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Five Representative Problems
• Algorithmic Techniques: Greedy, Dynamic Programming, Network 

Flow,…
• Computationally Intractable Problems: Unlikely that polynomial 

time algorithm exists.

Formal Definition of Big O,Ω, Θ notation
• T ݊ ∈ ܱ f ݊ ---- upper bound

• Means we can find constants c,N > 0 s.t. whenever n > N
T ݊ ൏ ܿ ൈ f ݊

• Intuition: ܿ ൈ f ݊ upperbounds T ݊ for large enough 
inputs

• T ݊ ∈ Ω f ݊ ---- lower bound
• T ݊ ∈ Θ f ݊ ---- lower bound and upper bound

Polynomial Time function. T ݊ ∈ ܱ ݊ௗ for some constant d
(d is independent of the input size).



2.4  A Survey of Common Running Times
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Linear Time:  O(n)

Linear time.  Running time is proportional to input size.

Computing the maximum. Compute maximum of n numbers a1, …, an.

max  a1
for i = 2 to n {

if (ai > max)
max  ai

}
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Linear Time:  O(n)

Merge.  Combine two sorted lists A = a1,a2,…,an with 

B = b1,b2,…,bn into sorted whole.

Claim.  Merging two lists of size n takes O(n) time.
Pf.  After each comparison, the length of output list 
increases by 1.

i = 1, j = 1
while (both lists are nonempty) {

if (ai  bj) append ai to output list and increment i
else(ai  bj)append bj to output list and increment j

}
append remainder of nonempty list to output list
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O(n log n) Time

O(n log n) time.  Arises in divide-and-conquer algorithms.

Sorting. Mergesort and heapsort are sorting algorithms that 
perform O(n log n) comparisons.

Largest empty interval. Given n time-stamps x1, …, xn on which 
copies of a file arrive at a server, what is largest interval of 
time when no copies of the file arrive?

also referred to as linearithmic time

O(n log n) solution. Sort the time-stamps.  Scan the 
sorted list in order, identifying the maximum gap 
between successive time-stamps.
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Quadratic Time:  O(n2)

Quadratic time.  Enumerate all pairs of elements.

Closest pair of points. Given a list of n points in the plane (x1, y1), …, 
(xn, yn), find the pair that is closest.

O(n2) solution. Try all pairs of points.

Remark. (n2) seems inevitable, but this is just an illusion.

min  (x1 - x2)2 + (y1 - y2)2

for i = 1 to n {
for j = i+1 to n {

d  (xi - xj)2 + (yi - yj)2

if (d < min)
min  d

}
}

don't need to
take square roots

see chapter 5
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Cubic Time:  O(n3)

Cubic time.  Enumerate all triples of elements.

Set disjointness. Given n sets S1, …, Sn each of which is a subset of
1, 2, …, n, is there some pair of these which are disjoint?

O(n3) solution. For each pairs of sets, determine if they are disjoint.

foreach set Si {
foreach other set Sj {

foreach element p of Si {
determine whether p also belongs to Sj

}
if (no element of Si belongs to Sj)

report that Si and Sj are disjoint
}

}
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Polynomial Time:  O(nk) Time

Independent set of size k. Given a graph, are there k nodes such that 
no two are joined by an edge?

O(nk) solution. Enumerate all subsets of k nodes.

 Check whether S is an independent set = O(k2).
 Number of k element subsets = 
 O(k2 nk / k!) = O(nk).

foreach subset S of k nodes {
check whether S in an independent set
if (S is an independent set)

report S is an independent set
}

}



n
k









n (n1) (n 2) (n k 1)
k (k 1) (k  2) (2) (1)

   nk

k!

poly-time for k=17,
but not practical

k is a constant
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Exponential Time

Independent set. Given a graph, what is maximum size of an 
independent set?

O(n2 2n) solution. Enumerate all subsets.

S*  
foreach subset S of nodes {

check whether S in an independent set
if (S is largest independent set seen so far)

update S*  S
}

}
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Chapter 3

Graphs

Slides by Kevin Wayne.
Copyright © 2005 Pearson-Addison Wesley.
All rights reserved.



3.1  Basic Definitions and Applications
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Undirected Graphs

Undirected graph.  G = (V, E)
 V = nodes.
 E = edges between pairs of nodes.
 Captures pairwise relationship between objects.
 Graph size parameters:  n = |V|, m = |E|.

V = { 1, 2, 3, 4, 5, 6, 7, 8 }
E = { 1-2, 1-3, 2-3, 2-4, 2-5, 3-5, 3-7, 3-8, 4-5, 5-6 }
n = 8
m = 11
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Some Graph Applications

transportation

Graph

street intersections

Nodes Edges

highways

communication computers fiber optic cables

World Wide Web web pages hyperlinks

social people relationships

food web species predator-prey

software systems functions function calls

scheduling tasks precedence constraints

circuits gates wires
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World Wide Web

Web graph.
 Node:  web page.
 Edge:  hyperlink from one page to another.

cnn.com

cnnsi.comnovell.comnetscape.com timewarner.com

hbo.com

sorpranos.com
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9-11 Terrorist Network

Social network graph.
 Node:  people.
 Edge:  relationship between two people.

Reference:  Valdis Krebs, http://www.firstmonday.org/issues/issue7_4/krebs
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Ecological Food Web

Food web graph.
 Node = species. 
 Edge = from prey to predator.

Reference:  http://www.twingroves.district96.k12.il.us/Wetlands/Salamander/SalGraphics/salfoodweb.giff
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Graph Representation:  Adjacency Matrix

Adjacency matrix.  n-by-n matrix with Auv = 1 if (u, v) is an edge.
 Two representations of each edge.
 Space proportional to n2.
 Checking if (u, v) is an edge takes (1) time. 
 Identifying all edges takes (n2) time.

1 2 3 4 5 6 7 8
1 0 1 1 0 0 0 0 0
2 1 0 1 1 1 0 0 0
3 1 1 0 0 1 0 1 1
4 0 1 0 1 1 0 0 0
5 0 1 1 1 0 1 0 0
6 0 0 0 0 1 0 0 0
7 0 0 1 0 0 0 0 1
8 0 0 1 0 0 0 1 0



19

Graph Representation:  Adjacency List

Adjacency list.  Node indexed array of lists.
 Two representations of each edge.
 Space proportional to m + n.
 Checking if (u, v) is an edge takes O(deg(u)) time.
 Identifying all edges takes (m + n) time.

1 2 3

2

3

4 2 5

5

6

7 3 8

8

1 3 4 5

1 2 5 87

2 3 4 6

5

degree = number of neighbors of u

3 7
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Paths and Connectivity

Def.  A path in an undirected graph G = (V, E) is a sequence P of nodes 
v1, v2, …, vk-1, vk with the property that each consecutive pair vi, vi+1 is 
joined by an edge in E.

Def.  A path is simple if all nodes are distinct.

Def.  An undirected graph is connected if for every pair of 
nodes u and v, there is a path between u and v.
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Cycles

Def.  A cycle is a path v1, v2, …, vk-1, vk in which v1 = vk, k > 2, and the 
first k-1 nodes are all distinct.

cycle C = 1-2-4-5-3-1

1

2 3

7

8
4 5

6
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Trees

Def.  An undirected graph is a tree if it is connected and does not 
contain a cycle.

Theorem.  Let G be an undirected graph on n nodes. Any two of the 
following statements imply the third.
 G is connected.
 G does not contain a cycle.
 G has n-1 edges.
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Rooted Trees

Rooted tree.  Given a tree T, choose a root node r and orient each edge 
away from r.

Importance.  Models hierarchical structure.

a tree the same tree, rooted at 1

v

parent of v

child of v
(leaf node)

root r
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Phylogeny Trees

Phylogeny trees.  Describe evolutionary history of species. 



Binary Tree

Def. A rooted tree in which each node has at most 2 children

Def. Height of a tree is the number of edges in the longest path from 
root to leaf. 

Thm. Number of nodes in binary tree of 
height h is ݊ ൑ 2௛ାଵ െ 1.

Balanced Binary Tree. Height	݄ ൌ ܱሺlog ݊ሻ

25

1 2
3 7

8

4 5 6

root r

5

4

2

1

6

3

7 8

Height: 6
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GUI Containment Hierarchy

Reference:  http://java.sun.com/docs/books/tutorial/uiswing/overview/anatomy.html

GUI containment hierarchy.  Describe organization of GUI widgets.



3.2  Graph Traversal
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Connectivity

s-t connectivity problem.  Given two node s and t, is there a path 
between s and t?

s-t shortest path problem.  Given two node s and t, what is the length 
of the shortest path between s and t?

Applications.
 Navigation (Google Maps).
 Maze traversal.
 Kevin Bacon number.
 Fewest number of hops in a communication network.
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Breadth First Search

BFS intuition.  Explore outward from s in all possible directions, adding 
nodes one "layer" at a time.

s L1 L2 L n-1BFS algorithm.
 L0 = { s }.
 L1 = all neighbors of L0.
 L2 = all nodes that do not belong to L0 or L1, and that 

have an edge to a node in L1.
 Li+1 = all nodes that do not belong to an earlier layer, 

and that have an edge to a node in Li.

Theorem.  For each i, Li consists of all nodes at distance 
exactly i from s. There is a path from s to t iff t appears 
in some layer.



Property.  Let T be a BFS tree of G = (V, E), and let (x, y) be an edge of 
G. Then the level of x and y differ by at most 1.
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Breadth First Search

L0

L1

L2

L3

1

2 3

7

8
4 5

61

2 3

7
84 5

6



Property.  Let T be a BFS tree of G = (V, E), and let (x, y) be an edge of 
G. Then the level of x and y differ by at most 1.

31

Breadth First Search

L0

L1

L2

L3



Theorem.  The above implementation of BFS runs in O(m + n) time if 
the graph is given by its adjacency representation.
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Breadth First Search:  Analysis

each edge (u, v) is counted exactly twice
in sum: once in deg(u) and once in deg(v)

Pf.
 Easy to prove O(n2) running time:

– at most n lists L[i]
– each node occurs on at most one list; for loop runs  n times
– when we consider node u, there are  n incident edges (u, v),

and we spend O(1) processing each edge

 Actually runs in O(m + n) time:
– when we consider node u, there are deg(u) incident edges (u,v)
– total time processing edges is uV deg(u) = 2m     ▪
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Connected Component

Connected component.  Find all nodes reachable from s.

Connected component containing node 1 = { 1, 2, 3, 4, 5, 6, 7, 8 }.
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Flood Fill

Flood fill.  Given lime green pixel in an image, change color of entire 
blob of neighboring lime pixels to blue.
 Node:  pixel.
 Edge:  two neighboring lime pixels.
 Blob:  connected component of lime pixels.

recolor lime green blob to blue
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Flood Fill

Flood fill.  Given lime green pixel in an image, change color of entire 
blob of neighboring lime pixels to blue.
 Node:  pixel.
 Edge:  two neighboring lime pixels.
 Blob:  connected component of lime pixels.

recolor lime green blob to blue
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Connected Component

Connected component.  Find all nodes reachable from s.

s

u v

R

it's safe to add v

Theorem.  Upon termination, R is the connected 
component containing s.
 BFS = explore in order of distance from s.
 DFS = explore in a different way.



3.4  Testing Bipartiteness



38

Bipartite Graphs

Def.  An undirected graph G = (V, E) is bipartite if the nodes can be 
colored red or blue such that every edge has one red and one blue end.

Applications.
 Stable marriage:  men = red, women = blue.
 Scheduling:  machines = red, jobs = blue.

a bipartite graph
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Testing Bipartiteness

Testing bipartiteness.   Given a graph G, is it bipartite?
 Many graph problems become:

– easier if the underlying graph is bipartite (matching)
– tractable if the underlying graph is bipartite (independent set)

 Before attempting to design an algorithm, we need to understand 
structure of bipartite graphs.

v1

v2 v3

v6 v5 v4

v7

v2

v4

v5

v7

v1

v3

v6

a bipartite graph G another drawing of G
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An Obstruction to Bipartiteness

Lemma.  If a graph G is bipartite, it cannot contain an odd length cycle.

Pf.  Not possible to 2-color the odd cycle, let alone G.

bipartite
(2-colorable)

not bipartite
(not 2-colorable)
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Bipartite Graphs

Lemma.  Let G be a connected graph, and let L0, …, Lk be the layers 
produced by BFS starting at node s.  Exactly one of the following holds.
(i)   No edge of G joins two nodes of the same layer, and G is bipartite.
(ii)  An edge of G joins two nodes of the same layer, and G contains an

odd-length cycle (and hence is not bipartite).

Case (i)

L1 L2 L3

Case (ii)

L1 L2 L3
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Bipartite Graphs

Lemma.  Let G be a connected graph, and let L0, …, Lk be the layers 
produced by BFS starting at node s.  Exactly one of the following holds.
(i)   No edge of G joins two nodes of the same layer, and G is bipartite.
(ii)  An edge of G joins two nodes of the same layer, and G contains an

odd-length cycle (and hence is not bipartite).

Case (i)

L1 L2 L3

Pf.  (i)
 Suppose no edge joins two nodes in adjacent layers.
 By previous lemma, this implies all edges join nodes on 

same level.
 Bipartition:  red = nodes on odd levels, blue = nodes on 

even levels.
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Bipartite Graphs

Lemma.  Let G be a connected graph, and let L0, …, Lk be the layers 
produced by BFS starting at node s.  Exactly one of the following holds.
(i)   No edge of G joins two nodes of the same layer, and G is bipartite.
(ii)  An edge of G joins two nodes of the same layer, and G contains an

odd-length cycle (and hence is not bipartite).

Pf.  (ii)
 Suppose (x, y) is an edge with x, y in same level Lj.
 Let z = lca(x, y) = lowest common ancestor.
 Let Li be level containing z.
 Consider cycle that takes edge from x to y,

then path from y to z, then path from z to x.
 Its length is  1  +   (j-i)  +  (j-i),  which is odd.  ▪

z = lca(x, y)

(x, y) path from
y to z

path from
z to x
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Obstruction to Bipartiteness

Corollary.  A graph G is bipartite iff it contain no odd length cycle.

5-cycle C

bipartite
(2-colorable)

not bipartite
(not 2-colorable)



3.5  Connectivity in Directed Graphs
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Directed Graphs

Directed graph.  G = (V, E)
 Edge (u, v) goes from node u to node v.

Ex.  Web graph - hyperlink points from one web page to 
another.
 Directedness of graph is crucial.
 Modern web search engines exploit hyperlink structure to 

rank web pages by importance.
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Graph Search

Directed reachability.  Given a node s, find all nodes reachable from s.

Directed s-t shortest path problem.  Given two node s and t, what is 
the length of the shortest path between s and t?

Graph search.  BFS extends naturally to directed graphs.

Web crawler.  Start from web page s.  Find all web 
pages linked from s, either directly or indirectly.
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Strong Connectivity

Def.  Node u and v are mutually reachable if there is a path from u to v 
and also a path from v to u.

Def.  A graph is strongly connected if every pair of nodes is mutually 
reachable.

Lemma.  Let s be any node.  G is strongly connected iff every node is 
reachable from s, and s is reachable from every node.

Pf.   Follows from definition.
Pf.   Path from u to v: concatenate u-s path with s-v path.

Path from v to u: concatenate v-s path with s-u path.   ▪

s

v

u

ok if paths overlap



49

Strong Connectivity:  Algorithm

Theorem.  Can determine if G is strongly connected in O(m + n) time.
Pf.
 Pick any node s.
 Run BFS from s in G.
 Run BFS from s in Grev.
 Return true iff all nodes reached in both BFS executions.
 Correctness follows immediately from previous lemma.   ▪

reverse orientation of every edge in G

strongly connected
not strongly connected



3.6  DAGs and Topological Ordering
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Directed Acyclic Graphs

Def.  An DAG is a directed graph that contains no directed cycles.

Ex.  Precedence constraints:  edge (vi, vj) means vi must precede vj.

Def.  A topological order of a directed graph G = (V, E) is an ordering 
of its nodes as v1, v2, …, vn so that for every edge (vi, vj) we have i < j.

a DAG

a topological ordering

v2 v3

v6 v5 v4

v7 v1

v1 v2 v3 v4 v5 v6 v7
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Precedence Constraints

Precedence constraints.  Edge (vi, vj) means task vi must occur before vj.

Applications.
 Course prerequisite graph:  course vi must be taken before vj.
 Compilation:  module vi must be compiled before vj. Pipeline of 

computing jobs:  output of job vi needed to determine input of job vj.
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Directed Acyclic Graphs

Lemma.  If G has a topological order, then G is a DAG.

Pf.  (by contradiction)
 Suppose that G has a topological order v1, …, vn and that G also has a 

directed cycle C.  Let's see what happens.
 Let vi be the lowest-indexed node in C, and let vj be the node just 

before vi; thus (vj, vi) is an edge.
 By our choice of i, we have i < j.
 On the other hand, since (vj, vi) is an edge and v1, …, vn is a 

topological order, we must have j < i, a contradiction.   ▪

v1 vi vj vn

the supposed topological order:  v1, …, vn

the directed cycle C
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Directed Acyclic Graphs

Lemma.  If G has a topological order, then G is a DAG.

Q.  Does every DAG have a topological ordering?

Q. If so, how do we compute one?
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Directed Acyclic Graphs

Lemma.  If G is a DAG, then G has a node with no incoming edges.

Pf.  (by contradiction)
 Suppose that G is a DAG and every node has at least one incoming 

edge.  Let's see what happens.
 Pick any node v, and begin following edges backward from v.  Since v 

has at least one incoming edge (u, v) we can walk backward to u.
 Then, since u has at least one incoming edge (x, u), we can walk 

backward to x.
 Repeat until we visit a node, say w, twice.
 Let C denote the sequence of nodes encountered between 

successive visits to w.  C is a cycle.   ▪

w x u v
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Directed Acyclic Graphs

Lemma.  If G is a DAG, then G has a topological ordering.

Pf.  (by induction on n)
 Base case:  true if n = 1.
 Given DAG on n > 1 nodes, find a node v with no incoming edges.
 G - { v } is a DAG, since deleting v cannot create cycles.
 By inductive hypothesis, G - { v } has a topological ordering.
 Place v first in topological ordering; then append nodes of G - {v} 

in topological order. This is valid since v has no incoming edges.   ▪

DAG

v
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Topological Sorting Algorithm:  Running Time

Theorem.  Algorithm finds a topological order in O(m + n) 
time.

Pf.  
 Maintain the following information:

– count[w] = remaining number of incoming edges
– S = set of remaining nodes with no incoming edges

 Initialization:  O(m + n) via single scan through graph.
 Update:  to delete v

– remove v from S
– decrement count[w] for all edges from v to w, and 

add w to S if c count[w] hits 0
– this is O(1) per edge    ▪


