CS 580: Algorithm Design and Analysis

Recap: Divide and Conquer

Recursive Approach:
1. Divide input into smaller parts (Divide)
2. Solve each smaller instance (Conquer)
3. Combine solutions from each smaller instance (Merge)

Example: Merge Sort (Sort list of n items in $O(n \log n)$ time)
1. Divide array into two equal size parts ($n/2$)
2. Sort each sub-array (Conquer)
3. Merge the each sub-array to obtain the sorted list

Recurrence Relationships
- Useful to express the running time of recursive algorithms
- Analyzing a Recurrence: Unrolling, Telescoping, Induction,...
- Master's Theorem ($T(n)=a T(n/b) + n^c$)

Applications
- Voting theory.
- Collaborative filtering.
- Measuring the "sortedness" of an array.
- Sensitivity analysis of Google's ranking function.
- Rank aggregation for meta-searching on the web.
- Nonparametric statistics (e.g., Kendall's Tau distance).

5.3 Counting Inversions

Recall:
- A pair (i,j) is an inversion if $i < j$ but $S[i] > S[j]$.

Counting Inversions:

- **Brute force:** Check all $n(n-1)/2$ pairs (i,j).
- **Divide-and-Conquer:**

Applications
- Voting theory.
- Collaborative filtering.
- Measuring the "sortedness" of an array.
- Sensitivity analysis of Google's ranking function.
- Rank aggregation for meta-searching on the web.
- Nonparametric statistics (e.g., Kendall's Tau distance).
Counting Inversions: Divide-and-Conquer

Divide-and-Conquer
- **Divide**: separate list into two pieces.
 - Example:
 - Original list: $1, 5, 4, 8, 10, 2, 6, 9, 12, 11, 3, 7$
 - Divide: $O(1)$
- **Conquer**: recursively count inversions in each half.
 - Conquer: $2T(n/2)$
 - Example:
 - Divide:
 - List: $1, 5, 4, 8, 10, 2, 6, 9, 12, 11, 3, 7$
 - Divide: $O(1)$
 - Conquer:
 - Split into two halves:
 - $1, 5, 4, 8, 10, 2$ and $6, 9, 12, 11, 3, 7$
 - Recursively count inversions in each half:
 - $T(5), T(6), T(4), T(8), T(2), T(10), T(6), T(9), T(11), T(3), T(7)$
 - Combine:
 - $r = r_1 + r_2 + r_3$
 - r_1: 5 blue-blue inversions
 - r_2: 8 green-green inversions
 - r_3: 9 blue-green inversions
 - Total: $5 + 8 + 9 = 22$
- **Combine**: count inversions where a_i and a_j are in different halves, and return sum of three quantities.
 - Combine: $O(n)$

Counting Inversions: Implementation

Pre-condition: Merge-and-Count A and B are sorted.
Post-condition: Sort-and-Count L is sorted.

Sort-and-Count(L)
- if list L has one element
 - return 0 and the list L
- Divide the list into two halves A and B
 - $(r_A, A) \leftarrow \text{Sort-and-Count}(A)$
 - $(r_B, B) \leftarrow \text{Sort-and-Count}(B)$
- $(r_B, L) \leftarrow \text{Merge-and-Count}(A, B)$
- return $r = r_A + r_B + r$ and the sorted list L

5.4 Closest Pair of Points
Closest Pair of Points

Given \(n \) points in the plane, find a pair with smallest Euclidean distance between them.

Fundamental geometric primitive.
- Graphics, computer vision, geographic information systems, molecular modeling, air traffic control.
- Special case of nearest neighbor, Euclidean MST, Voronoi.

Brute force. Check all pairs of points \(p \) and \(q \) with \(O(n^2) \) comparisons.

1-D version. \(O(n \log n) \) easy if points are on a line.

Assumption. No two points have same \(x \) coordinate.

Closest Pair of Points: First Attempt

Divide. Sub-divide region into 4 quadrants.

Algorithm.
- Draw vertical line \(L \) so that roughly \(n/4 \) points on each side.
- Find closest pair in each side recursively.
- Find closest pair with one point in each side. Return best of 3 solutions.
Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < δ.

Observation: only need to consider points within δ of line L.

Sort points in 2δ-strip by their y-coordinate.

Only check distances of those within 11 positions in sorted list!

Fact. Still true if we replace 12 with 7.
5.5 Integer Multiplication

Motivation: Complex Multiplication

Complex multiplication:
\((a + bi)(c + di) = x + yi\).
Grade-school:
\[x = ac - bd, \quad y = bc + ad. \]
4 multiplications, 2 additions

Q. Is it possible to do with fewer multiplications?

A. Yes. [Gauss]

\[x = ac - bd, \quad y = (a + b)(c + d) - ac - bd. \]
3 multiplications, 5 additions ($\$305$)

Remark. Improvement if no hardware multiply.

Integer Addition

Addition. Given two n-bit integers x and y, compute $x + y$.
Grade-school: $\mathcal{O}(n)$ bit operations.

\[
\begin{array}{cccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\end{array}
\]

Remark. Grade-school addition algorithm is optimal.

Closest Pair of Points: Analysis

Running time.

\[
T(n) \leq 2T(n/2) + O(n \log n) \Rightarrow T(n) = O(n \log^2 n)
\]

Q. Can we achieve $O(n \log n)$?

A. Yes. Don’t sort points in strip from scratch each time.

- Each recursive returns two lists: all points sorted by y coordinate, and all points sorted by x coordinate.
- Sort by merging two pre-sorted lists.

\[
T(n) \leq 2T(n/2) + O(n) \Rightarrow T(n) = O(n \log n)
\]
Integer Multiplication

Given two n-bit integers x and y, compute $x \cdot y$.

Grade-school

6(n) bit operations.

Divide-and-Conquer Multiplication: Warmup

To multiply two n-bit integers x and y:

- Multiply four $\frac{n}{2}$-bit integers, recursively.
- Add and shift to obtain result.

Ex. $x = 10001101$, $y = 11100001$

$$T(n) = 4T(\frac{n}{2}) + n$$

Master’s Theorem:

$a = 4$, $b = 2$, $c = 1$

$(2 \log_2 n - 1) > 1$, $O(n^{\log_2(4)}) = O(n^2)$

Karatsuba Multiplication

To multiply two n-bit integers x and y:

- Add two $\frac{n}{2}$-bit integers.
- Multiply three $\frac{n}{2}$-bit integers, recursively.
- Add, subtract, and shift to obtain result.

Ex. $x = 10001101$, $y = 11100001$

$$xy = 2^2 \cdot x_3 y_3 + 2^1 \cdot (x_2 y_3 + x_3 y_2) + 2^0 \cdot (x_2 y_2 + x_3 y_3)$$

Theorem. (Karatsuba-Ofman 1962) Can multiply two n-bit integers in $O(n^{\log_2(3)})$ bit operations.

Recursion Tree

Master’s Theorem: $a = 3$, $b = 2$, $c = 1$

$2^\log_2(3) - 1 > 1$, $O(n^{\log_2(3)}) = O(n^1.585)$
Karatsuba: Recursion Tree

\[
T(n) = \begin{cases}
0 & \text{if } n = 0 \\
3T(n/2) + n & \text{otherwise}
\end{cases}
\]

\[
T(n/2^k) \quad \ldots
\]

Fast Integer Division Too (!)

Integer division. Given two \(n\)-bit (or less) integers \(a\) and \(b\), compute quotient \(q = \lfloor a / b \rfloor\) and remainder \(r = a \mod b\) (such that \(a = bq + r\)).

Fact. Complexity of integer division is (almost) same as integer multiplication.

To compute quotient \(q = \lfloor a / b \rfloor\)
- **Approximate** \(a = 1 / y\) using Newton's method
 - After \(i\) iterations, either \(y_i \approx a / x\) or \(\lfloor a / x \rfloor < y_i\)
 - **Otherwise** \(y_i = \lfloor a / x \rfloor\) (1 multiplication)
 - **Total:** \(O(\log n)\) multiplications and subtractions

Remark. Grade-school dot product algorithm is optimal.

Matrix Multiplication

Dot product. Given two length \(n\) vectors \(a\) and \(b\), compute
\[
c = a \cdot b = \sum_{i=1}^{n} a_i b_i
\]

Grade-school. \(\Theta(n^2)\) arithmetic operations.

Schönhage–Strassen algorithm
\[
O(n \log n \log \log n)
\]

Only used for really big numbers: \(a \gg 2^{215}\)

State of the Art: \(O(n \log n \log \log n)\) for increasing small
\(g(n) = \log \log n\)

Remark. Grade-school dot product algorithm is optimal.
Fast Matrix Multiplication

To multiply two n-by-n matrices A and B, compute $C = AB$.

Divide: partition A and B into $\lceil n/2 \rceil$-by-$\lceil n/2 \rceil$ blocks.

Conquer: multiply 7 pairs of $\lceil n/2 \rceil$-by-$\lceil n/2 \rceil$ matrices, recursively.

Combine: add appropriate products using 6 matrix additions.

\[
C = \left(\begin{array}{ccc}
C_{11} & C_{12} \\
C_{21} & C_{22}
\end{array} \right) =
\left(\begin{array}{ccc}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array} \right) \left(\begin{array}{ccc}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{array} \right)
\]

Apply Master Theorem ($a = 7, b = 2, c = 2$)

\[
T(n) = 7T(n/2) + \Theta(n^2)
\]

Numerical stability.

Matrix Multiplication: Practice

Implementation issues.
- Sparsity.
- Caching effects.
- Numerical stability.
- Odd matrix dimensions.
- Crossover to classical algorithm around $n = 128$.

Common misconception. "Strassen is only a theoretical curiosity."

Apple reports 4x speedup on G4 Velocity Engine when
\[n = 2,550 \]

Range of instances where it’s useful is a subject of controversy.

Remark. Can “Strassenize” $A = b$, determinant, eigenvalues, SVD, ….
Fast Matrix Multiplication: Theory

Multiply two 2-by-2 matrices with 7 scalar multiplications?
A. Yes! [Strassen 1969]

Multiply two 2-by-2 matrices with 6 scalar multiplications?
A. Impossible. [Hopcroft and Kerr 1971]

Two 2-by-2 matrices with 21 scalar multiplications?
A. Also impossible.

Begun, the decimal wars have. [Pan, Bini et al, Schönhage, ...]
- Two 2n-by-2n matrices with 4.60n scalar multiplications.
- Two 4n-by-4n matrices with 4.217n scalar multiplications.
- A year later.

Best known. \(O(n^{2.376}) \) [Coppersmith-Winograd, 1987]

Conjecture. \(O(n^{2+\epsilon}) \) for any \(\epsilon > 0 \).

Caveat. Theoretical improvements to Strassen are progressively less practical.

Best known. \(O(n^{2.373}) \) [Williams, 2014]

Conjecture. \(O(n^{2+\epsilon}) \) for any \(\epsilon > 0 \).

Caveat. Theoretical improvements to Strassen are progressively less practical.

Best known. \(O(n^{2.3729}) \) [Le Gall, 2014]

Conjecture. \(O(n^{2+\epsilon}) \) for any \(\epsilon > 0 \).

Caveat. Theoretical improvements to Strassen are progressively less practical.