
1/9/2018

Copyright 2000, Kevin Wayne 1

CS 580: Algorithm Design and Analysis

Jeremiah Blocki
Purdue University
Spring 2018

Recap: Stable Matching Problem

 Definition of a Stable Matching

 Stable Roomate Matching Problem
 Stable matching does not always exist!

 Gale –Shapley Algorithm (Propose-And-Reject)
 Proof that Algorithm Terminates in ܱ ݊ଶ steps
 Proof that Algorithm Outputs Stable Matching
 Matching is male-optimal
 If there are multiple different stable matchings each man

get’s his best valid partner
 Matching is female-pessimal
 If there are multiple different stable matchings each man

get’s her worst valid partner

2

3

Extensions: Matching Residents to Hospitals

Ex: Men  hospitals, Women  med school residents.

Variant 1. Some participants declare others as unacceptable.

Variant 2. Unequal number of men and women.

Variant 3. Limited polygamy.

resident A unwilling to
work in Cleveland

hospital X wants to hire 3 residents

Gale-Shapley Algorithm Still Works. Minor
modifications to code to handle variations!

4

Extensions: Matching Residents to Hospitals

Ex: Men  hospitals, Women  med school residents.

Variant 1. Some participants declare others as unacceptable.

Variant 2. Unequal number of men and women.

Variant 3. Limited polygamy.

resident A unwilling to
work in Cleveland

hospital X wants to hire 3 residents

Def. Matching S unstable if there is a hospital h and
resident r such that:
 h and r are acceptable to each other; and
 either r is unmatched, or r prefers h to her

assigned hospital; and
 either h does not have all its places filled, or h

prefers r to at least one of its assigned residents.

1.2 Five Representative Problems

6

Interval Scheduling

Input. Set of jobs with start times and finish times.
Goal. Find maximum cardinality subset of mutually compatible jobs.

Time
0 1 2 3 4 5 6 7 8 9 10 11

f

g

h

e

a

b

c

d

h

e

b

jobs don't overlap

1/9/2018

Copyright 2000, Kevin Wayne 2

7

Interval Scheduling

Input. Set of jobs with start times and finish times.
Goal. Find maximum cardinality subset of mutually compatible jobs.

Time
0 1 2 3 4 5 6 7 8 9 10 11

f

g

h

e

a

b

c

d

h

e

b

jobs don't overlap

Greedy Choice. Select job with earliest finish time and eliminate incompatible jobs.

8

Interval Scheduling

Input. Set of jobs with start times and finish times.
Goal. Find maximum cardinality subset of mutually compatible jobs.

Time
0 1 2 3 4 5 6 7 8 9 10 11

f

g

h

e

a

b

c

d

h

e

b

jobs don't overlap

Greedy Choice. Select job with earliest finish time and eliminate incompatible jobs.

9

Interval Scheduling

Input. Set of jobs with start times and finish times.
Goal. Find maximum cardinality subset of mutually compatible jobs.

Time
0 1 2 3 4 5 6 7 8 9 10 11

f

g

h

e

a

b

c

d

h

e

b

jobs don't overlap

Greedy Choice. Select job with earliest finish time and eliminate incompatible jobs.

10

Interval Scheduling

Input. Set of jobs with start times and finish times.
Goal. Find maximum cardinality subset of mutually compatible jobs.

Time
0 1 2 3 4 5 6 7 8 9 10 11

f

g

h

e

a

b

c

d

h

e

b

jobs don't overlap

Greedy Choice. Select job with earliest finish time and eliminate incompatible jobs.

11

Interval Scheduling

Input. Set of jobs with start times and finish times.
Goal. Find maximum cardinality subset of mutually compatible jobs.

Time
0 1 2 3 4 5 6 7 8 9 10 11

f

g

h

e

a

b

c

d

h

e

b

jobs don't overlap

Chapter 4: We will prove that this greedy algorithm always finds the optimal solution!

12

Weighted Interval Scheduling

Input. Set of jobs with start times, finish times, and weights.
Goal. Find maximum weight subset of mutually compatible jobs.

Time
0 1 2 3 4 5 6 7 8 9 10 11

20

11

16

13

23

12

20

26

Greedy Algorithm No Longer Works!

1/9/2018

Copyright 2000, Kevin Wayne 3

13

Weighted Interval Scheduling

Input. Set of jobs with start times, finish times, and weights.
Goal. Find maximum weight subset of mutually compatible jobs.

Time
0 1 2 3 4 5 6 7 8 9 10 11

20

11

16

13

23

12

20

26

Greedy Algorithm No Longer Works!

14

Weighted Interval Scheduling

Input. Set of jobs with start times, finish times, and weights.
Goal. Find maximum weight subset of mutually compatible jobs.

Time
0 1 2 3 4 5 6 7 8 9 10 11

20

11

16

13

23

12

20

26

Problem can be solved using technique called Dynamic Programming

15

Bipartite Matching

Input. Bipartite graph.
Goal. Find maximum cardinality matching.

C

1

5

2

A

E

3

B

D 4

Different from Stable Matching Problem! How?

16

Bipartite Matching

Input. Bipartite graph.
Goal. Find maximum cardinality matching.

C

1

5

2

A

E

3

B

D 4

Problem can be solved using Network Flow Algorithms

17

Independent Set

Input. Graph.
Goal. Find maximum cardinality independent set.

6

2

5

1

7

3
4

6

5

1

4

subset of nodes such that no two
joined by an edge

NP-Complete: Unlikely that efficient algorithm exists!

Positive: Can easily check that there is an independent set of size k

Brute-Force Algorithm: Check every possible subset.
RunningTime: ൒ 2௡ steps

18

Competitive Facility Location

Input. Graph with weight on each node.
Game. Two competing players alternate in selecting nodes.
Not allowed to select a node if any of its neighbors have been selected.

Goal. Select a maximum weight subset of nodes.

10 1 5 15 5 1 5 1 15 10

Second player can guarantee 20, but not 25.

1/9/2018

Copyright 2000, Kevin Wayne 4

19

Competitive Facility Location

Input. Graph with weight on each node.
Game. Two competing players alternate in selecting nodes.
Not allowed to select a node if any of its neighbors have been selected.

Goal. Select a maximum weight subset of nodes.

10 1 5 15 5 1 5 1 15 10

Second player can guarantee 20, but not 25.

20

Competitive Facility Location

Input. Graph with weight on each node.
Game. Two competing players alternate in selecting nodes.
Not allowed to select a node if any of its neighbors have been selected.

Goal. Select a maximum weight subset of nodes.

10 1 5 15 5 1 5 1 15 10

Second player can guarantee 20, but not 25.

21

Competitive Facility Location

Input. Graph with weight on each node.
Game. Two competing players alternate in selecting nodes.
Not allowed to select a node if any of its neighbors have been selected.

Goal. Select a maximum weight subset of nodes.

10 1 5 15 5 1 5 1 15 10

Second player can guarantee 20, but not 25.

22

Competitive Facility Location

Input. Graph with weight on each node.
Game. Two competing players alternate in selecting nodes.
Not allowed to select a node if any of its neighbors have been selected.

Goal. Select a maximum weight subset of nodes.

10 1 5 15 5 1 5 1 15 10

Second player can guarantee 20, but not 25.

23

Competitive Facility Location

Input. Graph with weight on each node.
Game. Two competing players alternate in selecting nodes.
Not allowed to select a node if any of its neighbors have been selected.

Goal. Select a maximum weight subset of nodes.

10 1 5 15 5 1 5 1 15 10

Second player can guarantee 20, but not 25.

PSPACE-Complete: Even harder than NP-Complete!

No short proof that player can guarantee value B. (Unlike previous problem)

24

Five Representative Problems

Variations on a theme: independent set.

Interval scheduling: n log n greedy algorithm.
Weighted interval scheduling: n log n dynamic programming algorithm.
Bipartite matching: nk max-flow based algorithm.
Independent set: NP-complete.
Competitive facility location: PSPACE-complete.

1/9/2018

Copyright 2000, Kevin Wayne 5

25

Chapter 2

Basics of
Algorithm Analysis

Slides by Kevin Wayne.
Copyright © 2005 Pearson-Addison Wesley.
All rights reserved.

2.1 Computational Tractability

"For me, great algorithms are the poetry of computation.
Just like verse, they can be terse, allusive, dense, and even
mysterious. But once unlocked, they cast a brilliant new
light on some aspect of computing." - Francis Sullivan

27

Computational Tractability

Charles Babbage (1864)

As soon as an Analytic Engine exists, it will necessarily
guide the future course of the science. Whenever any
result is sought by its aid, the question will arise - By what
course of calculation can these results be arrived at by the
machine in the shortest time? - Charles Babbage

Analytic Engine (schematic)

28

Polynomial-Time

Brute force. For many non-trivial problems, there is a natural brute
force search algorithm that checks every possible solution.
 Typically takes 2N time or worse for inputs of size N.
 Unacceptable in practice.

Desirable scaling property. When the input size doubles, the algorithm
should only slow down by some constant factor C.

Def. An algorithm is poly-time if the above scaling property holds.

There exists constants c > 0 and d > 0 such that on every
input of size N, its running time is bounded by c Nd steps.

choose C = 2d

n ! for stable matching
with n men and n women

29

Worst-Case Analysis

Worst case running time. Obtain bound on largest possible running time
of algorithm on input of a given size N.
 Generally captures efficiency in practice.
 Draconian view, but hard to find effective alternative.

Average case running time. Obtain bound on running time of algorithm
on random input as a function of input size N.
 Hard (or impossible) to accurately model real instances by random

distributions.
 Algorithm tuned for a certain distribution may perform poorly on

other inputs.

Exceptions.
 Some poly-time algorithms do have high constants

and/or exponents, and are useless in practice.
 Some exponential-time (or worse) algorithms are widely

used because the worst-case instances seem to be rare.

30

Worst-Case Polynomial-Time

Def. An algorithm is efficient if its running time is polynomial.

Justification: It really works in practice!
 Although 6.02  1023  N20 is technically poly-time, it would be useless

in practice.
 In practice, the poly-time algorithms that people develop almost

always have low constants and low exponents.
 Breaking through the exponential barrier of brute force typically

exposes some crucial structure of the problem.

simplex method
Unix grep

1/9/2018

Copyright 2000, Kevin Wayne 6

31

Why It Matters

2.2 Asymptotic Order of Growth

33

Asymptotic Order of Growth

Upper bounds. T(n) is O(f(n)) if there exist constants c > 0 and n0  0
such that for all n  n0 we have T(n)  c ∙ f(n).

Lower bounds. T(n) is (f(n)) if there exist constants c > 0 and n0  0
such that for all n  n0 we have T(n)  c ∙ f(n).

Tight bounds. T(n) is (f(n)) if T(n) is both O(f(n)) and (f(n)).

Ex: T(n) = 32n2 + 17n + 32.
 T(n) is O(n2), O(n3), (n2), (n), and (n2) .
 T(n) is not O(n), (n3), (n), or (n3).

34

Notation

Slight abuse of notation. T(n) = O(f(n)).
 Not transitive:

– f(n) = 5n3; g(n) = 3n2

– f(n) = O(n3) = g(n)
– but f(n)  g(n).

 Better notation: T(n)  O(f(n)).

Meaningless statement. Any comparison-based sorting algorithm
requires at least O(n log n) comparisons.
 Statement doesn't "type-check."
 Use  for lower bounds.

35

Properties

Transitivity.
 If f = O(g) and g = O(h) then f = O(h).
 If f = (g) and g = (h) then f = (h).
 If f = (g) and g = (h) then f = (h).

Additivity.
 If f = O(h) and g = O(h) then f + g = O(h).
 If f = (h) and g = (h) then f + g = (h).
 If f = (h) and g = O(h) then f + g = (h).

36

Asymptotic Bounds for Some Common Functions

Polynomials. a0 + a1n + … + adnd is (nd) if ad > 0.

Polynomial time. Running time is O(nd) for some constant d independent
of the input size n.

Logarithms. O(log a n) = O(log b n) for any constants a, b > 0.

Logarithms. For every x > 0, log n = O(nx).

Exponentials. For every r > 1 and every d > 0, nd = O(rn).

every exponential grows faster than every polynomial

can avoid specifying the
base

log grows slower than every polynomial

1/9/2018

Copyright 2000, Kevin Wayne 7

2.4 A Survey of Common Running Times

38

Linear Time: O(n)

Linear time. Running time is proportional to input size.

Computing the maximum. Compute maximum of n numbers a1, …, an.

max  a1
for i = 2 to n {

if (ai > max)
max  ai

}

39

Linear Time: O(n)

Merge. Combine two sorted lists A = a1,a2,…,an with

B = b1,b2,…,bn into sorted whole.

Claim. Merging two lists of size n takes O(n) time.
Pf. After each comparison, the length of output list
increases by 1.

i = 1, j = 1
while (both lists are nonempty) {

if (ai  bj) append ai to output list and increment i
else(ai  bj)append bj to output list and increment j

}
append remainder of nonempty list to output list

40

O(n log n) Time

O(n log n) time. Arises in divide-and-conquer algorithms.

Sorting. Mergesort and heapsort are sorting algorithms that perform
O(n log n) comparisons.

Largest empty interval. Given n time-stamps x1, …, xn on which copies
of a file arrive at a server, what is largest interval of time when no
copies of the file arrive?

O(n log n) solution. Sort the time-stamps. Scan the sorted list in
order, identifying the maximum gap between successive time-stamps.

also referred to as linearithmic time

41

Quadratic Time: O(n2)

Quadratic time. Enumerate all pairs of elements.

Closest pair of points. Given a list of n points in the plane (x1, y1), …,
(xn, yn), find the pair that is closest.

O(n2) solution. Try all pairs of points.

Remark. (n2) seems inevitable, but this is just an illusion.

min  (x1 - x2)2 + (y1 - y2)2

for i = 1 to n {
for j = i+1 to n {

d  (xi - xj)2 + (yi - yj)2

if (d < min)
min  d

}
}

don't need to
take square roots

see chapter 5

42

Cubic Time: O(n3)

Cubic time. Enumerate all triples of elements.

Set disjointness. Given n sets S1, …, Sn each of which is a subset of
1, 2, …, n, is there some pair of these which are disjoint?

O(n3) solution. For each pairs of sets, determine if they are disjoint.

foreach set Si {
foreach other set Sj {

foreach element p of Si {
determine whether p also belongs to Sj

}
if (no element of Si belongs to Sj)

report that Si and Sj are disjoint
}

}

1/9/2018

Copyright 2000, Kevin Wayne 8

43

Polynomial Time: O(nk) Time

Independent set of size k. Given a graph, are there k nodes such that
no two are joined by an edge?

O(nk) solution. Enumerate all subsets of k nodes.

 Check whether S is an independent set = O(k2).
 Number of k element subsets =
 O(k2 nk / k!) = O(nk).

foreach subset S of k nodes {
check whether S in an independent set
if (S is an independent set)

report S is an independent set
}

}



n
k









n (n1) (n 2) (n k 1)
k (k 1) (k  2) (2) (1)

  nk

k!

poly-time for k=17,
but not practical

k is a constant

44

Exponential Time

Independent set. Given a graph, what is maximum size of an
independent set?

O(n2 2n) solution. Enumerate all subsets.

S*  
foreach subset S of nodes {

check whether S in an independent set
if (S is largest independent set seen so far)

update S*  S
}

}

Heap Data Structure

Min Heap Order: For each node v in the tree
Parent v . Value ൑ v. Value

Max Heap Order: For each node v in the tree
Parent v . Value ൒ v. Value

45

10

11

53

6

9

44 Next

Heap Insertion

Min Heap Order: For each node v in the tree
Parent v . Value ൑ v. Value

46

10

11

53

6

9

44 3

Heap.Insert(3)

Heap Insertion

Min Heap Order: For each node v in the tree
Parent v . Value ൑ v. Value

47

10

11

53

6

3

44 9

Heap.Insert(3)

Heap Insertion

Min Heap Order: For each node v in the tree
Parent v . Value ൑ v. Value

48

10

11

53

6

3

44 9

Heap.Insert(3)

1/9/2018

Copyright 2000, Kevin Wayne 9

Heap Insertion

Min Heap Order: For each node v in the tree
Parent v . Value ൑ v. Value

Theorem 2.12 [KT]: The procedure Heapify-up fixes the heap
property and allows us to insert a new element into a heap of n
elements in O(log n) time.

49

10

11

53

3

6

44 9

Heap.Insert(3)

Next

Heap Extract Minimum

Min Heap Order: For each node v in the tree
Parent v . Value ൑ v. Value

Theorem 2.13 [KT]: The procedure Heapify-down fixes the heap
property and allows us to delete an elment in a heap of n elements in
O(log n) time.

50

10

11

53

3

6

44 9

Heap.ExtractMin()

Next

Heap Extract Minimum

Min Heap Order: For each node v in the tree
Parent v . Value ൑ v. Value

Theorem 2.13 [KT]: The procedure Heapify-down fixes the heap
property and allows us to delete an elment in a heap of n elements in
O(log n) time.

51

10

11

53

3

6

44 9

Heap.ExtractMin()

Next

Heap Extract Minimum

Min Heap Order: For each node v in the tree
Parent v . Value ൑ v. Value

Theorem 2.13 [KT]: The procedure Heapify-down fixes the heap
property and allows us to delete an elment in a heap of n elements in
O(log n) time.

52

10

11

53

6

3

44 9

Heap.ExtractMin()

Next

Heap Extract Minimum

Min Heap Order: For each node v in the tree
Parent v . Value ൑ v. Value

Theorem 2.13 [KT]: The procedure Heapify-down fixes the heap
property and allows us to delete an elment in a heap of n elements in
O(log n) time.

53

10

11

53

6

3

44 9

Heap.ExtractMin()

Next

Heap Extract Minimum

Min Heap Order: For each node v in the tree
Parent v . Value ൑ v. Value

Theorem 2.13 [KT]: The procedure Heapify-down fixes the heap
property and allows us to delete an elment in a heap of n elements in
O(log n) time.

54

10

11

53

6

44

9

Heap.ExtractMin()

Next

3

1/9/2018

Copyright 2000, Kevin Wayne 10

Heap Extract Minimum

Min Heap Order: For each node v in the tree
Parent v . Value ൑ v. Value

Theorem 2.13 [KT]: The procedure Heapify-down fixes the heap
property and allows us to delete an elment in a heap of n elements in
O(log n) time.

55

10

11

53

6

44

9

Heap.ExtractMin()

Next

Heap Summary

Insert: O(log n)
FindMin: O(1)
Delete: O(log n) time
ExtractMin: O(log n) time

Thought Question: O(n log n) time sorting algorithm using heaps?

56

10

11

53

3

6

44 9

