CS 580: Algorithm Design and Analysis

Jeremiah Blocki
Purdue University
Spring 2018

Reminder: Homework 6 has been released.

Weighted Vertex Cover

Theorem. 2-approximation algorithm for weighted vertex cover via LP rounding.

Theorem. [Dinur-Safra 2001] If $P \neq NP$, then no ρ-approximation for $\rho < 1.3607$, even with unit weights.

10 \(\sqrt{5} \) - 21

Open research problem. Close the gap.

Unique Games Conjecture: Implies there is no ρ-approximation for $\rho < 1.99999$, even with unit weights

Disagreement among about validity of this conjecture

11.8 Knapsack Problem

Polynomial Time Approximation Scheme

PTAS. $$(1 + \varepsilon)$$-approximation algorithm for any constant $\varepsilon > 0$.

- Load balancing. [Hochbaum-Shmoys 1987]
- Euclidean TSP. [Arora 1996]

Consequence. PTAS produces arbitrarily high quality solution, but trades off accuracy for time.

This section. PTAS for knapsack problem via rounding and scaling.
Knapsack Problem

Knapsack problem.
- Given \(n \) objects and a "knapsack."
- Item \(i \) has value \(v_i > 0 \) and weighs \(w_i > 0 \).
- Knapsack can carry weight up to \(W \).
- Goal: fill knapsack so as to maximize total value.

Ex: \(\{3, 4\} \) has value 40.

<table>
<thead>
<tr>
<th>Item</th>
<th>Value</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>18</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>22</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>28</td>
<td>7</td>
</tr>
</tbody>
</table>

\(W = 11 \)

Knapsack Problem: Dynamic Programming 1

Def. \(\text{OPT}(i, w) = \max \text{ value subset of items } 1, \ldots, i \text{ with weight limit } w. \)
- Case 1: \(\text{OPT} \) does not select item \(i \).
 - \(\text{OPT} \) selects best of \(1, \ldots, i-1 \) using up to weight limit \(w \)
- Case 2: \(\text{OPT} \) selects item \(i \).
 - new weight limit = \(w - w_i \)
 - \(\text{OPT} \) selects best of \(1, \ldots, i-1 \) using up to weight limit \(w - w_i \)

\[
\text{OPT}(i, w) = \begin{cases}
0 & \text{if } i = 0 \\
\text{OPT}(i-1, w) & \text{if } w_i > w \\
\max \{ \text{OPT}(i-1, w), v_i + \text{OPT}(i-1, w-w_i) \} & \text{otherwise}
\end{cases}
\]

Running time. \(O(n W) \).
- \(W = \) weight limit.
- \(\text{Not polynomial} \) in input size!

Knapsack Problem: Dynamic Programming II

Def. \(\text{OPT}(i, v) = \min \text{ weight subset of items } 1, \ldots, i \text{ that yields value exactly } v \).
- Case 1: \(\text{OPT} \) does not select item \(i \).
 - \(\text{OPT} \) selects best of \(1, \ldots, i-1 \) that achieves exactly value \(v \)
- Case 2: \(\text{OPT} \) selects item \(i \).
 - consumes weight \(w_i \), new value needed = \(v - v_i \)
 - \(\text{OPT} \) selects best of \(1, \ldots, i-1 \) that achieves exactly value \(v \)

\[
\text{OPT}(i, v) = \begin{cases}
0 & \text{if } v = 0 \\
\infty & \text{if } i = 0, v > 0 \\
\text{OPT}(i-1, v) & \text{if } v_i > v \\
\min \{ \text{OPT}(i-1, v), w_i + \text{OPT}(i-1, v-v_i) \} & \text{otherwise}
\end{cases}
\]

Running time. \(O(n V^*) = O(n^2 V_{\max}) \).
- \(V^* = \text{optimal value} = \max \text{ value } v \text{ such that } \text{OPT}(n, v) \leq W. \)
- \(\text{Not polynomial} \) in input size!
Knapsack: FPTAS

Intuition for approximation algorithm.
- Round all values up to lie in smaller range.
- Run dynamic programming algorithm on rounded instance.
- Return optimal items in rounded instance.

<table>
<thead>
<tr>
<th>Item</th>
<th>Value</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>934,221</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>5,956,342</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>17,810,013</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>21,217,800</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>27,343,199</td>
<td>7</td>
</tr>
</tbody>
</table>

$W = 11$

original instance

Knapsack: FPTAS

Knapsack FPTAS. Round up all values: $\tau = \left\lceil \frac{v_i}{\theta} \right\rceil, 0$

Theorem. If S is solution found by our algorithm and S^* is any other feasible solution then

$\sum_{i \in S^*} v_i \geq \sum_{i \in S} \theta \left\lceil \frac{v_i}{\theta} \right\rceil$

Pf. Let S^* be any feasible solution satisfying weight constraint.

- $\sum_{i \in S^*} v_i \leq \sum_{i \in S^*} \theta \left\lceil \frac{v_i}{\theta} \right\rceil$ always round up
- $\sum_{i \in S} \theta \left\lceil \frac{v_i}{\theta} \right\rceil$ solve rounded instance optimally
- $\sum_{i \in S} (\theta \left\lceil \frac{v_i}{\theta} \right\rceil)$ never round up by more than θ
- $\sum_{i \in S} v_i + n\theta$ $|S| \leq n$
- $\sum_{i \in S} v_i + n\theta$ $\theta \leq \sum_{i \in S} v_i + n\theta$ of alg can take v_{\max}
- $(1 + \epsilon) \sum_{i \in S} \theta \left\lceil \frac{v_i}{\theta} \right\rceil$ if alg can take v_{\max}

$\hat{v}_{\max} = \left\lceil \frac{v_{\max}}{\theta} \right\rceil = \frac{n}{\epsilon}$

Intuition. τ close to v so optimal solution using τ is nearly optimal; \hat{v} small and integral so dynamic programming algorithm is fast.

Running time. $O(n^3 / \epsilon)$
- Dynamic program II running time is $O(n^2 \hat{v}_{\max})$, where $\hat{v}_{\max} = \left\lceil \frac{v_{\max}}{\theta} \right\rceil = \frac{n}{\epsilon}$
Randomization

Algorithmic design patterns.
• Greedy.
• Divide-and-conquer.
• Dynamic programming.
• Network flow.
• Randomization.

Randomization. Allow fair coin flip in unit time.

Why randomize? Can lead to simplest, fastest, or only known algorithm for a particular problem.

Ex. Symmetry breaking protocols, graph algorithms, quicksort, hashing, load balancing, Monte Carlo integration, cryptography.

13.1 Contention Resolution

Contestation Resolution in a Distributed System

Contestation resolution. Given n processes P1, ..., Pn, each competing for access to a shared database. If two or more processes access the database simultaneously, all processes are locked out. Devise protocol to ensure all processes get through on a regular basis.

Restriction. Processes can’t communicate.

Challenge. Need symmetry-breaking paradigm.

Contention Resolution: Randomized Protocol

Protocol. Each process requests access to the database at time t with probability p = 1/n.

Claim. Let S(i, t) = event that process i succeeds in accessing the database at time t. Then 1/(e · n) ≤ Pr[S(i, t)] ≤ 1/(2n).

Pf. By independence, Pr[S(i, t)] = p (1-p)n-1.

• Setting p = 1/n, we have Pr[S(i, t)] = 1/n (1 - 1/n)n-1.

Useful facts from calculus. As n increases from 2, the function:
• (1 - 1/n)n converges monotonically from 1/4 up to 1/e
• (1 - 1/n)n-1 converges monotonically from 1/2 down to 1/e.
Contestation Resolution: Randomized Protocol

Claim. The probability that process \(i \) fails to access the database in \(en \) rounds is at most \(1/e \). After \(en(\ln n) \) rounds, the probability is at most \(n^{-c} \).

Pf. Let \(F[i, t] \) = event that process \(i \) fails to access database in rounds \(1 \) through \(t \). By independence and previous claim, we have

\[
Pr[F(i, t)] \leq (1 - 1/(en))^t.
\]

- Choose \(t = \lceil e \cdot n \rceil \): \(Pr[F(i, t)] \leq \left(1 - \frac{1}{en}\right)^{\lceil e \cdot n \rceil} \leq \left(1 - \frac{1}{en}\right)^n \leq \frac{1}{e} \)
- Choose \(t = \lceil e \cdot n \rceil (\ln n) \): \(Pr[F(i, t)] \leq \left(\frac{1}{e}\right)^{\ln n} = n^{-c} \)

Global Minimum Cut

Global min cut. Given a connected, undirected graph \(G = (V, E) \) find a cut \((A, B) \) of minimum cardinality.

Applications. Partitioning items in a database, identify clusters of related documents, network reliability, network design, circuit design, TSP solvers.

Network flow solution.
- Replace every edge \((u, v)\) with two antiparallel edges \((u, v)\) and \((v, u)\).
- Pick some vertex \(s \) and compute \(\min s-v \) cut separating \(s \) from each other vertex \(v \in V \).

False intuition. Global min-cut is harder than min s-t cut.
Contraction Algorithm

Contraction Algorithm. [Karger 1995]

- Pick an edge \(e = (u, v) \) uniformly at random.
- **Contract** edge \(e \):
 - replace \(u \) and \(v \) by single new super-node \(w \)
 - preserve edges, updating endpoints of \(u \) and \(v \) to \(w \)
 - keep parallel edges, but delete self-loops
- Repeat until graph has just two nodes \(v_1 \) and \(v_2 \).
- Return the cut (all nodes that were contracted to form \(v_j \)).

Claim. The contraction algorithm returns a min cut with prob \(\geq 2/n^2 \).

Pf. Consider a global min-cut \((A^*, B^*)\) of \(G \). Let \(F^* \) be edges with one endpoint in \(A^* \) and the other in \(B^* \). Let \(k = |F^*| = \text{size of min cut} \).

- In first step, algorithm contracts an edge in \(F^* \) with prob \(k / |E| \).
- Every node has degree \(\geq k \) since otherwise \((A^*, B^*)\) would not be min-cut. \(\Rightarrow |E| \geq \frac{1}{2}kn \).
- Thus, algorithm contracts an edge in \(F^* \) with prob \(\leq 2/n \).

Amplification. To amplify the probability of success, run the contraction algorithm many times.

Claim. If we repeat the contraction algorithm \(n^2 \ln n \) times with independent random choices, the probability of failing to find the global min-cut is at most \(1/n^2 \).

Pf. Consider a global min-cut \((A^*, B^*)\) of \(G \). Let \(F^* \) be edges with one endpoint in \(A^* \) and the other in \(B^* \). Let \(k = |F^*| = \text{size of min cut} \).

- Let \(G' \) be graph after \(j \) iterations. There are \(n' = n - j \) supernodes.
- Suppose no edge in \(F^* \) has been contracted. The min-cut in \(G' \) is still \(k \).
- Since value of min-cut is \(k \), \(|E'| \geq \frac{1}{2}kn' \).
- Thus, algorithm contracts an edge in \(F^* \) with prob \(\leq 2/n' \).
- Let \(E_j \) be event that an edge in \(F^* \) is not contracted in iteration \(j \).
 \[
 \Pr[E_1 \cap E_2 \cap \cdots \cap E_{n-2}] = \Pr[E_1] \times \Pr[E_2 | E_1] \times \cdots \times \Pr[E_{n-2} | E_1 \cap E_2 \cdots \cap E_{n-3}]
 \geq \left(\frac{1}{2} \right)^{n-2} \left(\frac{1}{2} \right)^{n-2} \cdots \left(\frac{1}{2} \right)^{n-2}
 = \left(\frac{1}{2} \right)^{n-2} \left(\frac{1}{2} \right) \left(\frac{1}{2} \right) \left(\frac{1}{2} \right)
 = \frac{1}{2^{n-2}} \left(\frac{1}{2} \right)^{3/2}
 \geq \frac{1}{n^2}
 \]

Global Min Cut: Context

Remark. Overall running time is slow since we perform $\Theta(n^2 \log n)$ iterations and each takes $\Omega(m)$ time.

Improvement. [Karger-Stein 1996] $O(n^2 \log^3 n)$.
- Early iterations are less risky than later ones: probability of contracting an edge in min cut hits 50% when $n / \sqrt{2}$ nodes remain.
- Run contraction algorithm until $n / \sqrt{2}$ nodes remain.
- Run contraction algorithm twice on resulting graph, and return best of two cuts.

Extensions. Naturally generalizes to handle positive weights.

Best known. [Karger 2000] $O(m \log^3 n)$.

13.3 Linearity of Expectation

Expectation. Given a discrete random variables X, its expectation $E[X]$ is defined by:

$$E[X] = \sum_{j=0}^{\infty} j \cdot \Pr[X = j]$$

Waiting for a first success. Coin is heads with probability p and tails with probability $1-p$. How many independent flips X until first heads?

$$E[X] = \sum_{j=0}^{\infty} j \cdot \Pr[X = j] = \sum_{j=0}^{\infty} j \cdot (1-p)^{j-1} \cdot p = \frac{p}{1-p} \cdot \frac{1}{1-p} = \frac{1}{p}$$

Expectation: Two Properties

Useful property. If X is a 0/1 random variable, $E[X] = \Pr[X = 1]$.

$$E[X] = \sum_{j=0}^{\infty} j \cdot \Pr[X = j] = \sum_{j=0}^{\infty} j \cdot \Pr[X = j] = \Pr[X=1]$$

Linearity of expectation. Given two random variables \hat{X} and \hat{Y} defined over the same probability space, $E[\hat{X} + \hat{Y}] = E[\hat{X}] + E[\hat{Y}]$.

Decouples a complex calculation into simpler pieces.
Guessing Cards

Game. Shuffle a deck of n cards; turn them over one at a time; try to guess each card.

Memoryless guessing. No psychic abilities; can’t even remember what’s been turned over already. Guess a card from full deck uniformly at random.

Claim. The expected number of correct guesses is 1.

Pf. (surprisingly effortless using linearity of expectation)
- Let $X_i = 1$ if ith prediction is correct and 0 otherwise.
- Let $X = \text{number of correct guesses} = X_1 + \ldots + X_n$.
- $E[X_i] = \Pr[X_i = 1] = 1/n$.
- $E[X] = E[X_1] + \ldots + E[X_n] = 1/n + \ldots + 1/n = 1$.

Coupon Collector

Coupon collector. Each box of cereal contains a coupon. There are n different types of coupons. Assuming all boxes are equally likely to contain each coupon, how many boxes before you have ≥ 1 coupon of each type?

Claim. The expected number of steps is $\Theta(n \log n)$.

Pf.
- Phase $j = \text{time between } j \text{ and } j+1 \text{ distinct coupons}.$
- Let $X_j = \text{number of steps you spend in phase } j$.
- Let $X = \text{number of steps in total} = X_0 + X_1 + \ldots + X_{n-1}$.

$$E[X] = \sum_{j=0}^{n-1} E[X_j] = \sum_{j=0}^{n-1} \frac{n}{n-j} = n H(n)$$

$$\ln(n+1) < H(n) < 1 + \ln n$$
Maximum 3-Satisfiability

MAX-3SAT. Given 3-SAT formula, find a truth assignment that satisfies as many clauses as possible.

\[
\begin{align*}
C_1 &= x_2 \lor x_3 \lor \overline{x_4} \\
C_2 &= x_2 \lor x_3 \lor \overline{x_4} \\
C_3 &= \overline{x_1} \lor x_2 \lor x_4 \\
C_4 &= \overline{x_1} \lor x_2 \lor x_4 \\
C_5 &= x_1 \lor x_2 \lor \overline{x_4}
\end{align*}
\]

Remark. NP-hard search problem.

Simple idea. Flip a coin, and set each variable true with probability \(\frac{1}{2}\), independently for each variable.

Maximum 3-Satisfiability: Analysis

Claim. Given a 3-SAT formula with \(k\) clauses, the expected number of clauses satisfied by a random assignment is \(7k/8\).

Pf. Consider random variable \(Z_j\) such that:

- Let \(Z\) = weight of clauses satisfied by assignment \(Z_j\)

\[
\begin{align*}
E[Z] &= \sum_{j=1}^{k} E[Z_j] \\
&= \sum_{j=1}^{k} \Pr[\text{clause } C_j \text{ is satisfied}] \\
&= \frac{7}{8}k
\end{align*}
\]

The Probabilistic Method

Corollary. For any instance of 3-SAT, there exists a truth assignment that satisfies at least a \(7/8\) fraction of all clauses.

Pf. Random variable is at least its expectation some of the time.

Probabilistic method. We showed the existence of a non-obvious property of 3-SAT by showing that a random construction produces it with positive probability!

Maximum 3-Satisfiability: Analysis

Q. Can we turn this idea into a \(7/8\)-approximation algorithm? In general, a random variable can almost always be below its mean.

Lemma. The probability that a random assignment satisfies \(\geq 7k/8\) clauses is at least \(1/(8k)\).

Pf. Let \(p_j\) be probability that exactly \(j\) clauses are satisfied; let \(p\) be probability that \(\geq 7k/8\) clauses are satisfied.

\[
\begin{align*}
\frac{7}{8}k &= E[Z] = \sum_{j=0}^{k} j p_j \\
&= \sum_{j=7/8k}^{k} j p_j + \sum_{j<7/8k} j p_j \\
&\leq \left(\frac{7}{8} - \frac{1}{2}\right) \sum_{j=7/8k}^{k} p_j + k \sum_{j=7/8k}^{k} p_j \\
&\leq \left(\frac{7}{8} - \frac{1}{2}\right) \cdot 1 + 1 \cdot p \\
\end{align*}
\]

Rearranging terms yields \(p \geq 1/(8k)\).
Maximum 3-Satisfiability: Analysis

Johnson’s algorithm. Repeatedly generate random truth assignments until one of them satisfies $\geq 7k/8$ clauses.

Theorem. Johnson’s algorithm is a 7/8-approximation algorithm.

Pf. By previous lemma, each iteration succeeds with probability at least $1/(8k)$. By the waiting-time bound, the expected number of trials to find the satisfying assignment is at most $8k$.

Monte Carlo vs. Las Vegas Algorithms

Monte Carlo algorithm. Guaranteed to run in poly-time, likely to find correct answer.

Ex: Contraction algorithm for global min cut.

Las Vegas algorithm. Guaranteed to find correct answer, likely to run in poly-time.

Ex: Randomized quicksort, Johnson’s MAX-3SAT algorithm.

Stop algorithm after a certain point

Remark. Can always convert a Las Vegas algorithm into Monte Carlo, but no known method to convert the other way.

Maximum Satisfiability

Extensions.
- Allow one, two, or more literals per clause.
- Find max weighted set of satisfied clauses.

Theorem. [Asano-Williamson 2000] There exists a 0.784-approximation algorithm for MAX-SAT.

Theorem. [Karloff-Zwick 1997, Zwick+computer 2002] There exists a 7/8-approximation algorithm for version of MAX-3SAT where each clause has at most 3 literals.

Theorem. [Håstad 1997] Unless $P = NP$, no ρ-approximation algorithm for MAX-3SAT (and hence MAX-SAT) for any $\rho > 7/8$.

Monte Carlo

Monte Carlo algorithm. Guaranteed to run in poly-time, likely to find correct answer.

Ex: Contraction algorithm for global min cut.

Las Vegas

Las Vegas algorithm. Guaranteed to find correct answer, likely to run in poly-time.

Ex: Randomized quicksort, Johnson’s MAX-3SAT algorithm.

Stop algorithm after a certain point

Remark. Can always convert a Las Vegas algorithm into Monte Carlo, but no known method to convert the other way.

Monte Carlo vs. Las Vegas Algorithms

Monte Carlo algorithm. Guaranteed to run in poly-time, likely to find correct answer.

Ex: Contraction algorithm for global min cut.

Las Vegas algorithm. Guaranteed to find correct answer, likely to run in poly-time.

Ex: Randomized quicksort, Johnson’s MAX-3SAT algorithm.

Stop algorithm after a certain point

Remark. Can always convert a Las Vegas algorithm into Monte Carlo, but no known method to convert the other way.

RP and ZPP

RP. [Monte Carlo] Decision problems solvable with one-sided error in poly-time.

One-sided error.
- If the correct answer is no, always return no.
- If the correct answer is yes, return yes with probability $\geq \frac{1}{2}$.

ZPP. [Las Vegas] Decision problems solvable in expected poly-time.

Remark. Can decrease probability of false negative to 2^{-100} by 100 independent repetitions running time can be unbounded, but on average it is fast

Theorem. $P \subseteq ZPP \subseteq RP \subseteq NP$.

Fundamental open questions. To what extent does randomization help? Does $P \subseteq ZPP$? Does $ZPP \subseteq RP$? Does $RP \subseteq NP$?
13.6 Universal Hashing

Dictionary Data Type

Dictionary. Given a universe U of possible elements, maintain a subset $S \subseteq U$ so that inserting, deleting, and searching in S is efficient.

Dictionary interface.
- Create(): Initialize a dictionary with $S = \emptyset$.
- Insert(u): Add element $u \in U$ to S.
- Delete(u): Delete u from S, if u is currently in S.
- Lookup(u): Determine whether u is in S.

Challenge. Universe U can be extremely large so defining an array of size $|U|$ is infeasible.

Applications. File systems, databases, Google, compilers, checksums, P2P networks, associative arrays, cryptography, web caching, etc.

Hashing

Hash function. $h : U \rightarrow \{ 0, 1, ..., n-1 \}$.

Hashing. Create an array H of size n. When processing element u, access array element $H[h(u)]$.

Collision. When $h(u) = h(v)$ but $u \neq v$.
- A collision is expected after $\Theta(n)$ random insertions. This phenomenon is known as the "birthday paradox."
- Separate chaining: $H[i]$ stores linked list of elements u with $h(u) = i$.

Ad Hoc Hash Function

Ad hoc hash function.

```java
int h(String s, int n) {
    int hash = 0;
    for (int i = 0; i < s.length(); i++)
        hash = (31 * hash) + s[i];
    return hash % n;
}
```

Deterministic hashing. If $|U| \geq n^2$, then for any fixed hash function h, there is a subset $S \subseteq U$ of n elements that all hash to same slot. Thus, $\Theta(n)$ time per search in worst-case.

Q. But isn’t ad hoc hash function good enough in practice?
Algorithmic Complexity Attacks

When can’t we live with ad hoc hash function?
- Obvious situations: aircraft control, nuclear reactors.
- Surprising situations: denial-of-service attacks.

Real world exploits. [Crosby-Wallach 2003]
- Bro server: send carefully chosen packets to DOS the server, using less bandwidth than a dial-up modem
- Perl 5.8.0: insert carefully chosen strings into associative array.
- Linux 2.4.20 kernel: save files with carefully chosen names.

Hashing Performance

Idealistic hash function. Maps m elements uniformly at random to n hash slots.
- Running time depends on length of chains.
- Average length of chain $= \alpha = m/n$.
- Choose $n = m \implies$ on average $O(1)$ per insert, lookup, or delete.

Challenge. Achieve idealized randomized guarantees, but with a hash function where you can easily find items where you put them.

Approach. Use randomization in the choice of h.
- Adversary learns the randomized algorithm you’re using, but doesn’t know random choices that the algorithm makes.

Universal Hashing

Universal class of hash functions. [Carter-Wegman 1980s]
- For any pair of elements $u, v \in U$, $Pr_{h \in H}(h(u) = h(v)) \leq 1/n$
 - Can select random h efficiently.
 - Can compute $h(u)$ efficiently.

Ex. $U = \{a, b, c, d, e, f\}$, $n = 2$.

<table>
<thead>
<tr>
<th>$h(a)$</th>
<th>$h(b)$</th>
<th>$h(c)$</th>
<th>$h(d)$</th>
<th>$h(e)$</th>
<th>$h(f)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

$H \ni h \implies Pr_{h \in H}(h(a) = h(b)) = 1/2$
$Pr_{h \in H}(h(a) = h(c)) = 1/2$
$Pr_{h \in H}(h(a) = h(d)) = 1/2$
$Pr_{h \in H}(h(a) = h(e)) = 1/2$
$Pr_{h \in H}(h(a) = h(f)) = 0$

Universal hashing property. Let H be a universal class of hash functions; let $h \in H$ be chosen uniformly at random from H; and let $u \in U$. For any subset $S \subseteq U$ of size at most n, the expected number of items in S that collide with u is at most 1.

Pf. For any element $s \in S$, define indicator random variable $X_s = 1$ if $h(s) = h(u)$ and 0 otherwise. Let X be a random variable counting the total number of collisions with u.

$$E[X] = E[\sum_{s \in S} X_s] = \sum_{s \in S} E[X_s] = \sum_{s \in S} Pr[X_s = 1] = \sum_{s \in S} \frac{1}{2} = |S| \frac{1}{2} \leq 1$$

(assumes $u \notin S$)
Designing a Universal Family of Hash Functions

Theorem. [Chebyshev 1850] There exists a prime between n and $2n$.

Modulus. Choose a prime number $p \approx n$.

Integer encoding. Identify each element $u \in U$ with a base-p integer of r digits: $x = (x_1, x_2, ..., x_r)$.

Hash function. Let A be the set of all r-digit, base-p integers. For each $a = (a_1, a_2, ..., a_r)$ where $0 \leq a_i < p$, define

$$h_a(x) = \left(\sum_{i=1}^{r} a_i x_i \right) \mod p$$

Hash function family. $H = \{ h_a : a \in A \}$.

Designing a Universal Class of Hash Functions

Theorem. $H = \{ h_a : a \in A \}$ is a universal class of hash functions.

Pf. Let $x = (x_1, x_2, ..., x_r)$ and $y = (y_1, y_2, ..., y_r)$ be two distinct elements of U. We need to show that $\Pr[h_a(x) = h_a(y)] \leq 1/n$.

- Since $x \neq y$, there exists an integer j such that $x_j \neq y_j$.
- We have $h_a(x) = h_a(y)$ iff

$$a_j (y_j - x_j) \equiv \sum_{i \neq j} a_i (x_i - y_i) \mod p.$$

- Can assume a was chosen uniformly at random by first selecting all coordinates a_i where $i \neq j$, then selecting a_j at random. Thus, we can assume a_j is fixed for all coordinates $i \neq j$.
- Since p is prime, $a_j z = m \mod p$ has at most one solution among p possibilities.
- Thus $\Pr[h_a(x) = h_a(y)] = 1/p \leq 1/n$. •

Number Theory Facts

Fact. Let p be prime, and let $z \neq 0 \mod p$. Then $\alpha z = m \mod p$ has at most one solution $0 \leq \alpha < p$.

Pf.
- Suppose α and β are two different solutions.
- Then $(\alpha - \beta)z = 0 \mod p$; hence $(\alpha - \beta)z$ is divisible by p.
- Since $z \neq 0 \mod p$, we know that z is not divisible by p; it follows that $(\alpha - \beta)$ is divisible by p.
- This implies $\alpha = \beta$. •

Bonus fact. Can replace "at most one" with "exactly one" in above fact.

Pf idea. Euclid’s algorithm.

13.9 Chernoff Bounds
Chernoff Bounds (above mean)

Theorem. Suppose X_1, \ldots, X_n are independent 0-1 random variables. Let $X = X_1 + \ldots + X_n$. Then for any $\mu \geq E[X]$ and for any $\delta > 0$, we have

$$P[X > (1 + \delta)\mu] < \left(\frac{e^\delta}{(1 + \delta)^\delta}\right)^\mu.$$

Pf. We apply a number of simple transformations.

- For any $t > 0$,
 $$P[X > (1 + \delta)\mu] = P[e^{tX} > e^{t(1+\delta)\mu}] \leq e^{-t(1+\delta)\mu} \cdot E[e^{tX}].$$

- $f(x) = e^t$ is monotone in x.
- Markov's inequality: $P[X > a] \leq E[X]/a$.

- Now, $E[e^{tX}] = E[e^{t\sum X}] = \prod_i E[e^{tX_i}]$
 $$= e^{t\sum pi} = e^{t\mu}.$$

- Definition of X and independence.

- Combining everything:
 $$P[X > (1 + \delta)\mu] \leq e^{-t(1+\delta)\mu} \cdot \prod_i E[e^{tX_i}] \leq e^{-t(1+\delta)\mu} \cdot e^{t\mu} \leq e^{-t(1+\delta)\mu} \cdot e^{t\mu}.$$

- Finally, choose $t = \ln(1 + \delta)$.

Chernoff Bounds (below mean)

Theorem. Suppose X_1, \ldots, X_n are independent 0-1 random variables. Let $X = X_1 + \ldots + X_n$. Then for any $\mu \leq E[X]$ and for any $0 < \delta < 1$, we have

$$P[X < (1 - \delta)\mu] < e^{-\delta^2\mu/2}.$$

Pf idea. Similar.

Remark. Not quite symmetric since only makes sense to consider $\delta < 1$.

13.10 Load Balancing
Load Balancing

Load balancing. System in which m jobs arrive in a stream and need to be processed immediately on n identical processors. Find an assignment that balances the workload across processors.

Centralized controller. Assign jobs in round-robin manner. Each processor receives at most \(\lceil \frac{m}{n} \rceil \) jobs.

Decentralized controller. Assign jobs to processors uniformly at random. How likely is it that some processor is assigned "too many" jobs?

Load Balancing: Many Jobs

Theorem. Suppose the number of jobs m = 16n ln n. Then on average, each of the n processors handles \(\mu = 16 \ln n \) jobs. With high probability every processor will have between half and twice the average load.

Pf.
- Let \(X_i, Y_{ij} \) be as before.
- Applying Chernoff bounds with \(\delta = 1 \) yields

\[
\Pr[X_i > 2\mu] < \left(\frac{e}{4} \right)^{\mu/2} < \left(\frac{1}{2} \right)^{1/n} = \frac{1}{n}
\]

\[
\Pr[X_i < \frac{1}{2}\mu] < e^{2\mu \gamma(n)} = \frac{1}{n}
\]
- Union bound \(\Rightarrow \) every processor has load between half and twice the average with probability \(\geq 1 - 2/n \).

Analysis.
- Let \(X_i \) = number of jobs assigned to processor i.
- Let \(Y_{ij} = 1 \) if job j assigned to processor i, and 0 otherwise.
- We have \(E[Y_{ij}] = 1/n \).
- Thus, \(X_i = \sum_j Y_{ij} \) and \(\mu = E[X_i] = 1 \).
- Applying Chernoff bounds with \(\delta = c - 1 \) yields

\[
\Pr[X_i > e^{c-1}] < \left(\frac{e}{c} \right)^{\mu/c} < \left(\frac{1}{\gamma(n)} \right)^{\mu/c} = \frac{1}{n}
\]

- Let \(\gamma(n) \) be number x such that \(x^x = n \), and choose \(c = e \gamma(n) \).

\[
\Pr[X_i > e^{c-1}] < \frac{e^{c-1}}{c} < \left(\frac{1}{\gamma(n)} \right)^{\mu/c} < \left(\frac{1}{\gamma(n)} \right)^{\mu/c} = \frac{1}{n}
\]
- Union bound \(\Rightarrow \) with probability \(\geq 1 - 1/n \) no processor receives more than \(e \gamma(n) = \Theta(\log n / \log \log n) \) jobs.

\[
\Pr[X_i > e^{c-1}] < \left(\frac{e}{c} \right)^{\mu/c} < \left(\frac{1}{\gamma(n)} \right)^{\mu/c} = \frac{1}{n}
\]

Fact: this bound is asymptotically tight: with high probability, some processor receives \(\Theta(\log n / \log \log n) \) jobs.

Extra Slides
13.5 Randomized Divide-and-Conquer

Quicksort

Sorting. Given a set of n distinct elements S, rearrange them in ascending order.

Quicksort(S) {
 if $|S| = 0$ return
 choose a splitter $a_i \in S$ uniformly at random
 foreach ($a \in S$) {
 if ($a < a_i$) put a in S^-
 else if ($a > a_i$) put a in S^+
 }
 RandomizedQuicksort(S^-)
 output a_i
 RandomizedQuicksort(S^+)
}

Remark. Can implement in-place.

$O(| \log n |)$ extra space

Quicksort

Running time.
- [Best case.] Select the median element as the splitter:
 quicksort makes $\Omega(|n \log n |)$ comparisons.
- [Worst case.] Select the smallest element as the splitter:
 quicksort makes $\Omega(|n^2 |)$ comparisons.

Randomize. Protect against worst case by choosing splitter at random.

Intuition. If we always select an element that is bigger than 25% of the elements and smaller than 25% of the elements, then quicksort makes $\Omega(|n \log n |)$ comparisons.

Notation. Label elements so that $x_1 < x_2 \ldots < x_n$.

Quicksort: BST Representation of Splitters

BST representation. Draw recursive BST of splitters.

S^- x_8 x_7 x_6 x_5 x_4 x_3 x_2 x_1

S^+

First splitter, chosen uniformly at random

Copyright 2000, Kevin Wayne
Quicksort: BST Representation of Splitters

Observation. Element only compared with its ancestors and descendants.
- \(x_2 \) and \(x_7 \) are compared if their lca = \(x_2 \) or \(x_7 \).
- \(x_2 \) and \(x_8 \) are not compared if their lca = \(x_3 \) or \(x_4 \) or \(x_5 \) or \(x_6 \).

Claim. \(\Pr[x_i \text{ and } x_j \text{ are compared}] = \frac{2}{|j - i + 1|}. \)

Theorem. Expected # of comparisons is \(O(n \log n) \).

Pf.

\[
\sum_{i \geq j \geq k \geq x} \frac{2}{j - i + 1} = \frac{2}{4} \sum_{j \geq 2} \frac{1}{j} \leq \frac{2n}{\sum_{j \geq 2} j^{-1}} \approx 2n \int_{x=1}^{x=n} \frac{1}{x \log x} \, dx = 2n \ln n
\]

probability that \(i \) and \(j \) are compared

Theorem. [Knuth 1973] Stddev of number of comparisons is \(\sim 0.65N \).

Ex. If \(n = 1 \) million, the probability that randomized quicksort takes less than \(4n \ln n \) comparisons is at least 99.94%.

Chebyshev’s inequality. \(\Pr[|X - \mu| \geq k\delta] \leq \frac{1}{k^2}. \)