2/5/2018

€S 580: Algorithm Design and Analysis

5.3 Counting Inversions

Jeremiah Blocki
Purdue University
Spring 2018

Announcement: Homework 2 due tonight at 11:59PM

Applications

Applications.
. Voting theory.
« Collaborative filtering.
+ Measuring the "sortedness" of an array.
. Sensitivity analysis of Google's ranking function.
- Rank aggregation for meta-searching on the Web.
. Nonparametric statistics (e.g., Kendall's Tau distance).

Recap: Divide and Conquer

Recursive Approach:

1 Divide input into smaller parts (Divide)

2. Solve each smaller instance (Conquer)

5. Combine solutions from each smaller instance (Merge)

Example: Merge Sort (Sort list of nitems in O(n log n) time)
1 Divide array into two equal size parts (n/2)

2 Sort each sub-array (Conquer)

5. Merge the each sub-array to obtain the sorted list

Recurrence Relationships
Useful to express the running time of recursive algorithm
Analyzing a Recurrence: Unrolling, Telescoping, Induction,...
Master’s Theorem (T(n)=a T(n/b) + n°)

Counting Inversions

Music site tries to match your song preferences with others.
« You rank n songs.

« Music site consults database to find people with similar tastes.

Similarity metric: number of inversions between two rankings.
« Myrank: 1,2, .., n.
- Your rank: ay, ay, ..., G,
- Songsiand j inverted if i< j, but ¢; > a;.

Songs
| 48] clo | _
1 2 3 4 5 Inversions
3-2,4-2

You 1 3 4 2 5]
]

Brute force: check all ©(n?) pairs i and j.

Counting Inversions: Divide-and-Conquer

Divide-and-conquer.

1 5[4 8 10 2 6|9 12 11 3|7

Copyright 2000, Kevin Wayne

Divide-and-conquer.
. Divide: separate list into two pieces.

1 5[4 8 10(2 6 9 12 113 |7

1]5]4]eln]zQ6lolielula]7]

2/5/2018

Counting Inversions: Divide-and-Conquer

Counting Inversions: Divide-and-Conquer

Divide-and-conquer.
. Divide: separate list into two pieces.
. Conquer: recursively count inversions in each half.
- Combine: count inversions where g; and q; are in different halves,
and return sum of three quantities.

1 5 4 8 10 2 6 9 1211 3 7 Divide: O(1).

DOD0NE BEE0EE - oo

5 blue-blue inversions 8 green-green inversions

9 blue-green inversions
5-3,4-3,8-6,8-3,8-7,10-6, 10-9,10-3, 10-7

Combine: 2?7?

Total =5+8+9=22.

Counting Inversions: Implementation

Pre-condition. [Merge-and-Count] A and B are sorted.
Post-condition. [Sort-and-Count] L is sorted.

Sort-and-Count(L) {
if list L has one element
return 0 and the list L

Divide the list into two halves A and B
(ry, A) « Sort-and-Count(A)

(rg, B) « Sort-and-Count(B)

(r , L) « Merge-and-Count(A, B)

return r = r, + ryg + r and the sorted list L

Divide-and-conquer.
. Divide: separate list into two pieces.

1 5 48 10 2 6 9 (12 11 3 7

5 blue-blue inversions 8 green-green inversions

Counting Inversions: Divide-and-Conquer

- Conquer: recursively count inversions in each half.

DOODOE OOENEE o o

5-4,5-2,4-2,8-2,10-2 6-3,9-3,9-7,12-3,12-7,12-11,11-3,11-7

Copyright 2000, Kevin Wayne

Counting Inversions: Combine

Combine: count blue-green inversions IE'
. Assume each half is sorted. play

- Count inversions where q; and q; are in different halves.

. Merge two sorted halves into sorted whole.

to maintain sorted invariant

BEDDDE BODEEE
6 2 o
13 blue-green inversions: 6+3+2+2+0+0 Count: O(n)

2 3 7 10 11 14 16 17 18 19 23 25
Merge: O(n)

T(n) < T(Ln/2])+T(In/2[)+0(n) = T(n)=0(nlogn)

5.4 Closest Pair of Points

Closest Pair of Points

Closest pair. Given n points in the plane, find a pair with smallest
Euclidean distance between them.

Fundamental geometric primitive.
« Graphics, computer vision, geographic information systems,
molecular modeling, air traffic control.
« Special case of nearest neighbor, Euclidean MST, Voronoi.

fast closest pair inspired fast algorithms for these problems
Brute force. Check all pairs of points p and q with ©(n?)
comparisons.

1-D version. O(n log n) easy if points are on a line.

Assumption. No two points have same x coordinate.

I
o make presentation cleaner

2/5/2018

Closest Pair of Points: First Attempt

Divide. Sub-divide region into 4 quadrants.
Obstacle. Impossible to ensure n/4 points in each piece.

° ° L o
o 9° &8

Closest Pair of Points

Algorithm.
. Divide: draw vertical line L so that roughly $n points on each side.
. Conquer: find closest pair in each side recursively.

. 2 . . e
. ’ '. o® /21 . .
2, o ° o ’ 5 4

Closest Pair of Points: First Attempt

Divide. Sub-divide region into 4 quadrants.

° L 5 . °
° ° °
o °
° . '. s
° . ° A . .
°
. ® ° ° ° ° o

° ° ° .

° °

Copyright 2000, Kevin Wayne

Closest Pair of Points

Algorithm.
. Divide: draw vertical line L so that roughly $n points on each side.

° L A . °
° ° °
° . °
° . . A
° . ° S . .
°
. ° ° ° ° O
° ° ° .
° °

Closest Pair of Points

Algorithm.
. Divide: draw vertical line L so that roughly $n points on each side.
- Conquer: find closest pair in each side recursively.

. Combine: find closest pair with one point in each side. - seems like o(n?)

- Return best of 3 solutions.

o " . .
o . .
. ° O
o
o ° 8 1o / 21
o © o
.
1.2/. o ° o . .
° ° > .
o .

2/5/2018

Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < 5.

. " . L.
. ° .. ol* /21) .
L% e ° . ’ o

Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < 5.
. Observation: only need to consider points within § of line L.
. Sort points in 25-strip by their y coordinate.

2 rows

Closest Pair of Points

Def. Let s; be the point in the 25-strip, with

the it smallest y-coordinate.
eee
Qi Claim. If |i- j| = 12, then the distance between
(-] s;and s; is at least 8.
Pf.
15+ No two points lie in same $3-by-35 box.
z
« Two points at least 2 rows apart
[>-) -] 35 have distance > 2(33). *
) Q0
® o Fact. Still true if we replace 12 with 7.
eee
5 5

Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < .
. Observation: only need to consider points within 5 of line L.

Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < 5.

. Observation: only need to consider points within 5 of line L.
- Sort points in 25-strip by their y coordinate.
« Only check distances of those within 11 positions in sorted list!

Closest Pair Algorithm

Closest-Pair(p;, ... Pn) {

Compute separation line L such that half the points O(n log n)
are on one side and half on the other side.

8, = Closest-Pair(left half) 2T/ 2)
8, = Closest-Pair(right half)

8 =min(3,,)

Delete all points further than 8 from separation line L O(n)
Sort remaining points by y-coordinate. O(nlogn)
Scan points in y-order and compare distance between

each point and next 11 neighbors. If any of these o(m)
distances is less than 8, update 3.

return 3.

Copyright 2000, Kevin Wayne

Closest Pair of Points: Analysis

Running time.

T(n) < 2T(n/2) + O(nlogn) = T(n) = O(n log”n)

Q. Can we achieve O(n log n)?

A. Yes. Don't sort points in strip from scratch each time.
. Each recursive returns two lists: all points sorted by y
coordinate, and all points sorted by x coordinate.
. Sort by merging two pre-sorted lists.

T(n) < 2T(n/2) + O(n) = T(n) = O(n logn)

2/5/2018

5.5 Integer Multiplication

Complex Multiplication

Complex multiplication. (a+ bi) (c+di)=x+yi.

Grade-school. x=ac-bd, y=bc+ad.

4 multiplications, 2 additions

Q. Isit possible to do with fewer multiplications?
A. Yes. [Gauss] x=ac-bd, y=(a+b)(c+d)-ac-bd.

.
" 3 multiplications, 5 additions ($305)

Remark. Improvement if no hardware multiply.

JON KLEINBERG - EVA TARDOS

Motivation: Complex Multiplication

Complex multiplication. (a+ bi) (c + di)=x +yi.

Grade-school. x=ac-bd, y=bc +ad.

4 multiplications, 2 additions

Q. Isit possible to do with fewer multiplications?

P'b“ Our Prices Are Fantastic!
Multiplication: $100 (reals only R)
;-) Jlﬂk Addition: $1 (reals only R)

$402 for Grade-School Approach: 4
multiplications, 2 additions

Integer Addition

Addition. Given two n-bit integers x and y, compute x +y.

Grade-school. ©(n) bit operations.

11 1 1 1 1 0 1
11 0 1 0 1 0 1

+ 0 1 1 1 1 1 0 1

i1 0 1 0 1 0 0 1 O

Remark. Grade-school addition algorithm is optimal.

Copyright

2000, Kevin Wayne

Integer Multiplication

Multiplication. Given two n-bit integers x and y, compute x x y.
Grade-school. ®(n?) bit operations.

11010101
x01111101
11010101
000000000
110101010
110101010
110101010
110101010
110101010
000000000

0110100000000001

Q. Is grade-school multiplication algorithm optimal?

2/5/2018

Divide-and-Conquer Multiplication: Warmup

To multiply two n-bit integers x and y:
. Multiply four n-bit integers, recursively.
+ Add and shift to obtain result.

oz,
X220t gt shifts: On) cheap
y=2"%y 4 /
xy = (22 + x0)(2V2 - y1 4 7o)

=2" xyy1 + 22 - (xgy1 + X1Y0) + XoYo
o (-]

Ex. x = 10001101 y = 11100001
XX i Yo

T = 4TM/2) + e = TM=6n’)

recusivecalls add.shift

Master's Theorem: a = 4, b=2, c=1 (ﬁ) >1,0(n'#) = 0(n?)

Karatsuba Multiplication

To multiply two n-bit integers x and y:
. Add two %n bit integers.
« Multiply three $n-bit integers, recursively.
. Add, subtract, and shift to obtain result.

x =22 x; +xy
y=2"%yi+y

n

Xy =2" xyy+ 22 - (Xoy1 +x1¥0) + XoYo
=27 2y + 22 (G0 + 1) (o + 1) = XoYo = x171) + XoYo
e 0 o

Divide-and-Conquer Multiplication: Warmup

To multiply two n-bit integers x and y:
« Multiply four 3n-bit integers, recursively.
- Add and shift to obtain result.

x=2"2. x; +xy
y=2"2y1+y,
xy = (22 x4 x0) (22 yi + yo)
t
=2" xyy1 + 22 - (xgy1 + X1Y0) + XoYo
() e o

Ex. X = 10001101 y = 11100001
fugvtungin [unpai}
X X i Yo

TM) = 4T(M/2) + M) = TM=6m’)
),

recurvecalls add.shift

Copyright 2000, Kevin Wayne

Recursion Tree

0 if n=0 3 2
= T(n) = 2 = 2n"—
@ {4T(n/2)+n otherwise ® kzﬂ " n[2-1 j o
T(M)
T(n/2) T(/2) T(/2) T(n/2)

T(/4YT (n/4)T(n/4) T(n/4) - T/ T(N/AYT(N/4)T(n/4)

T(n 7 2%

T T T T T T T2 T

4(/2)

16(n/4)

4<(n /7 2%

4190

(€]

Karatsuba Multiplication

To multiply two n-bit integers x and y:
. Add two 3n bit integers.
« Multiply three $n-bit integers, recursively.
. Add, subtract, and shift to obtain result.

x=2"% % +x,
y=2"2y1+y,

xy =2" xiy; +n2% * (xoy1 + x1¥0) + Xo¥o
=2" xyy; + 22 (o + 1) 0o + ¥1) = XoYo — x171) + XoYo
o (-] o o o
Theorem. [Karatsuba-Ofman 1962] Can multiply two n-bit integers
in O(n'%) bit operations.
T < T(ln/2l) + T(fn2l) + T(1+fn2l) + @M = T() = 0(**) = om'™)

recunive calls add, sublact, shifl

Master's Theorem: a=3,b=2, c=1 (&) >1

Karatsuba: Recursion Tree

. en aliEn
0 i n=0 « (6
- T)= ey - o2
T® {mm) 40 otherwise ® Eu "R n[3-1
T
T(n/2) T(n/2) T(n/2)
/‘
/

/ |
T(n/4YT (n/4)T(n/4) T(N/AXT (N/4)T(N/4) T(n/4)T(n/4)T(n/4)

T T2 T T T2 T T2 T2

],

3n* -2n

3(n/2)

o(n/4)

3 (n /29

3 1gn

(€]

2/5/2018

Toom-3 Generalization

. a= 22"/3«u2+2%-u1+a0

Split into 3 parts b=22/3.p, 4 Zg by + by

Requires: 5 multiplications of n/3 bit numbers and O(1) additions, shifts
T)=5-T (%) +Om)=>Tm) € o(n}ogs 5)

~ 1.465
Toom-Cook Generalization (split into k parts):

n(k-1) n
a= B cag_q++2k-a; +ag

n(k=1) n
b=2"Fk .ap+-+2k-a;+ag

T(n)=@k—1)-T (;) +0(n) = T(n) € 0(nloB2k-1)

Jim (log(2k - 1)) =1

Matrix Multiplication

Fast Integer Division Too (!)

Integer division. Given two n-bit (or less) integers s and't,

Fact. Complexity of integer division is (almost) same as integer

multiplication.

To compute quotient g: Xit
. Approximate x = 1/t using Newton's method:
. Affer izlogn iterations, either q=|s x] or q=[sx.

- IfLsx) t > s then g =[s x1 (1 multiplication)
- Otherwise q=[sx/
- r=s-qt (1 multiplication)

= 2% - tx}e—_ using fast
multiplication

. Total: O(log n) multiplications and subtractions

compute quotient g =Ls/t]and remainder r =smod t (such that s=qt-+r).

Copyright 2000, Kevin Wayne

Toom-3 Generalization

. a=2"B.g,+ 2%-(1‘ +a,

Split into 3 parts b =223 . by + 25 by + by

Requires: 5 multiplications of n/3 bit numbers and O(1) additions, shifts
T()=5- T(;—l) FOom) =>Tm) € o(n;ogaS)

~ 1.465

Schénhage-Strassen algorithm
T(n) € 0(n Togn Toglogn)

Only used for really big numbers: a > 22

State of the Art: 0(n logn g(n)) for increasing small
g(n) < loglogn

Dot Product

Dot product. Given two length n vectors aand b, computec=a-

Grade-school. ©(n) arithmetic operations.

a=[70 20 .10]
b =[30 40 30]
a- b = (70x.30) + (:20 x .40) + (.10 x 30) = .32

Remark. Grade-school dot product algorithm is optimal.

b.
N
b=

a

Lap,

Matrix Multiplication

59 41 Lo 80 3 .50
31 36 25| = |30 .60 .10| x | .10 48 .10

A5 31 42 50 .10 .40,

Q. Is grade-school matrix multiplication algorithm optimal?

Matrix multiplication. Given two n-by-n matrices A and B, compute C = AB.

Grade-school. ©(n®) arithmetic operations. —
o =Y,

Gy Cp G, a, a, a, : hm

G Gy a, a, - by,

. i i x :

Co Cor a, a, a,, - b,

2/5/2018

Matrix Multiplication: Warmup

To multiply two n-by-n matrices A and B:
. Divide: partition A and B into $n-by-n blocks.
. Conquer: multiply 8 pairs of $n-by-2n matrices, recursively.
. Combine: add appropriate products using 4 matrix additions.

[C.. c,zJ:V‘. AZJXP, B.ZJ Ci = (AixBy)+ (AaxBy)
Cu Cp A Ay By By Ca = (ArxBu)+ (AaxByn)
Coi = (AuxBy)+ (AyxBy)
Cu = (AuxBy)+ (AyxBy)

T=8T(M/2)+ Om) = Tm=6n’)

recurswecalls add, form submatrices

Fast Matrix Multiplication

To multiply two n-by-n matrices A and B: [Strassen 1969]
. Divide: partition A and B into $n-by-n blocks.
. Compute: 14 $n-by-3n matrices via 10 matrix additions.
. Conquer: multiply 7 pairs of n-by-3n matrices, recursively.
« Combine: 7 products into 4 terms using 8 matrix additions.

Analysis.
.« T(n) = # arithmetic operations.

TM=7TM/2) OM’) = Tm=6m"*")=0n*")
oueals o b
« Apply Master Theorem (a=7 b=2,c=2)
d_7

“(2)=2>1 =T =06(n) = 0(n°87) = 0(x>*)

Block Matrix Multiplication

£~ VAVANYA

Fast Matrix Multiplication

Key idea. multiply 2-by-2 blocks with only 7 multiplications.

1322 58 164 170 qa | 2 3 s)
504 528 548 570 4 5 5 2 21 22 23

856 894 932 970 8 9 10 11 . 24 25 26 27
1208 1262 1316 1370, 12 13 14 15 28 19 30 31

X

B,
Ci1 = Ay X By + A1 X By
=l dxbo 2il+le s 5
- [1s2 159)
504 526

Copyright 2000, Kevin Wayne

Ci Co A B, B,
S R A Y] H S W TR
Cy Cy Ay Apl (B, By
Po= (Ai+ADXBy
P= (At AxB,
Ci = R+R-RtR Po= Aux(By-B)
G = ReR P= (At An)x(By B
C = ReR Bo= (ham A (By +By)
Ca = ReR-P-P, P = (A=A x(By+By)

. 7 multiplications.

18 =8+ 10 additions and subtractions.

Fast Matrix Multiplication: Practice

Implementation issues.
. Sparsity.
- Caching effects.
« Numerical stability.
- Odd matrix dimensions.
. Crossover to classical algorithm around n = 128.

Common misperception. “Strassen is only a theoretical curiosity.”
« Apple reports 8x speedup on 64 Velocity Engine when
n = 2,500.
- Range of instances where it's useful is a subject of
controversy.

Remark. Can "Strassenize" Ax = b, determinant, eigenvalues,
SVD, ...

2/5/2018

Fast Matrix Multiplication: Theory

Multiply two 2-by-2 matrices with 7 scalar multiplications?
Yes! [Strassen 1969] oM™ 7)—0n "7y

>0

Multiply two 2-by-2 matrices with 6 scalar multiplications?
Impossible. [Hopcroft and Kerr 1971]

>0

o =% =0(n>*)

Q. Two 3-by-3 matrices with 21 scalar multiplications?
A. Also impossible. o) =0n>")

Begun, the decimal wars have. [Pan, Bini et al, Schonhage, ...]

- Two 20-by-20 matrices with 4,460 scalar multiplications. o)
. Two 48-by-48 matrices with 47,217 scalar multiplications. o(n>"")
. Avyear later. om>™)
. December, 1979. on 5181y
. January, 1980. o(n 2y

Fast Matrix Multiplication: Theory

S—

e e =
AT 6% BT 60 AT RO B T

the bore aponent ammeymced by e v

Best known. O(n>37) [Williams, 2014]
Conjecture. O(n***) for any &> 0.

Caveat. Theoretical improvements to Strassen are progressively
less practical.

Extra Slides

Fast Matrix Multiplication: Theory

Best known. O(n>376) [Coppersmith-Winograd, 1987]
Conjecture. O(n*%) for any & > 0.

Caveat. Theoretical improvements to Strassen are progressively
less practical.

Fast Matrix Multiplication: Theory

———— -
i BT T L LI

Bort et ammnced by e v

Best known. O(n*3%) [Le Gall, 2014]
Conjecture. O(n***) for any &> 0.

Caveat. Theoretical improvements to Strassen are progressively
less practical.

Copyright 2000, Kevin Wayne

