CS 580: Algorithm Design and Analysis

Jeremiah Blocki
Purdue University
Spring 2018

Announcement: Homework 2 due tonight at 11:59PM

Recap: Divide and Conquer

Recursive Approach:

1. Divide input into smaller parts (Divide)

2. Solve each smaller instance (Conquer)

3. Combine solutions from each smaller instance (Merge)

Example: Merge Sort (Sort list of nitems in O(h log n) time)
1. Divide array into two equal size parts (n/2)

2. Sort each sub-array (Conquer)

3. Merge the each sub-array to obtain the sorted list

Recurrence Relationships
Useful to express the running time of recursive algorithm
Analyzing a Recurrence: Unrolling, Telescoping, Induction,..
Master’'s Theorem (T(n)=a T(n/b) + n°)

5.3 Counting Inversions

Counting Inversions

Music site tries fo match your song preferences with others.
. You rank n songs.
. Music site consults database to find people with similar tastes.

Similarity metric: number of inversions between two rankings.
- Myrank: 1,2, .., n.
. Your rank: a4, a,, ..., a,
- Songs i and j inverted if i < j, but g; > a;.

Songs

A | B | C|D|E

I : 2 3 4 5

B2l : 3 4 2 -5
—

Inversions
3-2,4-2

Brute force: check all ®(n?) pairs i and j.

Applications

Applications.
. Voting theory.
. Collaborative filtering.
. Measuring the "sortedness" of an array.
. Sensitivity analysis of Google's ranking function.
. Rank aggregation for meta-searching on the Web.
. Nonparametric statistics (e.g., Kendall's Tau distance).

Counting Inversions: Divide-and-Conquer

Divide-and-conquer.

Counting Inversions: Divide-and-Conquer

Divide-and-conquer.
. Divide: separate list into two pieces.

1 5 4 8 10 2 6 9 12 11 3 7 Divide: O(1).

(154 8]0z Q6]9lt2lul3]7

Counting Inversions: Divide-and-Conquer

Divide-and-conquer.
. Divide: separate list into two pieces.
. Conquer: recursively count inversions in each half.

1 5 4 8 10 2 6 9 12 11 3 7 Divide: O(1).

DOODDE BEEDEE - o

5 blue-blue inversions 8 green-green inversions

5-4,5-2,4-2,8-2,10-2 6-3,9-3,9-7,12-3,12-7,12-11, 11-3, 11-7

Counting Inversions: Divide-and-Conquer

Divide-and-conquer.
. Divide: separate list into two pieces.
. Conquer: recursively count inversions in each half.
Combine: count inversions where a; and a; are in different halves,

and return sum of three quantities.

1 5 4 8 10 2 6 9 12 11 3 7 Divide: O(1).

DEDO0E DOENEE - o

5 blue-blue inversions 8 green-green inversions

9 blue-green inversions Combine: 77
5-3,4-3, 8-6, 8-3, 8-7,10-6, 10-9, 10-3, 10-7

Total=5+8 +9 =22,

Counting Inversions: Combine

Combine: count blue-green inversions
. Assume each half is sorted.

- Count inversions where a; and g are in different halves.
. Merge two sorted halves into sorted whole.

e\ /

to maintain sorted invariant

OEODOOE BONEEE
6 3 2 2 0 0
13 blue-green inversions: 6 +3+2+2+0+0 Count: O(n)

2 3 7 10 11 14 16 17 18 19 23 25
Merge: O(nh)

T(n) < T(Ln/2])+T(In/2])+0n) = T(n)=0(nlogn)

10

1

Counting Inversions: Implementation

Pre-condition. [Merge-and-Count] A and B are sorted.
Post-condition. [Sort-and-Count] L is sorted.

5.4 Closest Pair of Points

13

Closest Pair of Points

Closest pair. Given n points in the plane, find a pair with smallest
Euclidean distance between them.

Fundamental geometric primitive.
. Graphics, computer vision, geographic information systems,
molecular modeling, air traffic control.

. Special case of nearest neighbor, Euclidean MST, Voronoi.
\

fast closest pair inspired fast algorithms for these problems

Brute force. Check all pairs of points p and q with ®(n?)
comparisons.

1-D version. O(n log n) easy if points are on a line.

Assumption. No two points have same x coordinate.

to make presentation cleaner

14

Closest Pair of Points: First Attempt

Divide. Sub-divide region into 4 quadrants.

15

Closest Pair of Points: First Attempt

Divide. Sub-divide region into 4 quadrants.
Obstacle. Impossible to ensure n/4 points in each piece.

16

Closest Pair of Points

Algorithm.
. Divide: draw vertical line L so that roughly $nh points on each side.

17

Closest Pair of Points

Algorithm.
. Divide: draw vertical line L so that roughly 3n points on each side.
. Conquer: find closest pair in each side recursively.

18

Closest Pair of Points

Algorithm.
. Divide: draw vertical line L so that roughly 3n points on each side.
. Conquer: find closest pair in each side recursively.
. Combine: find closest pair with one point in each side. « seems like ©(n?)
- Return best of 3 solutions.

19

Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < 8.

5 = min(12, 21)

20

Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < 8.
. Observation: only need to consider points within & of line L.

6 = min(12, 21)

21

Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < 8.
. Observation: only need to consider points within & of line L.
. Sort points in 23-strip by their y coordinate.

5 = min(12, 21)

Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < 6.
. Observation: only need to consider points within & of line L.
. Sort points in 23-strip by their y coordinate.
. Only check distances of those within 11 positions in sorted list!

5 = min(12, 21)

Closest Pair of Points

Def. Let s; be the point in the 25-strip, with

the ith smallest y-coordinate.
000 j
© Claim. If |i- j| > 12, then the distance between
(31 s;ands; is af least 8.
Pf.
15 No two points lie in same 35-by-38 box.
2 rows | - Two points at least 2 rows apart
(29 (30 B have distance > 2(38). =
i~ @ © =
© 25 Fact. Still true if we replace 12 with 7.
000

23

Closest Pair Algorithm

O(n log n)

2T(n/ 2)

O(n)
O(n log n)

O(n)

24

25

Closest Pair of Points: Analysis

Running time.

T(n) < 2T(n/2) + O(nlogn) = T(n) = O(nlog”n)

Q. Can we achieve O(n log n)?

A. Yes. Don't sort points in strip from scratch each time.
. Each recursive returns two lists: all points sorted by y
coordinate, and all points sorted by x coordinate.
. Sort by merging two pre-sorted lists.

T(n) < 2T(n/2) + O(n) = T(n) = O(nlogn)

JON KLEINBERG - EVA TARDOS

PEARSON

e —

Addison
esley

5.5 Integer Multiplication

Motivation: Complex Multiplication

Complex multiplication. (a+ bi) (c+di)=x+yi.

Grade-school. x=ac-bd, y=bc + ad.
N

4 multiplications, 2 additions

Q. Is it possible to do with fewer multiplications?

Our Prices Are Fantastic!
Multiplication: $100 (reals only R)

Ask Addition: $1 (reals only R)
'@ T
(question

$402 for Grade-School Approach: 4
multiplications, 2 additions

28

29

Complex Multiplication

Complex multiplication. (a+ bi) (c +di)=x+yi.

Grade-school. x=ac-bd, y=bc + ad.
N

4 multiplications, 2 additions

Q. Is it possible to do with fewer multiplications?
A. Yes. [Gauss] x=ac-bd, y=(a+b)(c+d)-ac-bd.

3 multiplications, 5 additions ($305)

Remark. Improvement if no hardware multiply.

30

Integer Addition

Addition. Given two n-bit integers x and y, compute x +Y.
Grade-school. ©(n) bit operations.

1 1 1 1 1 1 0 1

1 1 0 1 0 1 0 1
+ 0 1 1 1 1 1 0] 1
1 0] 1 0] 1 O O 1 0]

Remark. Grade-school addition algorithm is optimal.

31

Integer Multiplication

Multiplication. Given two n-bit intfegers x and y, compute x x y.
Grade-school. ®(n?) bit operations.

11010101
x01111101
11010101
000000O0O0O
110101010
110101010
110101010
110101010
110101010
000O0O0O0O0O0O0O0O

0110100000000001

Q. Is grade-school multiplication algorithm optimal?

32

Divide-and-Conquer Multiplication: Warmup

To multiply two n-bit integers x and y:
. Multiply four 3n-bit integers, recursively.
. Add and shift to obtain result.

x =2M2. x4 x
y=2"%. y +y,
Xy = (Zn/Z - Xq + Xo)(zn/z V1 +y0)
n
= 2" x1y1 + 22 - (xpy1 + x1Y0) + X0Y0

o O o o
Ex. X = 10001101 y = 11100001
X1 Xo yl yO

T(n) = 4T(n/2) + O(N) = T(n)=06(%)

recursive calls add, shift

33

Divide-and-Conquer Multiplication: Warmup

To multiply two n-bit integers x and y:
. Multiply four 3n-bit integers, recursively.
. Add and shift to obtain result.

x =22 x; + x,

it Shifts: O(n) cheap

y = 271/2 .
xy=(2n/2' n/2 , y1+y0)
n
= 2" x1y1 + 22 - (xoy1 + X1Y0) + X0Yo0
(1) O o (4]
Ex. x =10001101 vy = 11100001
Xy Xp Y1 Yo

T(n) = 4T(n/2) + 6() = T(N)=6(n*)

recursive calls add, shift

Master's Theorem: a = 4, b=2, c=1 (%) > 1,0(n!°8 %) = 0(n?)

Recursion Tree

T(n) n
N\
T(n/2) T(n/2) T(n/2) T(n/2) 4(n/2)
/\ /\
T(N/AT(/AD)T(N/A)T(/4) ... T(/A)T(/AT(/A)T(n/4) 16(n/4)

4 (n 7 29

T(2) T(2) T(2) T(2) T(2) T(2) T() T(2) 4M9n
D

34

35

Karatsuba Multiplication

To multiply two n-bit integers x and y:
. Add two #n bit integers.
. Multiply three $n-bit integers, recursively.
. Add, subtract, and shift to obtain result.

x =22 x; + x,
y=2"2.y; +y,

n
xy = 2" x1y; + 22 - (xoy1 + X1Y0) + XoYo

=2 xyy, + 22 ((xo +x1) (Vo +¥1) — X0Vo — x13’1) + XoYo
(1) (2] (3] (1) (3)

36

Karatsuba Multiplication

To multiply two n-bit integers x and y:
. Add two #n bit integers.
. Multiply three $n-bit integers, recursively.
. Add, subtract, and shift to obtain result.

x =22 x; + x,
y=2"2. 3, +y,

n
xy = 2" x1y1 +n22 + (xoy1 + x1¥0) + X0Yo0
=2". xyy, + 22 ((xo + x1) (Vo + y1) — X0Vo — x1)’1) + X0Yo

Theorem. [Karatsuba-Ofman 1962] Can multiply two n-bit integers
in O(n'>%) bit operations.

T < T(n/2y+ T(n2)+ T(1+ln/2]) + em = Tm) = oM*) = oM"**)

recursive calls add, subtract, shift

Master's Theorem: a = 3, b=2, c=1 (%) > 1

Karatsuba: Recursion Tree

oo it 0= Sy o 77 < e
T(n) n
/\
T(n/2) T(n/2) T(n/2) 3(n/2)
T(N/4)T(n/4)T(n/4) T(/4)T(N/4)T(N/4)T(n/4)T(n/4)T(n/4) 9(n/4)

50 7 29

T(2) T(2) T(2) T(2) T(2) T() T() T() 3 lIgn
(@D

37

Fast Integer Division Too (!)

Integer division. Given two n-bit (or less) integers s and t,
compute quotient g =[s/tland remainder r = s mod t (such that s=qt+r).

Fact. Complexity of integer division is (almost) same as integer

multiplication.

To compute quotient g: X, = 2% — tx’
. Approximate x =1/t using Newton's method:
. After izlog n iterations, either q=Lsx] or q=[sx .

- If [sx] t > s then g=[s x| (1 multiplication)
- Otherwise q=_sx/
- r=s-qt (1 multiplication)

using fast
multiplication

. Total: O(log n) multiplications and subtractions

38

39

Toom-3 Generalization

n

_ . a=22"/3-a2+25-a1+a0
Splitinto 3 parts p = 22n/3 . b, + 23 - by + by

Requires: 5 multiplications of n/3 bit numbers and O(1) additions, shifts

n

T(n)=5-T(3

) +0(n)=Thn) € 0(n1°g3 5)

/

~ 1.465

Toom-Cook Generalization (split into k parts):

n(k—1) n
a=2 k -ap_q4+--+2k-a;+ay

n(k—1) n
b=2 k -apy+--+2k-a;+ag

T(n) = 2k = 1T (7) + 0n) = T(n) € 0(nlo82k-D)

I}im (log,(2k—1)) =1

40

Toom-3 Generalization

n
_ . a=22"/3-a2+25-a1+a0

Splitinto 3 parts p = 22n/3 . b, + 23 - by + by

Requires: 5 multiplications of n/3 bit numbers and O(1) additions, shifts

) =5-T(3)+00) =70 € O(nflogg 5)
~ 1.465
Schonhage-Strassen algorithm
T(n) € O(n Togn Toglogn)

215

Only used for really big numbers: a > 2

State of the Art: 0(n logn g(n)) for increasing small
g(n) K loglogn

Matrix Multiplication

42

Dot Product

Dot product. Given two length n vectors a and b, compute c =a-b.

Grade-school. ©(n) arithmetic operations. AN
a-b=>ahb,
a =[70 20 .10]
b =[.30 .40 30]
a-b =(70x.30) + (.20 x .40) + (.10 x .30) =

Remark. Grade-school dot product algorithm is optimal.

Matrix Multiplication

Matrix multiplication. Given two n-by-n matrices A and B, compute C = AB.
Grade-school. ©(n®) arithmetic operations. ——

Q. Is grade-school matrix multiplication algorithm optimal?

43

Block Matrix Multiplication

C, A Ap By

Ci1 = A11 X Byp + 415, X By,

=ls slxlo ail*ls 71xls %

_[152 158
504 526

44

45

Matrix Multiplication: Warmup

To multiply two n-by-n matrices A and B:

. Divide: partition A and B into $n-by-3n blocks.

. Conquer: multiply 8 pairs of $n-by-3n matrices, recursively.
. Combine: add appropriate products using 4 matrix additions.

LCM ClzJ _ LAH AlzJ > LBU BlzJ Ci, = (AxB,)+ (AyxBy)
C,, C, A, A, B, B, Co = (A1 xBp)+ (AyxBy)
C, = (A21 & Bu) + (Azz & le)
Cp = (A21 X Blz) + (Azz X Bzz)

T(m=8T(n/2) + e(n*) = T(n)=0(n’)

~
recursive calls add, form submatrices

Fast Matrix Multiplication

Key idea. multiply 2-by-2 blocks with only 7 multiplications.

. 7 multiplications.
. 18=8+ 10 additions and subtractions.

46

47

Fast Matrix Multiplication

To multiply two n-by-n matrices A and B: [Strassen 1969]
. Divide: partition A and B into $n-by-3n blocks.
. Compute: 14 3n-by-3n matrices via 10 matrix additions.
. Conquer: multiply 7 pairs of $n-by-3n matrices, recursively.
. Combine: 7 products into 4 terms using 8 matrix additions.

Analysis.
. T(n) = # arithmetic operations.

T()=7T(M/2)+ O(M°) = T(N)=6(n"=")=0(n*")

recursive calls add, subtract

. Apply MasTer Theorem (a=7,b=2,c=2)

(F) =151 = T(n) — @(nlogb a) @(nlogz 7) @(nz 81)

48

Fast Matrix Multiplication: Practice

Implementation issues.
. Sparsity.
. Caching effects.
. Numerical stability.
. Odd matrix dimensions.
. Crossover to classical algorithm around n=128.

Common misperception. “Strassen is only a theoretical curiosity.”
. Apple reports 8x speedup on 64 Velocity Engine when
n =~ 2,500.
. Range of instances where it's useful is a subject of
controversy.

Remark. Can "Strassenize" Ax =b, determinant, eigenvalues,
SVD, ..

49

Fast Matrix Multiplication: Theory

Q. Multiply two 2-by-2 matrices with 7 scalar multiplications?
A. Yes! [Strassen 1969] @(n:7) =0(n 27

Q. Multiply two 2-by-2 matrices with 6 scalar multiplications?
A. Impossible. [Hopcroft and Kerr 1971] o 59— 02
Q. Two 3-by-3 matrices with 21 scalar multiplications?

A. Also impossible. @(nlog321)zo(n2.77)

Begun, the decimal wars have. [Pan, Bini et al, Schonhage, ...]

. Two 20-by-20 matrices with 4,460 scalar multiplications. O(n 25%)
. Two 48-by-48 matrices with 47,217 scalar multiplications. o(n 271
. A year later. 0N
. December', 1979. o(n 2521813)

. JGHUGF‘Y, 1980. o(n 2.521801)

50

Fast Matrix Multiplication: Theory

A
w(T)
30 23]
Ela_r______l ______________ w _{Il _________ : -
2.5'---—--&---—- S e e .
E.D 1 Il T | | I 1 I- | = 1 1] 'rr
1968 1969 1975 1976 1977 1978 1979 1980 1981 1982

Fig. 1. w(i) is the best exponent announced by time r.

Best known. O(n?37) [Coppersmith-Winograd, 1987]
Conjecture. O(n*¢) for any ¢ > 0.

Caveat. Theoretical improvements to Strassen are progressively
less practical.

51

Fast Matrix Multiplication: Theory

20 L =

198 1969 1975 1976 1977 1978 1979 1980 1981 1982

Fig. 1. w(i) is the best exponent announced by time r.

Best known. O(n%37%) [Williams, 2014]
Conjecture. O(n*¢) for any ¢ > 0.

Caveat. Theoretical improvements to Strassen are progressively
less practical.

52

Fast Matrix Multiplication: Theory

20 L =

198 1969 1975 1976 1977 1978 1979 1980 1981 1982

Fig. 1. w(i) is the best exponent announced by time r.

Best known. O(n%372%) [Le Gall, 2014]
Conjecture. O(n*¢) for any ¢ > 0.

Caveat. Theoretical improvements to Strassen are progressively
less practical.

Extra Slides

