4/18/2018

€S 580: Algorithm Design and Analysis

Jeremiah Blocki
Purdue University
Spring 2018

Announcements: Homework 6 deadline extended to April 24™ at 11:59 PM

Course Evaluation Survey: Live until 4/29/2018 at 11:59PM. Your feedback
is valued!

Recap: Maximum 3-Satisfiability

exactly 3 distinct literals per clause

e
MAX-3SAT. Given 3-SAT formula, find a truth assignment
that satisfies as many clauses as possible.

C o= X% VX VX
C, = X VX VX
Cy = X VX VX
C, = X VX VX
Ci = X VX VX

Simple idea. Flip a coin, and set each variable true with
probability %, independently for each variable.

Observation. Random assignment satisfies % of the k clauses
in expectation (proof: linearity of expectation)

Maximum 3-Satisfiability: Analysis

Q. Can we turn this idea into a 7/8-approximation algorithm? In
general, a random variable can almost always be below its mean.

Lemma. The probability that a random assignment satisfies > 7k/8
clauses is at least 1/(8k).

Pf. Let p; be probability that exactly j clauses are satisfied; let p
be probability that > 7k/8 clauses are satisfied.

Te=pz=Yjp=)
=0

7
g

j< gk jz gk

°_Rearranging terms yields p>1/(8k). -

13.4 MAX 3-SAT

The Probabilistic Method

Corollary. For any instance of 3-SAT, there exists a truth

assignment that satisfies at least a 7/8 fraction of all clauses.

Pf. Random variable is at least its expectation some of the
fime. =

Probabilistic method. We showed the existence of a non-
obvious property of 3-SAT by showing that a random
construction produces it with positive probability!

Maximum 3-Satisfiability: Analysis

Johnson's algorithm. Repeatedly generate random truth assignments
until one of them satisfies > 7k/8 clauses.

Theorem. Johnson's algorithm is a 7/8-approximation algorithm.
Pf. By previous lemma, each iteration succeeds with probability at

least 1/(8k). By the waiting-time bound, the expected number of trials
to find the satisfying assignment is at most 8k. =

Copyright 2000, Kevin Wayne

4/18/2018

Maximum Satisfiability

Extensions.
- Allow one, two, or more literals per clause.
. Find max weighted set of satisfied clauses.

Theorem. [Asano-Williamson 2000] There exists a 0.784-approximation
algorithm for MAX-SAT.

Theorem. [Karloff-Zwick 1997, Zwick+computer 2002] There
exists a 7/8-approximation algorithm for version of MAX-3SAT
where each clause has at most 3 literals.

Theorem. [Hdstad 1997] Unless P = NP, no p-approximation
algorithm for MAX-3SAT (and hence MAX-SAT) for any p > 7/8.

|

very unlikely o improve over simple
randomized algorithm for MAX-3SAT

RP and ZPP

RP. [Monte Carlo] Decision problems solvable with one-sided
error in poly-time.
Can decrease probability of false negative
One-sided error. 0 290 by 100 independent repetitions
. If the correct answer is no, always return no.
. If the correct answer is yes, return yes with probability > 3.

ZPP. [Las Vegas] Decision problems solvable in expected poly-

time.
running time can be unbounded, but
on average it is fast

Theorem. P ¢ ZPPc RP < NP.

Fundamental open questions. To what extent does
randomization help? Does P = ZPP? Does ZPP = RP?
Does RP = NP?

s

Quicksort

Sorting. Given a set of n distinct elements S, rearrange them in
ascending order.

RandomizedQuicksort(S) {
if |S|] = 0 return

choose a splitter a; € S uniformly at random
foreach (a € S) {

if (a < &) put a in S-

else if (a > a;) put a in S*

by
RandomizedQuicksort(S-)

output a;
RandomizedQuicksort(S*)

Remark. Can implement in-place.

O(log n) extra space

Monte Carlo vs. Las Vegas Algorithms

Monte Carlo algorithm. Guaranteed to run in poly-time, likely
to find correct answer.
Ex: Contraction algorithm for global min cut.

Las Vegas algorithm. Guaranteed to find correct answer,
likely to run in poly-time.
Ex: Randomized quicksort, Johnson's MAX-3SAT algorithm.

stop algorithm affer a certain point

|
Remark. Can always convert a Las Vegas algorithm into Monte
Carlo, but no known method to convert the other way.

13.5 Randomized Divide-and-Conquer

Quicksort

Running time.
. [Best case.] Select the median element as the splitter:
quicksort makes ©(n log n) comparisons.
« [Worst case.] Select the smallest element as the splitter:
quicksort makes ©(n?) comparisons.

Randomize. Protect against worst case by choosing splitter at
random.

Intuition. If we always select an element that is bigger than 25%

of the elements and smaller than 25% of the elements, then
quicksort makes ©(n log n) comparisons.

Notation. Label elements so that x;< X, < ... < X,..

Copyright 2000, Kevin Wayne

4/18/2018

Quicksort: BST Representation of Splitters

Quicksort: Expected Number of Comparisons Chernoff Bounds (above mean)

. . - Theorem. Expected # of comparisons is O(n log n). i ;
BST representation. Draw recursive BST of splitters. of m. Exp f comp (n log n) Theorem. Suppose X;, ..., X, are independent 0-1 random variables. Let
. X=X+ ... + X,.. Then for any p > E[X] and for any 5 > 0, we have
2 ool L] 1 ;o
= 2 — < 2nYy— ~2n|—d =2nn :
X7 Xe Xz X3 Xy Xg X7 X; Xp5 Xp3 X7 QSR X16 X4 X9 X4 X5 \e El i+l E El j EI j X]il X n Pr{X > (1+8)u] < Ll eg)‘*«‘}
¥
1
first splitter, chosen uniformly af random probabiliy that i and j are compared !

sum of independent O-1 random variables

is tightly centered on the mean
Theorem. [Knuth 1973] Stddev of number of comparisons
is ~ 0.65N. Pf. We apply a number of simple transformations.
. Foranyt>0,
Ex. If n=1million, the probability that randomized X i s x
quicksort takes less than 4n In n comparisons is at least PIX>(1+3)] = Pr[e”>e ™™] < e Bl
.94%.
999 ()= e™is monotoneinx Markov's inequality: Pr[X>a] < E[X]/a

Chebyshev's inequality. Pr[|X - p| > k3] < 1/ k2.

. Now E[e™] T: E[e'™*] = [I,E[e™]
1

definitionof X independence
5

Quicksort: BST Representation of Splitters

Chernoff Bounds (above mean)
Observation. Element only compared with its ancestors and Pf. (cont)
descendants. 13.9 Chernoff Bounds . Let p; = Pr[X; = 1]. Then,
- X, and X are compared if their Ica = x; or x;.

. X, and x; are not compared if their Ica = x3 or x4 or X5 or X,.

EleXi] = pet+(-pe’ = l+p(ei—1) < ehC D
1
Claim. Pr[x; and x; are compared] =

|j—i+1]”

forany >0, l+a<e®

» Combining everything:

PX > (1+ Oy <e T Efe™ J<e] e
r

previous slide inequality above

Yip=EXl < pn .
PrED S <ot gate)

. Finally, choose t = In(1 +35). =

Copyright 2000, Kevin Wayne

Chernoff Bounds (below mean)

Theorem. Suppose X, ..., X, are independent 0-1 random variables.
Let X = X;+ ... + X,. Then for any u < E[X] and for any 0 < & < 1, we have

PrX < (1-6)u] < e /2
Pf idea. Similar.

Remark. Not quite symmetric since only makes sense to
consider 8 < 1.

4/18/2018

Load Balancing

Load balancing. System in which m jobs arrive in a stream and need to
be processed immediately on n identical processors. Find an assignment
that balances the workload across processors.

Centralized controller. Assign jobs in round-robin manner. Each
processor receives at most [m/n jobs.

Decentralized controller. Assign jobs to processors uniformly at
random. How likely is it that some processor is assigned "too many"
jobs?

Load Balancing: Many Jobs

Theorem. Suppose the number of jobs m = 16n In n. Then on
average, each of the n processors handles p = 16 In n jobs. With
high probability every processor will have between half and twice
the average load.

Pf.

- Let X;, Y, be as before.
- Applying Chernoff bounds with = 1 yields

16ninn inn
e 1 1
- (8] "< (U]

Pr[X; <iu] <™

= Union bound = every processor has load between half and
twice the average with probability > 1 - 2/n. =

13.10 Load Balancing

Copyright 2000, Kevin Wayne

Load Balancing

Analysis.

. Let X; = number of jobs assigned to processor i.

- Let ¥ =1if job j assigned to processor i, and O otherwise.
We have E[Y;]= 1/n
- Thus, X=X ¥, and n= E[X]= 1. ol
Applying Chernoff bounds with & = ¢ - 1yields Pr[X; >c] < w

Let y(n) be number x such that x* = n, and choose ¢ = e y(n).

o ¢ ey(n) 27(n)
Pr[X;>c] < e < (S] = [LJ < [L] ’
[c 7(n) 7(m)

Union bound = with probability > 1 - 1/n no processor receives
more than e y(n) = ©(logn / log log n) jobs.

hY
Fact: this bound is asymptotically tight: with high
probability, some processor receives ©(logn / log log n)

13.6 Universal Hashing

Dictionary Data Type

Dictionary. Given a universe U of possible elements, maintain a
subset S c U so that inserting, deleting, and searching in S is
efficient.

Dictionary interface.
. Create(): Initialize a dictionary with S = ¢.
Insert(u): AddelementuecUtoS.
. Delete(u): Deleteufrom S, if uis currently in S.
. Lookup(u): Determine whether uisin S.

Challenge. Universe U can be extremely large so defining an array
of size |U| is infeasible.

Applications. File systems, databases, Google, compilers, checksums
P2P networks, associative arrays, cryptography, web caching, etc.

4/18/2018

Ad Hoc Hash Function
Ad hoc hash function.

int h(String s, int n) {
int hash =
for (int i = 0; i < s.lengthQ); i++)
hash = (31 * hash) + s[i];
return hash % n;
3 hash function ala Java string library

Deterministic hashing. If |U| = n?, then for any fixed hash
function h, there is a subset S < U of n elements that all
hash to same slot. Thus, ©(n) time per search in worst-case.

Q. Butisn't ad hoc hash function good enough in practice?

Hashing Performance

Idealistic hash function. Maps m elements uniformly at random
to n hash slots.

« Running time depends on length of chains.

- Average length of chain=a=m/n.

. Choose n~m = on average O(1) per insert, lookup, or delete.

Challenge. Achieve idealized randomized guarantees, but with a
hash function where you can easily find items where you put
them.

Approach. Use randomization in the choice of h.

1

adversary knows the randomized algorithm you're using,
but doesn't know random choices that the algorithm makes

Hashing
Hash function. h: U —{0,1,..,n-1}.

Hashing. Create an array H of size n. When processing
element u, access array element H[h(u)].

Collision. When h(u) = h(v) but u = v.
. A collision is expected after ®(¥n) random insertions. This
phenomenon is known as the "birthday paradox."
- Separate chaining: Hli] stores linked list of elements u
with h(u) = i.

w1 | —
21

v | PR T

LoN 1]

Copyright 2000, Kevin Wayne

Algorithmic Complexity Attacks

When can't we live with ad hoc hash function?
. Obvious situations: aircraft control, nuclear reactors.
- Surprising situations: denial-of-service attacks.
~
‘malicious adversary learns your ad hoc hash function

(e., by reading Java APT) and causes a big pile-up in
asingle slot that grinds performance fo a halt

Real world exploits. [Crosby-Wallach 2003]
« Bro server: send carefully chosen packets to DOS the
server, using less bandwidth than a dial-up modem
« Per| 5.8.0: insert carefully chosen strings into
associative array.
Linux 2.4.20 kernel: save files with carefully chosen
names.

Universal Hashing

Universal class of hash functions. [Carter-Wegman 1980s]
« For any pair of elementsu, v e U, Pry_y, [h(u)=h(v)]< I/n
. Can select random h efficiently. ™ chosen uniformly at random
- Can compute h(u) efficiently.

Ex. U={a,b,c,d, e, f},n=2.

H={hy, hy}
a]blcldlelf] e < ey

Pry, 1= 172
Elo 10101 Py h(a)= h(c)] = 1 not universal
]=0

Mo oot 11 Pry i [h(a) = h(d)

[a[b[c|d]e]f RO SUSTS
Pry . [h(a) = h(b)] = 1/2
o 10101 e o = 172

00111 Pry nih(@)=h(d)] = 1/2 universal
01011 Erhsu[h(ﬂ)fh(e)]fl/z
SEIIRIG Pracu @)=) = 0

Universal Hashing

Universal hashing property. Let H be a universal class of hash
functions; let h € H be chosen uniformly at random from H; and let

u e U. Forany subset S c U of size at most n, the expected number of
items in S that collide with u is at most 1.

Pf. For any element s € S, define indicator random variable X, = 1 if

h(s) = h(u) and O otherwise. Let X be a random variable counting the
total number of collisions with u.

EncnlX] = E[X o X] = EGBIX] = EoPriX =11 < Eio = [SI5 < 1
! 1 i

linearity of expectation X, is a 0-1 random variable universal
(assumes u ¢ S)

4/18/2018

Designing a Universal Class of Hash Functions

Theorem. H={h,:ae A}isauniversal class of hash functions.

Pf. Let x = (X, Xz, .., X;) and y = (y1, Y2, ... ¥,) be two distinct elements of
U. We need to show that Pr[h,(x) = hy(y)] < 1/n.

« Since x #y, there exists an integer j such that x; # y;.

. We have hy(x) = hy(y) iff

a; (yj=x;) = Xa(x-y) modp
NI Lt
;

. Can assume a was chosen uniformly’:ﬁ random by first selecting
all coordinates q; where i # j, then selecting a; at random. Thus,
we can assume a; is fixed for all coordinates i = j.

+ Since p is prime, a;z = m mod p has at most one solution among p
possibilities. «— see lemma on next slide

« Thus Prihy(x) = hy(y)]= 1/p<1/n. =

Extra Slides

Designing a Universal Family of Hash Functions
Theorem. [Chebyshev 1850] There exists a prime between n and 2n.
Modulus. Choose a prime number p ~ n. «— 1o need for randomness here

Integer encoding. Identify each element u e U with a base-p integer
of rdigits: x = (x, Xy, ..., X,).

Hash function. Let A = set of all r-digit, base-p integers. For each
a=(ay, Gy, ..., a.) where 0 < g; < p, define

h,(x) = (i aixij mod p
i1

Hash function family. H={ h,:ae A}.

Copyright 2000, Kevin Wayne

Number Theory Facts

Fact. Let p be prime, and let z = 0 mod p. Then
az = m mod p has at most one solution 0 < o < p.

Pf.
- Suppose o and B are two different solutions.
. Then (a - B)z = 0 mod p; hence (o - B)z is divisible by p.
« Since z = 0 mod p, we know that z is not divisible by p;
it follows that (a - B) is divisible by p.
« This implies . = B. =

Bonus fact. Can replace "at most one" with "exactly one"
in above fact.
Pf idea. Euclid's algorithm.

