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CS 580:  Algorithm Design and Analysis

Jeremiah Blocki
Purdue University
Spring 2018

Announcement: Homework 2 due on Tuesday, February 6th at 11:59PM

Recap: Minimum Weight Spanning Trees
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Cut Property: Minimum weight edge crossing a cut must be in 
the MST (assume edge weights are distinct)

Cycle Property: Maximum weight edge in a cycle must not be in 
the MST (assuming edge weights are distinct)

Prim’s Algorithm
• Repeatedly applies cut property to expand tree
• O(m log n) time with Binary Heap
• O(m+n log n) time with Fibonacci Heap

Prim’s Algorithm
• Consider edges in increasing order of weight
• For each edge we can either

• Discard via Cycle Property, or
• Add via Cut Property

• O(m log n) running time.
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• Chapter 4

Greedy
Algorithms
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4.7  Clustering
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Clustering

Clustering.  Given a set U of n objects labeled p1, …, pn, classify into 
coherent groups.

Distance function.  Numeric value specifying "closeness" of two objects.

photos, documents. micro-organisms

number of corresponding pixels whose
intensities differ by some threshold

Fundamental problem.  Divide into clusters so that points in 
different clusters are far apart.
 Routing in mobile ad hoc networks.
 Identify patterns in gene expression.
 Document categorization for web search.
 Similarity searching in medical image databases
 Skycat:  cluster 109 sky objects into stars, quasars, galaxies.
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Clustering of Maximum Spacing

k-clustering.  Divide objects into k non-empty groups.

Distance function.  Assume it satisfies several natural properties.
 d(pi, pj) = 0 iff pi = pj (identity of indiscernibles)
 d(pi, pj)  0 (nonnegativity)
 d(pi, pj) = d(pj, pi) (symmetry)

Spacing.  Min distance between any pair of points in different clusters.

Clustering of maximum spacing.  Given an integer k, find a 
k-clustering of maximum spacing.

spacing

k = 4
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Greedy Clustering Algorithm

Single-link k-clustering algorithm.
 Form a graph on the vertex set U, corresponding to n clusters.
 Find the closest pair of objects such that each object is in a 

different cluster, and add an edge between them.
 Repeat n-k times until there are exactly k clusters.

Key observation.  This procedure is precisely Kruskal's algorithm
(except we stop when there are k connected components).

Remark.  Equivalent to finding an MST and deleting the k-1 most 
expensive edges.

8

Greedy Clustering Algorithm:  Analysis

Theorem. Let C* denote the clustering C*1, …, C*k formed by deleting the
k-1 most expensive edges of a MST. C* is a k-clustering of max spacing.

Pf.  Let C denote some other clustering C1, …, Ck.
 The spacing of C* is the length d* of the (k-1)st most expensive edge.
 Let pi, pj be in the same cluster in C*, say C*r, but different clusters 

in C, say Cs and Ct.
 Some edge (p, q) on pi-pj path in C*r spans two different clusters in C.
 All edges on pi-pj path have length  d*

since Kruskal chose them.
 Spacing of C is  d* since p and q

are in different clusters.  ▪

p qpi pj

Cs Ct

C*r
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Chapter 5

Divide and Conquer
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Divide-and-Conquer

Divide-and-conquer.
 Break up problem into several parts.
 Solve each part recursively.
 Combine solutions to sub-problems into overall solution.

Most common usage.
 Break up problem of size n into two equal parts of size ½n.
 Solve two parts recursively.
 Combine two solutions into overall solution in linear time.

Consequence.
 Brute force:  n2.
 Divide-and-conquer:  n log n.

Divide et impera.
Veni, vidi, vici.

- Julius Caesar

5.1  Mergesort

12

obvious applications

problems become easy once 
items are in sorted order

non-obvious applications

Sorting

Sorting.  Given n elements, rearrange in ascending order.

Applications.
 Sort a list of names.
 Organize an MP3 library.
 Display Google PageRank results.
 List RSS news items in reverse chronological order.

 Find the median. 
 Find the closest pair.
 Binary search in a database.
 Identify statistical outliers.
 Find duplicates in a mailing list.

 Data compression.
 Computer graphics. 
 Computational biology.
 Supply chain management.
 Book recommendations on Amazon.
 Load balancing on a parallel computer.

. . .
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Mergesort

Mergesort.
 Divide array into two halves.
 Recursively sort each half.
 Merge two halves to make sorted whole.

merge

sort

divide

A L G O R I T H M S

A L G O R I T H M S

A G L O R H I M S T

A G H I L M O R S T

Jon von Neumann (1945)

O(n)

2T(n/2)

O(1)
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Merging

Merging.  Combine two pre-sorted lists into a sorted whole.

How to merge efficiently?
 Linear number of comparisons.
 Use temporary array.

Challenge for the bored.  In-place merge. [Kronrud, 1969]

A G L O R H I M S T

A G H I

using only a constant amount of extra storage

05demo-merge.ppt
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A Useful Recurrence Relation

Def.  T(n)  = number of comparisons to mergesort an input 
of size n.

Mergesort recurrence.  

Solution.  T(n) = O(n log2 n). 

Assorted proofs.  We describe several ways to prove this 
recurrence. Initially we assume n is a power of 2 and 
replace  with =.

  

T(n) 
 0 if  n 1
T n /2  
solve left half
  

 T n /2  
solve right half
  

 n
merging
 otherwise
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Proof by Recursion Tree

T(n)

T(n/2)T(n/2)

T(n/4)T(n/4)T(n/4) T(n/4)

T(2) T(2) T(2) T(2) T(2) T(2) T(2) T(2)

n

T(n / 2k)

2(n/2)

4(n/4)

2k (n / 2k)

n/2 (2)

. . .

. . .
log2n

n log2n

  

T(n) 
0 if  n 1
2T(n /2)

sorting both halves
 

 n
merging
 otherwise
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Proof by Telescoping

Claim.  If T(n) satisfies this recurrence, then T(n) = n log2 n.

Pf.  For n > 1:

  

T(n)
n

 2T(n /2)
n

 1

 T(n /2)
n /2

 1

 T(n / 4)
n / 4

 1  1



 T(n /n)
n /n

 1  1
log2 n

 

 log2 n

  

T(n) 
0 if  n 1
2T(n /2)

sorting both halves
 

 n
merging
 otherwise







assumes n is a power of 2
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Proof by Induction

Claim.  If T(n) satisfies this recurrence, then T(n) = n log2 n.

Pf.  (by induction on n)
 Base case:  n = 1.
 Inductive hypothesis:  T(n) =  n log2 n.
 Goal:  show that T(2n) =  2n log2 (2n).

  

T(2n)  2T(n)    2n
 2n log2 n    2n
 2n log2(2n)1    2n
 2n log2(2n)

assumes n is a power of 2

  

T(n) 
0 if  n 1
2T(n /2)

sorting both halves
 

 n
merging
 otherwise
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Analysis of Mergesort Recurrence

Claim.  If T(n) satisfies the following recurrence, then T(n)   n lg n.

Pf.   (by induction on n)
 Base case:  n = 1.
 Define n1 = n / 2 ,  n2 = n / 2.
 Induction step:  assume true for 1, 2, ... , n–1.

  

T(n)  T(n1)    T(n2 )    n
 n1 lg n1    n2 lg n2    n
 n1 lg n2    n2 lg n2    n
 n lg n2    n
 n( lg n 1 )    n
 n lg n 

  

n2  n /2 

 2 lg n  / 2 
 2 lg n  / 2

 lg n2  lg n  1

  

T(n) 
 0 if  n 1
T n /2  
solve left half
  

 T n /2  
solve right half
  

 n
merging
 otherwise








log2n
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More General Analysis

T(n)

T(n/b)T(n/b)

T(n/b2)T(n/b2)T(n/b2) T(n/b2)

T(2) T(2) T(2) T(2) T(2) T(2) T(2) T(2)

nc

T(n / bk)

a(n/b)c =nc(a/bc)

nc(a/bc)2

nc(a/bc)k

ncሺܽ/ܾሻ୪୭್ 

. . .

. . .
logbn

ܶ ݊   nc(a/bc)i 

୪୭್ 

ୀ
ܶ ݊  ቐ

1																								 ݂݅	݊ ൌ 1

ܽ ൈ ܶ
݊
ܾ

 ݊ ݁ݏ݅ݓݎ݄݁ݐ

. . .
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More General Analysis

T(n)

T(n/b)T(n/b)

T(n/b2)T(n/b2)T(n/b2) T(n/b2)

T(2) T(2) T(2) T(2) T(2) T(2) T(2) T(2)

nc

T(n / bk)

a(n/b)c =nc(a/bc)

nc(a/bc)2

nc(a/bc)k

ncሺܽ/ܾሻ୪୭್ 

. . .

. . .
logbn

ܶ ݊   nc ܽ
ܾ


 

୪୭್ 

ୀ
ൌ nc log ݊

. . .

Case 1: 


ൌ 1ܶ ݊  ቐ
1																								 ݂݅	݊ ൌ 1

ܽ ൈ ܶ
݊
ܾ

 ݊ ݁ݏ݅ݓݎ݄݁ݐ
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More General Analysis

T(n)

T(n/b)T(n/b)

T(n/b2)T(n/b2)T(n/b2) T(n/b2)

T(2) T(2) T(2) T(2) T(2) T(2) T(2) T(2)

nc

T(n / bk)

a(n/b)c =nc(a/bc)

nc(a/bc)2

nc(a/bc)k

ncሺܽ/ܾሻ୪୭್ 

. . .

. . .
logbn

ܶ ݊   nc ܽ
ܾ


 

୪୭್ 

ୀ
ൌ Θ nc

. . .

Case 2: 


൏ 1ܶ ݊  ቐ
1																								 ݂݅	݊ ൌ 1

ܽ ൈ ܶ
݊
ܾ

 ݊ ݁ݏ݅ݓݎ݄݁ݐ
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More General Analysis

T(n)

T(n/b)T(n/b)

T(n/b2)T(n/b2)T(n/b2) T(n/b2)

T(2) T(2) T(2) T(2) T(2) T(2) T(2) T(2)

nc

T(n / bk)

a(n/b)c =nc(a/bc)

nc(a/bc)2

nc(a/bc)k

ncሺܽ/ܾሻ୪୭್ 

. . .

. . .
logbn

ܶ ݊   nc ܽ
ܾ


 

୪୭್ 

ୀ
ൌ Θ ݊୪୭್ 

. . .

Case 3: 


 1ܶ ݊  ቐ
1																								 ݂݅	݊ ൌ 1

ܽ ൈ ܶ
݊
ܾ

 ݊ ݁ݏ݅ݓݎ݄݁ݐ

5.3  Counting Inversions
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Music site tries to match your song preferences with others.
 You rank n songs.
 Music site consults database to find people with similar tastes.

Similarity metric:  number of inversions between two rankings.
 My rank:  1, 2, …, n.
 Your rank:  a1, a2, …, an.
 Songs i and j inverted if i < j, but ai > aj.

Brute force:  check all (n2) pairs i and j.

You
Me

1 43 2 5
1 32 4 5
A B C D E

Songs

Counting Inversions

Inversions
3-2, 4-2

26

Applications

Applications.
 Voting theory.
 Collaborative filtering.
 Measuring the "sortedness" of an array.
 Sensitivity analysis of Google's ranking function. 
 Rank aggregation for meta-searching on the Web.
 Nonparametric statistics  (e.g., Kendall's Tau distance).

27

Counting Inversions:  Divide-and-Conquer

Divide-and-conquer.

4 8 10 21 5 12 11 3 76 9

28

Counting Inversions:  Divide-and-Conquer

Divide-and-conquer.
 Divide:  separate list into two pieces.

4 8 10 21 5 12 11 3 76 9

4 8 10 21 5 12 11 3 76 9

Divide:  O(1).
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Counting Inversions:  Divide-and-Conquer

Divide-and-conquer.
 Divide:  separate list into two pieces.
 Conquer: recursively count inversions in each half.

4 8 10 21 5 12 11 3 76 9

4 8 10 21 5 12 11 3 76 9

5 blue-blue inversions 8 green-green inversions

Divide:  O(1).

Conquer:  2T(n / 2)

5-4, 5-2, 4-2, 8-2, 10-2 6-3, 9-3, 9-7, 12-3, 12-7, 12-11, 11-3, 11-7

30

Counting Inversions:  Divide-and-Conquer

Divide-and-conquer.
 Divide:  separate list into two pieces.
 Conquer: recursively count inversions in each half.
 Combine: count inversions where ai and aj are in different halves, 

and return sum of three quantities.

4 8 10 21 5 12 11 3 76 9

4 8 10 21 5 12 11 3 76 9

5 blue-blue inversions 8 green-green inversions

Divide:  O(1).

Conquer:  2T(n / 2)

Combine:  ???9 blue-green inversions
5-3, 4-3, 8-6, 8-3, 8-7, 10-6, 10-9, 10-3, 10-7

Total = 5 + 8 + 9 = 22.



2/1/2018

Copyright 2000, Kevin Wayne 6

31

13 blue-green inversions:  6 + 3 + 2 + 2 + 0 + 0 

Counting Inversions:  Combine

Combine:  count blue-green inversions
 Assume each half is sorted.
 Count inversions where ai and aj are in different halves. 
 Merge two sorted halves into sorted whole.

Count:  O(n)

Merge:  O(n)

10 14 18 193 7 16 17 23 252 11

7 10 11 142 3 18 19 23 2516 17

  T(n)   T n /2  T n /2   O(n)  T(n)  O(n log n)

6 3 2 2 0 0

to maintain sorted invariant

play
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Counting Inversions:  Implementation

Pre-condition. [Merge-and-Count] A and B are sorted.
Post-condition.  [Sort-and-Count] L is sorted.

Sort-and-Count(L) {
if list L has one element

return 0 and the list L

Divide the list into two halves A and B
(rA, A)  Sort-and-Count(A)
(rB, B)  Sort-and-Count(B)
(rB, L)  Merge-and-Count(A, B)

return r = rA + rB + r and the sorted list L
}

5.4  Closest Pair of Points

34

Closest Pair of Points

Closest pair.  Given n points in the plane, find a pair with smallest 
Euclidean distance between them.

Fundamental geometric primitive.
 Graphics, computer vision, geographic information systems, 

molecular modeling, air traffic control.
 Special case of nearest neighbor, Euclidean MST, Voronoi.

to make presentation cleaner

fast closest pair inspired fast algorithms for these problems

Brute force.  Check all pairs of points p and q with (n2) 
comparisons.

1-D version.  O(n log n) easy if points are on a line.

Assumption.  No two points have same x coordinate.

35

Closest Pair of Points:  First Attempt

Divide.  Sub-divide region into 4 quadrants.

L

36

Closest Pair of Points:  First Attempt

Divide.  Sub-divide region into 4 quadrants.
Obstacle.  Impossible to ensure n/4 points in each piece.

L
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Closest Pair of Points

Algorithm.
 Divide:  draw vertical line L so that roughly ½n points on each side.

L

38

Closest Pair of Points

Algorithm.
 Divide:  draw vertical line L so that roughly ½n points on each side.
 Conquer:  find closest pair in each side recursively.

12

21

L

39

Closest Pair of Points

Algorithm.
 Divide:  draw vertical line L so that roughly ½n points on each side.
 Conquer:  find closest pair in each side recursively.
 Combine:  find closest pair with one point in each side.
 Return best of 3 solutions.

12

21
8

L

seems like (n2) 
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Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < .

12

21

 = min(12, 21)

L

41

Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < .
 Observation:  only need to consider points within  of line L.

12

21



L

 = min(12, 21)

42

12

21

1

2

3

4
5

6

7



Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < .
 Observation:  only need to consider points within  of line L.
 Sort points in 2-strip by their y coordinate.

L

 = min(12, 21)
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12

21

1

2

3

4
5

6

7



Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < .
 Observation:  only need to consider points within  of line L.
 Sort points in 2-strip by their y coordinate.
 Only check distances of those within 11 positions in sorted list!

L

 = min(12, 21)

44

Closest Pair of Points

Def.  Let si be the point in the 2-strip, with
the ith smallest y-coordinate.

Claim.  If |i – j|  12, then the distance between
si and sj is at least .
Pf.
 No two points lie in same ½-by-½ box.
 Two points at least 2 rows apart

have distance  2(½).   ▪

Fact.  Still true if we replace 12 with 7.



27

29
30

31

28

26

25



½

2 rows
½

½

39

i

j
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Closest Pair Algorithm

Closest-Pair(p1, …, pn) {
Compute separation line L such that half the points
are on one side and half on the other side.

1 = Closest-Pair(left half)
2 = Closest-Pair(right half)
 = min(1, 2)

Delete all points further than  from separation line L

Sort remaining points by y-coordinate.

Scan points in y-order and compare distance between
each point and next 11 neighbors. If any of these
distances is less than , update .

return .
}

O(n log n)

2T(n / 2)

O(n)

O(n log n)

O(n)

46

Closest Pair of Points:  Analysis

Running time.

Q.  Can we achieve O(n log n)?

A.  Yes. Don't sort points in strip from scratch each time.
 Each recursive returns two lists: all points sorted by y coordinate, 

and all points sorted by x coordinate.
 Sort by merging two pre-sorted lists.

  T(n)  2T n /2   O(n)  T(n)  O(n logn)

  T(n)  2T n /2   O(n log n)  T(n)    O(n log2 n)
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MST Algorithms:  Theory

Deterministic comparison based algorithms.
 O(m log n) [Jarník, Prim, Dijkstra, Kruskal, Boruvka]
 O(m log log n). [Cheriton-Tarjan 1976, Yao 1975]
 O(m (m, n)). [Fredman-Tarjan 1987]
 O(m log (m, n)). [Gabow-Galil-Spencer-Tarjan 1986]
 O(m  (m, n)). [Chazelle 2000]

Holy grail.  O(m).

Notable.
 O(m) randomized. [Karger-Klein-Tarjan 1995]
 O(m) verification. [Dixon-Rauch-Tarjan 1992]

Euclidean.
 2-d:  O(n log n). compute MST of edges in Delaunay
 k-d:  O(k n2). dense Prim

48

Dendrogram

Dendrogram.  Scientific visualization of hypothetical sequence of 
evolutionary events.
 Leaves = genes.
 Internal nodes = hypothetical ancestors.

Reference:  http://www.biostat.wisc.edu/bmi576/fall-2003/lecture13.pdf



2/1/2018

Copyright 2000, Kevin Wayne 9

49

The picture can't be displayed.

Dendrogram of Cancers in Human

Tumors in similar tissues cluster together.

Reference:  Botstein & Brown group

Gene 1

Gene n

gene expressed
gene not expressed

Extra Slides


