CS 580: Algorithm Design and Analysis

Jeremiah Blocki Purdue University Spring 2018

Reminder: Homework 6 has been released.

Weighted Vertex Cover

 $\label{thm:condition} \textbf{Theorem. 2-approximation algorithm for weighted vertex cover via LP rounding.}$

Theorem. [Dinur-Safra 2001] If P \neq NP, then no $\rho\text{-approximation}$ for ρ < 1.3607, even with unit weights.

10 √5 - 21

Open research problem. Close the gap.

Unique Games Conjecture: Implies there is no $\rho\text{-approximation}$ for ρ < 1.99999, even with unit weights

Disagreement among about validity of this conjecture

11.8 Knapsack Problem

Polynomial Time Approximation Scheme

PTAS. (1 + ε)-approximation algorithm for any constant ε > 0.

- Load balancing. [Hochbaum-Shmoys 1987]
- Euclidean TSP. [Arora 1996]

 $\it Consequence. PTAS$ produces arbitrarily high quality solution, but trades off accuracy for time.

This section. PTAS for knapsack problem via rounding and scaling.

Knapsack Problem

Knapsack problem.

we'll assume $w_i \leq W$

- Given n objects and a "knapsack."
- Item i has value $v_i > 0$ and weighs $w_i > 0$.
- Knapsack can carry weight up to W.
- Goal: fill knapsack so as to maximize total value.

Ex: { 3, 4 } has value 40.

W = 11

Item	Value	Weigh ¹		
1	1	1		
2	6	2		
3	18	5		
4	22	6		
5	28	7		

Knapsack is NP-Complete

KNAPSACK: Given a finite set X, nonnegative weights w_i , nonnegative values v_i , a weight limit W, and a target value V, is there a subset S $\subseteq X$ such that:

$$\sum_{i \in S} w_i \leq W$$

$$\sum_{i \in S} v_i \geq V$$

SUBSET-SUM: Given a finite set X, nonnegative values u_i , and an integer U, is there a subset $S \subseteq X$ whose elements sum to exactly U?

Claim. SUBSET-SUM $\leq P$ KNAPSACK.

Pf. Given instance $(u_1, ..., u_n, U)$ of SUBSET-SUM, create KNAPSACK instance:

$$v_i = w_i = u_i$$
 $\sum_{i \in S} u_i \le U$
 $V = W = U$ $\sum_{i \in S} u_i \ge U$

Knapsack Problem: Dynamic Programming 1

Def. OPT(i, w) = max value subset of items 1,..., i with weight limit w.

- . Case 1: OPT does not select item i.
 - OPT selects best of 1, ..., i-1 using up to weight limit w
- . Case 2: OPT selects item i.
 - new weight limit = w wi
 - OPT selects best of 1, ..., i-1 using up to weight limit w wi

$$OPT(i, w) = \begin{cases} 0 & \text{if } i = 0 \\ OPT(i-1, w) & \text{if } w_i > w \\ \max\{OPT(i-1, w), v_i + OPT(i-1, w - w_i)\} & \text{otherwise} \end{cases}$$

Running time. O(n W).

- W = weight limit.
- Not polynomial in input size!

-

Knapsack Problem: Dynamic Programming II

Def. OPT(i, v) = min weight subset of items 1, ..., i that yields value exactly v.

- . Case 1: OPT does not select item i.
 - OPT selects best of 1, ..., i-1 that achieves exactly value v
- . Case 2: OPT selects item i.
 - consumes weight wi, new value needed = v vi
 - OPT selects best of 1, ..., i-1 that achieves exactly value v

$$OPT(i, v) = \begin{cases} 0 & \text{if } v = 0 \\ \infty & \text{if } i = 0, v > 0 \\ OPT(i-1, v) & \text{if } v_i > v \\ \min \left\{ OPT(i-1, v), \quad w_i + OPT(i-1, v - v_i) \right\} & \text{otherwise} \end{cases}$$

Running time. $O(n V^*) = O(n^2 v_{max})$.

- V^* = optimal value = maximum v such that OPT(n, v) $\leq W$.
- Not polynomial in input size!

Knapsack: FPTAS

Intuition for approximation algorithm.

- Round all values up to lie in smaller range.
- Run dynamic programming algorithm on rounded instance.
- Return optimal items in rounded instance.

Item	Value	Weight		Item	Value	Weight
1	934,221	1		1	1	1
2	5,956,342	2		2	6	2
3	17,810,013	5	\rightarrow	3	18	5
4	21,217,800	6		4	22	6
5	27,343,199	7		5	28	7
		W = 11				W = 11
original instance rounded instance			ice			

Knapsack: FPTAS

Knapsack FPTAS. Round up all values: $\overline{v}_i = \begin{bmatrix} v_i \\ \theta \end{bmatrix} \theta$

Theorem. If S is solution found by our algorithm and S* is any other feasible solution then $(1+\varepsilon)\sum_{i\in\mathcal{S}}\nu_i\geq\sum_{i\in\mathcal{S}^*}\nu_i$

Pf. Let S* be any feasible solution satisfying weight constraint.

$$\begin{array}{ll} \sum\limits_{i \, \in \, S^a} v_i & \leq & \sum\limits_{i \, \in \, S^a} \overline{v_i} & \text{always round up} \\ \\ & \leq & \sum\limits_{i \, \in \, S} \overline{v_i} & \text{solve rounded instance optimally} \\ \\ & \leq & \sum\limits_{i \, \in \, S} \left(v_i + \, \theta \right) & \text{never round up by more than } \theta \\ \\ & \leq & \sum\limits_{i \, \in \, S} v_i + \, n \theta & |S| \leq n \\ \\ & \leq & \left(1 + \epsilon \right) \sum\limits_{i \, \in \, S} v_i & \text{n} \, \theta = \epsilon \, v_{\max}, \, \, v_{\max} \leq \sum_{i \in \, S} v_i \end{array}$$

Knapsack: FPTAS

Knapsack FPTAS. Round up all values: $\bar{v_i} = \left| \begin{array}{c} v_i \\ \theta \end{array} \right| \ \theta, \quad \hat{v_i} = \left| \begin{array}{c} v_i \\ \theta \end{array} \right|$

- v_{max} = largest value in original instance
- -ε = precision parameter
- $-\theta$ = scaling factor = $\varepsilon v_{max} / n$

Observation. Optimal solution to problems with $\overline{\nu}$ or $\hat{\nu}$ are equivalent.

Intuition. \overline{v} close to v so optimal solution using \overline{v} is nearly optimal; \hat{v} small and integral so dynamic programming algorithm is fast.

Running time. $O(n^3 / \epsilon)$.

- Dynamic program II running time is $O(n^2\,\hat{v}_{\mathrm{max}})$, where

$$\hat{v}_{\text{max}} = \left[\frac{v_{\text{max}}}{\theta} \right] = \left[\frac{n}{\varepsilon} \right]$$

...

Randomization

Algorithmic design patterns.

- Greedy.
- Divide-and-conquer.
- . Dynamic programming.
- Network flow.
- Randomization. ${}_{\text{in practice, access to a pseudo-random number generator}}$

Randomization. Allow fair coin flip in unit time.

Why randomize? Can lead to simplest, fastest, or only known algorithm for a particular problem.

Ex. Symmetry breaking protocols, graph algorithms, quicksort, hashing, load balancing, Monte Carlo integration, cryptography.

13.1 Contention Resolution

Contention Resolution in a Distributed System

Contention resolution. Given n processes P₁, ..., P_n, each competing for access to a shared database. If two or more processes access the database simultaneously, all processes are locked out. Devise protocol to ensure all processes get through on a regular basis.

Restriction. Processes can't communicate.

Challenge. Need symmetry-breaking paradigm.

Contention Resolution: Randomized Protocol

Protocol. Each process requests access to the database at time t with probability p = 1/n.

Claim. Let S[i, t] = event that process i succeeds in accessing the database at time t. Then $1/(e \cdot n) \le Pr[S(i, t)] \le 1/(2n)$.

Pf. By independence, $Pr[S(i, t)] = p(1-p)^{n-1}$.

value that maximizes Pr[S(i, t)] between 1/e and 1/2

Useful facts from calculus. As n increases from 2, the function:

- $(1 1/n)^n$ converges monotonically from 1/4 up to 1/e
- $(1 1/n)^{n-1}$ converges monotonically from 1/2 down to 1/e.

Contention Resolution: Randomized Protocol

Claim. The probability that process i fails to access the database in en rounds is at most 1/e. After $e \cdot n(c \ln n)$ rounds, the probability is at most n^{-c} .

Pf. Let $F[i, \dagger]$ = event that process i fails to access database in rounds 1 through \dagger . By independence and previous claim, we have $Pr[F(i, \dagger)] \leq (1 - 1/(en))^{\dagger}$.

- Choose $\dagger = \lceil e \cdot n \rceil$: $\Pr[F(i,t)] \leq \left(1 \frac{1}{en}\right)^{|en|} \leq \left(1 \frac{1}{en}\right)^{|en|} \leq \frac{1}{e}$
- Choose $t = \lceil e \cdot n \rceil \lceil c \ln n \rceil$: $\Pr[F(i,t)] \leq \left(\frac{1}{e}\right)^{c \ln n} = n^{-c}$

17

Contention Resolution: Randomized Protocol

Claim. The probability that all processes succeed within 2e \cdot n ln n rounds is at least 1 - 1/n.

Pf. Let F[t] = event that at least one of the n processes fails to access database in any of the rounds 1 through t.

$$\Pr[F[t]] = \Pr\left[\bigcup_{i=1}^{n} F[i,t]\right] \leq \sum_{i=1}^{n} \Pr[F[i,t]] \leq n\left(1 - \frac{1}{en}\right)$$

• Choosing $t = 2 \lceil en \rceil \lceil c \mid ln \mid ln \mid jields \mid Pr[F[t]] \le n \cdot n^{-2} = 1/n$.

Union bound. Given events $E_1, ..., E_n$, $\Pr\left[\bigcup_{i=1}^n E_i\right] \leq \sum_{i=1}^n \Pr[E_i]$

13.2 Global Minimum Cut

Global Minimum Cut

Global min cut. Given a connected, undirected graph G = (V, E) find a cut (A, B) of minimum cardinality.

Applications. Partitioning items in a database, identify clusters of related documents, network reliability, network design, circuit design, TSP solvers.

Network flow solution.

- Replace every edge (u, v) with two antiparallel edges (u, v) and (v, u).
- . Pick some vertex s and compute min s-v cut separating s from each other vertex $v \in V.$

False intuition. Global min-cut is harder than min s-t cut.

- 1

Contraction Algorithm

Contraction algorithm. [Karger 1995]

- Pick an edge e = (u, v) uniformly at random.
- Contract edge e.
 - replace u and v by single new super-node w
 - preserve edges, updating endpoints of u and v to w
 - keep parallel edges, but delete self-loops
- Repeat until graph has just two nodes v_1 and v_2 .
- Return the cut (all nodes that were contracted to form v_1).

Contraction Algorithm

Claim. The contraction algorithm returns a min cut with prob $\geq 2/n^2$.

Pf. Consider a global min-cut (A^*, B^*) of G. Let F^* be edges with one endpoint in A^* and the other in B^* . Let $k = |F^*| = \text{size}$ of min cut.

- In first step, algorithm contracts an edge in F^* probability k / |E|.
- Every node has degree \geq k since otherwise (A*, B*) would not be min-cut. \Rightarrow $|E| \geq \frac{1}{2}kn$.
- Thus, algorithm contracts an edge in F^* with probability $\leq 2/n$.

22

Contraction Algorithm

Claim. The contraction algorithm returns a min cut with prob $\geq 2/n^2$.

Pf. Consider a global min-cut (A^* , B^*) of G. Let F^* be edges with one endpoint in A^* and the other in B^* . Let $k = |F^*| = size$ of min cut.

- Let G' be graph after j iterations. There are n' = n-j supernodes.
- Suppose no edge in F* has been contracted. The min-cut in G' is still k.
- Since value of min-cut is k, $|E'| \ge \frac{1}{2}kn'$.
- Thus, algorithm contracts an edge in F* with probability ≤ 2/n'.
- Let E_i = event that an edge in F* is not contracted in iteration j.

$$\begin{array}{lll} \Pr[E_1 \cap E_2 \cdots \cap E_{n-2} \] &=& \Pr[E_1] \times \Pr[E_2 \ | E_1] \times \cdots \times \Pr[E_{n-2} \ | E_1 \cap E_2 \cdots \cap E_{n-3}] \\ &\geq & \left(1 - \frac{2}{n}\right) \left(1 - \frac{2}{n-1}\right) \cdots \ \left(1 - \frac{2}{4}\right) \left(1 - \frac{2}{3}\right) \\ &= & \left(\frac{n-2}{n}\right) \left(\frac{n-3}{n-1}\right) \cdots \ \left(\frac{2}{4}\right) \ \left(\frac{1}{3}\right) \\ &= & \frac{2}{n(n-1)} \\ &\geq & \frac{2}{3} \end{array}$$

23

Contraction Algorithm

Amplification. To amplify the probability of success, run the contraction algorithm many times.

Claim. If we repeat the contraction algorithm $n^2 \ln n$ times with independent random choices, the probability of failing to find the global min-cut is at most $1/n^2$.

Pf. By independence, the probability of failure is at most

$$\left(1 - \frac{2}{n^2}\right)^{n^2 \ln n} = \left[\left(1 - \frac{2}{n^2}\right)^{\frac{1}{2}n^2}\right]^{2\ln n} \le \left(e^{-1}\right)^{2\ln n} = \frac{1}{n^2}$$

$$(1 - 1/x)^x \le 1/e$$

Global Min Cut: Context

Remark. Overall running time is slow since we perform $\Theta(n^2 \log n)$ iterations and each takes $\Omega(m)$ time.

Improvement. [Karger-Stein 1996] O(n² log³n).

- Early iterations are less risky than later ones: probability of contracting an edge in min cut hits 50% when n / J2 nodes remain.
- Run contraction algorithm until n / $\sqrt{2}$ nodes remain.
- Run contraction algorithm twice on resulting graph, and return best of two cuts.

Extensions. Naturally generalizes to handle positive weights.

Best known. [Karger 2000] O(m log³n).

faster than best known max flow algorithm or deterministic global min cut algorithm

25

13.3 Linearity of Expectation

Expectation

Expectation. Given a discrete random variables X, its expectation E[X] is defined by: $E[X] = \sum_{i=0}^{\infty} j \Pr[X=j]$

Waiting for a first success. Coin is heads with probability p and tails with probability 1-p. How many independent flips X until first heads?

$$E[X] = \sum_{j=0}^{\infty} j \cdot \Pr[X = j] = \sum_{j=0}^{\infty} j (1-p)^{j-1} p = \frac{p}{1-p} \sum_{j=0}^{\infty} j (1-p)^{j} = \frac{p}{1-p} \cdot \frac{1-p}{p^{2}} = \frac{1}{p}$$

27

Expectation: Two Properties

Useful property. If X is a 0/1 random variable, E[X] = Pr[X = 1]

Pf.
$$E[X] = \sum_{j=0}^{\infty} j \cdot \Pr[X = j] = \sum_{j=0}^{1} j \cdot \Pr[X = j] = \Pr[X = 1]$$

not necessarily independent

Linearity of expectation. Given two random variables \acute{X} and \acute{Y} defined over the same probability space, E[X + Y] = E[X] + E[Y].

Decouples a complex calculation into simpler pieces.

Guessing Cards

 $\emph{G}\mbox{ame}.$ Shuffle a deck of n cards; turn them over one at a time; try to quess each card.

Memoryless guessing. No psychic abilities; can't even remember what's been turned over already. Guess a card from full deck uniformly at random.

Claim. The expected number of correct guesses is 1.

Pf. (surprisingly effortless using linearity of expectation)

- Let X; = 1 if ith prediction is correct and 0 otherwise.
- Let $X = number of correct guesses = X_1 + ... + X_n$.
- $E[X_i] = Pr[X_i = 1] = 1/n$.
- E[X] = E[X₁] + ... + E[X_n] = 1/n + ... + 1/n = 1. •

 | Intercity of expectation

29

Guessing Cards

Game. Shuffle a deck of n cards; turn them over one at a time; try to auess each card.

Guessing with memory. Guess a card uniformly at random from cards not yet seen.

Claim. The expected number of correct guesses is $\Theta(\log n)$. Pf

- Let X_i = 1 if ith prediction is correct and 0 otherwise.
- Let X = number of correct guesses = $X_1 + ... + X_n$.
- $E[X_i] = Pr[X_i = 1] = 1 / (n i 1).$

•
$$E[X] = E[X_1] + ... + E[X_n] = 1/n + ... + 1/2 + 1/1 = H(n).$$
 •

linearity of expectation

30

Coupon Collector

Coupon collector. Each box of cereal contains a coupon. There are n different types of coupons. Assuming all boxes are equally likely to contain each coupon, how many boxes before you have ≥ 1 coupon of each type?

Claim. The expected number of steps is $\Theta(n \log n)$. Pf

- Phase j = time between j and j+1 distinct coupons.
- Let X_i = number of steps you spend in phase j.
- Let X = number of steps in total = $X_0 + X_1 + ... + X_{n-1}$.

$$E[X] = \sum_{j=0}^{n-1} E[X_j] = \sum_{j=0}^{n-1} \frac{n}{n-j} = n \sum_{i=1}^{n} \frac{1}{i} = nH(n)$$

prob of success = (n-j)/n

⇒ expected waiting time = n/(n-j)

13.4 MAX 3-SAT

Maximum 3-Satisfiability

exactly 3 distinct literals per clause

MAX-3SAT. Given 3-SAT formula, find a truth assignment that satisfies as many clauses as possible.

$$C_{1} = x_{2} \vee \overline{x_{3}} \vee \overline{x_{4}}$$

$$C_{2} = x_{2} \vee x_{3} \vee \overline{x_{4}}$$

$$C_{3} = \overline{x_{1}} \vee x_{2} \vee x_{4}$$

$$C_{4} = \overline{x_{1}} \vee \overline{x_{2}} \vee x_{3}$$

Remark. NP-hard search problem.

Simple idea. Flip a coin, and set each variable true with probability $\frac{1}{2}$, independently for each variable.

33

Maximum 3-Satisfiability: Analysis

Claim. Given a 3-SAT formula with k clauses, the expected number of clauses satisfied by a random assignment is 7k/8.

- Pf. Consider random variable $Z_j = \begin{cases} 1 & \text{if clause } C_j \text{ is satisfied} \\ 0 & \text{otherwise.} \end{cases}$
- Let Z = weight of clauses satisfied by assignment Z_i .

$$E[Z] = \sum_{j=1}^{k} E[Z_j]$$
 linearity of expectation
$$= \sum_{j=1}^{k} \Pr[\text{clause } C_j \text{ is satisfied}]$$

$$= \frac{7}{8}k$$

34

The Probabilistic Method

Corollary. For any instance of 3-SAT, there exists a truth assignment that satisfies at least a 7/8 fraction of all clauses.

Pf. Random variable is at least its expectation some of the

Probabilistic method. We showed the existence of a nonobvious property of 3-SAT by showing that a random construction produces it with positive probability!

35

Maximum 3-Satisfiability: Analysis

Q. Can we turn this idea into a 7/8-approximation algorithm? In general, a random variable can almost always be below its mean.

Lemma. The probability that a random assignment satisfies \geq 7k/8 clauses is at least 1/(8k).

Pf. Let p_j be probability that exactly j clauses are satisfied; let p be probability that \geq 7k/8 clauses are satisfied.

$$\begin{array}{lll} \frac{7}{8}k &=& E[Z] &=& \sum\limits_{j \geq 0} j \, p_j \\ \\ &=& \sum\limits_{j < 7k/8} j \, p_j \, + \sum\limits_{j \geq 7k/8} j \, p_j \\ \\ &\leq& \left(\frac{7k}{8} - \frac{1}{8}\right) \sum\limits_{j < 7k/8} p_j \, + \, \, k \sum\limits_{j \geq 7k/8} p_j \\ \\ &\leq& \left(\frac{7}{8}k - \frac{1}{8}\right) \cdot 1 \, + \, k \, p \end{array}$$

Rearranging terms yields $p \ge 1 / (8k)$.

Maximum 3-Satisfiability: Analysis

Johnson's algorithm. Repeatedly generate random truth assignments until one of them satisfies $\geq 7k/8$ clauses.

Theorem. Johnson's algorithm is a 7/8-approximation algorithm.

Pf. By previous lemma, each iteration succeeds with probability at least 1/(8k). By the waiting-time bound, the expected number of trials to find the satisfying assignment is at most 8k.

37

Maximum Satisfiability

Extensions.

- Allow one, two, or more literals per clause.
- Find max weighted set of satisfied clauses.

Theorem. [Asano-Williamson 2000] There exists a 0.784-approximation algorithm for MAX-SAT.

Theorem. [Karloff-Zwick 1997, Zwick+computer 2002] There exists a 7/8-approximation algorithm for version of MAX-3SAT where each clause has at most 3 literals.

Theorem. [Håstad 1997] Unless P = NP, no ρ -approximation algorithm for MAX-3SAT (and hence MAX-SAT) for any ρ > 7/8.

very unlikely to improve over simple randomized algorithm for MAX-3SAT

i R

Monte Carlo vs. Las Vegas Algorithms

Monte Carlo algorithm. Guaranteed to run in poly-time, likely to find correct answer.

Ex: Contraction algorithm for global min cut.

Las Vegas algorithm. Guaranteed to find correct answer, likely to run in poly-time.

Ex: Randomized quicksort, Johnson's MAX-3SAT algorithm.

stop algorithm after a certain point

Remark. Can always convert a Las Vegas algorithm into Monte Carlo, but no known method to convert the other way.

39

RP and ZPP

RP. [Monte Carlo] Decision problems solvable with one-sided error in poly-time.

One-sided error.

Can decrease probability of false negative to 2⁻¹⁰⁰ by 100 independent repetitions

- If the correct answer is no, always return no.
- If the correct answer is yes, return yes with probability $\geq \frac{1}{2}$.

ZPP. [Las Vegas] Decision problems solvable in expected polytime. \dagger

running time can be unbounded, but on average it is fast

Theorem. $P \subseteq ZPP \subseteq RP \subseteq NP$.

Fundamental open questions. To what extent does randomization help? Does P = ZPP? Does ZPP = RP? Does RP = NP?

13.6 Universal Hashing

Hashing Hash function. $h: U \rightarrow \{0, 1, ..., n-1\}$. Hashing. Create an array H of size n. When processing element u, access array element H[h(u)]. Collision. When h(u) = h(v) but $u \neq v$. A collision is expected after $\Theta(\sqrt{n})$ random insertions. This phenomenon is known as the "birthday paradox." Separate chaining: H[i] stores linked list of elements u with h(u) = i. $H[1] \quad \text{ socularity } \quad \text{ sectionally } \quad \text{ limit and with an all lists of elements}$

Dictionary Data Type

Dictionary. Given a universe U of possible elements, maintain a subset $S \subseteq U$ so that inserting, deleting, and searching in S is efficient.

Dictionary interface.

- Create(): Initialize a dictionary with S = ϕ .
- Insert(u): Add element $u \in U$ to S.
- . Delete(u): Delete u from S, if u is currently in S.
- . Lookup(u): Determine whether u is in S.

Challenge. Universe U can be extremely large so defining an array of size |U| is infeasible.

Applications. File systems, databases, Google, compilers, checksums P2P networks, associative arrays, cryptography, web caching, etc.

Ad Hoc Hash Function

Ad hoc hash function.

```
int h(String s, int n) {
  int hash = 0;
  for (int i = 0; i < s.length(); i++)
    hash = (31 * hash) + s[i];
  return hash % n;
}</pre>
```

Deterministic hashing. If $|U| \ge n^2$, then for any fixed hash function h, there is a subset $S \subseteq U$ of n elements that all hash to same slot. Thus, $\Theta(n)$ time per search in worst-case.

Q. But isn't ad hoc hash function good enough in practice?

Algorithmic Complexity Attacks

When can't we live with ad hoc hash function?

- Obvious situations: aircraft control, nuclear reactors.
- Surprising situations: denial-of-service attacks.

malicious adversary learns your ad hoc hash function (e.g., by reading Java API) and causes a big pile-up in a single slot that grinds performance to a halt

Real world exploits. [Crosby-Wallach 2003]

- Bro server: send carefully chosen packets to DOS the server, using less bandwidth than a dial-up modem
- Perl 5.8.0: insert carefully chosen strings into associative array.
- Linux 2.4.20 kernel: save files with carefully chosen names

45

Hashing Performance

Idealistic hash function. Maps m elements uniformly at random to n hash slots.

- Running time depends on length of chains.
- Average length of chain = α = m / n.
- Choose $n \approx m \Rightarrow$ on average O(1) per insert, lookup, or delete.

Challenge. Achieve idealized randomized guarantees, but with a hash function where you can easily find items where you put them.

Approach. Use randomization in the choice of h.

† ry knows 1

adversary knows the randomized algorithm you're using, but doesn't know random choices that the algorithm makes

46

```
Universal Hashing
Universal class of hash functions. [Carter-Wegman 1980s]
  • For any pair of elements u, v \in U, \Pr_{h \in H} [h(u) = h(v)] \le 1/n

    Can select random h efficiently.

  . Can compute h(u) efficiently.
Ex. U = \{a, b, c, d, e, f\}, n = 2.
                                         H = \{h_1, h_2\}
                                         Pr_{h \in H}[h(a) = h(b)] = 1/2
  h<sub>1</sub>(x) 0 1 0 1 0 1
                                         Pr_{h \in H}[h(a) = h(c)] = 1

Pr_{h \in H}[h(a) = h(d)] = 0
                                                                         not universal
 h<sub>2</sub>(x) 0 0 0 1 1 1
                                         H = \{h_1, h_2, h_3, h_4\}

Pr_{h \in H}[h(a) = h(b)] = 1/2
  h<sub>1</sub>(x) 0 1 0 1 0 1
                                         Pr_{h \in H}[h(a) = h(c)] = 1/2
  h<sub>2</sub>(x) 0 0 0 1 1 1
                                         Pr_{h \in H}[h(a) = h(d)] = 1/2
                                                                          universal
                                         Pr_{h \in H}[h(a) = h(e)] = 1/2

Pr_{h \in H}[h(a) = h(f)] = 0
  h<sub>3</sub>(x) 0 0 1 0 1 1
  h<sub>4</sub>(x) 1 0 0 1 1 0
```

Universal Hashing

Universal hashing property. Let H be a universal class of hash functions; let $h \in H$ be chosen uniformly at random from H; and let $u \in U.$ For any subset $S \subseteq U$ of size at most n, the expected number of items in S that collide with u is at most 1.

Pf. For any element $s \in S$, define indicator random variable $X_s = 1$ if h(s) = h(u) and 0 otherwise. Let X be a random variable counting the total number of collisions with u.

Ι.

Designing a Universal Family of Hash Functions

Theorem. [Chebyshev 1850] There exists a prime between n and 2n.

Modulus. Choose a prime number $p \approx n$. \leftarrow no need for randomness here

Integer encoding. Identify each element $u \in U$ with a base-p integer of r digits: $x = (x_1, x_2, ..., x_r)$.

Hash function. Let A = set of all r-digit, base-p integers. For each $a=(a_1,a_2,...,a_r)$ where $0 \le a_i < p$, define

$$h_a(x) = \left(\sum_{i=1}^r a_i x_i\right) \mod p$$

Hash function family. $H = \{ h_a : a \in A \}$.

49

Designing a Universal Class of Hash Functions

Theorem. $H = \{ h_a : a \in A \}$ is a universal class of hash functions.

Pf. Let $x = (x_1, x_2, ..., x_r)$ and $y = (y_1, y_2, ..., y_r)$ be two distinct elements of U. We need to show that $\Pr[h_a(x) = h_a(y)] \le 1/n$.

- Since $x \neq y$, there exists an integer j such that $x_i \neq y_i$.
- We have $h_a(x) = h_a(y)$ iff

$$a_j \underbrace{(y_j - x_j)}_{z} = \underbrace{\sum_{i \neq j} a_i (x_i - y_i)}_{z} \mod p$$

- Can assume a was chosen uniformly at random by first selecting all coordinates a_i where i ≠ j, then selecting a_j at random. Thus, we can assume a_i is fixed for all coordinates i ≠ j.
- . Since p is prime, a_j z = m mod p has at most one solution among p possibilities. \leftarrow see lemma on next slide
- Thus $Pr[h_a(x) = h_a(y)] = 1/p \le 1/n$.

Number Theory Facts

Fact. Let p be prime, and let $z \neq 0 \mod p$. Then $\alpha z = m \mod p$ has at most one solution $0 \le \alpha < p$.

Pf

- . Suppose α and β are two different solutions.
- Then $(\alpha \beta)z = 0 \mod p$; hence $(\alpha \beta)z$ is divisible by p.
- Since $z \neq 0$ mod p, we know that z is not divisible by p; it follows that $(\alpha \beta)$ is divisible by p.
- This implies $\alpha = \beta$. •

Bonus fact. Can replace "at most one" with "exactly one" in above fact.

Pf idea. Euclid's algorithm.

51

13.9 Chernoff Bounds

Chernoff Bounds (above mean)

Theorem. Suppose $X_1, ..., X_n$ are independent 0-1 random variables. Let $X = X_1 + ... + X_n$. Then for any $\mu \ge E[X]$ and for any $\delta > 0$, we have

$$\Pr[X > (1+\delta)\mu] < \left[\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right]$$

sum of independent 0-1 random variables

Pf. We apply a number of simple transformations.

• For any t > 0,

$$\begin{split} \Pr[X > (1+\delta)\mu] &= \Pr\left[e^{tX} > e^{t(1+\delta)\mu}\right] \leq & e^{-t(1+\delta)\mu} \cdot E[e^{tX}] \\ \uparrow & \uparrow \\ f(x) = e^{tX} \text{ is monotone in } x & \text{Markov's inequality: } \Pr[X > a] \leq E[X] / a \end{split}$$

definition of X independence

Chernoff Bounds (below mean)

Theorem. Suppose $X_1, ..., X_n$ are independent 0-1 random variables. Let X = X_1 + ... + X_n . Then for any $\mu \le E[X]$ and for any 0 < δ < 1, we have

$$\Pr[X < (1-\delta)\mu] < e^{-\delta^2 \mu/2}$$

Pf idea. Similar.

Remark. Not quite symmetric since only makes sense to consider $\delta < 1$.

Chernoff Bounds (above mean)

Pf. (cont)

• Let $p_i = Pr[X_i = 1]$. Then,

$$\begin{array}{lll} E[e^{t\,X_i}] &=& p_ie^t + (1-p_i)e^0 &=& 1+p_i(e^t-1) &\leq& e^{p_i(e^t-1)} \\ && \uparrow \\ && \text{for any } \alpha \geq 0, 1 \text{+} \alpha \leq e^\alpha \end{array}$$

Combining everything:

$$\begin{split} \Pr[X>(1+\delta)\mu] & \leq \ e^{-t(1+\delta)\mu} \prod_i E[e^{\ tX_i}] \ \leq \ e^{-t(1+\delta)\mu} \prod_i e^{\ p_i(e^i-1)} \ \leq \ e^{-t(1+\delta)\mu} \ e^{\mu(e^i-1)} \\ & \uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow \\ \text{previous slide} & \text{inequality above} \qquad \qquad \Sigma_i \ p_i = \mathbb{E}[X] \ \leq \ \mu \end{split}$$

• Finally, choose $t = \ln(1 + \delta)$. •

13.10 Load Balancing

Load Balancing

Load balancing. System in which m jobs arrive in a stream and need to be processed immediately on n identical processors. Find an assignment that balances the workload across processors.

Centralized controller. Assign jobs in round-robin manner. Each processor receives at most m/n jobs.

Decentralized controller. Assign jobs to processors uniformly at random. How likely is it that some processor is assigned "too many"

Load Balancing

- Let X_i = number of jobs assigned to processor i.
- Let $Y_{ij} = 1$ if job j assigned to processor i, and 0 otherwise.
- We have E[Y;;] = 1/n
- Thus, $X_i = \sum_j Y_{i,j}$, and $\mu = E[X_i] = 1$.

 Applying Chernoff bounds with $\delta = c 1$ yields $\Pr[X_i > c] < \frac{e^{c-1}}{c^c}$
- Let $\gamma(n)$ be number x such that $x^x = n$, and choose $c = e \gamma(n)$.

$$\Pr[X_i > c] < \frac{e^{c-1}}{c^c} < \left(\frac{e}{c}\right)^c = \left(\frac{1}{\gamma(n)}\right)^{e\gamma(n)} < \left(\frac{1}{\gamma(n)}\right)^{2\gamma(n)} = \frac{1}{n^2}$$

• Union bound \Rightarrow with probability ≥ 1 - 1/n no processor receives more than e $\gamma(n) = \Theta(\log n / \log \log n)$ jobs.

> Fact: this bound is asymptotically tight: with high probability, some processor receives ⊕(logn / log log n)

Load Balancing: Many Jobs

Theorem. Suppose the number of jobs m = 16n ln n. Then on average, each of the n processors handles μ = 16 ln n jobs. With high probability every processor will have between half and twice the average load.

- Let X_i , Y_{ii} be as before.
- Applying Chernoff bounds with δ = 1 yields

$$\Pr[X_i > 2\mu] < \left(\frac{e}{4}\right)^{16n \ln n} < \left(\frac{1}{e}\right)^{\ln n} = \frac{1}{n^2}$$

$$\Pr[X_i < \frac{1}{2}\mu] < e^{-\frac{1}{2}(\frac{1}{2})^2(16n\ln n)} = \frac{1}{n^2}$$

 Union bound ⇒ every processor has load between half and twice the average with probability ≥ 1 - 2/n.

Extra Slides

13.5 Randomized Divide-and-Conquer

Quicksort Running time. [Best case.] Select the median element as the splitter: quicksort makes Θ(n log n) comparisons. [Worst case.] Select the smallest element as the splitter: quicksort makes Θ(n²) comparisons. Randomize. Protect against worst case by choosing splitter at random. Intuition. If we always select an element that is bigger than 25% of the elements and smaller than 25% of the elements, then quicksort makes Θ(n log n) comparisons. Notation. Label elements so that x1 < x2 < ... < xn.

```
Quicksort

Sorting. Given a set of n distinct elements S, rearrange them in ascending order.

RandomizedQuicksort(S) {
    if |S| = 0 return
        choose a splitter a; ∈ S uniformly at random foreach (a ∈ S) {
        if (a < a;) put a in S-
        else if (a > a;) put a in S+
    }
    RandomizedQuicksort(S-) output a;
    RandomizedQuicksort(S+)
}

Remark. Can implement in-place.
```


Quicksort: BST Representation of Splitters

Observation. Element only compared with its ancestors and descendants.

- x_2 and x_7 are compared if their lca = x_2 or x_7 .
- x_2 and x_7 are not compared if their lca = x_3 or x_4 or x_5 or x_6 .

Claim. $Pr[x_i \text{ and } x_j \text{ are compared}] = 2 / |j - i + 1|$.

Quicksort: Expected Number of Comparisons

Theorem. Expected # of comparisons is $O(n \log n)$.

$$\sum_{1 \le i < j \le n} \frac{2}{j - i + 1} = 2 \sum_{i=1}^{n} \sum_{j=2}^{i} \frac{1}{j} \le 2n \sum_{j=1}^{n} \frac{1}{j} \approx 2n \prod_{x=1}^{n} \frac{1}{x} dx = 2n \ln n$$

probability that i and j are compared

Theorem. [Knuth 1973] Stddev of number of comparisons is $\sim 0.65N$.

Ex. If n = 1 million, the probability that randomized quicksort takes less than 4n ln n comparisons is at least 99.94%.

Chebyshev's inequality. $Pr[|X - \mu| \ge k\delta] \le 1 / k^2$.