
CS 580: Algorithm Design and Analysis

Jeremiah Blocki
Purdue University
Spring 2018

Recap: Asymptotic Analysis

2

Five Representative Problems
• Algorithmic Techniques: Greedy, Dynamic Programming, Network

Flow,…
• Computationally Intractable Problems: Unlikely that polynomial

time algorithm exists.

Formal Definition of Big O,Ω, Θ notation
• T ݊ ∈ ܱ f ݊ ---- upper bound

• Means we can find constants c,N > 0 s.t. whenever n > N
T ݊ ൏ ܿ ൈ f ݊

• Intuition: ܿ ൈ f ݊ upperbounds T ݊ for large enough
inputs

• T ݊ ∈ Ω f ݊ ---- lower bound
• T ݊ ∈ Θ f ݊ ---- lower bound and upper bound

Polynomial Time function. T ݊ ∈ ܱ ݊ௗ for some constant d
(d is independent of the input size).

2.4 A Survey of Common Running Times

4

Linear Time: O(n)

Linear time. Running time is proportional to input size.

Computing the maximum. Compute maximum of n numbers a1, …, an.

max  a1
for i = 2 to n {

if (ai > max)
max  ai

}

5

Linear Time: O(n)

Merge. Combine two sorted lists A = a1,a2,…,an with

B = b1,b2,…,bn into sorted whole.

Claim. Merging two lists of size n takes O(n) time.
Pf. After each comparison, the length of output list
increases by 1.

i = 1, j = 1
while (both lists are nonempty) {

if (ai  bj) append ai to output list and increment i
else(ai  bj)append bj to output list and increment j

}
append remainder of nonempty list to output list

6

O(n log n) Time

O(n log n) time. Arises in divide-and-conquer algorithms.

Sorting. Mergesort and heapsort are sorting algorithms that
perform O(n log n) comparisons.

Largest empty interval. Given n time-stamps x1, …, xn on which
copies of a file arrive at a server, what is largest interval of
time when no copies of the file arrive?

also referred to as linearithmic time

O(n log n) solution. Sort the time-stamps. Scan the
sorted list in order, identifying the maximum gap
between successive time-stamps.

7

Quadratic Time: O(n2)

Quadratic time. Enumerate all pairs of elements.

Closest pair of points. Given a list of n points in the plane (x1, y1), …,
(xn, yn), find the pair that is closest.

O(n2) solution. Try all pairs of points.

Remark. (n2) seems inevitable, but this is just an illusion.

min  (x1 - x2)2 + (y1 - y2)2

for i = 1 to n {
for j = i+1 to n {

d  (xi - xj)2 + (yi - yj)2

if (d < min)
min  d

}
}

don't need to
take square roots

see chapter 5

8

Cubic Time: O(n3)

Cubic time. Enumerate all triples of elements.

Set disjointness. Given n sets S1, …, Sn each of which is a subset of
1, 2, …, n, is there some pair of these which are disjoint?

O(n3) solution. For each pairs of sets, determine if they are disjoint.

foreach set Si {
foreach other set Sj {

foreach element p of Si {
determine whether p also belongs to Sj

}
if (no element of Si belongs to Sj)

report that Si and Sj are disjoint
}

}

9

Polynomial Time: O(nk) Time

Independent set of size k. Given a graph, are there k nodes such that
no two are joined by an edge?

O(nk) solution. Enumerate all subsets of k nodes.

 Check whether S is an independent set = O(k2).
 Number of k element subsets =
 O(k2 nk / k!) = O(nk).

foreach subset S of k nodes {
check whether S in an independent set
if (S is an independent set)

report S is an independent set
}

}



n
k









n (n1) (n 2) (n k 1)
k (k 1) (k  2) (2) (1)

  nk

k!

poly-time for k=17,
but not practical

k is a constant

10

Exponential Time

Independent set. Given a graph, what is maximum size of an
independent set?

O(n2 2n) solution. Enumerate all subsets.

S*  
foreach subset S of nodes {

check whether S in an independent set
if (S is largest independent set seen so far)

update S*  S
}

}

11

Chapter 3

Graphs

Slides by Kevin Wayne.
Copyright © 2005 Pearson-Addison Wesley.
All rights reserved.

3.1 Basic Definitions and Applications

13

Undirected Graphs

Undirected graph. G = (V, E)
 V = nodes.
 E = edges between pairs of nodes.
 Captures pairwise relationship between objects.
 Graph size parameters: n = |V|, m = |E|.

V = { 1, 2, 3, 4, 5, 6, 7, 8 }
E = { 1-2, 1-3, 2-3, 2-4, 2-5, 3-5, 3-7, 3-8, 4-5, 5-6 }
n = 8
m = 11

14

Some Graph Applications

transportation

Graph

street intersections

Nodes Edges

highways

communication computers fiber optic cables

World Wide Web web pages hyperlinks

social people relationships

food web species predator-prey

software systems functions function calls

scheduling tasks precedence constraints

circuits gates wires

15

World Wide Web

Web graph.
 Node: web page.
 Edge: hyperlink from one page to another.

cnn.com

cnnsi.comnovell.comnetscape.com timewarner.com

hbo.com

sorpranos.com

16

9-11 Terrorist Network

Social network graph.
 Node: people.
 Edge: relationship between two people.

Reference: Valdis Krebs, http://www.firstmonday.org/issues/issue7_4/krebs

17

Ecological Food Web

Food web graph.
 Node = species.
 Edge = from prey to predator.

Reference: http://www.twingroves.district96.k12.il.us/Wetlands/Salamander/SalGraphics/salfoodweb.giff

18

Graph Representation: Adjacency Matrix

Adjacency matrix. n-by-n matrix with Auv = 1 if (u, v) is an edge.
 Two representations of each edge.
 Space proportional to n2.
 Checking if (u, v) is an edge takes (1) time.
 Identifying all edges takes (n2) time.

1 2 3 4 5 6 7 8
1 0 1 1 0 0 0 0 0
2 1 0 1 1 1 0 0 0
3 1 1 0 0 1 0 1 1
4 0 1 0 1 1 0 0 0
5 0 1 1 1 0 1 0 0
6 0 0 0 0 1 0 0 0
7 0 0 1 0 0 0 0 1
8 0 0 1 0 0 0 1 0

19

Graph Representation: Adjacency List

Adjacency list. Node indexed array of lists.
 Two representations of each edge.
 Space proportional to m + n.
 Checking if (u, v) is an edge takes O(deg(u)) time.
 Identifying all edges takes (m + n) time.

1 2 3

2

3

4 2 5

5

6

7 3 8

8

1 3 4 5

1 2 5 87

2 3 4 6

5

degree = number of neighbors of u

3 7

20

Paths and Connectivity

Def. A path in an undirected graph G = (V, E) is a sequence P of nodes
v1, v2, …, vk-1, vk with the property that each consecutive pair vi, vi+1 is
joined by an edge in E.

Def. A path is simple if all nodes are distinct.

Def. An undirected graph is connected if for every pair of
nodes u and v, there is a path between u and v.

21

Cycles

Def. A cycle is a path v1, v2, …, vk-1, vk in which v1 = vk, k > 2, and the
first k-1 nodes are all distinct.

cycle C = 1-2-4-5-3-1

1

2 3

7

8
4 5

6

22

Trees

Def. An undirected graph is a tree if it is connected and does not
contain a cycle.

Theorem. Let G be an undirected graph on n nodes. Any two of the
following statements imply the third.
 G is connected.
 G does not contain a cycle.
 G has n-1 edges.

23

Rooted Trees

Rooted tree. Given a tree T, choose a root node r and orient each edge
away from r.

Importance. Models hierarchical structure.

a tree the same tree, rooted at 1

v

parent of v

child of v
(leaf node)

root r

24

Phylogeny Trees

Phylogeny trees. Describe evolutionary history of species.

Binary Tree

Def. A rooted tree in which each node has at most 2 children

Def. Height of a tree is the number of edges in the longest path from
root to leaf.

Thm. Number of nodes in binary tree of
height h is ݊ ൑ 2௛ାଵ െ 1.

Balanced Binary Tree. Height	݄ ൌ ܱሺlog ݊ሻ

25

1 2
3 7

8

4 5 6

root r

5

4

2

1

6

3

7 8

Height: 6

26

GUI Containment Hierarchy

Reference: http://java.sun.com/docs/books/tutorial/uiswing/overview/anatomy.html

GUI containment hierarchy. Describe organization of GUI widgets.

3.2 Graph Traversal

28

Connectivity

s-t connectivity problem. Given two node s and t, is there a path
between s and t?

s-t shortest path problem. Given two node s and t, what is the length
of the shortest path between s and t?

Applications.
 Navigation (Google Maps).
 Maze traversal.
 Kevin Bacon number.
 Fewest number of hops in a communication network.

29

Breadth First Search

BFS intuition. Explore outward from s in all possible directions, adding
nodes one "layer" at a time.

s L1 L2 L n-1BFS algorithm.
 L0 = { s }.
 L1 = all neighbors of L0.
 L2 = all nodes that do not belong to L0 or L1, and that

have an edge to a node in L1.
 Li+1 = all nodes that do not belong to an earlier layer,

and that have an edge to a node in Li.

Theorem. For each i, Li consists of all nodes at distance
exactly i from s. There is a path from s to t iff t appears
in some layer.

Property. Let T be a BFS tree of G = (V, E), and let (x, y) be an edge of
G. Then the level of x and y differ by at most 1.

30

Breadth First Search

L0

L1

L2

L3

1

2 3

7

8
4 5

61

2 3

7
84 5

6

Property. Let T be a BFS tree of G = (V, E), and let (x, y) be an edge of
G. Then the level of x and y differ by at most 1.

31

Breadth First Search

L0

L1

L2

L3

Theorem. The above implementation of BFS runs in O(m + n) time if
the graph is given by its adjacency representation.

32

Breadth First Search: Analysis

each edge (u, v) is counted exactly twice
in sum: once in deg(u) and once in deg(v)

Pf.
 Easy to prove O(n2) running time:

– at most n lists L[i]
– each node occurs on at most one list; for loop runs  n times
– when we consider node u, there are  n incident edges (u, v),

and we spend O(1) processing each edge

 Actually runs in O(m + n) time:
– when we consider node u, there are deg(u) incident edges (u,v)
– total time processing edges is uV deg(u) = 2m ▪

33

Connected Component

Connected component. Find all nodes reachable from s.

Connected component containing node 1 = { 1, 2, 3, 4, 5, 6, 7, 8 }.

34

Flood Fill

Flood fill. Given lime green pixel in an image, change color of entire
blob of neighboring lime pixels to blue.
 Node: pixel.
 Edge: two neighboring lime pixels.
 Blob: connected component of lime pixels.

recolor lime green blob to blue

35

Flood Fill

Flood fill. Given lime green pixel in an image, change color of entire
blob of neighboring lime pixels to blue.
 Node: pixel.
 Edge: two neighboring lime pixels.
 Blob: connected component of lime pixels.

recolor lime green blob to blue

36

Connected Component

Connected component. Find all nodes reachable from s.

s

u v

R

it's safe to add v

Theorem. Upon termination, R is the connected
component containing s.
 BFS = explore in order of distance from s.
 DFS = explore in a different way.

3.4 Testing Bipartiteness

38

Bipartite Graphs

Def. An undirected graph G = (V, E) is bipartite if the nodes can be
colored red or blue such that every edge has one red and one blue end.

Applications.
 Stable marriage: men = red, women = blue.
 Scheduling: machines = red, jobs = blue.

a bipartite graph

39

Testing Bipartiteness

Testing bipartiteness. Given a graph G, is it bipartite?
 Many graph problems become:

– easier if the underlying graph is bipartite (matching)
– tractable if the underlying graph is bipartite (independent set)

 Before attempting to design an algorithm, we need to understand
structure of bipartite graphs.

v1

v2 v3

v6 v5 v4

v7

v2

v4

v5

v7

v1

v3

v6

a bipartite graph G another drawing of G

40

An Obstruction to Bipartiteness

Lemma. If a graph G is bipartite, it cannot contain an odd length cycle.

Pf. Not possible to 2-color the odd cycle, let alone G.

bipartite
(2-colorable)

not bipartite
(not 2-colorable)

41

Bipartite Graphs

Lemma. Let G be a connected graph, and let L0, …, Lk be the layers
produced by BFS starting at node s. Exactly one of the following holds.
(i) No edge of G joins two nodes of the same layer, and G is bipartite.
(ii) An edge of G joins two nodes of the same layer, and G contains an

odd-length cycle (and hence is not bipartite).

Case (i)

L1 L2 L3

Case (ii)

L1 L2 L3

42

Bipartite Graphs

Lemma. Let G be a connected graph, and let L0, …, Lk be the layers
produced by BFS starting at node s. Exactly one of the following holds.
(i) No edge of G joins two nodes of the same layer, and G is bipartite.
(ii) An edge of G joins two nodes of the same layer, and G contains an

odd-length cycle (and hence is not bipartite).

Case (i)

L1 L2 L3

Pf. (i)
 Suppose no edge joins two nodes in adjacent layers.
 By previous lemma, this implies all edges join nodes on

same level.
 Bipartition: red = nodes on odd levels, blue = nodes on

even levels.

43

Bipartite Graphs

Lemma. Let G be a connected graph, and let L0, …, Lk be the layers
produced by BFS starting at node s. Exactly one of the following holds.
(i) No edge of G joins two nodes of the same layer, and G is bipartite.
(ii) An edge of G joins two nodes of the same layer, and G contains an

odd-length cycle (and hence is not bipartite).

Pf. (ii)
 Suppose (x, y) is an edge with x, y in same level Lj.
 Let z = lca(x, y) = lowest common ancestor.
 Let Li be level containing z.
 Consider cycle that takes edge from x to y,

then path from y to z, then path from z to x.
 Its length is 1 + (j-i) + (j-i), which is odd. ▪

z = lca(x, y)

(x, y) path from
y to z

path from
z to x

44

Obstruction to Bipartiteness

Corollary. A graph G is bipartite iff it contain no odd length cycle.

5-cycle C

bipartite
(2-colorable)

not bipartite
(not 2-colorable)

3.5 Connectivity in Directed Graphs

46

Directed Graphs

Directed graph. G = (V, E)
 Edge (u, v) goes from node u to node v.

Ex. Web graph - hyperlink points from one web page to
another.
 Directedness of graph is crucial.
 Modern web search engines exploit hyperlink structure to

rank web pages by importance.

47

Graph Search

Directed reachability. Given a node s, find all nodes reachable from s.

Directed s-t shortest path problem. Given two node s and t, what is
the length of the shortest path between s and t?

Graph search. BFS extends naturally to directed graphs.

Web crawler. Start from web page s. Find all web
pages linked from s, either directly or indirectly.

48

Strong Connectivity

Def. Node u and v are mutually reachable if there is a path from u to v
and also a path from v to u.

Def. A graph is strongly connected if every pair of nodes is mutually
reachable.

Lemma. Let s be any node. G is strongly connected iff every node is
reachable from s, and s is reachable from every node.

Pf.  Follows from definition.
Pf.  Path from u to v: concatenate u-s path with s-v path.

Path from v to u: concatenate v-s path with s-u path. ▪

s

v

u

ok if paths overlap

49

Strong Connectivity: Algorithm

Theorem. Can determine if G is strongly connected in O(m + n) time.
Pf.
 Pick any node s.
 Run BFS from s in G.
 Run BFS from s in Grev.
 Return true iff all nodes reached in both BFS executions.
 Correctness follows immediately from previous lemma. ▪

reverse orientation of every edge in G

strongly connected
not strongly connected

3.6 DAGs and Topological Ordering

51

Directed Acyclic Graphs

Def. An DAG is a directed graph that contains no directed cycles.

Ex. Precedence constraints: edge (vi, vj) means vi must precede vj.

Def. A topological order of a directed graph G = (V, E) is an ordering
of its nodes as v1, v2, …, vn so that for every edge (vi, vj) we have i < j.

a DAG

a topological ordering

v2 v3

v6 v5 v4

v7 v1

v1 v2 v3 v4 v5 v6 v7

52

Precedence Constraints

Precedence constraints. Edge (vi, vj) means task vi must occur before vj.

Applications.
 Course prerequisite graph: course vi must be taken before vj.
 Compilation: module vi must be compiled before vj. Pipeline of

computing jobs: output of job vi needed to determine input of job vj.

53

Directed Acyclic Graphs

Lemma. If G has a topological order, then G is a DAG.

Pf. (by contradiction)
 Suppose that G has a topological order v1, …, vn and that G also has a

directed cycle C. Let's see what happens.
 Let vi be the lowest-indexed node in C, and let vj be the node just

before vi; thus (vj, vi) is an edge.
 By our choice of i, we have i < j.
 On the other hand, since (vj, vi) is an edge and v1, …, vn is a

topological order, we must have j < i, a contradiction. ▪

v1 vi vj vn

the supposed topological order: v1, …, vn

the directed cycle C

54

Directed Acyclic Graphs

Lemma. If G has a topological order, then G is a DAG.

Q. Does every DAG have a topological ordering?

Q. If so, how do we compute one?

55

Directed Acyclic Graphs

Lemma. If G is a DAG, then G has a node with no incoming edges.

Pf. (by contradiction)
 Suppose that G is a DAG and every node has at least one incoming

edge. Let's see what happens.
 Pick any node v, and begin following edges backward from v. Since v

has at least one incoming edge (u, v) we can walk backward to u.
 Then, since u has at least one incoming edge (x, u), we can walk

backward to x.
 Repeat until we visit a node, say w, twice.
 Let C denote the sequence of nodes encountered between

successive visits to w. C is a cycle. ▪

w x u v

56

Directed Acyclic Graphs

Lemma. If G is a DAG, then G has a topological ordering.

Pf. (by induction on n)
 Base case: true if n = 1.
 Given DAG on n > 1 nodes, find a node v with no incoming edges.
 G - { v } is a DAG, since deleting v cannot create cycles.
 By inductive hypothesis, G - { v } has a topological ordering.
 Place v first in topological ordering; then append nodes of G - {v}

in topological order. This is valid since v has no incoming edges. ▪

DAG

v

57

Topological Sorting Algorithm: Running Time

Theorem. Algorithm finds a topological order in O(m + n)
time.

Pf.
 Maintain the following information:

– count[w] = remaining number of incoming edges
– S = set of remaining nodes with no incoming edges

 Initialization: O(m + n) via single scan through graph.
 Update: to delete v

– remove v from S
– decrement count[w] for all edges from v to w, and

add w to S if c count[w] hits 0
– this is O(1) per edge ▪

