
CS 580: Algorithm Design and Analysis

Jeremiah Blocki
Purdue University
Spring 2018

Reminder: Homework 1 due tonight at 11:59PM!

Recap: Greedy Algorithms

2

Interval Scheduling
• Goal: Maximize number of meeting requests scheduled in single

conference room
• Greedy Algorithm: Sort by earliest finish time
• Running Time: O(n log n)
Interval Partitioning
• Goal: Minimize number of classrooms needed to assign all

lectures
• Greedy Algorithm: Sort by earliest start time
• Running Time: O(n log n)
Dijkstra’s Shortest Path Algorithm
• Invariant: minimum distance d(u) to all nodes in explored set S
• Greedy Choice: Add node v to S with minimum value ߨ ݒ
• Running Time: O(m + n log n) with Fibonacci Heap

 :),(
)(min)(eSuvue

udv 




Remarks about Dijkstra’s Algorithm

Yields shortest path tree from origin s.
• Shortest path from s to every other node v

3 shortest route from Wang Hall to Miami Beach

Maximum Capacity Path Problem

Maximum Capacity Path Problem

Each edge e has capacity ce

(e.g., maximum height)

Capacity of a path is
Minimum capacity of any
Edge in path

Goal: Find path from s
to t with maximum capacity

Solution: Use Dijkstra!
Small Modification

4

 )(,minmax)(:),(
ucv eSuvue






5

• Chapter 4

Greedy
Algorithms

Slides by Kevin Wayne.
Copyright © 2005 Pearson-Addison Wesley.
All rights reserved.

4.2 Scheduling to Minimize Lateness

7

Scheduling to Minimizing Lateness

Minimizing lateness problem.
 Single resource processes one job at a time.
 Job j requires tj units of processing time and is due at time dj.
 If j starts at time sj, it finishes at time fj = sj + tj.
 Lateness: j = max { 0, fj - dj }.
 Goal: schedule all jobs to minimize maximum lateness L = max j.

Ex:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

d5 = 14d2 = 8 d6 = 15 d1 = 6 d4 = 9d3 = 9

lateness = 0lateness = 2

dj 6

tj 3

1

8

2

2

9

1

3

9

4

4

14

3

5

15

2

6

max lateness = 6

8

Minimizing Lateness: Greedy Algorithms

Greedy template. Consider jobs in some order.

 [Shortest processing time first] Consider jobs in
ascending order of processing time tj.

 [Earliest deadline first] Consider jobs in ascending
order of deadline dj.

 [Smallest slack] Consider jobs in ascending order of
slack dj - tj.

9

Greedy template. Consider jobs in some order.

 [Shortest processing time first] Consider jobs in
ascending order of processing time tj.

 [Smallest slack] Consider jobs in ascending order of slack
dj - tj.

counterexample

counterexample

dj

tj

100

1

1

10

10

2

dj

tj

2

1

1

10

10

2

Minimizing Lateness: Greedy Algorithms

10

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

d5 = 14d2 = 8 d6 = 15d1 = 6 d4 = 9d3 = 9

max lateness = 1

Sort n jobs by deadline so that d1  d2  …  dn

t  0
for j = 1 to n

Assign job j to interval [t, t + tj]
sj  t, fj  t + tj
t  t + tj

output intervals [sj, fj]

Minimizing Lateness: Greedy Algorithm

Greedy algorithm. Earliest deadline first.

11

Minimizing Lateness: No Idle Time

Observation. There exists an optimal schedule with no idle time.

Observation. The greedy schedule has no idle time.

0 1 2 3 4 5 6

d = 4 d = 6
7 8 9 10 11

d = 12

0 1 2 3 4 5 6

d = 4 d = 6
7 8 9 10 11

d = 12

12

Minimizing Lateness: Inversions

Def. Given a schedule S, an inversion is a pair of jobs i and j such that:
i < j (i.e., ݀௜ 	൏ ௝݀) but j scheduled before i.

Observation. Greedy schedule has no inversions.

ijbefore swap

fi

inversion

[as before, we assume jobs are numbered so that d1  d2  …  dn]

Claim. If a schedule (with no idle time) has an inversion, it has
one with a pair of inverted jobs scheduled consecutively.

13

Minimizing Lateness: Inversions

Def. Given a schedule S, an inversion is a pair of jobs i and j such that:
i < j (i.e., ݀௜ 	൏ ௝݀) but j scheduled before i.

k ij

inversion

Claim. If a schedule (with no idle time) has an inversion, it has
one with a pair of inverted jobs scheduled consecutively.
Proof: Let (i,j) be inversion with smallest number of jobs
scheduled in between j and i. Suppose for contradiction that
some job k is scheduled between j and i.
• Case 1: d୩ ൏ d୨  (k,j) is inversion (Contradiction!)
• Case 2:	d୩൒ d୨ ൐ d୧  (i,k) is inversion (Contradiction!)

14

Minimizing Lateness: Inversions

Def. Given a schedule S, an inversion is a pair of jobs i and j such that:
i < j but j scheduled before i.

ij

i j

before swap

after swap



j  f j  d j (definition)
 fi  d j (j finishes at time fi)
 fi  di (i  j)
  i (definition)

f'j

fi

inversion

Claim. Swapping two consecutive, inverted jobs reduces the number
of inversions by one and does not increase the max lateness.

Pf. Let  be the lateness before the swap, and let  ' be it
afterwards.
  'k = k for all k  i, j
  'i  i
 If job j is late:

15

Minimizing Lateness: Analysis of Greedy Algorithm

Theorem. Greedy schedule S is optimal.
Pf. Define S* to be an optimal schedule that has the fewest number of
inversions, and let's see what happens.
 Can assume S* has no idle time.
 If S* has no inversions, then S = S*.
 If S* has an inversion, let i-j be an adjacent inversion.

– swapping i and j does not increase the maximum lateness and
strictly decreases the number of inversions

– this contradicts definition of S* ▪

16

Greedy Analysis Strategies

Greedy algorithm stays ahead. Show that after each step of the greedy
algorithm, its solution is at least as good as any other algorithm's.

Structural. Discover a simple "structural" bound asserting that every
possible solution must have a certain value. Then show that your
algorithm always achieves this bound.

Exchange argument. Gradually transform any solution to the
one found by the greedy algorithm without hurting its quality.

Other greedy algorithms. Kruskal, Prim, Huffman, …

4.3 Optimal Caching

18

Optimal Offline Caching

Caching.
 Cache with capacity to store k items.
 Sequence of m item requests d1, d2, …, dm.
 Cache hit: item already in cache when requested.
 Cache miss: item not already in cache when requested: must bring

requested item into cache, and evict some existing item, if full.

Goal. Eviction schedule that minimizes number of cache misses.

Ex: k = 2, initial cache = ab,
requests: a, b, c, b, c, a, a, b.

Optimal eviction schedule: 2 cache misses.

a b
a b
c b
c b
c b
a b

a
b
c
b
c
a

a ba
a bb

cacherequests

red = cache miss

19

Optimal Offline Caching: Farthest-In-Future

Farthest-in-future. Evict item in the cache that is not requested until
farthest in the future.

Theorem. [Bellady, 1960s] FF is optimal eviction schedule.
Pf. Algorithm and theorem are intuitive; proof is subtle.

a b

g a b c e d a b b a c d e a f a d e f g h ...

current cache: c d e f

future queries:

cache miss eject this one

20

Reduced Eviction Schedules

Def. A reduced schedule is a schedule that only inserts an item into
the cache in a step in which that item is requested.

Intuition. Can transform an unreduced schedule into a reduced one
with no more cache misses.

a x

an unreduced schedule

c
a d c
a d b
a c b
a x b
a c b
a b c
a b c

a
c
d
a
b
c
a
a

a b

a reduced schedule

c
a b c
a d c
a d c
a d b
a c b
a c b
a c b

a
c
d
a
b
c
a
a

a b ca a b ca

21

Reduced Eviction Schedules

Claim. Given any unreduced schedule S, can transform it into a reduced
schedule S' with no more cache misses.
Pf. (by induction on number of unreduced items)
 Suppose S brings d into the cache at time t, without a request.
 Let c be the item S evicts when it brings d into the cache.
 Case 1: d evicted at time t', before next request for d.
 Case 2: d requested at time t' before d is evicted. ▪

t

t'

d

c

t

t'

c
S'

d

S

d requested at time t'

t

t'

d

c

t

t'

c
S'

e

S

d evicted at time t',
before next request

e

doesn't enter cache at requested
time

Case 1 Case 2

22

Farthest-In-Future: Analysis

Theorem. FF is optimal eviction algorithm.
Pf. (by induction on number or requests j)

Let S be reduced schedule that satisfies invariant through j requests.
We produce S' that satisfies invariant after j+1 requests.

Invariant: There exists an optimal reduced schedule S that makes
the same eviction schedule as SFF through the first j+1 requests.

 Consider (j+1)st request d = dj+1.
 Since S and SFF have agreed up until now, they have

the same cache contents before request j+1.
 Case 1: (d is already in the cache).

–  S' = S satisfies invariant.
 Case 2: (d is not in the cache and S and SFF evict the

same element).
–  S' = S satisfies invariant.

23

j

Farthest-In-Future: Analysis

Pf. (continued)
 Case 3: (d is not in the cache; SFF evicts e; S evicts f  e).

– begin construction of S' from S by evicting e instead of f

same f same fee

S S'

j same d same fde

S S'
j+1

– now S' agrees with SFF on first j+1 requests; we show
that having element f in cache is no worse than having
element e

24

Farthest-In-Future: Analysis

Let j' be the first time after j+1 that S and S' take a different action,
and let g be item requested at time j'.

 Case 3a: g = e. Can't happen with Farthest-In-Future since there
must be a request for f before e.

 Case 3b: g = f. Element f can't be in cache of S, so let e' be the
element that S evicts.

– if e' = e, S' accesses f from cache; now S and S' have same cache
– if e'  e, S' evicts e' and brings e into the cache; now S and S'

have the same cache

same e same f

S S'

j'

Note: S' is no longer reduced, but can be transformed into
a reduced schedule that agrees with SFF through step j+1

must involve e or f (or both)

25

Farthest-In-Future: Analysis

Let j' be the first time after j+1 that S and S' take a different action,
and let g be item requested at time j'.

 Case 3c: g  e, f. S must evict e.
Make S' evict f; now S and S' have the same cache. ▪

same g same g

S S'

j'

otherwise S' would take the same action

same e same f

S S'

j'

must involve e or f (or both)

26

Caching Perspective

Online vs. offline algorithms.
 Offline: full sequence of requests is known a priori.
 Online (reality): requests are not known in advance.
 Caching is among most fundamental online problems in CS.

LIFO. Evict page brought in most recently.
LRU. Evict page whose most recent access was earliest.

Theorem. FF is optimal offline eviction algorithm.
 Provides basis for understanding and analyzing online

algorithms.
 LRU is k-competitive. [Section 13.8]
 LIFO is arbitrarily bad.

FF with direction of time reversed!

4.5 Minimum Spanning Tree

28

Minimum Spanning Tree

Minimum spanning tree. Given a connected graph G = (V, E) with real-
valued edge weights ce, an MST is a subset of the edges T  E such
that T is a spanning tree whose sum of edge weights is minimized.

Cayley's Theorem. There are nn-2 spanning trees of Kn.

5

23

10
21

14

24

16

6

4

18
9

7

11
8

5

6

4

9

7

11
8

G = (V, E) T, eT ce = 50

can't solve by brute force

29

Applications

MST is fundamental problem with diverse applications.

 Network design.
– telephone, electrical, hydraulic, TV cable, computer, road

 Approximation algorithms for NP-hard problems.
– traveling salesperson problem, Steiner tree

 Indirect applications.
– max bottleneck paths
– LDPC codes for error correction
– image registration with Renyi entropy
– learning salient features for real-time face verification
– reducing data storage in sequencing amino acids in a protein
– model locality of particle interactions in turbulent fluid flows
– autoconfig protocol for Ethernet bridging to avoid cycles in a

network

 Cluster analysis.

30

Greedy Algorithms

Kruskal's algorithm. Start with T = . Consider edges in ascending
order of cost. Insert edge e in T unless doing so would create a cycle.

Reverse-Delete algorithm. Start with T = E. Consider edges in
descending order of cost. Delete edge e from T unless doing so would
disconnect T.

Prim's algorithm. Start with some root node s and greedily grow a tree
T from s outward. At each step, add the cheapest edge e to T that has
exactly one endpoint in T.

Remark. All three algorithms produce an MST.

31

Greedy Algorithms

Simplifying assumption. All edge costs ce are distinct.

Cut property. Let S be any subset of nodes, and let e be the min cost
edge with exactly one endpoint in S. Then the MST contains e.

Cycle property. Let C be any cycle, and let f be the max cost edge
belonging to C. Then the MST does not contain f.

f
C

S

e is in the MST

e

f is not in the MST

32

Cycles and Cuts

Cycle. Set of edges the form a-b, b-c, c-d, …, y-z, z-a.

Cycle C = 1-2, 2-3, 3-4, 4-5, 5-6, 6-1

1
3

8

2

6

7

4

5

Cut S = { 4, 5, 8 }
Cutset D = 5-6, 5-7, 3-4, 3-5, 7-8

1
3

8

2

6

7

4

5

Cutset. A cut is a subset of nodes S. The corresponding
cutset D is the subset of edges with exactly one endpoint in S.

33

Cycle-Cut Intersection

Claim. A cycle and a cutset intersect in an even number of edges.

Pf. (by picture)

1
3

8

2

6

7

4

5

S

V - S

C

Cycle C = 1-2, 2-3, 3-4, 4-5, 5-6, 6-1
Cutset D = 3-4, 3-5, 5-6, 5-7, 7-8
Intersection = 3-4, 5-6

34

Greedy Algorithms

Simplifying assumption. All edge costs ce are distinct.

Cut property. Let S be any subset of nodes, and let e be the min cost
edge with exactly one endpoint in S. Then the MST T* contains e.

Pf. (exchange argument)
 Suppose e does not belong to T*, and let's see what happens.
 Adding e to T* creates a cycle C in T*.
 Edge e is both in the cycle C and in the cutset D corresponding to S
 there exists another edge, say f, that is in both C and D.

 T' = T*  { e } - { f } is also a spanning tree.
 Since ce < cf, cost(T') < cost(T*).
 This is a contradiction. ▪ f

T*
e

S

35

Greedy Algorithms

Simplifying assumption. All edge costs ce are distinct.

Cycle property. Let C be any cycle in G, and let f be the max cost edge
belonging to C. Then the MST T* does not contain f.

Pf. (exchange argument)
 Suppose f belongs to T*, and let's see what happens.
 Deleting f from T* creates a cut S in T*.
 Edge f is both in the cycle C and in the cutset D corresponding to S
 there exists another edge, say e, that is in both C and D.

 T' = T*  { e } - { f } is also a spanning tree.
 Since ce < cf, cost(T') < cost(T*).
 This is a contradiction. ▪

f

T*
e

S

36

Prim's Algorithm: Proof of Correctness

Prim's algorithm. [Jarník 1930, Dijkstra 1959, Prim 1957]
 Initialize S = any node.
 Apply cut property to S.
 Add min cost edge in cutset corresponding to S to T, and add one

new explored node u to S.

S

Implementation. Use a priority queue ala Dijkstra.
 Maintain set of explored nodes S.
 For each unexplored node v, maintain attachment cost a[v] = cost of

cheapest edge v to a node in S.
 O(n2) with an array; O(m log n) with a binary heap;
 O(m + n log n) with Fibonacci Heap

37

Implementation: Prim's Algorithm

Prim(G, c) {
foreach (v  V) a[v]  
Initialize an empty priority queue Q
foreach (v  V) insert v onto Q
Initialize set of explored nodes S  

while (Q is not empty) {
u  delete min element from Q
S  S  { u }
foreach (edge e = (u, v) incident to u)

if ((v  S) and (ce < a[v]))
decrease priority a[v] to ce

}

38

Kruskal's Algorithm: Proof of Correctness

Kruskal's algorithm. [Kruskal, 1956]
 Consider edges in ascending order of weight.
 Case 1: If adding e to T creates a cycle, discard e according to

cycle property.
 Case 2: Otherwise, insert e = (u, v) into T according to cut

property where S = set of nodes in u's connected component.

Case 1

v

u

Case 2

e

e S

39

Implementation: Kruskal's Algorithm

Kruskal(G, c) {
Sort edges weights so that c1  c2  ...  cm.
T  

foreach (u  V) make a set containing singleton u

for i = 1 to m
(u,v) = ei
if (u and v are in different sets) {

T  T  {ei}
merge the sets containing u and v

}
return T

}

Implementation. Use the union-find data structure.
 Build set T of edges in the MST.
 Maintain set for each connected component.
 O(m log n) for sorting and O(m  (m, n)) for union-find.

are u and v in different connected components?

merge two components

m  n2  log m is O(log n) essentially a constant

40

Lexicographic Tiebreaking

To remove the assumption that all edge costs are distinct: perturb all
edge costs by tiny amounts to break any ties.

Impact. Kruskal and Prim only interact with costs via pairwise
comparisons. If perturbations are sufficiently small, MST with
perturbed costs is MST with original costs.

boolean less(i, j) {
if (cost(ei) < cost(ej)) return true
else if (cost(ei) > cost(ej)) return false
else if (i < j) return true
else return false

}

e.g., if all edge costs are integers,
perturbing cost of edge ei by i / n2

Implementation. Can handle arbitrarily small perturbations
implicitly by breaking ties lexicographically, according to index.

Extra Slides

42

MST Algorithms: Theory

Deterministic comparison based algorithms.
 O(m log n) [Jarník, Prim, Dijkstra, Kruskal, Boruvka]
 O(m log log n). [Cheriton-Tarjan 1976, Yao 1975]
 O(m (m, n)). [Fredman-Tarjan 1987]
 O(m log (m, n)). [Gabow-Galil-Spencer-Tarjan 1986]
 O(m  (m, n)). [Chazelle 2000]

Holy grail. O(m).

Notable.
 O(m) randomized. [Karger-Klein-Tarjan 1995]
 O(m) verification. [Dixon-Rauch-Tarjan 1992]

Euclidean.
 2-d: O(n log n). compute MST of edges in Delaunay
 k-d: O(k n2). dense Prim

