
CS 580: Algorithm Design and Analysis

Jeremiah Blocki
Purdue University
Spring 2018

Announcements: Homework 6 deadline extended to April 24th at 11:59 PM

Course Evaluation Survey: Live until 4/29/2018 at 11:59PM. Your feedback
is valued!

13.4 MAX 3-SAT

3

Recap: Maximum 3-Satisfiability

MAX-3SAT. Given 3-SAT formula, find a truth assignment
that satisfies as many clauses as possible.

Simple idea. Flip a coin, and set each variable true with
probability ½, independently for each variable.

Observation. Random assignment satisfies ଻௞
଼

of the k clauses
in expectation (proof: linearity of expectation)

C1  x2  x3  x4

C2  x2  x3  x4

C3  x1  x2  x4

C4  x1  x2  x3

C5  x1  x2  x4

exactly 3 distinct literals per clause

4

Corollary. For any instance of 3-SAT, there exists a truth
assignment that satisfies at least a 7/8 fraction of all clauses.

Pf. Random variable is at least its expectation some of the
time. ▪

Probabilistic method. We showed the existence of a non-
obvious property of 3-SAT by showing that a random
construction produces it with positive probability!

The Probabilistic Method

5

Maximum 3-Satisfiability: Analysis

Q. Can we turn this idea into a 7/8-approximation algorithm? In
general, a random variable can almost always be below its mean.

Lemma. The probability that a random assignment satisfies  7k/8
clauses is at least 1/(8k).

Pf. Let pj be probability that exactly j clauses are satisfied; let p
be probability that  7k/8 clauses are satisfied.

7
8 ݇ ൌ ܧ ܼ ൌ෍݆ · ௝݌

௝ஹ଴

ൌ ෍ ݆ · ௝݌
௝ழ	଻଼௞

൅ ෍ ݆ · ௝݌
௝ஹ	଻଼௞

൑
7݇
8 െ

1
8 ෍ ௝݌

௝ழ	଻଼௞
൅ ݇ ෍ ௝݌

௝ஹ	଻଼௞
൑

7݇
8 െ

1
8 · 1 ൅ ݌݇

Rearranging terms yields p  1 / (8k). ▪

6

Maximum 3-Satisfiability: Analysis

Johnson's algorithm. Repeatedly generate random truth assignments
until one of them satisfies  7k/8 clauses.

Theorem. Johnson's algorithm is a 7/8-approximation algorithm.

Pf. By previous lemma, each iteration succeeds with probability at
least 1/(8k). By the waiting-time bound, the expected number of trials
to find the satisfying assignment is at most 8k. ▪

7

Maximum Satisfiability

Extensions.
 Allow one, two, or more literals per clause.
 Find max weighted set of satisfied clauses.

Theorem. [Asano-Williamson 2000] There exists a 0.784-approximation
algorithm for MAX-SAT.

very unlikely to improve over simple
randomized algorithm for MAX-3SAT

Theorem. [Karloff-Zwick 1997, Zwick+computer 2002] There
exists a 7/8-approximation algorithm for version of MAX-3SAT
where each clause has at most 3 literals.

Theorem. [Håstad 1997] Unless P = NP, no -approximation
algorithm for MAX-3SAT (and hence MAX-SAT) for any  > 7/8.

8

Monte Carlo vs. Las Vegas Algorithms

Monte Carlo algorithm. Guaranteed to run in poly-time, likely
to find correct answer.
Ex: Contraction algorithm for global min cut.

Las Vegas algorithm. Guaranteed to find correct answer,
likely to run in poly-time.
Ex: Randomized quicksort, Johnson's MAX-3SAT algorithm.

Remark. Can always convert a Las Vegas algorithm into Monte
Carlo, but no known method to convert the other way.

stop algorithm after a certain point

9

RP and ZPP

RP. [Monte Carlo] Decision problems solvable with one-sided
error in poly-time.

One-sided error.
 If the correct answer is no, always return no.
 If the correct answer is yes, return yes with probability  ½.

ZPP. [Las Vegas] Decision problems solvable in expected poly-
time.

Theorem. P  ZPP  RP  NP.

Fundamental open questions. To what extent does
randomization help? Does P = ZPP? Does ZPP = RP?
Does RP = NP?

Can decrease probability of false negative
to 2-100 by 100 independent repetitions

running time can be unbounded, but
on average it is fast

13.5 Randomized Divide-and-Conquer

11

Quicksort

Sorting. Given a set of n distinct elements S, rearrange them in
ascending order.

Remark. Can implement in-place.

RandomizedQuicksort(S) {
if |S| = 0 return

choose a splitter ai  S uniformly at random
foreach (a  S) {

if (a < ai) put a in S-

else if (a > ai) put a in S+

}
RandomizedQuicksort(S-)
output ai
RandomizedQuicksort(S+)

}

O(log n) extra space

12

Quicksort

Running time.
 [Best case.] Select the median element as the splitter:

quicksort makes (n log n) comparisons.
 [Worst case.] Select the smallest element as the splitter:

quicksort makes (n2) comparisons.

Randomize. Protect against worst case by choosing splitter at
random.

Intuition. If we always select an element that is bigger than 25%
of the elements and smaller than 25% of the elements, then
quicksort makes (n log n) comparisons.

Notation. Label elements so that x1 < x2 < … < xn.

13

x7 x6 x12 x3 x8 x7 x1 x15 x10 x16 x14 x9x17x11 x13 x5x4

x10

x13x5

x16x11x3 x9

x2 x4 x7 x12 x15 x17

x1 x6 x8 x14

first splitter, chosen uniformly at random

Quicksort: BST Representation of Splitters

BST representation. Draw recursive BST of splitters.

S- S+

14

Quicksort: BST Representation of Splitters

Observation. Element only compared with its ancestors and
descendants.
 x2 and x7 are compared if their lca = x2 or x7.
 x2 and x7 are not compared if their lca = x3 or x4 or x5 or x6.

Claim. Pr[xi and xj are compared] ൌ ଶ
|௝ି௜ାଵ|

.

x10

x13x5

x16x11x3 x9

x2 x4 x7 x12 x15 x17

x1 x6 x8 x14

15

Theorem. Expected # of comparisons is O(n log n).
Pf.

Theorem. [Knuth 1973] Stddev of number of comparisons
is ~ 0.65N.

Ex. If n = 1 million, the probability that randomized
quicksort takes less than 4n ln n comparisons is at least
99.94%.

Chebyshev's inequality. Pr[|X - |  k]  1 / k2.

Quicksort: Expected Number of Comparisons

2
j  i 1

  2 1
jj2

i


i1

n


1  i  j  n
  2 n 1

jj1

n
  2 n 1

x
dx

x1

n
  2 n ln n

probability that i and j are compared

13.9 Chernoff Bounds

17

Chernoff Bounds (above mean)

Theorem. Suppose X1, …, Xn are independent 0-1 random variables. Let
X = X1 + … + Xn. Then for any   E[X] and for any  > 0, we have

Pf. We apply a number of simple transformations.
 For any t > 0,

 Now








 










 1)1(
])1(Pr[eX

sum of independent 0-1 random variables
is tightly centered on the mean

Pr[X  (1)]  Pr et X  et(1)   et(1) E[etX]

f(x) = etX is monotone in x Markov's inequality: Pr[X > a]  E[X] / a

E[etX]  E[e t Xii]  E[et Xi]i

definition of X independence

18

Chernoff Bounds (above mean)

Pf. (cont)
 Let pi = Pr[Xi = 1]. Then,

 Combining everything:

 Finally, choose t = ln(1 + ). ▪

  
i

ept
i

Xtt t
ii eeeEeX)1()1()1(][])1(Pr[

)1(0)1(1)1(][
t

ii ept
ii

t
i

Xt eepepepeE

for any   0, 1+  e 

previous slide inequality above

i pi = E[X]  
)1()1(

tet ee 

19

Chernoff Bounds (below mean)

Theorem. Suppose X1, …, Xn are independent 0-1 random variables.
Let X = X1 + … + Xn. Then for any   E[X] and for any 0 <  < 1, we have

Pf idea. Similar.

Remark. Not quite symmetric since only makes sense to
consider  < 1.

2/2
])1(Pr[  eX

13.10 Load Balancing

21

Load Balancing

Load balancing. System in which m jobs arrive in a stream and need to
be processed immediately on n identical processors. Find an assignment
that balances the workload across processors.

Centralized controller. Assign jobs in round-robin manner. Each
processor receives at most m/n jobs.

Decentralized controller. Assign jobs to processors uniformly at
random. How likely is it that some processor is assigned "too many"
jobs?

22

Load Balancing

Analysis.
 Let Xi = number of jobs assigned to processor i.
 Let Yij = 1 if job j assigned to processor i, and 0 otherwise.
 We have E[Yij] = 1/n
 Thus, Xi =  j Yi j, and  = E[Xi] = 1.
 Applying Chernoff bounds with  = c - 1 yields

 Let (n) be number x such that xx = n, and choose c = e (n).

 Union bound  with probability  1 - 1/n no processor receives
more than e (n) = (logn / log log n) jobs.

c

c

i c
ecX

1
]Pr[





2

)(2)(1 1
)(

1
)(

1]Pr[
nnnc

e
c

ecX
nnec

c

c

i 

























 



Fact: this bound is asymptotically tight: with high
probability, some processor receives (logn / log log n)

23

Load Balancing: Many Jobs

Theorem. Suppose the number of jobs m = 16n ln n. Then on
average, each of the n processors handles  = 16 ln n jobs. With
high probability every processor will have between half and twice
the average load.

Pf.
 Let Xi , Yij be as before.
 Applying Chernoff bounds with  = 1 yields

 Union bound  every processor has load between half and
twice the average with probability  1 - 2/n. ▪

2

lnln16 11
4

]2Pr[
ne

eX
nnn

i 












 

Pr[Xi  1

2]  e
1
2

1
2 2 (16n lnn)  1

n2

13.6 Universal Hashing

25

Dictionary Data Type

Dictionary. Given a universe U of possible elements, maintain a
subset S  U so that inserting, deleting, and searching in S is
efficient.

Dictionary interface.
 Create(): Initialize a dictionary with S = .
 Insert(u): Add element u  U to S.
 Delete(u): Delete u from S, if u is currently in S.
 Lookup(u): Determine whether u is in S.

Challenge. Universe U can be extremely large so defining an array
of size |U| is infeasible.

Applications. File systems, databases, Google, compilers, checksums
P2P networks, associative arrays, cryptography, web caching, etc.

26

Hashing

Hash function. h : U  { 0, 1, …, n-1 }.

Hashing. Create an array H of size n. When processing
element u, access array element H[h(u)].

Collision. When h(u) = h(v) but u  v.
 A collision is expected after (n) random insertions. This

phenomenon is known as the "birthday paradox."
 Separate chaining: H[i] stores linked list of elements u

with h(u) = i.

jocularly seriously

browsing

H[1]

H[2]

H[n]

suburban untravelledH[3] considerating

null

27

Ad Hoc Hash Function

Ad hoc hash function.

Deterministic hashing. If |U|  n2, then for any fixed hash
function h, there is a subset S  U of n elements that all
hash to same slot. Thus, (n) time per search in worst-case.

Q. But isn't ad hoc hash function good enough in practice?

int h(String s, int n) {
int hash = 0;
for (int i = 0; i < s.length(); i++)

hash = (31 * hash) + s[i];
return hash % n;

} hash function ala Java string library

28

Algorithmic Complexity Attacks

When can't we live with ad hoc hash function?
 Obvious situations: aircraft control, nuclear reactors.
 Surprising situations: denial-of-service attacks.

Real world exploits. [Crosby-Wallach 2003]
 Bro server: send carefully chosen packets to DOS the

server, using less bandwidth than a dial-up modem
 Perl 5.8.0: insert carefully chosen strings into

associative array.
 Linux 2.4.20 kernel: save files with carefully chosen

names.

malicious adversary learns your ad hoc hash function
(e.g., by reading Java API) and causes a big pile-up in
a single slot that grinds performance to a halt

29

Hashing Performance

Idealistic hash function. Maps m elements uniformly at random
to n hash slots.
 Running time depends on length of chains.
 Average length of chain =  = m / n.
 Choose n  m  on average O(1) per insert, lookup, or delete.

Challenge. Achieve idealized randomized guarantees, but with a
hash function where you can easily find items where you put
them.

Approach. Use randomization in the choice of h.

adversary knows the randomized algorithm you're using,
but doesn't know random choices that the algorithm makes

30

Universal Hashing

Universal class of hash functions. [Carter-Wegman 1980s]
 For any pair of elements u, v  U,
 Can select random h efficiently.
 Can compute h(u) efficiently.

Ex. U = { a, b, c, d, e, f }, n = 2.

 Prh H h(u)  h(v)  1/n

chosen uniformly at random

a b c d e f
0 1 0 1 0 1
0 0 0 1 1 1

h1(x)
h2(x)

H = {h1, h2}
Pr h  H [h(a) = h(b)] = 1/2
Pr h  H [h(a) = h(c)] = 1
Pr h  H [h(a) = h(d)] = 0
. . .

a b c d e f

0 0 1 0 1 1
1 0 0 1 1 0

h3(x)
h4(x)

H = {h1, h2 , h3 , h4}
Pr h  H [h(a) = h(b)] = 1/2
Pr h  H [h(a) = h(c)] = 1/2
Pr h  H [h(a) = h(d)] = 1/2
Pr h  H [h(a) = h(e)] = 1/2
Pr h  H [h(a) = h(f)] = 0
. . .

0 1 0 1 0 1
0 0 0 1 1 1

h1(x)
h2(x)

not universal

universal

31

Universal Hashing

Universal hashing property. Let H be a universal class of hash
functions; let h  H be chosen uniformly at random from H; and let
u  U. For any subset S  U of size at most n, the expected number of
items in S that collide with u is at most 1.

Pf. For any element s  S, define indicator random variable Xs = 1 if
h(s) = h(u) and 0 otherwise. Let X be a random variable counting the
total number of collisions with u.

EhH [X]  E[Xs]sS  E[Xs]sS  Pr[Xs 1]sS  1
nsS   | S | 1

n  1

linearity of expectation Xs is a 0-1 random variable universal
(assumes u  S)

32

Designing a Universal Family of Hash Functions

Theorem. [Chebyshev 1850] There exists a prime between n and 2n.

Modulus. Choose a prime number p  n.

Integer encoding. Identify each element u  U with a base-p integer
of r digits: x = (x1, x2, …, xr).

Hash function. Let A = set of all r-digit, base-p integers. For each
a = (a1, a2, …, ar) where 0  ai < p, define

Hash function family. H = { ha : a  A }.

ha(x)  ai xi
i1

r







 mod p

no need for randomness here

33

Designing a Universal Class of Hash Functions

Theorem. H = { ha : a  A } is a universal class of hash functions.

Pf. Let x = (x1, x2, …, xr) and y = (y1, y2, …, yr) be two distinct elements of
U. We need to show that Pr[ha(x) = ha(y)]  1/n.
 Since x  y, there exists an integer j such that xj  yj.
 We have ha(x) = ha(y) iff



a j (y j  x j)
z

 
  ai (xi  yi)

i j


m
  

 mod p

see lemma on next slide

 Can assume a was chosen uniformly at random by first selecting
all coordinates ai where i  j, then selecting aj at random. Thus,
we can assume ai is fixed for all coordinates i  j.

 Since p is prime, aj z = m mod p has at most one solution among p
possibilities.

 Thus Pr[ha(x) = ha(y)] = 1/p  1/n. ▪

34

Number Theory Facts

Fact. Let p be prime, and let z  0 mod p. Then
z = m mod p has at most one solution 0   < p.

Pf.
 Suppose  and  are two different solutions.
 Then ( - )z = 0 mod p; hence ( - )z is divisible by p.
 Since z  0 mod p, we know that z is not divisible by p;

it follows that ( - ) is divisible by p.
 This implies  = . ▪

Bonus fact. Can replace "at most one" with "exactly one"
in above fact.
Pf idea. Euclid's algorithm.

Extra Slides

