion] Far aach ¢ 2 {5, £] we hae

PR

Solving a Linear Program

Simplex Algorithm (1940s)

Not guaranteed to run in polynomial time
We can find bad examples, but...

The algorithm is efficient in practice!
Ellipsoid Algorithm (1980)

Polynomial time (huge theoretical breakthrough), but ...

Slow in practice
Newer Algorithms
Karmarkar's Algorithm
« Competitive with Simplex
« Polynomial Time
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Goal: Maximize 2x;+3x, ¢=(2,3)
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Algorithmic Idea: Direction of Goodness

Linear Programming

Ve Amdrroms voba sch f ot et () ]

Dfinlilen: Lt F = the st of ofl frmibis paints b

W oy Hhet o poini p € F igon m'pmm rth
sagmant £ < F Yhat Nes compiehaly inF and conbains p: s penan
andpein],

Linear Programming

Thesrnm: Medmen velse ochieoed o vartne (achrsa pant)

Definltion: LatF ba the sat of o faetibls paints in  linse pragres.
W aoy thad awp:r-m“ﬁumd’mh
sagmant L = F that |k p hospan s
andpaind,

X

Werss Salutior
T (i-zd<n
Iofifol Pesstble: Poini: X5 Tiprenad ¥
& - <a
Linear Programming
Thhemrens: Mk ko ackanrant et wowehact £

Deefinilion: Lt F be the s of ol frowsibis poluts in g Bwar progrom.
“qﬂmapﬂnp eF Inn mpﬂl‘m if sy llne

£ = F tha B nF
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Linear Programming

Theaorem: Amdmens value achigwd ar werhme (sxtrema palat)

Duflaiien: Lt F i thatet of ol frfbi pabals bea b
W moy Tt a poinip € F igon mmm rfmyh
sagmant £  F Yhat Nes complehaly inF and canbains p has pas an

Linear Programming

Thearees: Seeisven velua aclievad ar vartex (extrems pait)

Dresfinitiom: Lot F be the st of oll fesmtils palais i o e pragres.
W sy Hhal -m;er-mmﬁuwfmh
sagment L = F that Ik % p hospas an
andpainl,

Ohesrvolisr: Ench wtirema paint et He iviersechion of (b ko)
o CamTrainia

Thesres- o ver ool m f thrm i i bert-ter
resighivorig wrinx.




Algorithmic Idea: Vertex Walking

Goal: Maximize 2x+3x, ¢=(2,3)
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Algorithmic Idea: Vertex Walking

Goal: Maximize 2x;+3x, ¢=(2,3)

e 2: Center of ellipse not in F

F combainad in onw balf of tha.alipgold
O e e onieleing F
smaller by at Jarst a {1 -2} fncwr.

2

Algorithmic Idea: Vertex Walking

Goal: Maximize 2x;+3x, ¢=(2,3)

5'3—ﬂ¢|§
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Ellipsoid Algorithm: Solves Feasibility Problem

Step 1: Find large ellipse containing feasible region

Case 1: Center of ellipse is in F

Lo Elipetn F' Gorsiviining. fremible. rgine I '

Case 2: Center of ellipse not in F
erndler by of et o (‘l —

L 4 ol fucar
om"mh-m phta{:r_:j




Finding the Optimal Point with Ellipsoid Algorithm

Gask momimion X, wray (hare anch w; b o conatend)
Koy cker: Binary Seanch for volus of Optimal Solartiond
A Constesind Eywpx = F

. Infensihe?

¥alua of optimal selriiont i lnts tho B
+ Froshis?
Svalua of aprtined sebriion I2 of lesst B
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More Linear Programming Examples

Typical Operations Research Problem

Brewer's Problem: Maximize Profit
(1 Barrel) of Ale sells for $13, but recipe requires
6 pounds corn,
5 ounces of hops and
33 pounds of malt.
(1 Barrel) of Beer sells for $23, but recipe requires
16 pounds of corn
4 ounces of hops and
21 pounds of malt
Suppose we start of f with C= 480 pounds of corn, H=160 ounces of
hops and M=1190 pounds of malt.

Let A (resp. B) denote number of barrels of Ale (resp. Beer)

More Linear Programming Examples

Srwwar's Problem: Modal Profit

- 1 Borrel) off Ale sulls for $25, bat recipe requires

- & pomdd corn, B woncesof hept oned 33 peancly of malt.

+ (1 Borval) of Busr malts for 27, bot racips. raqlives

. 16 poiunde of' corn, 4 sances of haps and 21 pounis. off medt

- Sopposews stort of T with £= 490 paowig off oo, H-60 f

et ancd =190 pomald of et
« Let A (reap. B derote mogher of bervels of Ale fremp. Beer]
+  Boak mvedmize BAHTTE (mijpct 1u)
. A 0,8 =0 (hosmtve production)
 SAHIE e (At e el CORN)
. BA+4RSH (et e anesph HORS)
. BAARSH (et bwe sngh HOPS])

Linear Programming in Practice

Many optimization packages available
Solver (in Excel)
LINDO
CPLEX
GUROBI (free academic license available)
Matlab, Mathematica
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More Linear Programming Examples

Typical Operations Research Problem

Brewer's Problem: Maximize Profit
(1 Barrel) of Ale sells for $15, but recipe requires

. 6 pounds corn,

- 5 ounces of hops and

- 33 pounds of malt.
(1 Barrel) of Beer sells for $27, but recipe requires

.16 pounds of corn

- 4 ounces of hops and

. 21 pounds of malt
Suppose we start of f with C= 480 pounds of corn, H=160 ounces of
hops and M=1190 pounds of malt.
Let A (resp. B) denote number of barrels of Ale (resp. Beer)
Goal: maximize 15A+278

Solving in Mathematica

Maximize[{15 A + 27 B,A>= 0, B>= 0, 6A+16B <= 480, 5A + 4B <= 160,
33A+21 B <= 1190},{A,B}]

{6060/7 {A->80/7 B->180/7}}

Profit: $865.71




2-Player Zero-Sum Games
Example: Rock-Paper-Scissors

[Aic/Bob_[Rock | Paper | Sisors |
(-1,1) 11
EoE ) 00
EEmc)  a» 00

Alice wins = Bob loses (and vice-versa)

Minimax Optimal Strategy (possibly randomized) best strategy you
can find given that opponent is rational (and knows your strategy)

Minimax Optimal for Rock-Paper-Scissors: play each action with
probability 1/3.

2-Player Zero-Sum Games

Alice's View of Rewards
(Bob's are reversed)

ice/Bob

Example: Rock-Paper-Scissors

Alice wins = Bob loses (and vice-versa)

Minimax Optimal Strategy (possibly randomized) best strategy you
can find given that opponent is rational (and knows your strategy)

Minimax Optimal for Rock-Paper-Scissors: play each action with
probability 1/3.
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2-Player Zero-Sum Games

Example: Shooter-Goalie '
g |
L —= _a-';’
Block Left |Block
Right

Kick Left QYA 0.9
Kick Right }, 1/3

Shooter scores 80% of time when shooter
aims right and goalie blocks left

Minimax Optimal Strategy (possibly randomized) best
strategy you can find given that opponent is rational (and
knows your strategy)

How can we find Minimax Optimal Strategy?

Extra Slides
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Finding Minimax Optimal Solution using Linear Programming

m p,,_n.-ldw (nkpnhﬂlll}-ufmhnﬂ
Sarl:

w e map T

Conatraimtsr Expected reward when
s PPl player 2 takes

- mt-F =10 action j

- For all ool | we b, 2:7

gy dhenattest remnrl vehe player 1 fadwet action i e ployer 2 folesr
stion j.

Circulation with Demands

Circulation with demands.

. Directed graph 6 = (V, E).

- Edge capacities c(e), e € E.

« Node supply and demands d(v), v € V.

demand if d(v) > O; supply if d(v) < O; transshipment if d(v) = 0
Def. A circulation is a function that satisfies:

. Foreachec E: 0 < fle) < c(e) (capacity)
. ForeachveV: Yfe)— Xf(e) = d(v) (conservation)

eintov eoutofv

Circulation problem: given (V, E, ¢, d), does there exist a circulation?
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Circulation with Demands

Necessary condition: sum of supplies = sum of demands.
Td(v)= X -d(v) = D

vidw)>0 vidw< 0

Pf. Sum conservation constraints for every demand node v.

8 -6 — supply

| capacity  demand

flow

10
(ﬁ 3 — 4

Circulation with Demands

Max flow formulation.
. Add new source s and sink t.
« For each v with d(v) < 0, add edge (s, v) with capacity -d(v).
. For each v with d(v) > 0, add edge (v, 1) with capacity d(v).
« Claim: G has circulation iff ' has max flow of value D.
i saturates all edges
leaving s and entering t

6 supply

10 0 u ~
\.@/ demand

Circulation with Demands and Lower Bounds

Feasible circulation.
. Directed graph 6 = (V, E).
. Edge capacities c(e) and lower bounds / (e), e  E.
+ Node supply and demands d(v), v € V.

Def. A circulation is a function that satisfies:
. Foreachec E: ((e) < f(e) < c(e) (capacity)
. ForeachveV: >f(e) - Xf(e) = d(v) (conservation)

eintov eoutofv

Circulation problem with lower bounds. Given (V, E, ¢, ¢, d), does
there exists a a circulation?

Circulation with Demands

Max flow formulation.

6 — supply

10 0
demand

Circulation with Demands

Integrality theorem. If all capacities and demands are integers, and
there exists a circulation, then there exists one that is integer-
valued.

Pf. Follows from max flow formulation and integrality theorem for
max flow.

Characterization. Given (V, E, ¢, d), there does not exists a
circulation iff there exists a node partition (A, B) such that

Z,.pd, > cap(A, B) —
\

“demand by nodes in B exceeds supply
of nodes in B plus max capacity of

Pf idea. Look at mincutin6'. edges going from A 108

Circulation with Demands and Lower Bounds

Idea. Model lower bounds with demands.
. Send /(e) units of flow along edge e.
» Update demands of both endpoints.

lower bound upper bound capacity
N |
O—e—@ o —7—®
d(v) 6 d(w) d(v)+2 dw) -2
=

Theorem. There exists a circulation in G iff there exists a
circulation in G'. If all demands, capacities, and lower bounds in 6
are integers, then there is a circulation in 6 that is integer-valued.

Pf sketch. f(e)is a circulation in G iff f'(e) = f(e) - /(e) is a
circulation in G'.

Copyright 2000, Kevin Wayne



7.8 Survey Design

Survey Design

Algorithm. Formulate as a circulation problem with lower bounds.

« Include an edge (i, j) if consumer j owns product i.
. Integer circulation < feasible survey design.

[0, =]

[0.1]

products

Image Segmentation

Image segmentation.
. Central problem in image processing.
. Divide image into coherent regions.

Ex: Three people standing in front of complex background scene.
Identify each person as a coherent object.

Survey Design

Survey design.
. Design survey asking n, consumers about n, products.
+ Can only survey consumer i about product j if they own it.
. Ask consumer i between ¢; and ¢;' questions.
+ Ask between pjand p;' consumers about product j.

Goal. Design a survey that meets these specs, if possible.

one survey question per product

Bipartite perfect matching. Special case whenc¢;=¢;' = p;=p;' = 1.

7.10 Image Segmentation

Image Segmentation

3/26/2018

Foreground / background segmentation.
- Label each pixel in picture as belonging to

foreground or background. !
. V= set of pixels, E = pairs of neighboring pixels. FT

« 6;2 0 is likelihood pixel i in foreground.

» b;>0is likelihood pixel i in background.

- pjj= O is separation penalty for labeling one of i

and j as foreground, and the other as background.

Goals.
. Accuracy: if g; > b; in isolation, prefer to label i in foreground.
- Smoothness: if many neighbors of i are labeled foreground,
we should be inclined to label i as foreground.
. Find partition (/A, B\) that maximizes:  ya, + Th - Ty

icA jeB (Q)ecE
foreground background | ANt =1

Copyright 2000, Kevin Wayne




Image Segmentation

Formulate as min cut problem.
- Maximization.
+ No source or sink.
. Undirected graph.

Turn into minimization problem.

. Maximizing ‘ZAaw'* Xby - Xy

jeB () cE
|ANgiji|=1

a constant

Yaj+Xb +  Xpy
jeB ' ieA (ijeE
| ANt} |=1

. or alternatively

is equivalent to minimizing (S, _, a; +%; ., b;) -

Ya; - Xh + Xy
ieA

jeB (i)eE

3/26/2018

Project Selection

Image Segmentation

Consider min cut (A, B)inG'.
A = foreground.
cap(A.B) = Taj+Xb+ Xp
jee |

A (i)eE
A jeB —

if i and § on different sides,
p, counted exactly once

. Precisely the quantity we want to minimize.

can be positive or negative

Projects with prerequisites.
Set P of possible projects. Project v has associated revenue p,.

- some projects generate money: create interactive e-commerce interface,

redesign web page
- others cost money: upgrade computers, get site license

Set of prerequisites E. If (v,w) e E, can't do project v and unless

also do project w.
A subset of projects A c P is feasible if the prerequisite of every

project in A also belongs to A.

Project selection. Choose a feasible subset of projects to maximize

revenue.

Project Selection: Prerequisite Graph

Image Segmentation

Formulate as min cut problem.
. G = (V' E)
+ Add source to correspond to foreground;
add sink to correspond to background
« Use two anti-parallel edges instead of
undirected edge.

Py

G PO

7.11 Project Selection

Copyright 2000, Kevin Wayne

Prerequisite graph.
« Include an edge from v to w if can't do v without also doing w.

« {v,w, x} is feasible subset of projects.
. {v, x} is infeasible subset of projects.

O 0 O W
&6~ &—~—

feasible infeasible
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Min cut formulation.
. Assign capacity « to all prerequisite edge.
. Add edge (s, v) with capacity p, if p,>0.
. Add edge (v, 1) with capacity -p, if p, < 0.

@
P
@ by ®
h )
4@ ©

Project Selection: Min Cut Formulation

+ For notational convenience, define pg = p; = 0.

Open Pit Mining

Open-pit mining. (studied since early 1960s)
« Blocks of earth are extracted from surface to retrieve ore.
. Each block v has net value p, = value of ore - processing cost.
. Can't remove block v before w or x.

k-Regular Bipartite Graphs Have Perfect Matchings

Theorem. [Konig 1916, Frobenius 1917] Every k-regular bipartite graph
has a perfect matching.

Pf. Size of max matching = value of max flow in 6'. Consider flow:

I 1k if (u,v)eE

fuv) = 11 if u=s or v=t
t 0 otherwise

. fisaflowand itsvalue =n = perfect matching. -

@ e ~ ©
1 flow f
) ® 11
6 ® ® ® ®
® @
® ®©

Claim. (A, B) is min cut iff A —{s} is optimal s

. Max revenue because: cap(A, B) =

v;

Project Selection: Min Cut Formulation

et of projects.

. Infinite capacity edges ensure A — {s} is feasible.
Zp, + Z(py)
veBip,

0 veAp<0
Zpy, - Zpy
>0 veh

constant

k-Regular Bipartite Graphs

Dancing problem.
Exclusive Ivy league party attended by n men and n women.
- Each man knows exactly k women; each woman knows exactly k men.
Acquaintances are mutual.
« Is it possible fo arrange a dance so that each woman dances
with a different man that she knows?

=0
Mathematical reformulation. Does every k-regular
bipartite graph have a perfect matching? [ E——
Ex. Boolean hypercube. ©) @
® ®
® )
women men

Census Tabulation (Exercise 7.39)

Feasible matrix rounding.
- Given a p-by-q matrix D = {d;;} of real numbers.
- Row i sum = a;, column j sum b;.
- Round each dj;, a;, b; up or down to integer so that sum of rounded
elements in each row (column) equals row (column) sum.
. Original application: publishing US Census data.

Goal. Find a feasible rounding, if one exists.

3 7 7
10 2 1
3 1 7
EXERER
original matrix feasible rounding

Copyright 2000, Kevin Wayne
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Census Tabulation

Feasible matrix rounding.
- Given a p-by-q matrix D = {d;;} of real numbers.
- Row i sum = a;, column j sum b;.
- Round each djj, a;, b; up or down to integer so that sum of rounded
elements in each row (column) equals row (column) sum.
. Original application: publishing US Census data.

Goal. Find a feasible rounding, if one exists.
Remark. "Threshold rounding" can fail.

035 035 035 [FEH
055 055 055
[ 091 09 | 09|

original matrix feasible rounding

Census Tabulation

Theorem. Feasible matrix rounding always exists.
Pf. Formulate as a circulation problem with lower bounds.
- Original data provides circulation (all demands = 0).
. Integrality theorem = integral solution = feasible rounding. »

314 68 73
96 24 07
36 12 65

row column

Copyright 2000, Kevin Wayne
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