Chapter 9

PSPACE: A Class of Problems Beyond NP

9.1 PSPACE

PSPACE

- Decision problems solvable in polynomial space.

Observation. $P \subseteq PSPACE$.

Claim. 3-SAT is in $PSPACE$.

Proof.

1. Enumerate all 2^n possible truth assignments using counter.
2. Check each assignment to see if it satisfies all clauses.

Theorem. $NP \subseteq PSPACE$.

Proof. Consider arbitrary problem Y in NP.

1. Since $Y \subseteq 3$-SAT, there exists algorithm to solve Y in poly-time.
2. Can implement black box in poly-space.
9.3 Quantified Satisfiability

Theorem. QSAT is in PSPACE.

Proof. Recursively try all possibilities.
- Only need one bit of information from each subproblem.
- Amount of space is proportional to depth of function call stack.

Intuition. Amy picks truth value for x_1, then Bob for x_2, then Amy for x_3, and so on. Can Amy satisfy φ no matter what Bob does?

Ex. Yes. Amy sets x_1 true; Bob sets x_2; Amy sets x_3 to be same as x_2.

Ex. No. If Amy sets x_1 false; Bob sets x_2 false; Amy loses.

Ex. No. if Amy sets x_1 true; Bob sets x_2 true; Amy loses.

9.4 Planning Problem

Conditions. Set $C = \{ C_1, \ldots, C_n \}$.

Initial configuration. Subset $c_0 \subseteq C$ of conditions initially satisfied.

Goal configuration. Subset $c^* \subseteq C$ of conditions we seek to satisfy.

Operators. Set $O = \{ O_1, \ldots, O_k \}$.
- To invoke operator O_i, must satisfy certain prereq conditions.
- After invoking O_i certain conditions become true, and certain conditions become false.

PLANNING. Is it possible to apply sequence of operators to get from initial configuration to goal configuration?

Examples.
- 15-puzzle.
- Rubik’s cube.
- Logistical operations to move people, equipment, and materials.
Planning Problem: 8-Puzzle

Planning example. Can we solve the 8-puzzle?

Conditions. \(C_{ij}, 1 \leq i, j \leq 9 \)

Initial state. \(c_0 = (C_{11}, C_{22}, \ldots, C_{66}, C_{78}, C_{87}, C_{99}) \)

Goal state. \(c* = (C_{11}, C_{22}, \ldots, C_{66}, C_{77}, C_{88}, C_{99}) \)

Operators.

- Precondition to apply \(O_i \) is \((C_{11}, C_{22}, \ldots, C_{66}, C_{78}, C_{87}, C_{99}) \).
- After invoking \(O_i \), conditions \(C_{79} \) and \(C_{97} \) become true.
- After invoking \(O_i \), conditions \(C_{78} \) and \(C_{99} \) become false.

Solution. No solution to 8-puzzle or 15-puzzle!

Def.: \(C_{ij} \) means tile \(i \) is in square \(j \)

Planning Problem: Binary Counter

Planning example. Can we increment an \(n \)-bit counter from the all-zeroes state to the all-ones state?

Conditions. \(C_1, \ldots, C_n \)

Initial state. \(c_0 = \emptyset \)

Goal state. \(c* = \{C_1, \ldots, C_n\} \)

Operators. \(O_1, \ldots, O_n \)

- To invoke operator \(O_i \), must satisfy \(C_1, \ldots, C_{i-1} \).
- After invoking \(O_i \), condition \(C_i \) becomes true.
- After invoking \(O_i \), conditions \(C_1, \ldots, C_{i-1} \) become false.

Solution. \(\emptyset \Rightarrow \{C_1\} \Rightarrow \{C_2\} \Rightarrow \{C_1, C_2\} \Rightarrow \ldots \)

Observation. Any solution requires at least \(2^n - 1 \) steps.

Planning Problem: In Exponential Space

Configuration graph \(G \).

- Include node for each of \(2^n \) possible configurations.
- Include an edge from configuration \(c' \) to configuration \(c'' \) if one of the operators can convert from \(c' \) to \(c'' \).

PLANNING. Is there a path from \(c_0 \) to \(c* \) in configuration graph?

Claim. PLANNING is in EXPTIME.

Pf. Run BFS to find path from \(c_0 \) to \(c* \) in configuration graph.

Note. Configuration graph can have \(2^n \) nodes, and shortest path can be of length \(2^n - 1 \).

Planning Problem: In Polynomial Space

Theorem. PLANNING is in PSPACE.

Pf.

- Suppose there is a path from \(c_0 \) to \(c* \) of length \(L \).
- Path from \(c_0 \) to midpoint and from midpoint to \(c* \) are each \(\leq L/2 \).
- Enumerate all possible midpoints.
- Apply recursively. Depth of recursion = \(\log_2 L \).

9.5 PSPACE-Complete
PSPACE-Complete

PSPACE. Decision problems solvable in polynomial space.

PSPACE-Complete. Problem Y is PSPACE-complete if (i) Y is in PSPACE and (ii) for every problem X in PSPACE, X \leq_p Y.

Theorem. P \subseteq \text{EXPTIME}.

Pf. Previous algorithm solves QSAT in exponential time, and QSAT is PSPACE-complete. □

Summary. P \subseteq NP \subseteq PSPACE \subseteq \text{EXPTIME}.

It is known that P \neq \text{EXPTIME}, but whether which inclusion is strict is conjectured to be unknown.

PSPACE-Complete Problems

More PSPACE-complete problems.

- Competitive facility location.
- Natural generalizations of games.
 - Othello, Hex, Geography, Rush-Hour, Instant Insanity
 - Shanghai, go-moku, Sokoban
- Given a memory restricted Turing machine, does it terminate in at most k steps?
- Do two regular expressions describe different languages?
- Is it possible to move and rotate a complicated object with attachments through an irregularly shaped corridor?
- Is a deadlock state possible within a system of communicating processors?

Competitive Facility Location

Input. Graph with positive edge weights, and target B.

Game. Two competing players alternate in selecting nodes. Not allowed to select a node if any of its neighbors has been selected.

Competitive facility location. Can second player guarantee at least B units of profit?

Yes if B \geq 20; no if B \geq 25.

Construction. Given instance \phi(x_1, \ldots, x_n) = C_1 \land C_2 \land \ldots \land C_k of QSAT.

- Give player 2 one last move on which she can try to win.
 - For each clause C_j, add node with value 1 and an edge to each of its literals.
 - Player 2 can make last move iff truth assignment defined alternately by the players failed to satisfy some clause.

Claim. COMPETITIVE-FACILITY is PSPACE-complete.

Pf.

- To solve in poly-space, use recursion like QSAT, but at each step there are up to n choices instead of 2.
- To prove that it is complete, we show that QSAT polynomial reduces to it. Given an instance of QSAT, we construct an instance of COMPETITIVE-FACILITY such that player 2 can force a win iff QSAT formula is false.
Chapter 11
Approximation Algorithms

Q. Suppose I need to solve an NP-hard problem. What should I do?
A. Theory says you’re unlikely to find a poly-time algorithm.
Must sacrifice one of three desired features.
- Solve problem to optimality.
- Solve problem in poly-time.
- Solve arbitrary instances of the problem.

- ρ-approximation algorithm.
 - Guaranteed to run in poly-time.
 - Guaranteed to solve arbitrary instance of the problem.
 - Guaranteed to find solution within ratio ρ of true optimum.

Challenge. Need to prove a solution’s value is close to optimum,
without even knowing what optimum value is!

Approximation Algorithms

Load Balancing

Input: m identical machines; n jobs, job j has
processing time tj.
Job j must run contiguously on one machine.
A machine can process at most one job at a time.

Def. Let J(i) be the subset of jobs assigned to
machine i. The load of machine i is Li = ∑j∈J(i) tj.

Def. The makespan is the maximum load on any
machine L = max i Li.

Load balancing. Assign each job to a machine to
minimize makespan.

Load Balancing: List Scheduling

List-scheduling algorithm.
Consider n jobs in some fixed order.
Assign job j to machine whose load is smallest so far.

List-Scheduling(m, n, t1,t2, … ,tn) {
for i = 1 to m {
 Li ← 0
 J(i) ← ∅
}
for j = 1 to n {
 i = argmin k Lk
 J(i) ← J(i) ∪ {j}
 Li ← Li + tj
}
return J(1), …, J(m)

jobs assigned to machine i
load on machine i
machine i has smallest load
assign job j to machine i
update load of machine i

Load Balancing: List Scheduling Analysis

First worst-case analysis of an approximation algorithm.
Need to compare resulting solution with optimal makespan L*.

Lemma 1. The optimal makespan C ≥ ∑j tj.
PF. Some machine must process the most time-consuming
job. -

Lemma 2. The optimal makespan C ≥ 1/2 ∑j tj.
PF.
The total processing time is ∑j tj.
One of machines must load at least the fraction of
total work. -

Implementation. O(n log m) using a priority queue.
Load Balancing: List Scheduling Analysis

Theorem. Greedy algorithm is a 2-approximation.

Proof. Consider load \(L_i \) of bottleneck machine \(i \).
- Let \(j \) be last job scheduled on machine \(i \).
- When job \(j \) assigned to machine \(i \), it had smallest load. Its load before assignment is \(L_i - t_j \) \(\leq L_k \) for all \(1 \leq k \leq m \).

Now \(L_i = \sum (L_i - t_j) \leq L_k \) for all \(1 \leq k \leq m \).

Q. Is our analysis tight?
A. Essentially yes.

Ex: \(m \) machines, \(m(m-1) \) jobs length 1 jobs, one job of length \(m \)

Load Balancing: LPT Rule

Observation. If at most \(m \) jobs, then list-scheduling is optimal.

Proof. Each job put on its own machine.

Lemma 3. If there are more than \(m \) jobs, \(L^* \geq 2t_{m+1} \).

Proof:
- Consider first \(m+1 \) jobs \(t_1, \ldots, t_{m+1} \).
- Since the \(t_i \)'s are in descending order, each takes at least \(t_{m+1} \) time.
- There are \(m+1 \) jobs and \(m \) machines, so by pigeonhole principle, at least one machine gets two jobs.

Theorem. LPT rule is a 3/2 approximation algorithm.

Proof. Some basic approach as for list scheduling
\[t_i = (t_i - t_j) + t_j \leq 2t_j \]

(by observation, can assume number of jobs > \(m \))
Load Balancing: LPT Rule

Q. Is our 3/2 analysis tight?
A. No.

Pf. More sophisticated analysis of same algorithm.

Q. Is Graham's 4/3 analysis tight?
A. Essentially yes.

Ex: m machines, n = 2m+1 jobs; 2 jobs of length m+1, m+2, ..., 2m-1 and one job of length m.