Recap: Greedy Algorithms

Interval Scheduling
- Goal: Maximize number of meeting requests scheduled in single conference room
- Greedy Algorithm: Sort by earliest finish time
- Running Time: $O(n \log n)$

Interval Partitioning
- Goal: Minimize number of classrooms needed to assign all lectures
- Greedy Algorithm: Sort by earliest start time
- Running Time: $O(n \log n)$

Dijkstra’s Shortest Path Algorithm
- Invariants: minimum distance $d(u)$ to all nodes in explored set S
- Greedy Choice: Add node v to S with minimum value $d(u)$
- Running Time: $O(m + n \log n)$ with Fibonacci Heap

$\pi(v) = \min_{u \in S} d(v) + \ell_v$

Remarks about Dijkstra’s Algorithm
- Yields shortest path tree from origin s
- Shortest path from s to every other node v

Maximum Capacity Path Problem
- Each edge e has capacity c_e (e.g., maximum height)
- Capacity of a path is minimum capacity of any Edge in path
- Goal: Find path from s to t with maximum capacity
- Solution: Use Dijkstra
- Small Modification

$\pi(v) = \max_{e : (u,v) \in E} \min \{ c_e, \pi(u) \}$

4.2 Scheduling to Minimize Lateness
Minimizing Lateness: Greedy Algorithms

Greedy template. Consider jobs in some order.

- [Shortest processing time first] Consider jobs in ascending order of processing time t_j.
- [Earliest deadline first] Consider jobs in ascending order of deadline d_j.
- [Smallest slack] Consider jobs in ascending order of slack $d_j - t_j$.

Minimizing Lateness: Inversions

Def. Given a schedule S, an inversion is a pair of jobs i and j such that:
- $i < j$ (i.e., $d_i < d_j$),
- j scheduled before i.

Observation. Greedy schedule has no inversions.

Claim. If a schedule (with no idle time) has an inversion, it has one with a pair of inverted jobs scheduled consecutively.
Minimizing Lateness: Inversions

Def. Given a schedule S, an **inversion** is a pair of jobs i and j such that: $i < j$ (i.e., $d_i < d_j$) but j scheduled before i.

Claim. If a schedule (with no idle time) has an inversion, it has one with a pair of inverted jobs scheduled consecutively.

Proof: Let (i, j) be inversion with smallest number of jobs scheduled between j and i. Suppose for contradiction that some job k is scheduled between j and i.

- **Case 1:** $d_k < d_j$ implies (k, j) is inversion (Contradiction)
- **Case 2:** $d_k > d_j > d_i$, (i, k) is inversion (Contradiction)

Minimizing Lateness: Analysis of Greedy Algorithm

Theorem. Greedy schedule S is optimal.

Pf. Define S^* to be an optimal schedule that has the fewest number of inversions, and let’s see what happens.

- Can assume S^* has no idle time.
- If S^* has no inversions, then $S = S^*$.
- If S^* has an inversion, let $i-j$ be an adjacent inversion.
 - swapping i and j does not increase the maximum lateness and
 strictly decreases the number of inversions
 - this contradicts definition of S^*

Greedy Analysis Strategies

Greedy algorithm stops ahead. Show that after each step of the greedy algorithm, its solution is at least as good as any other algorithm’s.

Structural. Discover a simple "structural" bound asserting that every possible solution must have a certain value. Then show that your algorithm always achieves this bound.

Exchange argument. Gradually transform any solution to the one found by the greedy algorithm without hurting its quality.

Other greedy algorithms. Kruskal, Prim, Huffman, …

4.3 Optimal Caching

Caching.
- Cache with capacity to store k items.
- Sequence of m item requests $d_1, d_2 \ldots, d_m$.
- Cache hit: item already in cache when requested.
- Cache miss: item not already in cache when requested: must bring requested item into cache, and evict some existing item, if full.

Goal. Eviction schedule that minimizes number of cache misses.

Ex: $k = 2$, initial cache = ab, requests: a, b, c, a, c, a, b.

Optimal eviction schedule: 2 cache misses.
Optimal Offline Caching: Farthest-In-Future

Farthest-in-future. Evict item in the cache that is not requested until farthest in the future.

Theorem. [Bellady, 1960s] FF is optimal eviction schedule.

Pf. Algorithm and theorem are intuitive; proof is subtle.

Reduced Eviction Schedules

Def. A reduced schedule is a schedule that only inserts an item into the cache in a step in which that item is requested.

Intuition. Can transform an unreduced schedule into a reduced one with no more cache misses.

Farthest-In-Future: Analysis

Pf. (continued)

Case 1: (d is not in the cache; S'0 exists; S exists f ≠ e).
- begin construction of S' from S by evicting e instead of f

Let j be the first time after j+1 that S and S' take a different action, and let g be item requested at time j+

Farthest-In-Future: Analysis

Let j' be the first time after j+1 that S and S' take a different action, and let g be item requested at time j'.

- Case 3: g ≠ e. Can’t happen with Farthest-In-Future since there must be a request for f before e.
- Case 3b: g = f. Element f can’t be in cache of S, so let e' be the element that S exists.
 - if e' ≠ e, S' accesses f from cache; now S and S' have same cache.
 - if e' = e, S' accesses e' and brings e into the cache; now S and S' have the same cache

Note: S' is no longer reduced, but can be transformed into a reduced schedule that agrees with SFF through step j+1.

Reduced Eviction Schedules

Claim. Given any unreduced schedule S, can transform it into a reduced schedule S' with no more cache misses.

Pf. (by induction on number of unreduced items)

- Suppose S brings d into the cache at time t, without a request.
- Let c be the item S evicts when it brings d into the cache.
- Case 1: d evicted at time t', before next request for d.
- Case 2: d requested at time t' before d is evicted.

- Case 3: (d is not in the cache; S'0 exists; S exists f ≠ e).
 - begin construction of S' from S by evicting e instead of f

Farthest-In-Future: Analysis

Let j be the first time after j+1 that S and S' take a different action, and let g be item requested at time j'.

- Case 3a: g = e. Can’t happen with Farthest-In-Future since there must be a request for f before e.
- Case 3b: g = f. Element f can’t be in cache of S, so let e' be the element that S exists.
 - if e' ≠ e, S' accesses f from cache; now S and S' have same cache.
 - if e' = e, S' accesses e' and brings e into the cache; now S and S' have the same cache

Note: S' is no longer reduced, but can be transformed into a reduced schedule that agrees with SFF through step j+1.
Farthest-In-Future: Analysis

Let \(j' \) be the first time after \(j+1 \) that \(S \) and \(S' \) take a different action, and let \(g \) be item requested at time \(j' \).

Case 3: \(g \neq e, f \). \(S \) must evict \(e \).

Make \(S' \) evict \(f \); now \(S \) and \(S' \) have the same cache.

\[S \]
\[s \]
\[\text{same} \]
\[S' \]
\[s' \]
\[\text{same} \]

Case 3: \(g = e \) or \(f \). \(S \) must evict either \(e \) or \(f \), or both.

Make \(S' \) evict \(e \) or \(f \); now \(S \) and \(S' \) have the same cache.

\[S \]
\[s \]
\[\text{same} \]
\[S' \]
\[s' \]
\[\text{same} \]

Caching Perspective

Online vs. offline algorithms:
- **Offline**: full sequence of requests is known a priori.
- **Online (reality)**: requests are not known in advance.
- Caching is among most fundamental online problems in CS.

LIFO. Evict page brought in most recently.

LRU. Evict page whose most recent access was earliest.

Theorem: FF is optimal offline eviction algorithm.

Greedy Algorithms

- **Kruskal’s algorithm.** Start with \(T = \emptyset \). Consider edges in ascending order of cost. Insert edge \(e \) in \(T \) unless doing so would create a cycle.
- **Reverse-Delete algorithm.** Start with \(T = E \). Consider edges in descending order of cost. Delete edge \(e \) from \(T \) unless doing so would disconnect \(T \).
- **Prim’s algorithm.** Start with some root node \(s \) and greedily grow a tree \(T \) from \(s \). At each step, add the cheapest edge \(e \) to \(T \) that has exactly one endpoint in \(T \).

Remark: All three algorithms produce an MST.

Minimum Spanning Tree

Minimum Spanning Tree

Given a connected graph \(G = (V, E) \) with real-valued edge weights \(c_e \), an MST is a subset of the edges \(T \subseteq E \) such that \(T \) is a spanning tree whose sum of edge weights is minimized.

Cayley’s Theorem. There are \(n^n \) spanning trees of \(K_n \).

MST is fundamental problem with diverse applications.

- Network design.
 - telephone, electrical, hydraulic, TV cable, computer, read
- Approximation algorithm for NP-hard problems.
 - traveling salesperson problem, Shaeffer tree
- Indirect applications.
 - max bisection graph
 - LRPC codes for error correction
 - learning invariant features for real-time face verification
 - reducing data storage in sequencing amino acids in a protein
 - model locality of particle interactions in turbulent fluid flows
 - autoconfig protocol for Ethernet bridging to avoid cycles in a network
- **Cluster analysis.**

Applications

Network design.
- telephone, electrical, hydraulic, TV cable, computer, read
- Approximation algorithm for NP-hard problems.
 - traveling salesperson problem, Shaeffer tree
- Indirect applications.
 - max bisection graph
 - LRPC codes for error correction
 - learning invariant features for real-time face verification
 - reducing data storage in sequencing amino acids in a protein
 - model locality of particle interactions in turbulent fluid flows
 - autoconfig protocol for Ethernet bridging to avoid cycles in a network
- Cluster analysis.

Greedy Algorithms

- **Kruskal’s algorithm.** Start with \(T = \emptyset \). Consider edges in ascending order of cost. Insert edge \(e \) in \(T \) unless doing so would create a cycle.
- **Reverse-Delete algorithm.** Start with \(T = E \). Consider edges in descending order of cost. Delete edge \(e \) from \(T \) unless doing so would disconnect \(T \).
- **Prim’s algorithm.** Start with some root node \(s \) and greedily grow a tree \(T \) from \(s \). At each step, add the cheapest edge \(e \) to \(T \) that has exactly one endpoint in \(T \).

Remark: All three algorithms produce an MST.

Greedy Algorithms

- **Kruskal’s algorithm.** Start with \(T = \emptyset \). Consider edges in ascending order of cost. Insert edge \(e \) in \(T \) unless doing so would create a cycle.
- **Reverse-Delete algorithm.** Start with \(T = E \). Consider edges in descending order of cost. Delete edge \(e \) from \(T \) unless doing so would disconnect \(T \).
- **Prim’s algorithm.** Start with some root node \(s \) and greedily grow a tree \(T \) from \(s \). At each step, add the cheapest edge \(e \) to \(T \) that has exactly one endpoint in \(T \).

Remark: All three algorithms produce an MST.
Greedy Algorithms

Simplifying assumption. All edge costs c_e are distinct.

Cut property. Let S be any subset of nodes, and let e be the min cost edge with exactly one endpoint in S. Then the MST contains e.

Cycle property. Let C be any cycle, and let f be the max cost edge belonging to C. Then the MST does not contain f.

Cycles and Cuts

Cycle. Set of edges the form $a-b, b-c, c-d, \ldots, y-z, z-a$.

Cutset. A cut is a subset of nodes S. The corresponding cutset D is the subset of edges with exactly one endpoint in S.

Greedy Algorithms

Simplifying assumption. All edge costs c_e are distinct.

Cut property. Let S be any subset of nodes, and let e be the min cost edge with exactly one endpoint in S. Then the MST T^* contains e.

Cycle property. Let C be any cycle in G, and let f be the max cost edge belonging to C. Then the MST T^* does not contain f.

Prim's Algorithm: Proof of Correctness

Prim's algorithm. [Jarník 1930, Dijkstra 1959, Prim 1957]

1. Initialize $S = \{\text{any node}\}$.
2. Apply cut property to S.
3. Add min cost edge in cutset corresponding to S to T, and add one new explored node u to S.

Claim. A cycle and a cutset intersect in an even number of edges.

Pf. (by picture)

Prim's algorithm.

Cycle-Cut Intersection

Claim. A cycle and a cutset intersect in an even number of edges.

Pf. (exchange argument)

Suppose e does not belong to T^*, and let's see what happens.

Adding e to T^* creates a cycle C in T^*.

Edge e is both in the cycle C and in the cutset D corresponding to S.

$T' = T^* \cup \{e\} - \{f\}$ is also a spanning tree.

Since $c_e < c_f$, cost(T') < cost(T^*).

This is a contradiction.

Pf. (exchange argument)

Suppose f belongs to T^*, and let's see what happens.

Deleting f from T^* creates a cut S in T^*.

Edge f is both in the cycle C and in the cutset D corresponding to S.

$T' = T^* \cup \{e\} - \{f\}$ is also a spanning tree.

Since $c_e < c_f$, cost(T') < cost(T^*).

This is a contradiction.
Implementation: Prim's Algorithm

Implementation. Use a priority queue as Dijkstra.

- Maintain set of explored nodes S.
- For each unexplored node v, maintain attachment cost $a[v]$ = cost of cheapest edge v to a node in S.
- $O(m + n \log n)$ with Fibonacci Heap.

$$\text{Prim}(G, c) \{$$

$\text{foreach} \ (v \in V) \ a[v] \leftarrow \infty$

$\text{Initialize an empty priority queue } Q$

$\text{foreach} \ (v \in V) \ \text{insert } v \text{ onto } Q$

$\text{Initialize set of explored nodes } S \leftarrow \emptyset$

$\text{while} \ (Q \text{ is not empty}) \ { }$

$\text{u} \leftarrow \text{delete min element from } Q$

$S \leftarrow S \cup \{u\}$

$\text{foreach} \ (\text{edge } e = (u, v) \text{ incident to } u) \ { }$

if $(v \notin S)$ and $(c[e] < a[v])$

$\text{decrease priority } a[v] \text{ to } c[e]$

$$\}$$

Implementation: Kruskal's Algorithm

Implementation. Use the union-find data structure.

- Build T of edges in the MST.
- Maintain set for each connected component.
- $O(m \log n)$ for sorting and $O(m \log \log n)$ for union-find.

Implementation. Prim's Algorithm

```c
Kruskal(0, n) {
    sort edges weights so that $c_1 \leq c_2 \leq ... \leq c_m$.
    $T \leftarrow \emptyset$
    foreach (u ∈ V) make a set containing singleton u
    for i = 1 to m
        (u,v) = $e_i$
        if (u and v are in different sets) {
            $T \leftarrow T \cup \{e_i\}$
            merge the sets containing u and v
        }
    return T
}
```

Lexicographic Tiebreaking

To remove the assumption that all edge costs are distinct: perturb all edge costs by tiny amounts to break any ties.

Impact. Kruskal and Prim only interact with costs via pairwise comparisons. If perturbations are sufficiently small, MST with perturbed costs is MST with original costs.

Implementation. Can handle arbitrarily small perturbations implicitly by breaking ties lexicographically, according to index.

```c
boolean less(i, j) {
    if (cost($e_i$) < cost($e_j$)) return true
    else if (cost($e_i$) > cost($e_j$)) return false
    else if (i < j) return true
    else return false
}
```

MST Algorithms: Theory

Deterministic comparison based algorithms.

- $O(m \log n)$ [Jarník, Prim, Dijkstra, Kruskal, Borůvka]
- $O(m \log \log n)$. [Cheriton-Tarjan 1976, Yao 1975]
- $O(m \beta(m, n))$. [Fredman-Tarjan 1987]
- $O(m \log^\gamma(m, n))$. [Gabow-Galil-Spencer-Tarjan 1986]
- $O(m \alpha(m, n))$. [Chazelle 2000]

Holy grail. $O(m)$.

Notable.

- $O(m)$ randomized. [Karger-Klein-Tarjan 1995]
- $O(m)$ verification. [Dixon-Rauch-Tarjan 1992]

Euclidean.

- 2-d: $O(m \log n)$
- 3-d: $O(n \log n)$
- dense Prim