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€S 580: Algorithm Design and Analysis

5.3 Counting Inversions

Jeremiah Blocki
Purdue University
Spring 2018

Announcement: Homework 2 due tonight at 11:59PM

Applications

Applications.
. Voting theory.
« Collaborative filtering.
+ Measuring the "sortedness" of an array.
. Sensitivity analysis of Google's ranking function.
- Rank aggregation for meta-searching on the Web.
. Nonparametric statistics (e.g., Kendall's Tau distance).

Recap: Divide and Conquer

Recursive Approach:

1 Divide input into smaller parts (Divide)

2. Solve each smaller instance (Conquer)

5. Combine solutions from each smaller instance (Merge)

Example: Merge Sort (Sort list of nitems in O(n log n) time)
1 Divide array into two equal size parts (n/2)

2 Sort each sub-array (Conquer)

5. Merge the each sub-array to obtain the sorted list

Recurrence Relationships
Useful to express the running time of recursive algorithm
Analyzing a Recurrence: Unrolling, Telescoping, Induction,...
Master’s Theorem (T(n)=a T(n/b) + n°)

Counting Inversions

Music site tries to match your song preferences with others.
« You rank n songs.

« Music site consults database to find people with similar tastes.

Similarity metric: number of inversions between two rankings.
« Myrank: 1,2, .., n.
- Your rank: ay, ay, ..., G,
- Songsiand j inverted if i< j, but ¢; > a;.

Songs
| 48] clo | _
1 2 3 4 5 Inversions
3-2,4-2

You 1 3 4 2 5]
]

Brute force: check all ©(n?) pairs i and j.

Counting Inversions: Divide-and-Conquer

Divide-and-conquer.

1 5[4 8 10 2 6|9 12 11 3|7
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Divide-and-conquer.
. Divide: separate list into two pieces.

1 5[4 8 10(2 6 9 12 113 |7

1 ]5]4]eln]zQ6lolielula]7]
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Counting Inversions: Divide-and-Conquer

Counting Inversions: Divide-and-Conquer

Divide-and-conquer.
. Divide: separate list into two pieces.
. Conquer: recursively count inversions in each half.
- Combine: count inversions where g; and q; are in different halves,
and return sum of three quantities.

1 5 4 8 10 2 6 9 1211 3 7 Divide: O(1).

DOD0NE BEE0EE - oo

5 blue-blue inversions 8 green-green inversions

9 blue-green inversions
5-3,4-3,8-6,8-3,8-7,10-6, 10-9,10-3, 10-7

Combine: 2?7?

Total =5+8+9=22.

Counting Inversions: Implementation

Pre-condition. [Merge-and-Count] A and B are sorted.
Post-condition. [Sort-and-Count] L is sorted.

Sort-and-Count(L) {
if list L has one element
return 0 and the list L

Divide the list into two halves A and B
(ry, A) « Sort-and-Count(A)

(rg, B) « Sort-and-Count(B)

(r , L) « Merge-and-Count(A, B)

return r = r, + ryg + r and the sorted list L

Divide-and-conquer.
. Divide: separate list into two pieces.

1 5 48 10 2 6 9 (12 11 3 7

5 blue-blue inversions 8 green-green inversions

Counting Inversions: Divide-and-Conquer

- Conquer: recursively count inversions in each half.

DOODOE OOENEE o o

5-4,5-2,4-2,8-2,10-2 6-3,9-3,9-7,12-3,12-7,12-11,11-3,11-7
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Counting Inversions: Combine

Combine: count blue-green inversions IE'
. Assume each half is sorted. play

- Count inversions where q; and q; are in different halves.

. Merge two sorted halves into sorted whole.

to maintain sorted invariant

BEDDDE BODEEE
6 2 o
13 blue-green inversions: 6+3+2+2+0+0  Count: O(n)

2 3 7 10 11 14 16 17 18 19 23 25
Merge: O(n)

T(n) < T(Ln/2])+T(In/2[)+0(n) = T(n)=0(nlogn)

5.4 Closest Pair of Points




Closest Pair of Points

Closest pair. Given n points in the plane, find a pair with smallest
Euclidean distance between them.

Fundamental geometric primitive.
« Graphics, computer vision, geographic information systems,
molecular modeling, air traffic control.
« Special case of nearest neighbor, Euclidean MST, Voronoi.

fast closest pair inspired fast algorithms for these problems
Brute force. Check all pairs of points p and q with ©(n?)
comparisons.

1-D version. O(n log n) easy if points are on a line.

Assumption. No two points have same x coordinate.

I
o make presentation cleaner
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Closest Pair of Points: First Attempt

Divide. Sub-divide region into 4 quadrants.
Obstacle. Impossible to ensure n/4 points in each piece.

° ° L o
o 9° &8

Closest Pair of Points

Algorithm.
. Divide: draw vertical line L so that roughly $n points on each side.
. Conquer: find closest pair in each side recursively.

. 2 . . e
. ’ '. o® /21 . .
2, o ° o ’ 5 4

Closest Pair of Points: First Attempt

Divide. Sub-divide region into 4 quadrants.

° L 5 . °
° ° °
o °
° . '. s
° . ° A . .
°
. ® ° ° ° ° o

° ° ° .

° °
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Closest Pair of Points

Algorithm.
. Divide: draw vertical line L so that roughly $n points on each side.

° L A . °
° ° °
° . °
° . . A
° . ° S . .
°
. ° ° ° ° O
° ° ° .
° °

Closest Pair of Points

Algorithm.
. Divide: draw vertical line L so that roughly $n points on each side.
- Conquer: find closest pair in each side recursively.

. Combine: find closest pair with one point in each side. - seems like o(n?)

- Return best of 3 solutions.

o " . .
o . .
. ° O
o
o ° 8 1o / 21
o © o
.
1.2/. o ° o . .
° ° > .
o .
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Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < 5.

. " . L.
. ° .. ol* /21 ) .
L% e ° . ’ o

Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < 5.
. Observation: only need to consider points within § of line L.
. Sort points in 25-strip by their y coordinate.

2 rows

Closest Pair of Points

Def. Let s; be the point in the 25-strip, with

the it smallest y-coordinate.
eee
Qi Claim. If |i- j| = 12, then the distance between
(-] s;and s; is at least 8.
Pf.
15+ No two points lie in same $3-by-35 box.
z
« Two points at least 2 rows apart
[>-) -] 35 have distance > 2(33). *
) Q0
® o Fact. Still true if we replace 12 with 7.
eee
5 5

Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < .
. Observation: only need to consider points within 5 of line L.

Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < 5.

. Observation: only need to consider points within 5 of line L.
- Sort points in 25-strip by their y coordinate.
« Only check distances of those within 11 positions in sorted list!

Closest Pair Algorithm

Closest-Pair(p;, ... Pn) {

Compute separation line L such that half the points O(n log n)
are on one side and half on the other side.

8, = Closest-Pair(left half) 2T/ 2)
8, = Closest-Pair(right half)

8 =min(3,, )

Delete all points further than 8 from separation line L  O(n)
Sort remaining points by y-coordinate. O(nlogn)
Scan points in y-order and compare distance between

each point and next 11 neighbors. If any of these o(m)
distances is less than 8, update 3.

return 3.
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Closest Pair of Points: Analysis

Running time.

T(n) < 2T(n/2) + O(nlogn) = T(n) = O(n log”n)

Q. Can we achieve O(n log n)?

A. Yes. Don't sort points in strip from scratch each time.
. Each recursive returns two lists: all points sorted by y
coordinate, and all points sorted by x coordinate.
. Sort by merging two pre-sorted lists.

T(n) < 2T(n/2) + O(n) = T(n) = O(n logn)
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5.5 Integer Multiplication

Complex Multiplication

Complex multiplication. (a+ bi) (c+di)=x+yi.

Grade-school. x=ac-bd, y=bc+ad.

4 multiplications, 2 additions

Q. Isit possible to do with fewer multiplications?
A. Yes. [Gauss] x=ac-bd, y=(a+b)(c+d)-ac-bd.

.
" 3 multiplications, 5 additions ($305)

Remark. Improvement if no hardware multiply.

JON KLEINBERG - EVA TARDOS

Motivation: Complex Multiplication

Complex multiplication. (a+ bi) (c + di)=x +yi.

Grade-school. x=ac-bd, y=bc +ad.

4 multiplications, 2 additions

Q. Isit possible to do with fewer multiplications?

P'b“ Our Prices Are Fantastic!
Multiplication: $100 (reals only R)
;-) Jlﬂk Addition: $1  (reals only R)

$402 for Grade-School Approach: 4
multiplications, 2 additions

Integer Addition

Addition. Given two n-bit integers x and y, compute x +y.

Grade-school. ©(n) bit operations.

11 1 1 1 1 0 1
11 0 1 0 1 0 1

+ 0 1 1 1 1 1 0 1

i1 0 1 0 1 0 0 1 O

Remark. Grade-school addition algorithm is optimal.

Copyright
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Integer Multiplication

Multiplication. Given two n-bit integers x and y, compute x x y.
Grade-school. ®(n?) bit operations.

11010101
x01111101
11010101
000000000
110101010
110101010
110101010
110101010
110101010
000000000

0110100000000001

Q. Is grade-school multiplication algorithm optimal?
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Divide-and-Conquer Multiplication: Warmup

To multiply two n-bit integers x and y:
. Multiply four n-bit integers, recursively.
+ Add and shift to obtain result.

oz,
X220t gt shifts: On) cheap
y=2"%y 4 /
xy = (22 + x0)(2V2 - y1 4 7o)

=2" xyy1 + 22 - (xgy1 + X1Y0) + XoYo
o (-]

Ex. x = 10001101 y = 11100001
XX i Yo

T = 4TM/2) + e = TM=6n’)

recusivecalls  add.shift

Master's Theorem: a = 4, b=2, c=1 (ﬁ) >1,0(n'# ) = 0(n?)

Karatsuba Multiplication

To multiply two n-bit integers x and y:
. Add two %n bit integers.
« Multiply three $n-bit integers, recursively.
. Add, subtract, and shift to obtain result.

x =22 x; +xy
y=2"%yi+y

n

Xy =2" xyy+ 22 - (Xoy1 +x1¥0) + XoYo
=27 2y + 22 (G0 + 1) (o + 1) = XoYo = x171) + XoYo
e 0 o

Divide-and-Conquer Multiplication: Warmup

To multiply two n-bit integers x and y:
« Multiply four 3n-bit integers, recursively.
- Add and shift to obtain result.

x=2"2. x; +xy
y=2"2y1+y,
xy = (22 x4 x0) (22 yi + yo)
t
=2" xyy1 + 22 - (xgy1 + X1Y0) + XoYo
() e o

Ex. X = 10001101 y = 11100001
fugvtungin [unpai}
X X i Yo

TM) = 4T(M/2) + M) = TM=6m’)
),

recurvecalls  add.shift
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Recursion Tree

0 if n=0 3 2
= T(n) = 2 = 2n"—
@ {4T(n/2)+n otherwise ® kzﬂ " n[ 2-1 j o
T(M)
T(n/2) T(/2)  T(/2) T(n/2)

T(/4YT (n/4)T(n/4) T(n/4) - T/ T(N/AYT(N/4)T(n/4)

T(n 7 2%

T T T T T T T2 T

4(/2)

16(n/4)

4<(n /7 2%

4190

(€]

Karatsuba Multiplication

To multiply two n-bit integers x and y:
. Add two 3n bit integers.
« Multiply three $n-bit integers, recursively.
. Add, subtract, and shift to obtain result.

x=2"% % +x,
y=2"2y1+y,

xy =2" xiy; +n2% * (xoy1 + x1¥0) + Xo¥o
=2" xyy; + 22 (o + 1) 0o + ¥1) = XoYo — x171) + XoYo
o (-] o o o
Theorem. [Karatsuba-Ofman 1962] Can multiply two n-bit integers
in O(n'%) bit operations.
T < T(ln/2l) + T(fn2l) + T(1+fn2l) + @M = T() = 0(**) = om'™)

recunive calls add, sublact, shifl

Master's Theorem: a=3,b=2, c=1 (&) >1




Karatsuba: Recursion Tree

. en aliEn
0 i n=0 « (6
- T)= ey - o2
T® {mm) 40 otherwise ® Eu "R n[ 3-1
T
T(n/2) T(n/2) T(n/2)
/‘
/

/ |
T(n/4YT (n/4)T(n/4) T(N/AXT (N/4)T(N/4) T(n/4)T(n/4)T(n/4)

T T2 T T T2 T T2 T2

],

3n* -2n

3(n/2)

o(n/4)

3 (n /29

3 1gn

(€]
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Toom-3 Generalization

. a= 22"/3«u2+2%-u1+a0

Split into 3 parts b=22/3.p, 4 Zg by + by

Requires: 5 multiplications of n/3 bit numbers and O(1) additions, shifts
T)=5-T (%) +Om)=>Tm) € o(n}ogs 5)

~ 1.465
Toom-Cook Generalization (split into k parts):

n(k-1) n
a= B cag_q++2k-a; +ag

n(k=1) n
b=2"Fk .ap+-+2k-a;+ag

T(n)=@k—1)-T (;) +0(n) = T(n) € 0(nloB2k-1)

Jim (log(2k - 1)) =1

Matrix Multiplication

Fast Integer Division Too (!)

Integer division. Given two n-bit (or less) integers s and't,

Fact. Complexity of integer division is (almost) same as integer

multiplication.

To compute quotient g: Xit
. Approximate x = 1/t using Newton's method:
. Affer izlogn iterations, either q=|s x] or q=[sx.

- IfLsx) t > s then g =[s x1 (1 multiplication)
- Otherwise q=[sx/
- r=s-qt (1 multiplication)

= 2% - tx}e—_ using fast
multiplication

. Total: O(log n) multiplications and subtractions

compute quotient g =Ls/t]and remainder r =smod t (such that s=qt-+r).
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Toom-3 Generalization

. a=2"B.g,+ 2%-(1‘ +a,

Split into 3 parts b =223 . by + 25 by + by

Requires: 5 multiplications of n/3 bit numbers and O(1) additions, shifts
T()=5- T(;—l) FOom) =>Tm) € o(n;ogaS)

~ 1.465

Schénhage-Strassen algorithm
T(n) € 0(n Togn Toglogn)

Only used for really big numbers: a > 22

State of the Art: 0(n logn g(n)) for increasing small
g(n) < loglogn

Dot Product

Dot product. Given two length n vectors aand b, computec=a-

Grade-school. ©(n) arithmetic operations.

a=[70 20 .10]
b =[30 40 30]
a- b = (70x.30) + (:20 x .40) + (.10 x 30) = .32

Remark. Grade-school dot product algorithm is optimal.

b.
N
b=

a

Lap,




Matrix Multiplication

59 41 Lo 80 3 .50
31 36 25| = |30 .60 .10| x | .10 48 .10

A5 31 42 50 .10 .40,

Q. Is grade-school matrix multiplication algorithm optimal?

Matrix multiplication. Given two n-by-n matrices A and B, compute C = AB.

Grade-school. ©(n®) arithmetic operations. —
o =Y,

Gy Cp G, a, a, a, : hm

G Gy a, a, - by,

. i i x :

Co Cor a, a, a,, - b,
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Matrix Multiplication: Warmup

To multiply two n-by-n matrices A and B:
. Divide: partition A and B into $n-by-n blocks.
. Conquer: multiply 8 pairs of $n-by-2n matrices, recursively.
. Combine: add appropriate products using 4 matrix additions.

[C.. c,zJ:V‘. AZJXP, B.ZJ Ci = (AixBy)+ (AaxBy)
Cu Cp A Ay By By Ca = (ArxBu)+ (AaxByn)
Coi = (AuxBy)+ (AyxBy)
Cu = (AuxBy)+ (AyxBy)

T=8T(M/2)+  Om) = Tm=6n’)

recurswecalls  add, form submatrices

Fast Matrix Multiplication

To multiply two n-by-n matrices A and B: [Strassen 1969]
. Divide: partition A and B into $n-by-n blocks.
. Compute: 14 $n-by-3n matrices via 10 matrix additions.
. Conquer: multiply 7 pairs of n-by-3n matrices, recursively.
« Combine: 7 products into 4 terms using 8 matrix additions.

Analysis.
.« T(n) = # arithmetic operations.

TM=7TM/2)  OM’) = Tm=6m"*")=0n*")
oueals o b
« Apply Master Theorem (a=7 b=2,c=2)
d\_7

“(2)=2>1 =T =06(n) = 0(n°87) = 0(x>*)

Block Matrix Multiplication

£~ VAVANYA

Fast Matrix Multiplication

Key idea. multiply 2-by-2 blocks with only 7 multiplications.

1322 58 164 170 qa | 2 3 s )
504 528 548 570 4 5 5 2 21 22 23

856 894 932 970 8 9 10 11 . 24 25 26 27
1208 1262 1316 1370, 12 13 14 15 28 19 30 31

X

B,
Ci1 = Ay X By + A1 X By
=l dxbo 2il+le s 5
- [1s2 159)
504 526
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Ci Co A B, B,
S R A Y ] H S W TR
Cy Cy Ay Apl (B, By
Po= (Ai+ADXBy
P= (At AxB,
Ci = R+R-RtR Po= Aux(By-B)
G = ReR P= (At An)x(By B
C = ReR Bo= (ham A (By +By)
Ca = ReR-P-P, P = (A=A x(By+By)

. 7 multiplications.

18 =8+ 10 additions and subtractions.

Fast Matrix Multiplication: Practice

Implementation issues.
. Sparsity.
- Caching effects.
« Numerical stability.
- Odd matrix dimensions.
. Crossover to classical algorithm around n = 128.

Common misperception. “Strassen is only a theoretical curiosity.”
« Apple reports 8x speedup on 64 Velocity Engine when
n = 2,500.
- Range of instances where it's useful is a subject of
controversy.

Remark. Can "Strassenize" Ax = b, determinant, eigenvalues,
SVD, ...
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Fast Matrix Multiplication: Theory

Multiply two 2-by-2 matrices with 7 scalar multiplications?
Yes! [Strassen 1969] oM™ 7)—0n "7y

>0

Multiply two 2-by-2 matrices with 6 scalar multiplications?
Impossible. [Hopcroft and Kerr 1971]

>0

o =% =0(n>*)

Q. Two 3-by-3 matrices with 21 scalar multiplications?
A. Also impossible. o) =0n>")

Begun, the decimal wars have. [Pan, Bini et al, Schonhage, ...]

- Two 20-by-20 matrices with 4,460 scalar multiplications. o)
. Two 48-by-48 matrices with 47,217 scalar multiplications. o(n>"")
. Avyear later. om>™)
. December, 1979. on 5181y
. January, 1980. o(n 2y

Fast Matrix Multiplication: Theory

S—

e e =
AT 6% BT 60 AT RO B T

the bore aponent ammeymced by e v

Best known. O(n>37) [Williams, 2014]
Conjecture. O(n***) for any &> 0.

Caveat. Theoretical improvements to Strassen are progressively
less practical.

Extra Slides

Fast Matrix Multiplication: Theory

Best known. O(n>376) [Coppersmith-Winograd, 1987]
Conjecture. O(n*%) for any & > 0.

Caveat. Theoretical improvements to Strassen are progressively
less practical.

Fast Matrix Multiplication: Theory

———— -
i BT T L LI

Bort et ammnced by e v

Best known. O(n*3%) [Le Gall, 2014]
Conjecture. O(n***) for any &> 0.

Caveat. Theoretical improvements to Strassen are progressively
less practical.
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