CS 580: Algorithm Design and Analysis

Jeremiah Blocki
Purdue University
Spring 2018

Reminder: Homework 6 has been released.
Chapter 13

Randomized Algorithms
Randomization

Algorithmic design patterns.
- Greedy.
- Divide-and-conquer.
- Dynamic programming.
- Network flow.
- Randomization.

Randomization. Allow fair coin flip in unit time.

Why randomize? Can lead to simplest, fastest, or only known algorithm for a particular problem.

Ex. Symmetry breaking protocols, graph algorithms, quicksort, hashing, load balancing, Monte Carlo integration, cryptography.
13.1 Contention Resolution
Contestion Resolution in a Distributed System

Contention resolution. Given n processes P_1, \ldots, P_n, each competing for access to a shared database. If two or more processes access the database simultaneously, all processes are locked out. Devise protocol to ensure all processes get through on a regular basis.

Restriction. Processes can't communicate.

Challenge. Need symmetry-breaking paradigm.
Contention Resolution: Randomized Protocol

Protocol. Each process requests access to the database at time \(t \) with probability \(p = 1/n \).

Claim. Let \(S[i, t] = \) event that process \(i \) succeeds in accessing the database at time \(t \). Then \(1/(e \cdot n) \leq \Pr[S(i, t)] \leq 1/(2n) \).

Pf. By independence, \(\Pr[S(i, t)] = p \cdot (1-p)^{n-1} \).

- Setting \(p = 1/n \), we have \(\Pr[S(i, t)] = 1/n \cdot (1 - 1/n)^{n-1} \).

Useful facts from calculus. As \(n \) increases from 2, the function:

- \((1 - 1/n)^n\) converges monotonically from 1/4 up to 1/e
- \((1 - 1/n)^{n-1}\) converges monotonically from 1/2 down to 1/e.
Contestation Resolution: Randomized Protocol

Claim. The probability that process i fails to access the database in en rounds is at most $1/e$. After $e \cdot n(c \ln n)$ rounds, the probability is at most n^{-c}.

Pf. Let $F[i, t] = \text{event that process i fails to access database in rounds 1 through } t$. By independence and previous claim, we have $\Pr[F(i, t)] \leq \left(1 - \frac{1}{en}\right)^t$.

- Choose $t = \lceil e \cdot n \rceil$: $\Pr[F(i, t)] \leq \left(1 - \frac{1}{en}\right)^{en} \leq \left(1 - \frac{1}{en}\right)^{en} \leq \frac{1}{e}$

- Choose $t = \lceil e \cdot n \rceil \lceil c \ln n \rceil$: $\Pr[F(i, t)] \leq \left(\frac{1}{e}\right)^{c \ln n} = n^{-c}$
Contention Resolution: Randomized Protocol

Claim. The probability that all processes succeed within $2e \cdot n \ln n$ rounds is at least $1 - 1/n$.

Pf. Let $F[t] = \text{event that at least one of the } n \text{ processes fails to access database in any of the rounds } 1 \text{ through } t$.

$$
\Pr[F[t]] = \Pr\left(\bigcup_{i=1}^{n} F[i, t]\right) \leq \sum_{i=1}^{n} \Pr[F[i, t]] \leq n \left(1 - \frac{1}{en}\right)^t
$$

\begin{align*}
\uparrow & \quad \text{union bound} \\
\uparrow & \quad \text{previous slide}
\end{align*}

- Choosing $t = 2 \lceil en \rceil \lceil c \ln n \rceil$ yields $\Pr[F[t]] \leq n \cdot n^{-2} = 1/n$.

Union bound. Given events E_1, \ldots, E_n, $\Pr\left(\bigcup_{i=1}^{n} E_i\right) \leq \sum_{i=1}^{n} \Pr[E_i]$
13.2 Global Minimum Cut
Global Minimum Cut

Global min cut. Given a connected, undirected graph $G = (V, E)$ find a cut (A, B) of minimum cardinality.

Applications. Partitioning items in a database, identify clusters of related documents, network reliability, network design, circuit design, TSP solvers.

Network flow solution.

- Replace every edge (u, v) with two antiparallel edges (u, v) and (v, u).
- Pick some vertex s and compute min s-v cut separating s from each other vertex $v \in V$.

False intuition. Global min-cut is harder than min s-t cut.
Contraction Algorithm

Contraction algorithm. [Karger 1995]

- Pick an edge $e = (u, v)$ uniformly at random.
- **Contract** edge e.
 - replace u and v by single new super-node w
 - preserve edges, updating endpoints of u and v to w
 - keep parallel edges, but delete self-loops
- Repeat until graph has just two nodes v_1 and v_2.
- Return the cut (all nodes that were contracted to form v_1).
Claim. The contraction algorithm returns a min cut with prob $\geq 2/n^2$.

Pf. Consider a global min-cut (A^*, B^*) of G. Let F^* be edges with one endpoint in A^* and the other in B^*. Let $k = |F^*| = \text{size of min cut}$.

- In first step, algorithm contracts an edge in F^* probability $k / |E|$.
- Every node has degree $\geq k$ since otherwise (A^*, B^*) would not be min-cut. $\Rightarrow |E| \geq \frac{1}{2}kn$.
- Thus, algorithm contracts an edge in F^* with probability $\leq 2/n$.

\[\begin{array}{c}
A^* \\
\text{---} \\
B^* \\
\end{array}\]
Contraction Algorithm

Claim. The contraction algorithm returns a min cut with prob $\geq \frac{2}{n^2}$.

Pf. Consider a global min-cut (A^*, B^*) of G. Let F^* be edges with one endpoint in A^* and the other in B^*. Let $k = |F^*| = \text{size of min cut}$.

- Let G' be graph after j iterations. There are $n' = n-j$ supernodes.
- Suppose no edge in F^* has been contracted. The min-cut in G' is still k.
- Since value of min-cut is k, $|E'| \geq \frac{1}{2}kn'$.
- Thus, algorithm contracts an edge in F^* with probability $\leq \frac{2}{n'}$.

Let E_j = event that an edge in F^* is not contracted in iteration j.

$$
\Pr[E_1 \cap E_2 \cdots \cap E_{n-2}] = \Pr[E_1] \times \Pr[E_2 \mid E_1] \times \cdots \times \Pr[E_{n-2} \mid E_1 \cap E_2 \cdots \cap E_{n-3}]
\geq \left(1 - \frac{2}{n}\right)\left(1 - \frac{2}{n-1}\right)\cdots \left(1 - \frac{2}{4}\right)\left(1 - \frac{2}{3}\right)
= \left(\frac{n-2}{n}\right)\left(\frac{n-3}{n-1}\right)\cdots \left(\frac{2}{4}\right)\left(\frac{1}{2}\right)
= \frac{2}{n(n-1)}
\geq \frac{2}{n^2}
$$
Amplification. To amplify the probability of success, run the contraction algorithm many times.

Claim. If we repeat the contraction algorithm $n^2 \ln n$ times with independent random choices, the probability of failing to find the global min-cut is at most $1/n^2$.

Pf. By independence, the probability of failure is at most

$$\left(1 - \frac{2}{n^2}\right)^{n^2 \ln n} = \left(\left(1 - \frac{2}{n^2}\right)^{1/n^2}\right)^{2 \ln n} \leq \left(e^{-1}\right)^{2 \ln n} = \frac{1}{n^2}$$

$$\uparrow$$

$$(1 - 1/x)^x \leq 1/e$$
Global Min Cut: Context

Remark. Overall running time is slow since we perform $\Theta(n^2 \log n)$ iterations and each takes $\Omega(m)$ time.

Improvement. [Karger-Stein 1996] $O(n^2 \log^3 n)$.
- Early iterations are less risky than later ones: probability of contracting an edge in min cut hits 50% when $n / \sqrt{2}$ nodes remain.
- Run contraction algorithm until $n / \sqrt{2}$ nodes remain.
- Run contraction algorithm twice on resulting graph, and return best of two cuts.

Extensions. Naturally generalizes to handle positive weights.

Best known. [Karger 2000] $O(m \log^3 n)$.

faster than best known max flow algorithm or deterministic global min cut algorithm
13.3 Linearity of Expectation
Expectation

Expectation. Given a discrete random variables X, its expectation $E[X]$ is defined by:

$$E[X] = \sum_{j=0}^{\infty} j \Pr[X = j]$$

Waiting for a first success. Coin is heads with probability p and tails with probability $1-p$. How many independent flips X until first heads?

$$E[X] = \sum_{j=0}^{\infty} j \cdot \Pr[X = j] = \sum_{j=0}^{\infty} j (1-p)^{j-1} p = \frac{p}{1-p} \sum_{j=0}^{\infty} j (1-p)^j = \frac{p}{1-p} \cdot \frac{1-p}{p^2} = \frac{1}{p}$$

\[\text{j-1 tails} \quad \text{1 head}\]
Expectation: Two Properties

Useful property. If X is a 0/1 random variable, $E[X] = \Pr[X = 1]$.

Pf.

\[
E[X] = \sum_{j=0}^{\infty} j \cdot \Pr[X = j] = \sum_{j=0}^{1} j \cdot \Pr[X = j] = \Pr[X = 1]
\]

Linearity of expectation. Given two random variables X and Y defined over the same probability space, $E[X + Y] = E[X] + E[Y]$.

Decouples a complex calculation into simpler pieces.
Guessing Cards

Game. Shuffle a deck of n cards; turn them over one at a time; try to guess each card.

Memoryless guessing. No psychic abilities; can't even remember what's been turned over already. Guess a card from full deck uniformly at random.

Claim. The expected number of correct guesses is 1.

Pf. (surprisingly effortless using linearity of expectation)
- Let $X_i = 1$ if i^{th} prediction is correct and 0 otherwise.
- Let $X = \text{number of correct guesses} = X_1 + ... + X_n$.
- $E[X_i] = \text{Pr}[X_i = 1] = 1/n$.
- $E[X] = E[X_1] + ... + E[X_n] = 1/n + ... + 1/n = 1$. □

↑ linearity of expectation
Guessing Cards

Game. Shuffle a deck of n cards; turn them over one at a time; try to guess each card.

Guessing with memory. Guess a card uniformly at random from cards not yet seen.

Claim. The expected number of correct guesses is $\Theta(\log n)$.

Pf.
- Let $X_i = 1$ if i^{th} prediction is correct and 0 otherwise.
- Let $X = \text{number of correct guesses} = X_1 + \ldots + X_n$.
- $E[X_i] = \Pr[X_i = 1] = 1 / (n - i - 1)$.
- $E[X] = E[X_1] + \ldots + E[X_n] = 1/n + \ldots + 1/2 + 1/1 = H(n)$.
 \uparrow
 \uparrow
 linearity of expectation
 $\ln(n+1) < H(n) < 1 + \ln n$
Coupon Collector

Coupon collector. Each box of cereal contains a coupon. There are \(n \) different types of coupons. Assuming all boxes are equally likely to contain each coupon, how many boxes before you have \(\geq 1 \) coupon of each type?

Claim. The expected number of steps is \(\Theta(n \log n) \).

Pf.

- Phase \(j \) = time between \(j \) and \(j+1 \) distinct coupons.
- Let \(X_j \) = number of steps you spend in phase \(j \).
- Let \(X = \) number of steps in total = \(X_0 + X_1 + \ldots + X_{n-1} \).

\[
E[X] = \sum_{j=0}^{n-1} E[X_j] = \sum_{j=0}^{n-1} \frac{n}{n-j} = n \sum_{i=1}^{n} \frac{1}{i} = nH(n)
\]

\[
\text{prob of success} = (n-j)/n
\]

\[
\Rightarrow \text{expected waiting time} = n/(n-j)
\]
13.4 MAX 3-SAT
Maximum 3-Satisfiability

MAX-3SAT. Given 3-SAT formula, find a truth assignment that satisfies as many clauses as possible.

\[
\begin{align*}
C_1 &= x_2 \lor \overline{x}_3 \lor \overline{x}_4 \\
C_2 &= \overline{x}_2 \lor x_3 \lor \overline{x}_4 \\
C_3 &= \overline{x}_1 \lor x_2 \lor x_4 \\
C_4 &= \overline{x}_1 \lor \overline{x}_2 \lor x_3 \\
C_5 &= x_1 \lor x_2 \lor x_4
\end{align*}
\]

Remark. NP-hard search problem.

Simple idea. Flip a coin, and set each variable true with probability \(\frac{1}{2} \), independently for each variable.
Claim. Given a 3-SAT formula with \(k \) clauses, the expected number of clauses satisfied by a random assignment is \(7k/8 \).

Pf. Consider random variable \(Z_j = \begin{cases} 1 & \text{if clause } C_j \text{ is satisfied} \\ 0 & \text{otherwise.} \end{cases} \)

- Let \(Z = \text{weight of clauses satisfied by assignment } Z_j \).

\[
E[Z] = \sum_{j=1}^{k} E[Z_j]
\]
\[
= \sum_{j=1}^{k} \Pr[\text{clause } C_j \text{ is satisfied}]
\]
\[
= \frac{7}{8} k
\]
Corollary. For any instance of 3-SAT, there exists a truth assignment that satisfies at least a 7/8 fraction of all clauses.

Pf. Random variable is at least its expectation some of the time. □

Probabilistic method. We showed the existence of a non-obvious property of 3-SAT by showing that a random construction produces it with positive probability!
Q. Can we turn this idea into a 7/8-approximation algorithm? In general, a random variable can almost always be below its mean.

Lemma. The probability that a random assignment satisfies \(\geq 7k/8 \) clauses is at least \(1/(8k) \).

Pf. Let \(p_j \) be probability that exactly \(j \) clauses are satisfied; let \(p \) be probability that \(\geq 7k/8 \) clauses are satisfied.

\[
\frac{7}{8} k = E[Z] = \sum_{j \geq 0} j p_j
\]

\[
= \sum_{j < 7k/8} j p_j + \sum_{j \geq 7k/8} j p_j
\]

\[
\leq \left(\frac{7}{8} k - \frac{1}{8} \right) \sum_{j < 7k/8} p_j + k \sum_{j \geq 7k/8} p_j
\]

\[
\leq \left(\frac{7}{8} k - \frac{1}{8} \right) \cdot 1 + k p
\]

Rearranging terms yields \(p \geq 1 / (8k) \).
Maximum 3-Satisfiability: Analysis

Johnson's algorithm. Repeatedly generate random truth assignments until one of them satisfies \(\geq 7k/8 \) clauses.

Theorem. Johnson's algorithm is a 7/8-approximation algorithm.

Pf. By previous lemma, each iteration succeeds with probability at least 1/(8k). By the waiting-time bound, the expected number of trials to find the satisfying assignment is at most 8k. ▪
Maximum Satisfiability

Extensions.
- Allow one, two, or more literals per clause.
- Find max \textit{weighted} set of satisfied clauses.

Theorem. [Asano-Williamson 2000] There exists a 0.784-approximation algorithm for MAX-SAT.

Theorem. [Karloff-Zwick 1997, Zwick+computer 2002] There exists a 7/8-approximation algorithm for version of MAX-3SAT where each clause has at most 3 literals.

Theorem. [Håstad 1997] Unless $P = NP$, no ρ-approximation algorithm for MAX-3SAT (and hence MAX-SAT) for any $\rho > 7/8$.

\[\text{very unlikely to improve over simple randomized algorithm for MAX-3SAT}\]
Monte Carlo vs. Las Vegas Algorithms

Monte Carlo algorithm. Guaranteed to run in poly-time, likely to find correct answer.
Ex: Contraction algorithm for global min cut.

Las Vegas algorithm. Guaranteed to find correct answer, likely to run in poly-time.
Ex: Randomized quicksort, Johnson's MAX-3SAT algorithm.

Remark. Can always convert a Las Vegas algorithm into Monte Carlo, but no known method to convert the other way.
RP and ZPP

RP. [Monte Carlo] Decision problems solvable with **one-sided error** in poly-time.

One-sided error.
- If the correct answer is **no**, always return **no**.
- If the correct answer is **yes**, return **yes** with probability $\geq \frac{1}{2}$.

ZPP. [Las Vegas] Decision problems solvable in **expected** poly-time.

Theorem. $P \subseteq ZPP \subseteq RP \subseteq NP$.

Can decrease probability of false negative to 2^{-100} by 100 independent repetitions.
13.6 Universal Hashing
Dictionary Data Type

Dictionary. Given a universe U of possible elements, maintain a subset $S \subseteq U$ so that inserting, deleting, and searching in S is efficient.

Dictionary interface.

- **Create():** Initialize a dictionary with $S = \emptyset$.
- **Insert(u):** Add element $u \in U$ to S.
- **Delete(u):** Delete u from S, if u is currently in S.
- **Lookup(u):** Determine whether u is in S.

Challenge. Universe U can be extremely large so defining an array of size $|U|$ is infeasible.

Applications. File systems, databases, Google, compilers, checksums, P2P networks, associative arrays, cryptography, web caching, etc.
Hashing

Hash function. $h : U \rightarrow \{ 0, 1, \ldots, n-1 \}$.

Hashing. Create an array H of size n. When processing element u, access array element $H[h(u)]$.

Collision. When $h(u) = h(v)$ but $u \neq v$.
- A collision is expected after $\Theta(\sqrt{n})$ random insertions. This phenomenon is known as the "birthday paradox."
- Separate chaining: $H[i]$ stores linked list of elements u with $h(u) = i$.

![Diagram showing separate chaining in a hash table](image)
Ad Hoc Hash Function

Ad hoc hash function.

```java
int h(String s, int n) {
    int hash = 0;
    for (int i = 0; i < s.length(); i++)
        hash = (31 * hash) + s[i];
    return hash % n;
}
```

hash function ala Java string library

Deterministic hashing. If $|U| \geq n^2$, then for any fixed hash function h, there is a subset $S \subseteq U$ of n elements that all hash to same slot. Thus, $\Theta(n)$ time per search in worst-case.

Q. But isn't ad hoc hash function good enough in practice?
Algorithmic Complexity Attacks

When can't we live with ad hoc hash function?

- Obvious situations: aircraft control, nuclear reactors.
- Surprising situations: denial-of-service attacks.

malicious adversary learns your ad hoc hash function (e.g., by reading Java API) and causes a big pile-up in a single slot that grinds performance to a halt

Real world exploits. [Crosby-Wallach 2003]

- Bro server: send carefully chosen packets to DOS the server, using less bandwidth than a dial-up modem
- Perl 5.8.0: insert carefully chosen strings into associative array.
- Linux 2.4.20 kernel: save files with carefully chosen names.
Hashing Performance

Idealistic hash function. Maps m elements uniformly at random to n hash slots.
- Running time depends on length of chains.
- Average length of chain $= \alpha = m / n$.
- Choose $n \approx m$ \Rightarrow on average $O(1)$ per insert, lookup, or delete.

Challenge. Achieve idealized randomized guarantees, but with a hash function where you can easily find items where you put them.

Approach. Use randomization in the choice of h.

\[
\uparrow
\]

adversary knows the randomized algorithm you're using, but doesn't know random choices that the algorithm makes.
Universal Hashing

Universal class of hash functions. [Carter-Wegman 1980s]

- For any pair of elements \(u, v \in U \), \(\Pr_{h \in H} [h(u) = h(v)] \leq 1/n \)
- Can select random \(h \) efficiently.
- Can compute \(h(u) \) efficiently.

Ex. \(U = \{a, b, c, d, e, f\}, n = 2 \).

\[
\begin{array}{cccccc}
 a & b & c & d & e & f \\
 h_1(x) & 0 & 1 & 0 & 1 & 0 & 1 \\
 h_2(x) & 0 & 0 & 0 & 1 & 1 & 1 \\
\end{array}
\]

\(H = \{h_1, h_2\} \)

\[
\begin{align*}
\Pr_{h \in H} [h(a) = h(b)] &= 1/2 \\
\Pr_{h \in H} [h(a) = h(c)] &= 1 \quad \text{(not universal)} \\
\Pr_{h \in H} [h(a) = h(d)] &= 0 \\
\end{align*}
\]

\[\ldots \]

\[
\begin{array}{cccccc}
 a & b & c & d & e & f \\
 h_1(x) & 0 & 1 & 0 & 1 & 0 \\
 h_2(x) & 0 & 0 & 0 & 1 & 1 \\
 h_3(x) & 0 & 0 & 1 & 0 & 1 \\
 h_4(x) & 1 & 0 & 0 & 1 & 1 & 0 \\
\end{array}
\]

\(H = \{h_1, h_2, h_3, h_4\} \)

\[
\begin{align*}
\Pr_{h \in H} [h(a) = h(b)] &= 1/2 \\
\Pr_{h \in H} [h(a) = h(c)] &= 1/2 \\
\Pr_{h \in H} [h(a) = h(d)] &= 1/2 \\
\Pr_{h \in H} [h(a) = h(e)] &= 1/2 \\
\Pr_{h \in H} [h(a) = h(f)] &= 0 \\
\end{align*}
\]

\[\ldots \]
Universal Hashing

Universal hashing property. Let H be a universal class of hash functions; let $h \in H$ be chosen uniformly at random from H; and let $u \in U$. For any subset $S \subseteq U$ of size at most n, the expected number of items in S that collide with u is at most 1.

Pf. For any element $s \in S$, define indicator random variable $X_s = 1$ if $h(s) = h(u)$ and 0 otherwise. Let X be a random variable counting the total number of collisions with u.

$$E_{h \in H}[X] = E[\sum_{s \in S} X_s] = \sum_{s \in S} E[X_s] = \sum_{s \in S} \Pr[X_s = 1] \leq \sum_{s \in S} \frac{1}{n} = |S| \frac{1}{n} \leq 1$$

\[\text{linearity of expectation} \quad X_s \text{ is a 0-1 random variable} \quad \text{universal (assumes } u \not\in S)\]
Designing a Universal Family of Hash Functions

Theorem. [Chebyshev 1850] There exists a prime between \(n \) and \(2n \).

Modulus. Choose a prime number \(p \approx n \).

Integer encoding. Identify each element \(u \in U \) with a base-\(p \) integer of \(r \) digits: \(x = (x_1, x_2, \ldots, x_r) \).

Hash function. Let \(A \) = set of all \(r \)-digit, base-\(p \) integers. For each \(a = (a_1, a_2, \ldots, a_r) \) where \(0 \leq a_i < p \), define

\[
h_a(x) = \left(\sum_{i=1}^{r} a_i x_i \right) \mod p
\]

Hash function family. \(H = \{ h_a : a \in A \} \).
Designing a Universal Class of Hash Functions

Theorem. $H = \{ h_a : a \in A \}$ is a universal class of hash functions.

Pf. Let $x = (x_1, x_2, \ldots, x_r)$ and $y = (y_1, y_2, \ldots, y_r)$ be two distinct elements of U. We need to show that $Pr[h_a(x) = h_a(y)] \leq 1/n$.

- Since $x \neq y$, there exists an integer j such that $x_j \neq y_j$.
- We have $h_a(x) = h_a(y)$ iff
 \[
 a_j (y_j - x_j) = \sum_{i \neq j} a_i (x_i - y_i) \mod p
 \]
- Can assume a was chosen uniformly at random by first selecting all coordinates a_i where $i \neq j$, then selecting a_j at random. Thus, we can assume a_i is fixed for all coordinates $i \neq j$.
- Since p is prime, $a_j z = m \mod p$ has at most one solution among p possibilities. \(\text{see lemma on next slide}\)
- Thus $Pr[h_a(x) = h_a(y)] = 1/p \leq 1/n$. \(\blacksquare\)
Number Theory Facts

Fact. Let \(p \) be prime, and let \(z \neq 0 \mod p \). Then \(\alpha z = m \mod p \) has at most one solution \(0 \leq \alpha < p \).

Pf.
- Suppose \(\alpha \) and \(\beta \) are two different solutions.
- Then \((\alpha - \beta)z = 0 \mod p\); hence \((\alpha - \beta)z\) is divisible by \(p \).
- Since \(z \neq 0 \mod p \), we know that \(z \) is not divisible by \(p \); it follows that \((\alpha - \beta)\) is divisible by \(p \).
- This implies \(\alpha = \beta \). □

Bonus fact. Can replace "at most one" with "exactly one" in above fact.

Pf idea. Euclid’s algorithm.
13.9 Chernoff Bounds
Chernoff Bounds (above mean)

Theorem. Suppose \(X_1, \ldots, X_n \) are independent 0-1 random variables. Let \(X = X_1 + \ldots + X_n \). Then for any \(\mu \geq E[X] \) and for any \(\delta > 0 \), we have

\[
\Pr[X > (1 + \delta)\mu] < \left[\frac{e^\delta}{(1 + \delta)^{1+\delta}} \right]^\mu
\]

Pf. We apply a number of simple transformations.

1. For any \(t > 0 \),
 \[
 \Pr[X > (1 + \delta)\mu] = \Pr[e^{tX} > e^{t(1+\delta)\mu}] \leq e^{-t(1+\delta)\mu} \cdot E[e^{tX}]
 \]
 \(f(x) = e^{tx} \) is monotone in \(x \)

 Markov’s inequality: \(\Pr[X > a] \leq E[X] / a \)

2. Now
 \[
 E[e^{tX}] = E[e^{t\sum_i X_i}] = \prod_i E[e^{tX_i}]
 \]
 \(\text{definition of } X \)
 \(\text{independence} \)
Chernoff Bounds (above mean)

\textbf{Pf. (cont)}

- Let $p_i = \Pr[X_i = 1]$. Then,

$$E[e^{tX_i}] = p_i e^t + (1 - p_i) e^0 = 1 + p_i (e^t - 1) \leq e^{p_i(e^t - 1)}$$

for any $\alpha \geq 0, 1 + \alpha \leq e^\alpha$

- Combining everything:

$$\Pr[X > (1 + \delta)\mu] \leq e^{-t(1 + \delta)\mu} \prod_i E[e^{tX_i}] \leq e^{-t(1 + \delta)\mu} \prod_i e^{p_i(e^t - 1)} \leq e^{-t(1 + \delta)\mu} e^{\mu(e^t - 1)}$$

previous slide inequality above $\sum_i p_i = E[X] \leq \mu$

- Finally, choose $t = \ln(1 + \delta)$.

Theorem. Suppose X_1, \ldots, X_n are independent 0-1 random variables. Let $X = X_1 + \ldots + X_n$. Then for any $\mu \leq E[X]$ and for any $0 < \delta < 1$, we have

$$\Pr[X < (1 - \delta)\mu] < e^{-\delta^2 \mu / 2}$$

Pf idea. Similar.

Remark. Not quite symmetric since only makes sense to consider $\delta < 1$.

13.10 Load Balancing
Load Balancing

Load balancing. System in which m jobs arrive in a stream and need to be processed immediately on n identical processors. Find an assignment that balances the workload across processors.

Centralized controller. Assign jobs in round-robin manner. Each processor receives at most \(\lceil m/n \rceil \) jobs.

Decentralized controller. Assign jobs to processors uniformly at random. How likely is it that some processor is assigned "too many" jobs?
Load Balancing

Analysis.
- Let X_i = number of jobs assigned to processor i.
- Let $Y_{ij} = 1$ if job j assigned to processor i, and 0 otherwise.
- We have $E[Y_{ij}] = 1/n$
- Thus, $X_i = \sum_j Y_{ij}$, and $\mu = E[X_i] = 1$.
- Applying Chernoff bounds with $\delta = c - 1$ yields $Pr[X_i > c] < \frac{e^{c-1}}{c^c}$

- Let $\gamma(n)$ be number x such that $x^x = n$, and choose $c = e^{\gamma(n)}$.

$$Pr[X_i > c] < \frac{e^{c-1}}{c^c} < \left(\frac{e}{c}\right)^c = \left(\frac{1}{\gamma(n)}\right)^{\gamma(n)} < \left(\frac{1}{\gamma(n)}\right)^{2\gamma(n)} = \frac{1}{n^2}$$

- Union bound \Rightarrow with probability $\geq 1 - 1/n$ no processor receives more than $e^{\gamma(n)} = \Theta(\log n / \log \log n)$ jobs.

Fact: this bound is asymptotically tight: with high probability, some processor receives $\Theta(\log n / \log \log n)$ jobs.
Load Balancing: Many Jobs

Theorem. Suppose the number of jobs $m = 16n \ln n$. Then on average, each of the n processors handles $\mu = 16 \ln n$ jobs. With high probability every processor will have between half and twice the average load.

Pf.

- Let X_i, Y_{ij} be as before.
- Applying Chernoff bounds with $\delta = 1$ yields

 $$\Pr[X_i > 2\mu] < \left(\frac{e}{4}\right)^{16n\ln n} < \left(\frac{1}{e}\right)^{\ln n} = \frac{1}{n^2}$$

 $$\Pr[X_i < \frac{1}{2}\mu] < e^{-\frac{1}{2}\left(\frac{1}{2}\right)^2(16n\ln n)} = \frac{1}{n^2}$$

- Union bound \implies every processor has load between half and twice the average with probability $\geq 1 - 2/n$. •
Extra Slides
13.5 Randomized Divide-and-Conquer
Quicksort

Sorting. Given a set of n distinct elements S, rearrange them in ascending order.

```
RandomizedQuicksort(S) {
    if $|S| = 0$ return

    choose a splitter $a_i \in S$ uniformly at random
    foreach $(a \in S)$ {
        if $(a < a_i)$ put $a$ in $S^-$
        else if $(a > a_i)$ put $a$ in $S^+$
    }
    RandomizedQuicksort(S^-)
    output $a_i$
    RandomizedQuicksort(S^+)
}
```

Remark. Can implement in-place.

$O(\log n)$ extra space
Quicksort

Running time.

- [Best case.] Select the median element as the splitter: quicksort makes $\Theta(n \log n)$ comparisons.
- [Worst case.] Select the smallest element as the splitter: quicksort makes $\Theta(n^2)$ comparisons.

Randomize. Protect against worst case by choosing splitter at random.

Intuition. If we always select an element that is bigger than 25% of the elements and smaller than 25% of the elements, then quicksort makes $\Theta(n \log n)$ comparisons.

Notation. Label elements so that $x_1 < x_2 < \ldots < x_n$.
Quicksort: BST Representation of Splitters

BST representation. Draw recursive BST of splitters.

First splitter, chosen uniformly at random
Observation. Element only compared with its ancestors and descendants.
- x_2 and x_7 are compared if their LCA = x_2 or x_7.
- x_2 and x_7 are not compared if their LCA = x_3 or x_4 or x_5 or x_6.

Claim. $Pr[x_i \text{ and } x_j \text{ are compared}] = 2 / |j - i + 1|$.
QuickSort: Expected Number of Comparisons

Theorem. Expected # of comparisons is $O(n \log n)$.

Pf.

$$\sum_{1 \leq i < j \leq n} \frac{2}{j - i + 1} = 2 \sum_{i=1}^{n} \sum_{j=2}^{i} \frac{1}{j} \leq 2n \sum_{j=1}^{n} \frac{1}{j} \approx 2n \int_{x=1}^{n} \frac{1}{x} \, dx = 2n \ln n$$

probability that i and j are compared

Theorem. [Knuth 1973] Stddev of number of comparisons is $\sim 0.65N$.

Ex. If $n = 1$ million, the probability that randomized quicksort takes less than $4n \ln n$ comparisons is at least 99.94%.

Chebyshev's inequality. $\Pr[|X - \mu| \geq k\delta] \leq 1 / k^2$.