
4/13/2018

Copyright 2000, Kevin Wayne 1

CS 580: Algorithm Design and Analysis

Jeremiah Blocki
Purdue University
Spring 2018

2

Chapter 9

PSPACE: A Class of
Problems Beyond NP

Slides by Kevin Wayne.
Copyright @ 2005 Pearson-Addison Wesley.
All rights reserved.

3

Geography Game

Geography. Alice names capital city c of country she is in. Bob names a
capital city c' that starts with the letter on which c ends. Alice and
Bob repeat this game until one player is unable to continue. Does Alice
have a forced win?

Ex. Budapest  Tokyo  Ottawa  Ankara  Amsterdam  Moscow
 Washington  Nairobi  …

Geography on graphs. Given a directed graph G = (V, E) and a start
node s, two players alternate turns by following, if possible, an edge out
of the current node to an unvisited node. Can first player guarantee to
make the last legal move?

Remark. Some problems (especially involving 2-player games and AI)
defy classification according to P, EXPTIME, NP, and NP-complete.

9.1 PSPACE

5

PSPACE

P. Decision problems solvable in polynomial time.

PSPACE. Decision problems solvable in polynomial space.

Observation. P  PSPACE.

poly-time algorithm can consume only polynomial space

6

PSPACE

Binary counter. Count from 0 to 2n - 1 in binary.
Algorithm. Use n bit odometer.

Claim. 3-SAT is in PSPACE.
Pf.
 Enumerate all 2n possible truth assignments using counter.
 Check each assignment to see if it satisfies all clauses. ▪

Theorem. NP  PSPACE.
Pf. Consider arbitrary problem Y in NP.
 Since Y P 3-SAT, there exists algorithm that solves Y in poly-time

plus polynomial number of calls to 3-SAT black box.
 Can implement black box in poly-space. ▪

4/13/2018

Copyright 2000, Kevin Wayne 2

9.3 Quantified Satisfiability

8

QSAT. Let (x1, …, xn) be a Boolean CNF formula. Is the following
propositional formula true?

Intuition. Amy picks truth value for x1, then Bob for x2, then Amy for
x3, and so on. Can Amy satisfy  no matter what Bob does?

Ex.
Yes. Amy sets x1 true; Bob sets x2; Amy sets x3 to be same as x2.

Ex.
No. If Amy sets x1 false; Bob sets x2 false; Amy loses;
No. if Amy sets x1 true; Bob sets x2 true; Amy loses.

Quantified Satisfiability

x1 x2 x3 x4 … xn-1 xn (x1, …, xn)

assume n is odd

(x1  x2)  (x2  x3)  (x1  x2  x3)

(x1  x2)  (x2  x3)  (x1  x2  x3)

9

QSAT is in PSPACE

Theorem. QSAT  PSPACE.
Pf. Recursively try all possibilities.
 Only need one bit of information from each subproblem.
 Amount of space is proportional to depth of function call stack.





x1 = 0

 

x2 = 0

x3 = 0

x2 = 1

x3 = 1



 

x1 = 1

(0, 0, 0) (0, 0, 1) (0, 1, 0) (0, 1, 1) (1, 0, 0) (1, 0, 1) (1, 1, 0) (1, 1, 1)

return true iff both
subproblems are true

return true iff either
subproblem is true

9.4 Planning Problem

11

15-Puzzle

8-puzzle, 15-puzzle. [Sam Loyd 1870s]
 Board: 3-by-3 grid of tiles labeled 1-8.
 Legal move: slide neighboring tile into blank (white) square.
 Find sequence of legal moves to transform initial configuration into

goal configuration.

1 2

4 5

3

6

8 7

1 2

4 5

3

6

7 8

initial configuration goal configuration

1 2

4 5

3

68 7

move 12 . . .
?

12

Planning Problem

Conditions. Set C = { C1, …, Cn }.
Initial configuration. Subset c0  C of conditions initially satisfied.
Goal configuration. Subset c*  C of conditions we seek to satisfy.
Operators. Set O = { O1, …, Ok }.
 To invoke operator Oi, must satisfy certain prereq conditions.
 After invoking Oi certain conditions become true, and certain

conditions become false.

PLANNING. Is it possible to apply sequence of operators to get from
initial configuration to goal configuration?

Examples.
 15-puzzle.
 Rubik's cube.
 Logistical operations to move people, equipment, and materials.

4/13/2018

Copyright 2000, Kevin Wayne 3

13

Planning Problem: 8-Puzzle

Planning example. Can we solve the 8-puzzle?

Conditions. Cij, 1  i, j  9.

Initial state. c0 = {C11, C22, …, C66, C78, C87, C99}.

Goal state. c* = {C11, C22, …, C66, C77, C88, C99}.

Operators.
 Precondition to apply Oi = {C11, C22, …, C66, C78, C87, C99}.
 After invoking Oi, conditions C79 and C97 become true.
 After invoking Oi, conditions C78 and C99 become false.

Solution. No solution to 8-puzzle or 15-puzzle!

Cij means tile i is in square j

1 2 3

4 5 6

8 7 9

1 2 3

4 5 6

8 79

Oi

14

Diversion: Why is 8-Puzzle Unsolvable?

8-puzzle invariant. Any legal move preserves the parity of the number
of pairs of pieces in reverse order (inversions).

3 1 2

4 5 6

8 7

3 1 2

4 6

8 5 7

3 inversions
1-3, 2-3, 7-8

5 inversions
1-3, 2-3, 7-8, 5-8, 5-6

3 1 2

4 5 6

8 7

3 inversions
1-3, 2-3, 7-8

1 2 3

4 5 6

7 8

0 inversions

1 2 3

4 5 6

8 7

1 inversion: 7-8

15

Planning Problem: Binary Counter

Planning example. Can we increment an n-bit counter from the all-
zeroes state to the all-ones state?

Conditions. C1, …, Cn.
Initial state. c0 = .
Goal state. c* = {C1, …, Cn }.
Operators. O1, …, On.
 To invoke operator Oi, must satisfy C1, …, Ci-1.
 After invoking Oi, condition Ci becomes true.
 After invoking Oi, conditions C1, …, Ci-1 become false.

Solution. { }  {C1}  {C2}  {C1, C2}  {C3}  {C3, C1}  …

Observation. Any solution requires at least 2n - 1 steps.

Ci corresponds to bit i = 1

all 0s

all 1s
i-1 least significant bits are 1

set bit i to 1

set i-1 least significant
bits to 0

16

Planning Problem: In Exponential Space

Configuration graph G.
 Include node for each of 2n possible configurations.
 Include an edge from configuration c' to configuration c'' if

one of the operators can convert from c' to c''.

PLANNING. Is there a path from c0 to c* in configuration graph?

Claim. PLANNING is in EXPTIME.
Pf. Run BFS to find path from c0 to c* in configuration graph. ▪

Note. Configuration graph can have 2n nodes, and shortest path
can be of length = 2n - 1.

binary counter

17

Planning Problem: In Polynomial Space

Theorem. PLANNING is in PSPACE.
Pf.
 Suppose there is a path from c1 to c2 of length L.
 Path from c1 to midpoint and from midpoint to c2 are each  L/2.
 Enumerate all possible midpoints.
 Apply recursively. Depth of recursion = log2 L. ▪

boolean hasPath(c1, c2, L) {
if (L  1) return correct answer

foreach configuration c' {
boolean x = hasPath(c1, c', L/2)
boolean y = hasPath(c', c2, L/2)
if (x and y) return true

}
return false

}

enumerate using binary counter

9.5 PSPACE-Complete

4/13/2018

Copyright 2000, Kevin Wayne 4

19

PSPACE-Complete

PSPACE. Decision problems solvable in polynomial space.

PSPACE-Complete. Problem Y is PSPACE-complete if (i) Y is in
PSPACE and (ii) for every problem X in PSPACE, X P Y.

Theorem. [Stockmeyer-Meyer 1973] QSAT is PSPACE-complete.

Theorem. PSPACE  EXPTIME.
Pf. Previous algorithm solves QSAT in exponential time, and
QSAT is PSPACE-complete. ▪

Summary. P  NP  PSPACE  EXPTIME.

it is known that P  EXPTIME, but unknown which inclusion is strict;
conjectured that all are

20

PSPACE-Complete Problems

More PSPACE-complete problems.
 Competitive facility location.
 Natural generalizations of games.

– Othello, Hex, Geography, Rush-Hour, Instant Insanity
– Shanghai, go-moku, Sokoban

 Given a memory restricted Turing machine, does it terminate
in at most k steps?

 Do two regular expressions describe different languages?
 Is it possible to move and rotate complicated object with

attachments through an irregularly shaped corridor?
 Is a deadlock state possible within a system of communicating

processors?

21

Competitive Facility Location

Input. Graph with positive edge weights, and target B.
Game. Two competing players alternate in selecting nodes. Not allowed
to select a node if any of its neighbors has been selected.

Competitive facility location. Can second player guarantee at least B
units of profit?

10 1 5 15 5 1 5 1 15 10

Yes if B = 20; no if B = 25.

22

Competitive Facility Location

Claim. COMPETITIVE-FACILITY is PSPACE-complete.

Pf.

 To solve in poly-space, use recursion like QSAT, but at each
step there are up to n choices instead of 2.

 To show that it's complete, we show that QSAT polynomial
reduces to it. Given an instance of QSAT, we construct an
instance of COMPETITIVE-FACILITY such that player 2 can
force a win iff QSAT formula is false.

23

Competitive Facility Location

Construction. Given instance (x1, …, xn) = C1  C1  … Ck of QSAT.
 Include a node for each literal and its negation and connect them.

– at most one of xi and its negation can be chosen
 Choose c  k+2, and put weight ci on literal xi and its negation;

set B = cn-1 + cn-3 + … + c4 + c2 + 1.
– ensures variables are selected in order xn, xn-1, …, x1.

 As is, player 2 will lose by 1 unit: cn-1 + cn-3 + … + c4 + c2.

10n

 xn xn

10n

100

 x2 x2

100

10

 x1 x1

10

...

assume n is odd

24

Competitive Facility Location

Construction. Given instance (x1, …, xn) = C1  C1  … Ck of QSAT.
 Give player 2 one last move on which she can try to win.
 For each clause Cj, add node with value 1 and an edge to each of its

literals.
 Player 2 can make last move iff truth assignment defined

alternately by the players failed to satisfy some clause. ▪

 xn xn

 x2 x2

 x1 x1

1

 x1  x2  xn

...

10n10n

100100

1010

4/13/2018

Copyright 2000, Kevin Wayne 5

25

Chapter 11

Approximation
Algorithms

Slides by Kevin Wayne.
Copyright @ 2005 Pearson-Addison Wesley.
All rights reserved.

26

Approximation Algorithms

Q. Suppose I need to solve an NP-hard problem. What should I
do?
A. Theory says you're unlikely to find a poly-time algorithm.

Must sacrifice one of three desired features.
 Solve problem to optimality.
 Solve problem in poly-time.
 Solve arbitrary instances of the problem.

-approximation algorithm.
 Guaranteed to run in poly-time.
 Guaranteed to solve arbitrary instance of the problem
 Guaranteed to find solution within ratio  of true optimum.

Challenge. Need to prove a solution's value is close to optimum,
without even knowing what optimum value is!

11.1 Load Balancing

28

Load Balancing

Input. m identical machines; n jobs, job j has
processing time tj.
 Job j must run contiguously on one machine.
 A machine can process at most one job at a time.

Def. Let J(i) be the subset of jobs assigned to
machine i. The load of machine i is Li = j  J(i) tj.

Def. The makespan is the maximum load on any
machine L = maxi Li.

Load balancing. Assign each job to a machine to
minimize makespan.

29

List-scheduling algorithm.
 Consider n jobs in some fixed order.
 Assign job j to machine whose load is smallest so far.

Implementation. O(n log m) using a priority queue.

Load Balancing: List Scheduling

List-Scheduling(m, n, t1,t2,…,tn) {
for i = 1 to m {

Li  0
J(i)  

}

for j = 1 to n {
i = argmink Lk
J(i)  J(i)  {j}
Li  Li + tj

}
return J(1), …, J(m)

}

jobs assigned to machine i
load on machine i

machine i has smallest load
assign job j to machine i
update load of machine i

play

30

Load Balancing: List Scheduling Analysis

Theorem. [Graham, 1966] Greedy algorithm is a 2-approximation.
 First worst-case analysis of an approximation algorithm.
 Need to compare resulting solution with optimal makespan L*.

4/13/2018

Copyright 2000, Kevin Wayne 6

31

Load Balancing: List Scheduling Analysis

Theorem. Greedy algorithm is a 2-approximation.
Pf. Consider load Li of bottleneck machine i.
 Let j be last job scheduled on machine i.
 When job j assigned to machine i, i had smallest load. Its load

before assignment is Li - tj  Li - tj  Lk for all 1  k  m.

j

0
L = LiLi - tj

blue jobs scheduled before j

32

Load Balancing: List Scheduling Analysis

Lemma 2

Lemma 1

Now

33

Load Balancing: List Scheduling Analysis

Q. Is our analysis tight?
A. Essentially yes.

Ex: m machines, m(m-1) jobs length 1 jobs, one job of length m

machine 2 idle
machine 3 idle
machine 4 idle
machine 5 idle
machine 6 idle
machine 7 idle
machine 8 idle
machine 9 idle
machine 10 idle

list scheduling makespan = 19

34

Load Balancing: List Scheduling Analysis

Q. Is our analysis tight?
A. Essentially yes.

Ex: m machines, m(m-1) jobs length 1 jobs, one job of length m

optimal makespan = 10

35

Load Balancing: LPT Rule

Longest processing time (LPT). Sort n jobs in descending order of
processing time, and then run list scheduling algorithm.

LPT-List-Scheduling(m, n, t1,t2,…,tn) {
Sort jobs so that t1 ≥ t2 ≥ … ≥ tn

for i = 1 to m {
Li  0
J(i)  

}

for j = 1 to n {
i = argmink Lk
J(i)  J(i)  {j}
Li  Li + tj

}
return J(1), …, J(m)

}

jobs assigned to machine i
load on machine i

machine i has smallest load
assign job j to machine i

update load of machine i

36

Load Balancing: LPT Rule

Observation. If at most m jobs, then list-scheduling is optimal.
Pf. Each job put on its own machine. ▪

Lemma 3. If there are more than m jobs, L*  2 tm+1.
Pf.
 Consider first m+1 jobs t1, …, tm+1.
 Since the ti's are in descending order, each takes at least tm+1 time.
 There are m+1 jobs and m machines, so by pigeonhole principle, at

least one machine gets two jobs. ▪

Theorem. LPT rule is a 3/2 approximation algorithm.
Pf. Same basic approach as for list scheduling.

▪


L i  (Li  t j)
 L*

 
 t j

 1
2 L*


  3
2 L *.

Lemma 3
(by observation, can assume number of jobs > m)

4/13/2018

Copyright 2000, Kevin Wayne 7

37

Load Balancing: LPT Rule

Q. Is our 3/2 analysis tight?
A. No.

Theorem. [Graham, 1969] LPT rule is a 4/3-approximation.
Pf. More sophisticated analysis of same algorithm.

Q. Is Graham's 4/3 analysis tight?
A. Essentially yes.

Ex: m machines, n = 2m+1 jobs, 2 jobs of length m+1, m+2, …,
2m-1 and one job of length m.

