
CS 580:  Algorithm Design and Analysis

Jeremiah Blocki
Purdue University
Spring 2018

Reminder: Homework 6 has been released.



2

Chapter 13

Randomized
Algorithms

Slides by Kevin Wayne.
Copyright @ 2005 Pearson-Addison Wesley.
All rights reserved.



3

Randomization

Algorithmic design patterns.
 Greedy.
 Divide-and-conquer.
 Dynamic programming.
 Network flow.
 Randomization.

Randomization.  Allow fair coin flip in unit time.

Why randomize? Can lead to simplest, fastest, or only 
known algorithm for a particular problem.

Ex.  Symmetry breaking protocols, graph algorithms, 
quicksort, hashing, load balancing, Monte Carlo 
integration, cryptography.

in practice, access to a pseudo-random number generator



13.1  Contention Resolution



5

Contention Resolution in a Distributed System

Contention resolution.  Given n processes P1, …, Pn, each competing for 
access to a shared database. If two or more processes access the 
database simultaneously, all processes are locked out. Devise protocol 
to ensure all processes get through on a regular basis.

Restriction.  Processes can't communicate.

Challenge.  Need symmetry-breaking paradigm.

P1

P2

Pn

.

.

.



6

Contention Resolution:  Randomized Protocol

Protocol.  Each process requests access to the database at time 
t with probability p = 1/n.

Claim.  Let S[i, t] = event that process i succeeds in accessing 
the database at time t. Then 1/(e  n)  Pr[S(i, t)]  1/(2n).

Pf.  By independence,   Pr[S(i, t)]  =  p (1-p)n-1.

 Setting p = 1/n, we have Pr[S(i, t)]  =  1/n (1 - 1/n) n-1.  ▪

Useful facts from calculus.  As n increases from 2, the function:
 (1 - 1/n)n-1 converges monotonically from 1/4 up to 1/e
 (1 - 1/n)n-1 converges monotonically from 1/2 down to 1/e.

process i requests access

none of remaining n-1 processes request access

value that maximizes Pr[S(i, t)] between 1/e and 1/2



7

Contention Resolution:  Randomized Protocol

Claim.  The probability that process i fails to access the database in
en rounds is at most 1/e. After en(c ln n) rounds, the probability is 
at most n-c.

Pf.  Let F[i, t] = event that process i fails to access database in 
rounds 1 through t. By independence and previous claim, we have
Pr[F(i, t)]   (1 - 1/(en)) t.

 Choose t = e  n:

 Choose t = e  n c ln n:

  Pr[F(i, t)]   1 1
en  en     1 1

en en    1
e

  Pr[F(i, t)]   1
e 

c ln n    nc



8

Contention Resolution:  Randomized Protocol

Claim.  The probability that all processes succeed within 2e  n ln n 
rounds is at least 1 - 1/n.

Pf.  Let F[t] = event that at least one of the n processes fails to access 
database in any of the rounds 1 through t.

 Choosing t = 2 en c ln n yields  Pr[F[t]]  n ∙ n-2 = 1/n.  ▪

Union bound.  Given events E1, …, En,
  
Pr Ei

i1

n







   Pr[Ei ]

i1

n


Pr F [t]     Pr F [i, t ]
i1

n







   Pr[ F [i, t]]

i1

n
    n 1 1

en t

union bound previous slide



13.2  Global Minimum Cut



10

Global Minimum Cut

Global min cut.  Given a connected, undirected graph G = (V, E) find a 
cut (A, B) of minimum cardinality.

Applications.  Partitioning items in a database, identify clusters of 
related documents, network reliability, network design, circuit design, 
TSP solvers.

Network flow solution. 
 Replace every edge (u, v) with two antiparallel edges (u, v) and (v, u).
 Pick some vertex s and compute min s-v cut separating s from each 

other vertex v  V.

False intuition.  Global min-cut is harder than min s-t cut.



11

Contraction Algorithm

Contraction algorithm.  [Karger 1995]
 Pick an edge e = (u, v) uniformly at random.
 Contract edge e.

– replace u and v by single new super-node w
– preserve edges, updating endpoints of u and v to w
– keep parallel edges, but delete self-loops

 Repeat until graph has just two nodes v1 and v2.
 Return the cut (all nodes that were contracted to form v1).

u v wcontract u-v

a b c

e
f

ca b

f

d



12

Contraction Algorithm

Claim.  The contraction algorithm returns a min cut with prob  2/n2.

Pf.  Consider a global min-cut (A*, B*) of G. Let F* be edges with one 
endpoint in A* and the other in B*. Let k = |F*| = size of min cut.
 In first step, algorithm contracts an edge in F* probability k / |E|.
 Every node has degree  k since otherwise (A*, B*) would not be 

min-cut.   |E|  ½kn.
 Thus, algorithm contracts an edge in F* with probability  2/n.

A* B*

F*



13

Contraction Algorithm

Claim.  The contraction algorithm returns a min cut with prob  2/n2.

Pf.  Consider a global min-cut (A*, B*) of G. Let F* be edges with one 
endpoint in A* and the other in B*. Let k = |F*| = size of min cut.
 Let G' be graph after j iterations. There are n' = n-j supernodes.
 Suppose no edge in F* has been contracted. The min-cut in G' is still k.
 Since value of min-cut is k, |E'|  ½kn'.
 Thus, algorithm contracts an edge in F* with probability  2/n'.

 Let Ej = event that an edge in F* is not contracted in iteration j.



Pr[E1 E2  En2  ]  Pr[E1]    Pr[E2  | E1]       Pr[En2  | E1 E2 En3]
 1 2

n  1 2
n1  1 2

4  1 2
3 

 n2
n  n3

n1   2
4  1

3 
 2

n(n1)

 2
n2



14

Contraction Algorithm

Amplification.  To amplify the probability of success, run the 
contraction algorithm many times.

Claim.  If we repeat the contraction algorithm n2 ln n times with 
independent random choices, the probability of failing to find the 
global min-cut is at most 1/n2.

Pf.  By independence, the probability of failure is at most

1 2
n2









n2 lnn

  1 2
n2









1
2n2











2ln n

  e1 2lnn
  1

n2

(1 - 1/x)x   1/e



15

Global Min Cut:  Context

Remark.  Overall running time is slow since we perform (n2 log n) 
iterations and each takes (m) time.

Improvement.  [Karger-Stein 1996]   O(n2 log3n).
 Early iterations are less risky than later ones: probability of 

contracting an edge in min cut hits 50% when n / √2 nodes remain.
 Run contraction algorithm until n / √2 nodes remain.
 Run contraction algorithm twice on resulting graph, and return 

best of two cuts. 

Extensions.  Naturally generalizes to handle positive weights.

Best known.  [Karger 2000] O(m log3n).

faster than best known max flow algorithm or
deterministic global min cut algorithm



13.3  Linearity of Expectation



17

Expectation

Expectation.  Given a discrete random variables X, its expectation E[X] 
is defined by:

Waiting for a first success.  Coin is heads with probability p and tails 
with probability 1-p.  How many independent flips X until first heads?

E[X ]  j Pr[X  j]
j0




E[X ]  j  Pr[X  j]
j0


  j (1 p) j1 p

j0


  p

1 p
j (1 p) j

j0


  p

1 p
 1 p

p2  1
p

j-1 tails 1 head



18

Expectation:  Two Properties

Useful property.  If X is a 0/1 random variable, E[X] = Pr[X = 
1].

Pf. 

Linearity of expectation.  Given two random variables X and Y 
defined over the same probability space, E[X + Y] = E[X] + E[Y].

Decouples a complex calculation into simpler pieces. 

E[X ]  j  Pr[X  j]
j0


  j  Pr[X  j]

j0

1
   Pr[X 1]

not necessarily independent



19

Guessing Cards

Game.  Shuffle a deck of n cards; turn them over one at a time; try to 
guess each card.

Memoryless guessing.  No psychic abilities; can't even remember what's 
been turned over already.  Guess a card from full deck uniformly at 
random.

Claim.  The expected number of correct guesses is 1.
Pf.  (surprisingly effortless using linearity of expectation)
 Let Xi = 1 if ith prediction is correct and 0 otherwise.
 Let X = number of correct guesses = X1 + … + Xn.
 E[Xi] =  Pr[Xi = 1]  =  1/n.
 E[X]  =  E[X1]  +  …  +  E[Xn]  =  1/n + … + 1/n  =  1.  ▪

linearity of expectation



20

Guessing Cards

Game.  Shuffle a deck of n cards; turn them over one at a time; try to 
guess each card.

Guessing with memory. Guess a card uniformly at random from cards 
not yet seen.

Claim.  The expected number of correct guesses is (log n).
Pf.
 Let Xi = 1 if ith prediction is correct and 0 otherwise.
 Let X = number of correct guesses = X1 + … + Xn.
 E[Xi] = Pr[Xi = 1]  = 1 / (n - i - 1).
 E[X]  = E[X1]  +  …  +  E[Xn]  =  1/n + … + 1/2 + 1/1 = H(n).  ▪

ln(n+1) < H(n)  < 1 + ln nlinearity of expectation



21

Coupon Collector

Coupon collector.  Each box of cereal contains a coupon. There are n 
different types of coupons. Assuming all boxes are equally likely to 
contain each coupon, how many boxes before you have  1 coupon of 
each type?

Claim.  The expected number of steps is (n log n).
Pf.
 Phase j = time between j and j+1 distinct coupons.
 Let Xj = number of steps you spend in phase j.
 Let X = number of steps in total = X0 + X1 + … + Xn-1.

E[X ]  E[X j ]
j0

n1
  n

n jj0

n1
  n 1

ii1

n
  n H (n)

prob of success = (n-j)/n
 expected waiting time = n/(n-j)



13.4  MAX 3-SAT



23

Maximum 3-Satisfiability

MAX-3SAT.  Given 3-SAT formula, find a truth assignment 
that satisfies as many clauses as possible.

Remark.  NP-hard search problem.

Simple idea.  Flip a coin, and set each variable true with 
probability ½, independently for each variable.

C1  x2  x3  x4

C2  x2  x3  x4

C3  x1  x2  x4

C4  x1  x2  x3

C5  x1  x2  x4

exactly 3 distinct literals per clause



24

Claim. Given a 3-SAT formula with k clauses, the expected number of 
clauses satisfied by a random assignment is 7k/8.

Pf.  Consider random variable 

 Let Z = weight of clauses satisfied by assignment Zj.

E[Z ]  E[Z j
j1

k
 ] 

 Pr[clause Cj  is satisfied
j1

k
 ]

 7
8 k

Maximum 3-Satisfiability:  Analysis

Z j 
1 if clause Cj  is satisfied
0 otherwise.





linearity of expectation



25

Corollary. For any instance of 3-SAT, there exists a truth 
assignment that satisfies at least a 7/8 fraction of all clauses.

Pf.  Random variable is at least its expectation some of the 
time.   ▪

Probabilistic method. We showed the existence of a non-
obvious property of 3-SAT by showing that a random 
construction produces it with positive probability!

The Probabilistic Method



26

Maximum 3-Satisfiability:  Analysis

Q. Can we turn this idea into a 7/8-approximation algorithm?  In 
general, a random variable can almost always be below its mean.

Lemma.  The probability that a random assignment satisfies  7k/8 
clauses is at least 1/(8k).

Pf.  Let pj be probability that exactly j clauses are satisfied; let p 
be probability that  7k/8 clauses are satisfied.

Rearranging terms yields  p  1 / (8k).    ▪

7
8 k    E[Z ]  j pj

j0


 j pj     j pj
j7k /8


j7k /8


 ( 7k
8  1

8 ) pj      k pj
j7k /8


j7k /8


 ( 7
8 k  1

8 )    1      k p



27

Maximum 3-Satisfiability:  Analysis

Johnson's algorithm.  Repeatedly generate random truth assignments 
until one of them satisfies  7k/8 clauses.

Theorem.  Johnson's algorithm is a 7/8-approximation algorithm.

Pf.  By previous lemma, each iteration succeeds with probability at 
least 1/(8k).  By the waiting-time bound, the expected number of trials 
to find the satisfying assignment is at most 8k.   ▪



28

Maximum Satisfiability

Extensions.
 Allow one, two, or more literals per clause.
 Find max weighted set of satisfied clauses.

Theorem.  [Asano-Williamson 2000] There exists a 0.784-approximation 
algorithm for MAX-SAT.

very unlikely to improve over simple 
randomized algorithm for MAX-3SAT

Theorem.  [Karloff-Zwick 1997, Zwick+computer 2002] There 
exists a 7/8-approximation algorithm for version of MAX-3SAT 
where each clause has at most 3 literals.

Theorem.  [Håstad 1997] Unless P = NP, no -approximation 
algorithm for MAX-3SAT (and hence MAX-SAT) for any  > 7/8.



29

Monte Carlo vs. Las Vegas Algorithms

Monte Carlo algorithm.  Guaranteed to run in poly-time, likely 
to find correct answer.
Ex:  Contraction algorithm for global min cut.

Las Vegas algorithm.  Guaranteed to find correct answer, 
likely to run in poly-time.
Ex:  Randomized quicksort, Johnson's MAX-3SAT algorithm.

Remark.  Can always convert a Las Vegas algorithm into Monte 
Carlo, but no known method to convert the other way.

stop algorithm after a certain point



30

RP and ZPP

RP. [Monte Carlo] Decision problems solvable with one-sided 
error in poly-time.

One-sided error.
 If the correct answer is no, always return no.
 If the correct answer is yes, return yes with probability  ½.

ZPP.  [Las Vegas] Decision problems solvable in expected poly-
time.

Theorem.  P   ZPP  RP   NP.

Fundamental open questions.  To what extent does 
randomization help? Does P = ZPP?  Does ZPP = RP?  Does RP = 
NP?

Can decrease probability of false negative
to 2-100 by 100 independent repetitions

running time can be unbounded, but 
on average it is fast



13.6  Universal Hashing



32

Dictionary Data Type

Dictionary.  Given a universe U of possible elements, maintain a 
subset S  U so that inserting, deleting, and searching in S is 
efficient.

Dictionary interface.
 Create(): Initialize a dictionary with S = .
 Insert(u): Add element u  U to S.
 Delete(u): Delete u from S, if u is currently in S.
 Lookup(u): Determine whether u is in S.

Challenge.  Universe U can be extremely large so defining an array 
of size |U| is infeasible.

Applications. File systems, databases, Google, compilers, checksums 
P2P networks, associative arrays, cryptography, web caching, etc.



33

Hashing

Hash function.  h : U  { 0, 1, …, n-1 }.

Hashing.  Create an array H of size n. When processing 
element u, access array element H[h(u)].

Collision.  When h(u) = h(v) but u  v.
 A collision is expected after (n) random insertions. This 

phenomenon is known as the "birthday paradox."
 Separate chaining:  H[i] stores linked list of elements u 

with h(u) = i.

jocularly seriously

browsing

H[1]

H[2]

H[n]

suburban untravelledH[3] considerating

null



34

Ad Hoc Hash Function

Ad hoc hash function.

Deterministic hashing.  If |U|  n2, then for any fixed hash 
function h, there is a subset S  U of n elements that all 
hash to same slot. Thus, (n) time per search in worst-case.

Q.  But isn't ad hoc hash function good enough in practice?

int h(String s, int n) {
int hash = 0;
for (int i = 0; i < s.length(); i++)

hash = (31 * hash) + s[i];
return hash % n;

} hash function ala Java string library



35

Algorithmic Complexity Attacks

When can't we live with ad hoc hash function?
 Obvious situations:  aircraft control, nuclear reactors.
 Surprising situations:  denial-of-service attacks.

Real world exploits.  [Crosby-Wallach 2003]
 Bro server:  send carefully chosen packets to DOS the 

server, using less bandwidth than a dial-up modem
 Perl 5.8.0:  insert carefully chosen strings into 

associative array.
 Linux 2.4.20 kernel:  save files with carefully chosen 

names.

malicious adversary learns your ad hoc hash function 
(e.g., by reading Java API) and causes a big pile-up in 
a single slot that grinds performance to a halt



36

Hashing Performance

Idealistic hash function.  Maps m elements uniformly at random
to n hash slots.
 Running time depends on length of chains.
 Average length of chain =  = m / n.
 Choose n  m   on average O(1) per insert, lookup, or delete.

Challenge.  Achieve idealized randomized guarantees, but with a 
hash function where you can easily find items where you put 
them.

Approach.  Use randomization in the choice of h.

adversary knows the randomized algorithm you're using,
but doesn't know random choices that the algorithm makes



37

Universal Hashing

Universal class of hash functions.  [Carter-Wegman 1980s]
 For any pair of elements u, v  U,
 Can select random h efficiently.
 Can compute h(u) efficiently.

Ex.  U = { a, b, c, d, e, f }, n = 2.

  Prh H h(u)  h(v)  1/n

chosen uniformly at random

a b c d e f
0 1 0 1 0 1
0 0 0 1 1 1

h1(x)
h2(x)

H = {h1, h2}
Pr h  H [h(a) = h(b)]  =  1/2
Pr h  H [h(a) = h(c)]  =  1
Pr h  H [h(a) = h(d)]  =  0
. . .

a b c d e f

0 0 1 0 1 1
1 0 0 1 1 0

h3(x)
h4(x)

H = {h1, h2 , h3 , h4}
Pr h  H [h(a) = h(b)]  =  1/2
Pr h  H [h(a) = h(c)]  =  1/2
Pr h  H [h(a) = h(d)]  =  1/2
Pr h  H [h(a) = h(e)]  =  1/2
Pr h  H [h(a) = h(f)]  =  0
. . .

0 1 0 1 0 1
0 0 0 1 1 1

h1(x)
h2(x)

not universal

universal



38

Universal Hashing

Universal hashing property.  Let H be a universal class of hash 
functions; let h  H be chosen uniformly at random from H; and let
u  U.  For any subset S  U of size at most n, the expected number of 
items in S that collide with u is at most 1.

Pf. For any element s  S, define indicator random variable Xs = 1 if 
h(s) = h(u)  and 0 otherwise. Let X be a random variable counting the 
total number of collisions with u.

EhH [X ]   E[ Xs ]sS    E[Xs]sS    Pr[Xs 1]sS    1
nsS      | S | 1

n    1

linearity of expectation Xs is a 0-1 random variable universal
(assumes u  S)



39

Designing a Universal Family of Hash Functions

Theorem. [Chebyshev 1850] There exists a prime between n and 2n.

Modulus.  Choose a prime number p  n.  

Integer encoding.  Identify each element u  U with a base-p integer 
of r digits:  x = (x1, x2, …, xr).

Hash function.  Let A = set of all r-digit, base-p integers. For each
a = (a1, a2, …, ar) where 0  ai < p, define

Hash function family.  H = { ha : a  A }.

ha(x)    ai xi
i1

r







  mod p

no need for randomness here



40

Designing a Universal Class of Hash Functions

Theorem.  H = { ha : a  A } is a universal class of hash functions.

Pf.  Let x = (x1, x2, …, xr) and y = (y1, y2, …, yr) be two distinct elements of 
U.  We need to show that Pr[ha(x) = ha(y)]  1/n.
 Since x  y, there exists an integer j such that xj  yj.
 We have ha(x) = ha(y) iff

  

a j ( y j  x j )
z

 
   ai (xi  yi )

i j


m
  

 mod p

see lemma on next slide

 Can assume a was chosen uniformly at random by first selecting 
all coordinates ai where i  j, then selecting aj at random. Thus, 
we can assume ai is fixed for all coordinates i  j.

 Since p is prime, aj z = m mod p has at most one solution among p 
possibilities.

 Thus Pr[ha(x) = ha(y)] = 1/p  1/n.  ▪



41

Number Theory Facts

Fact.  Let p be prime, and let z  0 mod p. Then 
z = m mod p has at most one solution 0   < p.

Pf.  
 Suppose  and  are two different solutions.
 Then ( - )z = 0 mod p; hence ( - )z is divisible by p.
 Since z  0 mod p, we know that z is not divisible by p;

it follows that ( - ) is divisible by p.
 This implies  = .  ▪

Bonus fact.  Can replace "at most one" with "exactly one" 
in above fact.
Pf idea.  Euclid's algorithm.



13.9  Chernoff Bounds



43

Chernoff Bounds (above mean)

Theorem.  Suppose X1, …, Xn are independent 0-1 random variables. Let 
X = X1 + … + Xn. Then for any   E[X] and for any  > 0, we have

Pf.  We apply a number of simple transformations.
 For any t > 0,

 Now








 










 1)1(
])1(Pr[ eX

sum of independent 0-1 random variables
is tightly centered on the mean

Pr[X  (1)]  Pr et X  et(1)   et(1) E[etX ]

f(x) = etX is monotone in x Markov's inequality:  Pr[X > a]  E[X] / a

E[etX ]  E[e t Xii ]  E[et Xi ]i

definition of X independence



44

Chernoff Bounds (above mean)

Pf.  (cont)
 Let pi = Pr[Xi = 1]. Then,

 Combining everything:

 Finally, choose t = ln(1 + ).   ▪

Pr[X  (1)]  et(1) E[e t Xi ]i  et(1) e pi (e
t1)

i  et(1) e(et1)

)1(0 )1(1)1(][ 
t

ii ept
ii

t
i

Xt eepepepeE

for any   0, 1+  e 

previous slide inequality above i pi = E[X]   



45

Chernoff Bounds (below mean)

Theorem.  Suppose X1, …, Xn are independent 0-1 random variables. 
Let X = X1 + … + Xn. Then for any   E[X] and for any 0 <  < 1, we have

Pf idea.  Similar.

Remark.  Not quite symmetric since only makes sense to 
consider  < 1.

2/2
])1(Pr[   eX



13.10  Load Balancing



47

Load Balancing

Load balancing.  System in which m jobs arrive in a stream and need to 
be processed immediately on n identical processors.  Find an assignment 
that balances the workload across processors.

Centralized controller.  Assign jobs in round-robin manner. Each 
processor receives at most m/n jobs.

Decentralized controller.  Assign jobs to processors uniformly at 
random. How likely is it that some processor is assigned "too many" 
jobs?



48

Load Balancing

Analysis.
 Let Xi = number of jobs assigned to processor i.
 Let Yij = 1 if job j assigned to processor i, and 0 otherwise.
 We have E[Yij] = 1/n 
 Thus, Xi =  j Yi j, and  = E[Xi] = 1.
 Applying Chernoff bounds with  = c - 1 yields

 Let (n) be number x such that xx = n, and choose c = e (n).

 Union bound  with probability  1 - 1/n no processor receives 
more than e (n) = (logn / log log n) jobs.

c

c

i c
ecX

1
]Pr[





2

)(2)(1 1
)(

1
)(

1]Pr[
nnnc

e
c

ecX
nnec

c

c

i 

























 



Fact:  this bound is asymptotically tight:  with high
probability, some processor receives (logn / log log n) 



49

Load Balancing:  Many Jobs

Theorem.  Suppose the number of jobs m = 16n ln n. Then on 
average, each of the n processors handles  = 16 ln n jobs. With 
high probability every processor will have between half and twice 
the average load.

Pf.
 Let Xi , Yij be as before. 
 Applying Chernoff bounds with  = 1 yields

 Union bound  every processor has load between half and 
twice the average with probability  1 - 2/n. ▪

2

lnln16 11
4

]2Pr[
ne

eX
nnn

i 












 

  
Pr[ Xi  1

2]  e
1
2

1
2 2 (16n lnn)  1

n2



Extra Slides



13.5  Randomized Divide-and-Conquer



52

Quicksort

Sorting.  Given a set of n distinct elements S, rearrange them in 
ascending order.

Remark.  Can implement in-place.

RandomizedQuicksort(S) {
if |S| = 0 return

choose a splitter ai  S uniformly at random
foreach (a  S) {

if (a < ai) put a in S-

else if (a > ai) put a in S+

}
RandomizedQuicksort(S-)
output ai
RandomizedQuicksort(S+)

}

O(log n) extra space



53

Quicksort

Running time.
 [Best case.] Select the median element as the splitter:  

quicksort makes (n log n) comparisons.
 [Worst case.] Select the smallest element as the splitter:  

quicksort makes (n2) comparisons.

Randomize.  Protect against worst case by choosing splitter at 
random.

Intuition.  If we always select an element that is bigger than 25% 
of the elements and smaller than 25% of the elements, then 
quicksort makes (n log n) comparisons.

Notation.  Label elements so that x1 < x2 < … < xn.



54

x7 x6 x12 x3 x8 x7 x1 x15 x10 x16 x14 x9x17x11 x13 x5x4

x10

x13x5

x16x11x3 x9

x2 x4 x7 x12 x15 x17

x1 x6 x8 x14

first splitter, chosen uniformly at random

Quicksort:  BST Representation of Splitters

BST representation.  Draw recursive BST of splitters.

S- S+



55

Quicksort:  BST Representation of Splitters

Observation.  Element only compared with its ancestors and descendants.
 x2 and x7 are compared if their lca = x2 or x7.
 x2 and x7 are not compared if their lca = x3 or x4 or x5 or x6.

Claim.  Pr[xi and xj are compared] = 2 / |j - i + 1|.

x10

x13x5

x16x11x3 x9

x2 x4 x7 x12 x15 x17

x1 x6 x8 x14



56

Theorem.  Expected # of comparisons is O(n log n).
Pf.

Theorem.  [Knuth 1973] Stddev of number of comparisons 
is ~ 0.65N.

Ex.  If n = 1 million, the probability that randomized 
quicksort takes less than 4n ln n comparisons is at least 
99.94%.

Chebyshev's inequality.  Pr[|X - |  k]   1 / k2.

Quicksort:  Expected Number of Comparisons

2
j  i 1

   2 1
jj2

i


i1

n


1  i  j  n
    2n 1

jj1

n
   2 n 1

x
dx

x1

n
   2 n ln n

probability that i and j are compared


