
CS 580: Algorithm Design and Analysis

Jeremiah Blocki
Purdue University
Spring 2018

Recap

• Network Flow Problems
• Max-Flow Min Cut Theorem
• Ford Fulkerson

• Augmenting Paths
• Residual Flow Graph
• Integral Solutions (given integral capacities)

• Capacity Scaling Algorithm
• Dinic’s Algorithm

• Applications of Maximum Flow
• Maximum Bipartite Matching
• Marriage Theorem (Hall/Frobenius)
• Disjoint Paths [Menger’s Theorem]
• Baseball Elimination
• Circulation with Demands
• Many Others…

2

Linear Programming

• Even more general than Network Flow!

• Many Applications
• Network Flow Variants

• Taxation
• Multi-Commodity Flow Problems

• Supply-Chain Optimization
• Operations Research

• Entire Courses Devoted to Linear Programming!
• Our Focus

• Using Linear Programming as a tool to solve algorithms
problems

• We won’t cover algorithms to solve linear programs in any
depth

Motivating Example: Time Allocation

Studying (S)

4 Credit for Example: Avrim Blum

Partying (P) Everything Else (E)

168 Hours in Each Week to Allocate as Follows

Motivating Example: Time Allocation

Studying (S)

5 Credit for Example: Avrim Blum

Partying (P)
Everything Else (E)

168 Hours in Each Week to Allocate as Follows

Question 1: Can we satisfy all of the constraints?
(Maintain Sanity + Pass Courses)

Answer: Yes. One feasible solution is S=80, P=20, E=68

Motivating Example: Time Allocation

Studying (S)

6

Partying (P)
Everything Else (E)

168 Hours in Each Week to Allocate as Follows

Linear Program Definition

7

Linear Program Definition

8

Linear Program Example

9 Credit for Example: Avrim Blum

Network Flow as a Linear Program

10

Network Flow as a Linear Program

11

110

s

4

2

t1

170

102

122

c
a
p
a
c
i
t
y

Solving a Linear Program

• Simplex Algorithm (1940s)
• Not guaranteed to run in polynomial time
• We can find bad examples, but…
• The algorithm is efficient in practice!

• Ellipsoid Algorithm (1980)
• Polynomial time (huge theoretical breakthrough), but ….
• Slow in practice

• Newer Algorithms
• Karmarkar’s Algorithm

• Competitive with Simplex
• Polynomial Time

12

Algorithmic Idea: Direction of Goodness

Goal: Maximize 2x1+3x2 c=(2,3)

13

x1

x2

Linear Programming

14

x1

x2
F

Linear Programming

15

x1

x2
F

Linear Programming

16

x1

x2
F

Linear Programming

17

x1

x2
F

Linear Programming

18

Algorithmic Idea: Vertex Walking

Goal: Maximize 2x1+3x2 c=(2,3)

19

x1

x2

Algorithmic Idea: Vertex Walking

Goal: Maximize 2x1+3x2 c=(2,3)

20

x1

x2

Algorithmic Idea: Vertex Walking

Goal: Maximize 2x1+3x2 c=(2,3)

21

x1

x2

Ellipsoid Algorithm: Solves Feasibility Problem

22

x1

x2

Case 1: Center of ellipse is in F

Step 1: Find large ellipse containing feasible region

Ellipsoid Algorithm: Solves Feasibility Problem

23

x1

x2

Case 2: Center of ellipse not in F

Step 1: Find large ellipse containing feasible region

Ellipsoid Algorithm: Solves Feasibility Problem

24

x1

x2

Case 2: Center of ellipse not in F

Step 1: Find large ellipse containing feasible region

Finding the Optimal Point with Ellipsoid Algorithm

25

Linear Programming in Practice

Many optimization packages available
• Solver (in Excel)
• LINDO
• CPLEX
• GUROBI (free academic license available)
• Matlab, Mathematica

26

More Linear Programming Examples

Typical Operations Research Problem

Brewer’s Problem: Maximize Profit
• (1 Barrel) of Ale sells for $13, but recipe requires

• 6 pounds corn,
• 5 ounces of hops and
• 33 pounds of malt.

• (1 Barrel) of Beer sells for $23, but recipe requires
• 16 pounds of corn
• 4 ounces of hops and
• 21 pounds of malt

• Suppose we start off with C= 480 pounds of corn, H=160 ounces of
hops and M=1190 pounds of malt.

• Let A (resp. B) denote number of barrels of Ale (resp. Beer)

27

More Linear Programming Examples

Typical Operations Research Problem

Brewer’s Problem: Maximize Profit
• (1 Barrel) of Ale sells for $15, but recipe requires

• 6 pounds corn,
• 5 ounces of hops and
• 33 pounds of malt.

• (1 Barrel) of Beer sells for $27, but recipe requires
• 16 pounds of corn
• 4 ounces of hops and
• 21 pounds of malt

• Suppose we start off with C= 480 pounds of corn, H=160 ounces of
hops and M=1190 pounds of malt.

• Let A (resp. B) denote number of barrels of Ale (resp. Beer)
• Goal: maximize 15A+27B

28

More Linear Programming Examples

29

Solving in Mathematica

Maximize[{15 A + 27 B,A>= 0, B>= 0, 6A+16B <= 480, 5A + 4B <= 160,
33A+21 B <= 1190},{A,B}]

{6060/7,{A->80/7,B->180/7}}

Profit: $865.71

30

2-Player Zero-Sum Games

Example: Rock-Paper-Scissors

Alice wins  Bob loses (and vice-versa)

Minimax Optimal Strategy (possibly randomized) best strategy you
can find given that opponent is rational (and knows your strategy)

Minimax Optimal for Rock-Paper-Scissors: play each action with
probability 1/3.

31

Alice/Bob Rock Paper Scissors
Rock (0,0) (-1,1) (1,-1)
Paper (1,-1) (0,0) (-1,1)
Scissors (1,-1) (1,-1) (0,0)

2-Player Zero-Sum Games

Example: Rock-Paper-Scissors

Alice wins  Bob loses (and vice-versa)

Minimax Optimal Strategy (possibly randomized) best strategy you
can find given that opponent is rational (and knows your strategy)

Minimax Optimal for Rock-Paper-Scissors: play each action with
probability 1/3.

32

Alice/Bob Rock Paper Scissors
Rock 0 -1 1
Paper 1 0 -1
Scissors -1 1 0

Alice’s View of Rewards
(Bob’s are reversed)

2-Player Zero-Sum Games

Example: Shooter-Goalie

33

Block Left Block
Right

Kick Left 1/2 0.9
Kick Right 0.8 1/3

Shooter scores 80% of time when shooter
aims right and goalie blocks left

Minimax Optimal Strategy (possibly randomized) best
strategy you can find given that opponent is rational (and
knows your strategy)

How can we find Minimax Optimal Strategy?

Finding Minimax Optimal Solution using Linear Programming

34

Expected reward when
player 2 takes
action j

Extra Slides

36

Circulation with Demands

Circulation with demands.
 Directed graph G = (V, E).
 Edge capacities c(e), e  E.
 Node supply and demands d(v), v  V.

Def. A circulation is a function that satisfies:
 For each e  E: 0  f(e)  c(e) (capacity)
 For each v  V: (conservation)

Circulation problem: given (V, E, c, d), does there exist a circulation?

f (e)

e in to v
  f (e)

e out of v
  d (v)

demand if d(v) > 0; supply if d(v) < 0; transshipment if d(v) = 0

37

Necessary condition: sum of supplies = sum of demands.

Pf. Sum conservation constraints for every demand node v.

3

10 6

-7

-8

11

-6

4
9
7

3

10 0

7

4
4

6

6
7
1

4 2

flow

Circulation with Demands

capacity

d (v)

v : d (v)  0
   d (v)

v : d (v)  0
 : D

demand

supply

38

Circulation with Demands

Max flow formulation.

G:
supply

3

10 6

-7

-8

11

-6

9

10 0

7

4

7

4

demand

39

Circulation with Demands

Max flow formulation.
 Add new source s and sink t.
 For each v with d(v) < 0, add edge (s, v) with capacity -d(v).
 For each v with d(v) > 0, add edge (v, t) with capacity d(v).
 Claim: G has circulation iff G' has max flow of value D.

G': supply

3

10 6 9

0

7

4

7

4

s

t

10 11

7 8 6

saturates all edges
leaving s and entering t

demand

40

Circulation with Demands

Integrality theorem. If all capacities and demands are integers, and
there exists a circulation, then there exists one that is integer-
valued.

Pf. Follows from max flow formulation and integrality theorem for
max flow.

Characterization. Given (V, E, c, d), there does not exists a
circulation iff there exists a node partition (A, B) such that
vB dv > cap(A, B)

Pf idea. Look at min cut in G'.
demand by nodes in B exceeds supply
of nodes in B plus max capacity of
edges going from A to B

41

Circulation with Demands and Lower Bounds

Feasible circulation.
 Directed graph G = (V, E).
 Edge capacities c(e) and lower bounds  (e), e  E.
 Node supply and demands d(v), v  V.

Def. A circulation is a function that satisfies:
 For each e  E:  (e)  f(e)  c(e) (capacity)
 For each v  V: (conservation)

Circulation problem with lower bounds. Given (V, E, , c, d), does
there exists a a circulation?

f (e)
e in to v
  f (e)

e out of v
  d (v)

42

Circulation with Demands and Lower Bounds

Idea. Model lower bounds with demands.
 Send (e) units of flow along edge e.
 Update demands of both endpoints.

Theorem. There exists a circulation in G iff there exists a
circulation in G'. If all demands, capacities, and lower bounds in G
are integers, then there is a circulation in G that is integer-valued.

Pf sketch. f(e) is a circulation in G iff f'(e) = f(e) - (e) is a
circulation in G'.

v w[2, 9]

lower bound upper bound

v w
d(v) d(w) d(v) + 2 d(w) - 2

G G'

7

capacity

7.8 Survey Design

44

Survey Design

Survey design.
 Design survey asking n1 consumers about n2 products.
 Can only survey consumer i about product j if they own it.
 Ask consumer i between ci and ci' questions.
 Ask between pj and pj' consumers about product j.

Goal. Design a survey that meets these specs, if possible.

Bipartite perfect matching. Special case when ci = ci' = pi = pi' = 1.

one survey question per product

45

Survey Design

Algorithm. Formulate as a circulation problem with lower bounds.
 Include an edge (i, j) if consumer j owns product i.
 Integer circulation  feasible survey design.

s

1

3

5

1'

3'

5'

t

2

4

2'

4'

[c1, c1']

[0, 1]

consumers

[p1, p1']

[0, ]

products

7.10 Image Segmentation

47

Image Segmentation

Image segmentation.
 Central problem in image processing.
 Divide image into coherent regions.

Ex: Three people standing in front of complex background scene.
Identify each person as a coherent object.

48

Image Segmentation

Foreground / background segmentation.
 Label each pixel in picture as belonging to

foreground or background.
 V = set of pixels, E = pairs of neighboring pixels.
 ai  0 is likelihood pixel i in foreground.
 bi  0 is likelihood pixel i in background.
 pij  0 is separation penalty for labeling one of i

and j as foreground, and the other as background.

Goals.
 Accuracy: if ai > bi in isolation, prefer to label i in foreground.
 Smoothness: if many neighbors of i are labeled foreground,

we should be inclined to label i as foreground.
 Find partition (A, B) that maximizes:



a i 
i A
 bj

jB
  pij

(i, j)  E
A{i, j}  1



foreground background

49

Image Segmentation

Formulate as min cut problem.
 Maximization.
 No source or sink.
 Undirected graph.

Turn into minimization problem.

 Maximizing

is equivalent to minimizing

 or alternatively



a j 
jB
 bi

i A
  pij

(i, j)  E
A{i, j}  1





a i 
i A
 bj

jB
  pij

(i, j)  E
A{i, j}  1





a ii  V  b jj  V 
a constant

  
  ai

i A
  bj

jB
  pij

(i, j)  E
A{i, j}  1



50

Image Segmentation

Formulate as min cut problem.
 G' = (V', E').
 Add source to correspond to foreground;

add sink to correspond to background
 Use two anti-parallel edges instead of

undirected edge.

s t

pij

pij

pij

i jpij

aj

G'

bi

51

Image Segmentation

Consider min cut (A, B) in G'.
 A = foreground.

 Precisely the quantity we want to minimize.

cap(A, B)  aj 
jB
 bi 

i A
 pij

(i, j)  E
i A, jB



G'

s ti j

A

if i and j on different sides,
pij counted exactly once

pij

bi

aj

7.11 Project Selection

53

Project Selection

Projects with prerequisites.
 Set P of possible projects. Project v has associated revenue pv.

– some projects generate money: create interactive e-commerce interface,
redesign web page

– others cost money: upgrade computers, get site license
 Set of prerequisites E. If (v, w)  E, can't do project v and unless

also do project w.
 A subset of projects A  P is feasible if the prerequisite of every

project in A also belongs to A.

Project selection. Choose a feasible subset of projects to maximize
revenue.

can be positive or negative

54

Project Selection: Prerequisite Graph

Prerequisite graph.
 Include an edge from v to w if can't do v without also doing w.
 {v, w, x} is feasible subset of projects.
 {v, x} is infeasible subset of projects.

v

w

xv

w

x

feasible infeasible

55

Min cut formulation.
 Assign capacity  to all prerequisite edge.
 Add edge (s, v) with capacity -pv if pv > 0.
 Add edge (v, t) with capacity -pv if pv < 0.
 For notational convenience, define ps = pt = 0.

s t

-pw

u

v

w

x

y z

Project Selection: Min Cut Formulation



pv -px








py

pu

-pz



56

Claim. (A, B) is min cut iff A  { s } is optimal set of projects.
 Infinite capacity edges ensure A  { s } is feasible.
 Max revenue because:

s t

-pw

u

v

w

x

y z

Project Selection: Min Cut Formulation

pv -px



cap(A, B)  p v
vB: pv  0

  (p v)
v A: pv  0



 p v
v : pv  0


constant


 p v
v A


py

pu






A

57

Open-pit mining. (studied since early 1960s)
 Blocks of earth are extracted from surface to retrieve ore.
 Each block v has net value pv = value of ore - processing cost.
 Can't remove block v before w or x.

Open Pit Mining

v
xw

58

k-Regular Bipartite Graphs

Dancing problem.
 Exclusive Ivy league party attended by n men and n women.
 Each man knows exactly k women; each woman knows exactly k men.
 Acquaintances are mutual.
 Is it possible to arrange a dance so that each woman dances

with a different man that she knows?

Mathematical reformulation. Does every k-regular
bipartite graph have a perfect matching?

Ex. Boolean hypercube.

1

3

5

1'

3'

5'

2

4

2'

4'

women men

59

Theorem. [König 1916, Frobenius 1917] Every k-regular bipartite graph
has a perfect matching.
Pf. Size of max matching = value of max flow in G'. Consider flow:

 f is a flow and its value = n  perfect matching. ▪

k-Regular Bipartite Graphs Have Perfect Matchings

f (u, v) 
1/k if (u, v)  E
1 if u  s or v  t
0 otherwise








1

3

5

1'

3'

5'

2

4

2'

4'

s t

1 1

1

G'

1
1/k

1
flow f

60

Census Tabulation (Exercise 7.39)

Feasible matrix rounding.
 Given a p-by-q matrix D = {dij } of real numbers.
 Row i sum = ai, column j sum bj.
 Round each dij, ai, bj up or down to integer so that sum of rounded

elements in each row (column) equals row (column) sum.
 Original application: publishing US Census data.

Goal. Find a feasible rounding, if one exists.

17.243.14 6.8 7.3

12.79.6 2.4 0.7

11.33.6 1.2 6.5

16.34 10.4 14.5

173 7 7

1310 2 1

113 1 7

16 10 15

original matrix feasible rounding

61

Census Tabulation

Feasible matrix rounding.
 Given a p-by-q matrix D = {dij } of real numbers.
 Row i sum = ai, column j sum bj.
 Round each dij, ai, bj up or down to integer so that sum of rounded

elements in each row (column) equals row (column) sum.
 Original application: publishing US Census data.

Goal. Find a feasible rounding, if one exists.
Remark. "Threshold rounding" can fail.

1.050.35 0.35 0.35

1.650.55 0.55 0.55

0.9 0.9 0.9

original matrix feasible rounding

10 0 1

21 1 0

1 1 1

62

Census Tabulation

Theorem. Feasible matrix rounding always exists.
Pf. Formulate as a circulation problem with lower bounds.
 Original data provides circulation (all demands = 0).
 Integrality theorem  integral solution  feasible rounding. ▪

17.243.14 6.8 7.3

12.79.6 2.4 0.7

11.33.6 1.2 6.5

16.34 10.4 14.5 s

1

2

3

1'

2'

3'

t

row column

17, 18

12, 13

11, 12

16, 17

10, 11

14, 15

3, 4

0, 

lower bound upper bound

