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Recap: Asymptotic Analysis

Five Representative Problems

. Algorithmic Techniques: Greedy, Dynamic Programming, Network
Flow,...

. Computationally Intractable Problems: Unlikely that polynomial
time algorithm exists.

Formal Definition of Big O,Q, © notation
T(n) € 0(f(n)) ---- upper bound
Means we can find constants ¢,N > O s.t. whenever n> N
T(n) < ¢ X f(n)
Intuition: c¢ x f(n) upperbounds T(n) for large enough

inputs
T(n) € Q(f(n)) ---- lower bound
T(n) € 0(f(n)) ---- lower bound and upper bound

Polynomial Time function. T(n) € 0(n%) for some constant d
(d is independent of the input size).



2.4 A Survey of Common Running Times




Linear Time: O(n)

Linear time. Running time is proportional o input size.

Computing the maximum. Compute maximum of n numbers qy, ..., a,.

max <« a,
for 1 = 2 ton {
1T (a; > max)
max <« a;



Linear Time: O(n)

Merge. Combine two sorted lists A = a,,a,,..,a, with
B = b,,b,,..,b, into sorted whole.
‘///fAMHVGi A

/// |bj B

Merged result

1 =1, J =1

while (both lists are nonempty) {
iIT (a; < b;) append a; to output list and increment 1
else append b; to output list and increment j

}

append remainder of nonempty list to output list

Claim. Merging two lists of size n takes O(n) time.
Pf. After each comparison, the length of output list
increases by 1.



O(n log n) Time

O(n log n) time. Arises in divide-and-conquer algorithms.
\

also referred to as linearithmic time

Sorting. Mergesort and heapsort are sorting algorithms that
perform O(n log n) comparisons.

Largest empty interval. Given n time-stamps X, ..., X,, on which
copies of a file arrive at a server, what is largest interval of
time when no copies of the file arrive?

O(n log n) solution. Sort the time-stamps. Scan the
sorted list in order, identifying the maximum gap
between successive time-stamps.



Quadratic Time: O(n2)

Quadratic time. Enumerate all pairs of elements.

Closest pair of points. Given a list of n points in the plane (x4, y;), ...
(X, Y,), find the pair that is closest.

O(n?) solution. Try all pairs of points.

. _ 5 N > don't need to
min <« (X3 - %)% + (y1 - Y2) take square roots

for 1 =1 ton {
for J = 1+1 to n {
d « X - )2+ Vi - Yj)?
iIT (d < min)
min « d

Remark. Q(n?) seems inevitable, but this is just an illusion.
\

see chapter 5



Cubic Time: O(n3)

Cubic time. Enumerate all triples of elements.

Set disjointness. Given nsets S, ..., S, each of which is a subset of
1,2, .., n,is there some pair of these which are disjoint?

O(n3) solution. For each pairs of sets, determine if they are disjoint.

foreach set S; {
foreach other set S; {
foreach element p of S; {
determine whether p also belongs to S;
+
iT (no element of S; belongs to S;)
report that S; and S; are disjoint



Polynomial Time: O(nk) Time

Independent set of size k. Given a graph, are there k nodes such that

ho two are joined by an edge? N
k is a constant

O(nk) solution. Enumerate all subsets of k nodes.

foreach subset S of k nodes {
check whether S i1In an i1Independent set
i1IT (S 1s an independent set)
report S 1s an iIndependent set

+
}

. Check whether S is an independent set = O(k?).

. Number of k element subsets = (nj _n(=D(n-2)-(n—k+) _

. O(k2 nk/ Kkl) = O(nk).
N

poly-time for k=17,
but not practical

k) k-1 (k=2)---(2)@1)

r]k

Tk
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Exponential Time

Independent set. Given a graph, what is maximum size of an
independent set?

O(n? 2") solution. Enumerate all subsets.
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3.1 Basic Definitions and Applications
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Undirected Graphs

Undirected graph. G = (V, E)
. V = nodes.
. E = edges between pairs of nodes.
. Captures pairwise relationship between objects.
. Graph size parameters: n= |V|, m = |E|.

V={12,3,45,6,7,8}
E={1-2,1-3,2-3,2-4,2-5, 3-5, 3-7, 3-8, 4-5,5-6 }
n=8

m = 11
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Some Graph Applications
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Web graph.
. Node: web page.
. Edge: hyperlink from one page to another.

netscape.com

-

World Wide Web

cnn.com

novell.com chnsi.com timewarner.com

hbo.com

sorpranos.com




9-11 Terrorist Network

Social network graph.
+ Node: people.
. Edge: relationship between two people.
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Reference: Valdis Krebs, http://www.firstmonday.org/issues/issue7_4/krebs
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Ecological Food Web

Food web graph.
- Node = species.
. Edge = from prey to predator.

m v vole g

reat egret
o ff i
B o bl blue-gill fish
" Ilu:-l\t" ! water snake
;(IGNI.F;.J { T ﬂ
leapard frog — shrew
iy Ll fq;\i
P ul \\ il
. . earthworm
mosquito

\

Reference: http://www.twingroves.district96.k12.il.us/Wetlands/Salamander/SalGraphics/salfoodweb.giff

o, algae (magnified)
cattails




Graph Representation: Adjacency Matrix

Adjacency matrix. n-by-n matrix with A, = 1if (u, v) is an edge.
. Two representations of each edge.
. Space proportional to n?.
. Checking if (u, v) is an edge takes ©(1) time.
. Identifying all edges takes ©(n?) time.
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Graph Representation: Adjacency List

Adjacency list. Node indexed array of lists.
. Two representations of each edge.
. Space proportional o m + n. /
. Checking if (u, v) is an edge takes O(deg(u)) time.
. Identifying all edges takes ®(m + n) time.

degree = number of neighbors of u
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Paths and Connectivity

Def. A path in an undirected graph G = (V, E) is a sequence P of nodes
Vi, V2, .., Vi1, Vi With the property that each consecutive pair v;, v, is
joined by an edge in E.

Def. A path is simple if all nodes are distinct.

Def. Anundirected graph is connected if for every pair of
nodes u and v, there is a path between u and v.

ONNGERORN®
A

(=
B ©
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Cycles

Def. A cycleis apath vy, vy, ..., Vi1, Vi in which vy = v, k> 2, and the
first k-1 nodes are all distinct.

‘G
"0
(o)

cycle C = 1-2-4-5-3-1
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Trees

Def. Anundirected graph is a tree if it is connected and does not
contain a cycle.

Theorem. Let G be an undirected graph on n nodes. Any two of the
following statements imply the third.

. G is connected.

. G does not contain a cycle.

. G has n-1 edges.
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Rooted Trees

Rooted tree. Given a tree T, choose a root node r and orient each edge
away from r.

Importance. Models hierarchical structure.

) OBNOIOIO N0

child of v

(leaf node)
a tree the same tree, rooted at 1
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Phylogeny Trees
Phylogeny trees. Describe evolutionary history of species.

gut bacterig
trees
mushFooms
fizh

mammals
birds
dragonflies

beetles



Binary Tree

Def. A rooted tree in which each node has at most 2 children

Def. Height of a tree is the number of edges in the longest path from
root to leaf.

root r Height: 6

Thm. Number of nodes in binary tree of
height hisn < 21 — 1,

Balanced Binary Tree. Height h = O(logn)

25



GUT Containment Hierarchy

GUI containment hierarchy. Describe organization of GUT widgets.

JPanel
1TextField

Converter « | ]

157ider

JPanel
1TextField

157ider
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| JFanel (custorm content pane) |

JFrame JPanal JPanal
(ConvarsionFaneal) (ConvarsionPanel)
IConboRosx JPane | IComboBox | | IConboBox | IPanel
(custorm (custom
[ | [ |
1574ider ITextFieald 1TextFieald 1574ider
(DecimalFiaeld) (DecimalField) L————————J

Reference: http://java.sun.com/docs/books/tutorial/uiswing/overview/anatomy.html




3.2 Graph Traversal
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Connectivity

s-t connectivity problem. Given two node s and t, is there a path
between s and 1?

s-t shortest path problem. Given two node s and t, what is the length
of the shortest path between s and t?

Applications.
. Navigation (Google Maps).
. Maze traversal.
- Kevin Bacon number.
. Fewest number of hops in a communication network.



Breadth First Search

BFS intuition. Explore outward from s in all possible directions, adding
nodes one "layer" at a time.

BFS algorithm. S < Ly — L, —  eee L n1
- Lo={s} B A&
. L, = all neighbors of L,.
. L, = all nodes that do not belong to L, or L;, and that
have an edge to a node in L;.
. L1 = all nodes that do not belong to an earlier layer,
and that have an edge to a node inL;.

Theorem. For each i, L; consists of all nodes at distance
exactly i from s. There is a path from s to t iff + appears
in some layer.

29



Breadth First Search

Property. Let T be a BFS tree of 6 = (V, E), and let (x, y) be an edge of
G. Then the level of x and y differ by at most 1.




Breadth First Search

Property. Let T be a BFS tree of 6 = (V, E), and let (x, y) be an edge of
G. Then the level of x and y differ by at most 1.

31



Breadth First Search: Analysis

Theorem. The above implementation of BFS runs in O(m + n) time if
the graph is given by its adjacency representation.

Pf.
. Easy to prove O(n?) running time:
- at most n lists L[i]
- each node occurs on at most one list; for loop runs < n times
- when we consider node u, there are < n incident edges (u, v),
and we spend O(1) processing each edge

. Actually runs in O(m + n) time:
- when we consider node u, there are deg(u) incident edges (u,v)
- total time processing edges is ¥,_, deg(u) = 2m =

each edge (u, v) is counted exactly twice
in sum: once in deg(u) and once in deg(v)

32



Connected Component

Connected component. Find all nodes reachable from s.

2]

Connected component containingnode 1={1,2,3,4,5,6,7,8 }.

33



Flood Fill

Flood fill. Given lime green pixel in an image, change color of entire
blob of neighboring lime pixels o blue.

. Node: pixel.

. Edge: two neighboring lime pixels.

. Blob: connected component of lime pixels.

recolor lime green blob to blue

880 Tux Paint
Gz 6 Cam) Coaslh
A= > "
Faint ' Stamp RainbowSparkles
Lines Shapes Mirrar * Flip
Abc " —
Text {Magic, Blur ' Blocks
(7 (0 1 b
Undo  Redo Negative' Fade
o\ CRLC e o
20 0
Eraser ' New | il
() e 6 o o o

€oord [
ﬁ Blue!



Flood Fill

Flood fill. Given lime green pixel in an image, change color of entire
blob of neighboring lime pixels o blue.

. Node: pixel.

. Edge: two neighboring lime pixels.

. Blob: connected component of lime pixels.

recolor lime green blob to blue

P Te

} Tux Paint

fTools) Wagid
A
gt
aint  Stamp RalnbowSpérkles
Lines ‘Shapes Mirror * Flip
o ©
Abc I ==
Text Magjc Blur ' Blocks
&\ /4 v o o °
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2 A D ™ RS
Eraser  Mew Chalk " Drip
@ @ -® e 6 o o o
pen Ve Thick "' Th
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[ | [ ==

Coed™ A B
W Click in the picture to fill that area with color.



Connected Component

Connected component. Find all nodes reachable from s.

R will consist of nodes to which s has a path

Initially R={s}

While there is an edge (u,v) where ueR and v ¢R
Add v to R

Endwhile

Theorem. Upon termination, R is the connected
component containing s.

. BFS = explore in order of distance from s.

. DFS = explore in a different way.

it's safe to add v

36



3.4 Testing Bipartiteness
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Bipartite Graphs

Def. Anundirected graph G = (V, E) is bipartite if the nodes can be
colored red or blue such that every edge has one red and one blue end.

Applications.
. Stable marriage: men = red, women = blue.
. Scheduling: machines = red, jobs = blue.

a bipartite graph
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Testing Bipartiteness

Testing bipartiteness. Given a graph G, is it bipartite?
. Many graph problems become:
- easier if the underlying graph is bipartite (matching)
- tractable if the underlying graph is bipartite (independent set)
. Before attempting to design an algorithm, we need to understand
structure of bipartite graphs.

a bipartite graph 6 another drawing of G
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An Obstruction to Bipartiteness

Lemma. If agraph G is bipartite, it cannot contain an odd length cycle.

Pf. Not possible to 2-color the odd cycle, let alone G.

bipartite not bipartite
(2-colorable) (not 2-colorable)
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Bipartite Graphs

Lemma. Let G be a connected graph, and let L, ..., L, be the layers
produced by BFS starting at node s. Exactly one of the following holds.
(i) No edge of G joins two nodes of the same layer, and G is bipartite.
(ii) Anedge of G joins two nodes of the same layer, and G contains an
odd-length cycle (and hence is not bipartite).

) O — O
A <Z—h/;i>\<i
L L. Ls Ly L. Ls

Case (i) Case (ii)




Bipartite Graphs

Lemma. Let G be a connected graph, and let L, ..., L, be the layers

produced by BFS starting at node s. Exactly one of the following holds.
(i) No edge of G joins two nodes of the same layer, and G is bipartite.

(ii) Anedge of G joins two nodes of the same layer, and G contains an
odd-length cycle (and hence is not bipartite).

Pf. (i)
. Suppose no edge joins two nodes in adjacent layers.
- By previous lemma, this implies all edges join nodes on

same level.
. Bipartition: red = nodes on odd levels, blue = nodes on

even levels.
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Bipartite Graphs

Lemma. Let G be a connected graph, and let L, ..., L, be the layers

produced by BFS starting at node s. Exactly one of the following holds.
(i) No edge of G joins two nodes of the same layer, and G is bipartite.

(ii) Anedge of G joins two nodes of the same layer, and G contains an
odd-length cycle (and hence is not bipartite).

Pf. (i)
. Suppose (X, y) is an edge with x, y in same level L;. z = Iea(x, )
. Let z = lca(x, y) = lowest common ancestor. Layer L,

. Let L, be level containing z.
. Consider cycle that takes edge from x toy,
then path from y to z, then path from z to x. Layer L, e
]

. Itslengthis 1 + (j-i) + (j-i), which is odd.
e i

(x,y) path from path from
y to z Zto x

43



Obstruction to Bipartiteness

Corollary. A graph G is bipartite iff it contain no odd length cycle.

«— b-cycle C

bipartite not bipartite
(2-colorable) (not 2-colorable)

44



3.5 Connectivity in Directed Graphs
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Directed Graphs

Directed graph. 6 = (V, E)
. Edge (u, v) goes from node u to node v.

Ex. Web graph - hyperlink points from one web page to
another.
. Directedness of graph is crucial.
. Modern web search engines exploit hyperlink structure to
rank web pages by importance.
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Graph Search

Directed reachability. Given a node s, find all nodes reachable from s.

Directed s-t shortest path problem. Given two node s and t, what is
the length of the shortest path between s and 1?

Graph search. BFS extends naturally to directed graphs.

Web crawler. Start from web page s. Find all web
pages linked from s, either directly or indirectly.



Strong Connectivity

Def. Node u and v are mutually reachable if there is a path from u to v
and also a path from v to u.

Def. A graph is strongly connected if every pair of nodes is mutually
reachable.

Lemma. Let s be any node. G is strongly connected iff every node is
reachable from s, and s is reachable from every node.

Pf. = Follows from definition.

Pf. < Path from u to v: concatenate u-s path with s-v path.
Path from v to u: concatenate v-s path with s-u path.

\
ok if paths overlap

48



Strong Connectivity: Algorithm

Theorem. Can determine if G is strongly connected in O(m + n) time.
Pf.

. Pick any node s.

. Run BFS from s in G. reverse orientation of every edge in 6

- Run BFS from s in G

. Return true iff all nodes reached in both BFS executions.

. Correctness follows immediately from previous lemma. =

N\

A

not strongly connected
strongly connected

49



3.6 DAGs and Topological Ordering




Directed Acyclic Graphs

Def. An DAG is a directed graph that contains no directed cycles.
Ex. Precedence constraints: edge (v, v;) means v; must precede v;.

Def. A topological order of a directed graph G = (V, E) is an ordering
of its nodes as vy, v,, ..., v, so that for every edge (v;, v;) we have i < j.

a topological ordering

a DAG

51
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Precedence Constraints

Precedence constraints. Edge (v;, v;) means task v; must occur before v;.
Applications.

. Course prerequisite graph: course v, must be taken before v;.
. Compilation: module v; must be compiled before v;. Pipeline of

computing jobs: output of job v; needed to determine input of job v;.



Directed Acyclic Graphs

Lemma. If G has a topological order, then G is a DAG.

Pf. (by contradiction)

. Suppose that G has a topological order vy, ..., v, and that G also has a
directed cycle C. Let's see what happens.

. Let v, be the lowest-indexed node in C, and let v be the node just
before v, thus (v;, v;) is an edge.

- By our choice of i, we have i < j.

. On the other hand, since (vJ-, v;) isan edge and vy, ..., v, is a
topological order, we must have j < i, a contradiction.

the directed cycle C

@OG%—{B CF %DO@

the supposed topological order: v, .

53
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Directed Acyclic Graphs

Lemma. If G has a topological order, then G is a DAG.
Q. Does every DAG have a topological ordering?

Q. If so, how do we compute one?



55

Directed Acyclic Graphs

Lemma. If GisaDAG, then G has a node with no incoming edges.

Pf. (by contradiction)

. Suppose that G is a DAG and every node has at least one incoming
edge. Let's see what happens.

. Pick any node v, and begin following edges backward from v. Since v
has at least one incoming edge (u, v) we can walk backward to u.

. Then, since u has at least one incoming edge (x, u), we can walk
backward to x.

. Repeat until we visit a node, say w, twice.

. Let C denote the sequence of nodes encountered between
successive visits tow. Cis a cycle.




Directed Acyclic Graphs

Lemma. If Gisa DAG, then G has a topological ordering. | [

Pf. (by induction on n)
. Base case: trueif n=1.
. Given DAG on n > 1 nodes, find a node v with no incoming edges.
. 6-{v}isaDAG, since deleting v cannot create cycles.
. By inductive hypothesis, G - { v } has a topological ordering.
. Place v first in topological ordering; then append nodes of G - {v}
in topological order. This is valid since v has no incoming edges. =

To compute a topological ordering of G:
Find a node v with no incoming edges and order it first DAG
Delete v from G

Recursively compute a topological ordering of G—{v}
and append this order after v (:t:?

56
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Topological Sorting Algorithm: Running Time

Theorem. Algorithm finds a fopological order in O(m + n)
time.

Pf.

. Maintain the following information:

— count[w] = remaining humber of incoming edges

- S = set of remaining nodes with no incoming edges
. Initialization: O(m + n) via single scan through graph.
. Update: to delete v

- remove v from S

- decrement count[w] for all edges from v to w, and

add w to S if ¢ count[w] hits O
- this is O(1) per edge



