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Reminder: Homework 1 due tonight at 11:59PM! 



Recap: Greedy Algorithms
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Minimizing Lateness
• Input: list of n jobs (t1,d1),…,(tn,dn) where job j

 requires tj units of processing time and 
 is due at time dj.

• Goal: Find schedule to minimize maximum late time
• Greedy Algorithm: Sort jobs by earliest deadline
• Running Time: O(n log n)

Offline Cache Eviction Problem
• Input: list of page requests, cache size m
• Goal: Find eviction schedule that minimizes # cache misses
• Solution: Evict the item that will be requested furthest in the 

future.
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• Chapter 4

Greedy
Algorithms

Slides by Kevin Wayne.
Copyright © 2005 Pearson-Addison Wesley.
All rights reserved.



4.5  Minimum Spanning Tree
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Minimum Spanning Tree

Minimum spanning tree.  Given a connected graph G = (V, E) with real-
valued edge weights ce, an MST is a subset of the edges T  E such 
that T is a spanning tree whose sum of edge weights is minimized.

Cayley's Formula.  There are nn-2 spanning trees of Kn.
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G = (V, E) T,  eT ce = 50

can't solve by brute force
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Applications

MST is fundamental problem with diverse applications.

 Network design.
– telephone, electrical, hydraulic, TV cable, computer, road

 Approximation algorithms for NP-hard problems.
– traveling salesperson problem, Steiner tree

 Indirect applications.
– max bottleneck paths
– LDPC codes for error correction
– image registration with Renyi entropy
– learning salient features for real-time face verification
– reducing data storage in sequencing amino acids in a protein
– model locality of particle interactions in turbulent fluid flows
– autoconfig protocol for Ethernet bridging to avoid cycles in a 

network

 Cluster analysis.
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Greedy Algorithms

Kruskal's algorithm.  Start with T = . Consider edges in ascending 
order of cost. Insert edge e in T unless doing so would create a 
cycle.

Reverse-Delete algorithm.  Start with T = E.  Consider edges in 
descending order of cost. Delete edge e from T unless doing so 
would disconnect T.

Prim's algorithm.  Start with some root node s and greedily grow a 
tree T from s outward.  At each step, add the cheapest edge e to T 
that has exactly one endpoint in T.

Remark. All three algorithms produce an MST.
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Greedy Algorithms

Simplifying assumption.  All edge costs ce are distinct.

Cut property.  Let S be any subset of nodes, and let e be the min cost 
edge with exactly one endpoint in S.  Then the MST contains e.

Cycle property.  Let C be any cycle, and let f be the max cost edge 
belonging to C.  Then the MST does not contain f.

f 
C

S

e is in the MST

e

f is not in the MST
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Cycles and Cuts

Cycle.  Set of edges the form a-b, b-c, c-d, …, y-z, z-a. 

Cycle C  =  1-2, 2-3, 3-4, 4-5, 5-6, 6-1

1
3

8

2

6

7

4

5

Cut S       =  { 4, 5, 8 }
Cutset D =  5-6, 5-7, 3-4, 3-5, 7-8
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Cutset.  A cut is a subset of nodes S.  The corresponding 
cutset D is the subset of edges with exactly one endpoint in S.
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Cycle-Cut Intersection

Claim.  A cycle and a cutset intersect in an even number of edges.

Pf.  (by picture)
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S

V - S

C

Cycle  C = 1-2, 2-3, 3-4, 4-5, 5-6, 6-1
Cutset D = 3-4, 3-5, 5-6, 5-7, 7-8 
Intersection = 3-4, 5-6
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Greedy Algorithms

Simplifying assumption.  All edge costs ce are distinct.

Cut property.  Let S be any subset of nodes, and let e be the min cost 
edge with exactly one endpoint in S. Then the MST T* contains e.

f 

T*
e

S

Pf.  (exchange argument)
 Suppose e does not belong to T*, and let's see what happens.
 Adding e to T* creates a cycle C in T*.
 Edge e is both in the cycle C and in the cutset D corresponding 

to S   there exists another edge, say f, that is in both C and 
D.

 T' = T*  { e } - { f } is also a spanning tree.
 Since ce < cf, cost(T') < cost(T*).
 This is a contradiction.   ▪
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Greedy Algorithms

Simplifying assumption.  All edge costs ce are distinct.

Cycle property.  Let C be any cycle in G, and let f be the max cost edge 
belonging to C. Then the MST T* does not contain f.

Pf.  (exchange argument)
 Suppose f belongs to T*, and let's see what happens.
 Deleting f from T* creates a cut S in T*.
 Edge f is both in the cycle C and in the cutset D corresponding to S  
 there exists another edge, say e, that is in both C and D.

 T' = T*  { e } - { f } is also a spanning tree.
 Since ce < cf, cost(T') < cost(T*).
 This is a contradiction.   ▪

f 

T*
e

S
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Prim's Algorithm:  Proof of Correctness

Prim's algorithm.  [Jarník 1930, Dijkstra 1959, Prim 1957]
 Initialize S = any node.
 Apply cut property to S.
 Add min cost edge in cutset corresponding to S to T, and add one 

new explored node u to S.

S
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Prim's Algorithm:  Proof of Correctness

Prim's algorithm.  [Jarník 1930, Dijkstra 1959, Prim 1957]
 Initialize S = any node.
 Apply cut property to S.
 Add min cost edge in cutset corresponding to S to T, and add one 

new explored node u to S.

S



Implementation.  Use a priority queue ala Dijkstra.
 Maintain set of explored nodes S.
 For each unexplored node v, maintain attachment cost a[v] = cost of 

cheapest edge v to a node in S.
 O(n2) with an array; O(m log n) with a binary heap; 
 O(m + n log n) with Fibonacci Heap
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Implementation:  Prim's Algorithm

Prim(G, c) {
foreach (v  V) a[v]  
Initialize an empty priority queue Q
foreach (v  V) insert v onto Q
Initialize set of explored nodes S  

while (Q is not empty) {
u  delete min element from Q
S  S  { u }
foreach (edge e = (u, v) incident to u)

if ((v  S) and (ce < a[v]))
decrease priority a[v] to ce

}
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Kruskal's Algorithm:  Proof of Correctness

Kruskal's algorithm.  [Kruskal, 1956]
 Consider edges in ascending order of weight.
 Case 1:  If adding e to T creates a cycle, discard e according to 

cycle property.
 Case 2:  Otherwise, insert e = (u, v) into T according to cut 

property where S = set of nodes in u's connected component. 

Case 1

v

u

Case 2

e

e S
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Implementation:  Kruskal's Algorithm

Kruskal(G, c) {
Sort edges weights so that c1  c2  ...  cm.
T  

foreach (u  V) make a set containing singleton u

for i = 1 to m
(u,v) = ei
if (u and v are in different sets) {

T  T  {ei}
merge the sets containing u and v

}
return T

}

Implementation.  Use the union-find data structure.
 Build set T of edges in the MST.
 Maintain set for each connected component.
 O(m log n) for sorting and  O(m  (m, n)) for union-find.

are u and v in different connected components?

merge two components

m  n2  log m is O(log n) essentially a constant
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Lexicographic Tiebreaking

To remove the assumption that all edge costs are distinct:  perturb all 
edge costs by tiny amounts to break any ties.

Impact. Kruskal and Prim only interact with costs via pairwise 
comparisons.  If perturbations are sufficiently small, MST with 
perturbed costs is MST with original costs. 

boolean less(i, j) {
if      (cost(ei) < cost(ej)) return true
else if (cost(ei) > cost(ej)) return false
else if (i < j)               return true
else            return false

}

e.g., if all edge costs are integers,
perturbing cost of edge ei by i / n2

Implementation.  Can handle arbitrarily small perturbations 
implicitly by breaking ties lexicographically, according to index.
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MST Algorithms:  Theory

Deterministic comparison based algorithms.
 O(m log n) [Jarník, Prim, Dijkstra, Kruskal, Boruvka]
 O(m log log n). [Cheriton-Tarjan 1976, Yao 1975]
 O(m (m, n)). [Fredman-Tarjan 1987]
 O(m log (m, n)). [Gabow-Galil-Spencer-Tarjan 1986]
 O(m  (m, n)). [Chazelle 2000]

Holy grail.  O(m).

Notable.
 O(m) randomized. [Karger-Klein-Tarjan 1995]
 O(m) verification. [Dixon-Rauch-Tarjan 1992]

Euclidean.
 2-d:  O(n log n). compute MST of edges in Delaunay
 k-d:  O(k n2). dense Prim



4.7  Clustering



21

Clustering

Clustering.  Given a set U of n objects labeled p1, …, pn, classify into 
coherent groups.

Distance function.  Numeric value specifying "closeness" of two objects.

photos, documents. micro-organisms

number of corresponding pixels whose
intensities differ by some threshold

Fundamental problem.  Divide into clusters so that points in 
different clusters are far apart.
 Routing in mobile ad hoc networks.
 Identify patterns in gene expression.
 Document categorization for web search.
 Similarity searching in medical image databases
 Skycat:  cluster 109 sky objects into stars, quasars, galaxies.
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Clustering of Maximum Spacing

k-clustering.  Divide objects into k non-empty groups.

Distance function.  Assume it satisfies several natural properties.
 d(pi, pj) = 0 iff pi = pj (identity of indiscernibles)
 d(pi, pj)  0 (nonnegativity)
 d(pi, pj) = d(pj, pi) (symmetry)

Spacing.  Min distance between any pair of points in different clusters.

Clustering of maximum spacing.  Given an integer k, find a 
k-clustering of maximum spacing.

spacing

k = 4
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Greedy Clustering Algorithm

Single-link k-clustering algorithm.
 Form a graph on the vertex set U, corresponding to n clusters.
 Find the closest pair of objects such that each object is in a 

different cluster, and add an edge between them.
 Repeat n-k times until there are exactly k clusters.

Key observation.  This procedure is precisely Kruskal's algorithm
(except we stop when there are k connected components).

Remark.  Equivalent to finding an MST and deleting the k-1 most 
expensive edges.
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Greedy Clustering Algorithm:  Analysis

Theorem. Let C* denote the clustering C*1, …, C*k formed by deleting the
k-1 most expensive edges of a MST. C* is a k-clustering of max spacing.

Pf.  Let C denote some other clustering C1, …, Ck.
 The spacing of C* is the length d* of the (k-1)st most expensive edge.
 Let pi, pj be in the same cluster in C*, say C*r, but different clusters 

in C, say Cs and Ct.
 Some edge (p, q) on pi-pj path in C*r spans two different clusters in C.
 All edges on pi-pj path have length  d*

since Kruskal chose them.
 Spacing of C is  d* since p and q

are in different clusters.  ▪

p qpi pj

Cs Ct

C*r



25

MST Algorithms:  Theory

Deterministic comparison based algorithms.
 O(m log n) [Jarník, Prim, Dijkstra, Kruskal, Boruvka]
 O(m log log n). [Cheriton-Tarjan 1976, Yao 1975]
 O(m (m, n)). [Fredman-Tarjan 1987]
 O(m log (m, n)). [Gabow-Galil-Spencer-Tarjan 1986]
 O(m  (m, n)). [Chazelle 2000]

Holy grail.  O(m).

Notable.
 O(m) randomized. [Karger-Klein-Tarjan 1995]
 O(m) verification. [Dixon-Rauch-Tarjan 1992]

Euclidean.
 2-d:  O(n log n). compute MST of edges in Delaunay
 k-d:  O(k n2). dense Prim



26

Dendrogram

Dendrogram.  Scientific visualization of hypothetical sequence of 
evolutionary events.
 Leaves = genes.
 Internal nodes = hypothetical ancestors.

Reference:  http://www.biostat.wisc.edu/bmi576/fall-2003/lecture13.pdf
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The picture can't be displayed.

Dendrogram of Cancers in Human

Tumors in similar tissues cluster together.

Reference:  Botstein & Brown group

Gene 1

Gene n

gene expressed
gene not expressed
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