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CS 580:  Algorithm Design and Analysis

Jeremiah Blocki
Purdue University
Spring 2018

Homework 5 due tonight at 11:59 PM (on Blackboard)
Midterm 2 on April 4th at 8PM (MATH 175)

Practice Midterm Released Soon
3x5 Index Card (Double Sided)

Midterm 2

• When? 
• April 4th from 8PM to 10PM (2 hours)

• Where?
• MATH 175

• What can I bring?
• 3x5 inch index card with your notes (double sided)
• No electronics (phones, computers, calculators etc…)
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Midterm 2

• When? 
• April 4th from 8PM to 10PM (2 hours)

• Where?
• MATH 175

• What material should I study?
• The midterm will cover recent topics more heavily

• Network Flow 
• Max-Flow Min-Cut, Augmenting Paths, etc…
• Ford Fulkerson, Dinic’s Algorithm etc…
• Applications of Network Flow (e.g., Maximum Bipartite 

Matching)
• Linear Programming
• NP-Completeness

• Polynomial time reductions, P, NP, NP-Hard, NP-Complete, 
coNP

• PSPACE (only basic questions)

3

Recap

•Circuit SAT is NP-Complete
• Circuit SAT is in NP
• For all decision problems X in NP we have (X  P Circuit SAT )

•3-SAT is NP-Complete
•Decision problems which have a polynomial time algorithm.

•Template for proving a problem Y is NP-Complete

4

8.9  co-NP and the Asymmetry of NP
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Asymmetry of NP

Asymmetry of NP. We only need to have short proofs of yes instances.

Ex 1.  SAT vs. TAUTOLOGY.
 Can prove a CNF formula is satisfiable by giving such an assignment.
 How could we prove that a formula is not satisfiable? 

Ex 2.  HAM-CYCLE vs. NO-HAM-CYCLE.
 Can prove a graph is Hamiltonian by giving such a Hamiltonian cycle.
 How could we prove that a graph is not Hamiltonian?

Remark.  SAT is NP-complete and SAT  P TAUTOLOGY, but how do we 
classify TAUTOLOGY?

not even known to be in NP
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NP and co-NP

NP.  Decision problems for which there is a poly-time certifier.
Ex.  SAT, HAM-CYCLE, COMPOSITES.

Def.  Given a decision problem X, its complement X is the same problem 
with the yes and no answers reverse.

Ex.  X = { 0, 1, 4, 6, 8, 9, 10, 12, 14, 15, … }
Ex.  X = { 2, 3, 5, 7, 11, 13, 17, 23, 29, … }

co-NP.  Complements of decision problems in NP.
Ex.  TAUTOLOGY, NO-HAM-CYCLE, PRIMES.
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Fundamental question.  Does NP = co-NP?
 Do yes instances have succinct certificates iff no instances do?
 Consensus opinion:  no.

Theorem.  If NP  co-NP, then P  NP.
Pf idea.
 P is closed under complementation.
 If P = NP, then NP is closed under complementation.
 In other words, NP = co-NP.
 This is the contrapositive of the theorem.

NP = co-NP ?
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Good Characterizations

Good characterization.  [Edmonds 1965]   NP   co-NP.
 If problem X is in both NP and co-NP, then:

– for yes instance, there is a succinct certificate
– for no instance, there is a succinct disqualifier

 Provides conceptual leverage for reasoning about a problem.

Ex.  Given a bipartite graph, is there a perfect matching.
 If yes, can exhibit a perfect matching.
 If no, can exhibit a set of nodes S such that |N(S)| < |S|.
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Good Characterizations

Observation.  P  NP   co-NP.
 Proof of max-flow min-cut theorem led to stronger result 

that max-flow and min-cut are in P.
 Sometimes finding a good characterization seems easier than 

finding an efficient algorithm.

Fundamental open question.  Does P = NP   co-NP?
 Mixed opinions.
 Many examples where problem found to have a non-trivial 

good characterization, but only years later discovered to be 
in P.

– linear programming [Khachiyan, 1979]
– primality testing [Agrawal-Kayal-Saxena, 2002]

Fact.  Factoring is in NP   co-NP, but not known to be in P.

if poly-time algorithm for factoring,
can break RSA cryptosystem
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FACTOR is in NP  co-NP

FACTORIZE.  Given an integer x, find its prime factorization.
FACTOR.  Given two integers x and y, does x have a nontrivial 
factor less than y?

Theorem.  FACTOR  P FACTORIZE.

Theorem.  FACTOR is in NP  co-NP.
Pf.
 Certificate:  a factor p of x that is less than y.
 Disqualifier:  the prime factorization of x (where each prime 

factor is less than y), along with a certificate that each 
factor is prime.

– Verifier can 
 verify that all factors are prime and their product is x
 verify that all prime factors are greater than y

Basic genres.
 Packing problems:  SET-PACKING, INDEPENDENT SET.
 Covering problems:  SET-COVER, VERTEX-COVER.
 Constraint satisfaction problems:  SAT, 3-SAT.
 Sequencing problems:  HAMILTONIAN-CYCLE, TSP.
 Partitioning problems: 3D-MATCHING, 3-COLOR.
 Numerical problems:  SUBSET-SUM, KNAPSACK.

8.5  Sequencing Problems
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Hamiltonian Cycle

HAM-CYCLE:  given an undirected graph G = (V, E), does there exist a 
simple cycle  that contains every node in V.

YES:  vertices and faces of a dodecahedron.

14

Hamiltonian Cycle

HAM-CYCLE:  given an undirected graph G = (V, E), does there exist a 
simple cycle  that contains every node in V.

1

3

5

1'

3'

2

4

2'

4'

NO:  bipartite graph with odd number of nodes.

15

Directed Hamiltonian Cycle

DIR-HAM-CYCLE:  given a digraph G = (V, E), does there exists a simple 
directed cycle  that contains every node in V?

Claim.  DIR-HAM-CYCLE  P HAM-CYCLE.

Pf.  Given a directed graph G = (V, E), construct an undirected graph G' 
with 3n nodes.

v

a

b

c

d

e
vin

aout

bout

cout

din

ein

G G'

v vout

16

Directed Hamiltonian Cycle

Claim.  G has a Hamiltonian cycle iff G' does.

Pf.  
 Suppose G has a directed Hamiltonian cycle .
 Then G' has an undirected Hamiltonian cycle (same order).

– For each node v in directed path cycle replace v with vin,v,vout

Pf.  
 Suppose G' has an undirected Hamiltonian cycle '.
 ' must visit nodes in G' using one of following two orders:

…, B, G, R, B, G, R, B, G, R, B, … 
…, B, R, G, B, R, G, B, R, G, B, … 

 Blue nodes in ' make up directed Hamiltonian cycle  in G, or 
reverse of one.   ▪
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3-SAT Reduces to Directed Hamiltonian Cycle

Claim. 3-SAT  P DIR-HAM-CYCLE.

Pf.   Given an instance  of 3-SAT, we construct an instance of DIR-
HAM-CYCLE that has a Hamiltonian cycle iff  is satisfiable.

Construction.  First, create graph that has 2n Hamiltonian cycles which 
correspond in a natural way to 2n possible truth assignments.

18

3-SAT Reduces to Directed Hamiltonian Cycle

Construction.  Given 3-SAT instance  with n variables xi and k clauses.
 Construct G to have 2n Hamiltonian cycles.
 Intuition:  traverse path i from left to right   set variable xi = 1.

s

t

3k + 3

x1

x2

x3
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3-SAT Reduces to Directed Hamiltonian Cycle

Construction.  Given 3-SAT instance  with n variables xi and k clauses.
 Construct G to have 2n Hamiltonian cycles.

s

t

3k + 3

x1

x2

x3

clause node3211 VV xxxC 

20

3-SAT Reduces to Directed Hamiltonian Cycle

Construction.  Given 3-SAT instance  with n variables xi and k clauses.
 For each clause:  add a node and 6 edges.

s

t

clause nodeclause node3211 VV xxxC  3212 VV xxxC 

x1

x2

x3

21

3-SAT Reduces to Directed Hamiltonian Cycle

Claim.    is satisfiable iff G has a Hamiltonian cycle.

Pf.  
 Suppose 3-SAT instance has satisfying assignment x*.
 Then, define Hamiltonian cycle in G as follows:

– if x*i = 1, traverse row i from left to right
– if x*i = 0, traverse row i from right to left
– for each clause Cj , there will be at least one row i in 

which we are going in "correct" direction to splice 
node Cj into tour

22

3-SAT Reduces to Directed Hamiltonian Cycle

Claim.    is satisfiable iff G has a Hamiltonian cycle.

Pf.  
 Suppose G has a Hamiltonian cycle .
 If  enters clause node Cj , it must depart on mate edge.

– thus, nodes immediately before and after Cj are 
connected by an edge e in G

– removing Cj from cycle, and replacing it with edge e 
yields Hamiltonian cycle on G - { Cj }

 Continuing in this way, we are left with Hamiltonian cycle ' 
in
G - { C1 , C2 ,  . . . , Ck }.

 Set x*i = 1 iff ' traverses row i left to right.
 Since  visits each clause node Cj , at least one of the paths 

is traversed in "correct" direction, and each clause is 
satisfied.   ▪

23

Longest Path

SHORTEST-PATH.  Given a digraph G = (V, E), does there exists a simple 
path of length at most k edges?

LONGEST-PATH.  Given a digraph G = (V, E), does there exists a simple 
path of length at least k edges?

Claim.  3-SAT  P LONGEST-PATH.

Pf 1.  Redo proof for  DIR-HAM-CYCLE, ignoring back-edge from t to s.
Pf 2. Show HAM-CYCLE  P LONGEST-PATH.

24

Traveling Salesperson Problem

TSP.  Given a set of n cities and a pairwise distance function d(u, v), is 
there a tour of length  D?

All 13,509 cities in US with a population of at least 500
Reference:  http://www.tsp.gatech.edu
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Traveling Salesperson Problem

TSP.  Given a set of n cities and a pairwise distance function d(u, v), is 
there a tour of length  D?

Optimal TSP tour
Reference:  http://www.tsp.gatech.edu
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Traveling Salesperson Problem

TSP.  Given a set of n cities and a pairwise distance function d(u, v), is 
there a tour of length  D?

11,849 holes to drill in a programmed logic array
Reference:  http://www.tsp.gatech.edu

27

Traveling Salesperson Problem

TSP.  Given a set of n cities and a pairwise distance function d(u, v), is 
there a tour of length  D?

Optimal TSP tour
Reference:  http://www.tsp.gatech.edu
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Traveling Salesperson Problem

TSP.  Given a set of n cities and a pairwise distance function d(u, v), is 
there a tour of length  D?

HAM-CYCLE:  given a graph G = (V, E), does there exists a simple cycle 
that contains every node in V?

Claim.  HAM-CYCLE  P TSP.
Pf.
 Given instance G = (V, E) of HAM-CYCLE, create n cities with 

distance function

 TSP instance has tour of length  n iff G is Hamiltonian.  ▪

Remark.  TSP instance in reduction satisfies -inequality.

d(u, v)    
 1 if (u, v)   E

 2 if (u, v)   E





29

Randall Munro
http://xkcd.com/c287.html

Circuit SAT Circuit SAT 

30

Chapter 10

Extending the Limits
of Tractability

Slides by Kevin Wayne.
Copyright @ 2005 Pearson-Addison Wesley.
All rights reserved.
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Coping With NP-Completeness

Q.  Suppose I need to solve an NP-complete problem. What 
should I do?
A.  Theory says you're unlikely to find poly-time algorithm.

Must sacrifice one of three desired features.
 Solve problem to optimality.
 Solve problem in polynomial time.
 Solve arbitrary instances of the problem.

This lecture.  Solve some special cases of NP-complete 
problems that arise in practice.

10.1  Finding Small Vertex Covers

33

Vertex Cover

VERTEX COVER:  Given a graph G = (V, E) and an integer k, is there a 
subset of vertices S  V such that |S|  k, and for each edge (u, v) 
either u  S, or v  S, or both.

3

6

10

7

1

5

8

2

4 9

k = 4
S = { 3, 6, 7, 10 }

34

Finding Small Vertex Covers

Q.  What if k is small?

Brute force.  O(k nk+1).
 Try all C(n, k) = O(nk) subsets of size k.
 Takes O(k n) time to check whether a subset is 

a vertex cover.

Goal.  Limit exponential dependency on k, e.g., to 
O(2k k n).

Ex.  n = 1,000, k = 10.
Brute. k nk+1  = 1034   infeasible.
Better.  2k k n = 107     feasible.

Remark.  If k is a constant, algorithm is poly-time; 
if k is a small constant, then it's also practical.

35

Finding Small Vertex Covers

Claim.  Let u-v be an edge of G.  G has a vertex cover of size  k iff
at least one of G  { u } and G  { v } has a vertex cover of size  k-1.

Pf.  
 Suppose G has a vertex cover S of size  k.
 S contains either u or v (or both).  Assume it contains u.
 S  { u } is a vertex cover of G  { u }.

Pf.  
 Suppose S is a vertex cover of G  { u } of size  k-1.
 Then S  { u } is a vertex cover of G.  ▪

Claim.  If G has a vertex cover of size k, it has  k(n-1) edges.
Pf.  Each vertex covers at most n-1 edges.  ▪

delete v and all incident edges

36

Finding Small Vertex Covers:  Algorithm

Claim. The following algorithm determines if G has a vertex 
cover of size  k in O(2k kn) time.

Pf.
 Correctness follows from previous two claims.
 There are  2k+1 nodes in the recursion tree; each 

invocation takes O(kn) time.  ▪

boolean Vertex-Cover(G, k) {
if (G contains no edges)   return true
if (G contains  kn edges) return false

let (u, v) be any edge of G
a = Vertex-Cover(G - {u}, k-1)
b = Vertex-Cover(G - {v}, k-1)
return a or b

}
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Finding Small Vertex Covers:  Recursion Tree

k

k-1k-1

k-2k-2k-2 k-2

0 0 0 0 0 0 0 0

k - i

T (n, k) 
c if k  0 

cn if k 1 

2T (n,k 1) ckn if k 1 







 T (n, k)  2k ck n

10.2  Solving NP-Hard Problems on Trees

39

Independent Set on Trees

Independent set on trees.  Given a tree, find a maximum 
cardinality subset of nodes such that no two share an edge.

Fact.  A tree on at least two nodes has
at least two leaf nodes.

Key observation.  If v is a leaf, there exists
a maximum size independent set containing v.

Pf.  (exchange argument)
 Consider a max cardinality independent set S.
 If v  S, we're done.
 If u  S and v  S, then S  { v } is independent  S 

not maximum.
 IF u  S and v  S, then S  { v }  { u } is independent.  

▪

degree = 1

40

Independent Set on Trees:  Greedy Algorithm

Theorem.  The following greedy algorithm finds a maximum 
cardinality independent set in forests (and hence trees).

Pf.  Correctness follows from the previous key observation.  ▪

Remark.  Can implement in O(n) time by considering nodes in 
postorder.

Independent-Set-In-A-Forest(F) {
S  
while (F has at least one edge) {

Let e = (u, v) be an edge such that v is a 
leaf

Add v to S
Delete from F nodes u and v, and all edges

incident to them.
}
return S

}

41

Weighted Independent Set on Trees

Weighted independent set on trees.  Given a tree and node weights wv > 0, 
find an independent set S that maximizes vS wv. 

Observation.  If (u, v) is an edge such that v is a leaf node, then either 
OPT includes u, or it includes all leaf nodes incident to u.

Dynamic programming solution.  Root tree at some node, say r.
 OPTin  (u) = max weight independent set

of subtree rooted at u, containing u.
 OPTout(u) = max weight independent set

of subtree rooted at u, not containing u.

r

u

v w

  

OPTin (u)  wu    OPTout (v)
v  children(u)



OPTout (u)  max OPTin (v), OPTout (v) 
v  children(u)



x

children(u) = { v, w, x }

42

Weighted Independent Set on Trees:  Dynamic Programming Algorithm

Theorem.  The dynamic programming algorithm finds a maximum 
weighted independent set in a tree in O(n) time.

Pf.  Takes O(n) time since we visit nodes in postorder and examine each 
edge exactly once.  ▪

Weighted-Independent-Set-In-A-
Tree(T) {

Root the tree at a node r
foreach (node u of T in 

postorder) {
if (u is a leaf) {

Min [u] = wu
Mout[u] = 0

}
else {

Min [u] = wu + vchildren(u)
Mout[v]

Mout[u] = vchildren(u)
max(M [v] M [v])

ensures a node is visited after
all its children

can also find independent set itself (not just value)
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Context

Independent set on trees.  This structured special case is tractable 
because we can find a node that breaks the communication among the
subproblems in different subtrees.

Graphs of bounded tree width.  Elegant generalization of trees that:
 Captures a rich class of graphs that arise in practice.
 Enables decomposition into independent pieces.

u u

see Chapter 10.4, but proceed with caution

10.3  Circular Arc Coloring

45

Wavelength-Division Multiplexing

Wavelength-division multiplexing (WDM).  Allows m communication 
streams (arcs) to share a portion of a fiber optic cable, provided they 
are transmitted using different wavelengths.

Ring topology. Special case is when network is a cycle on n nodes.

Bad news. NP-complete, even on rings.

Brute force.  Can determine if
k colors suffice in O(km) time by
trying all k-colorings.

Goal.  O(f(k))  poly(m, n) on rings.

1

3

24

f

b
c

d

a

e

n = 4, m = 6

46

Wavelength-Division Multiplexing

Wavelength-division multiplexing (WDM).  Allows m communication 
streams (arcs) to share a portion of a fiber optic cable, provided they 
are transmitted using different wavelengths.

Ring topology. Special case is when network is a cycle on n nodes.

Bad news. NP-complete, even on rings.

Brute force.  Can determine if
k colors suffice in O(km) time by
trying all k-colorings.

Goal.  O(f(k))  poly(m, n) on rings.

1

3

24

f

b
c

d

a

e

n = 4, m = 6

47

Review:  Interval Coloring

Interval coloring.  Greedy algorithm finds coloring such that number of 
colors equals depth of schedule.

Circular arc coloring.
 Weak duality: number of colors  depth.
 Strong duality does not hold.

h

c

a e

f

g i

jd

b

maximum number of streams at one location

max depth = 2
min colors = 3

48

(Almost) Transforming Circular Arc Coloring to Interval Coloring

Circular arc coloring.  Given a set of n arcs with depth d  k,
can the arcs be colored with k colors?

Equivalent problem.  Cut the network between nodes v1 and vn.  The arcs 
can be colored with k colors iff the intervals can be colored with k 
colors in such a way that "sliced" arcs have the same color.

colors of a', b', and c' must correspond
to colors of a", b", and c"

v1

v2v4

v3
v1 v2 v3 v4

v0

v0 v0
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Circular Arc Coloring:  Dynamic Programming Algorithm

Dynamic programming algorithm.
 Assign distinct color to each interval which begins at cut node v0.
 At each node vi, some intervals may finish, and others may begin.
 Enumerate all k-colorings of the intervals through vi that are 

consistent with the colorings of the intervals through vi-1.
 The arcs are k-colorable iff some coloring of intervals ending at cut 

node v0  is consistent with original coloring of the same intervals.

3

2

1

c'

b'

a'

3

2

1

1

2

3

e

b'

d

3

2

1

1

2

3

e

f

d

3

2

1

1

2

3

e

f

c"

3

2

1

1

2

3

2

3

1

2

1

3

a"

b"

c"

v0 v1 v2 v3 v4 v0

yes

50

Circular Arc Coloring:  Running Time

Running time.  O(k!  n).
 n phases of the algorithm.
 Bottleneck in each phase is enumerating all consistent colorings. 
 There are at most k intervals through vi, so there are at most k! 

colorings to consider.

Remark.  This algorithm is practical for small values of k (say k = 10) 
even if the number of nodes n (or paths) is large.

Extra Slides

Vertex Cover in Bipartite Graphs

53

Vertex Cover

Vertex cover.  Given an undirected graph G = (V, E), a vertex cover is a 
subset of vertices S  V such that for each edge (u, v)  E, either
u  S or v  S or both.

1

3

5

1'

3'

5'

2

4

2'

4'

S = { 3, 4, 5, 1', 
2' }
|S| = 5

54

Vertex Cover

Weak duality. Let M be a matching, and let S be a vertex cover.
Then,  |M|  |S|.

Pf. Each vertex can cover at most one edge in any matching.

1

3

5

1'

3'

5'

2

4

2'

4'

M = 1-2', 3-1', 
4-5'
|M| = 3
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Vertex Cover:  König-Egerváry Theorem

König-Egerváry Theorem. In a bipartite graph, the max cardinality of a 
matching is equal to the min cardinality of a vertex cover.

1

3

5

1'

3'

5'

2

4

2'

4'

M* = 1-1', 2-2', 3-
3', 5-5'
|M*| = 4

S* = { 3, 1', 2', 5'} 
|S*| = 4

56

Vertex Cover:  Proof of König-Egerváry Theorem

König-Egerváry Theorem. In a bipartite graph, the max cardinality of a 
matching is equal to the min cardinality of a vertex cover.
 Suffices to find matching M and cover S such that |M| = |S|. 
 Formulate max flow problem as for bipartite matching.
 Let M be max cardinality matching and let (A, B) be min cut.

s

1

3

5

1'

3'

5'

t

2

4

2'

4'

1 1



57

Vertex Cover:  Proof of König-Egerváry Theorem

König-Egerváry Theorem. In a bipartite graph, the max cardinality of a 
matching is equal to the min cardinality of a vertex cover.
 Suffices to find matching M and cover S such that |M| = |S|. 
 Formulate max flow problem as for bipartite matching.
 Let M be max cardinality matching and let (A, B) be min cut.
 Define LA = L  A, LB = L  B, RA = R  A, RB = R  B.

 Claim 1. S = LB  RA is a vertex cover.
– consider (u, v)  E 
– u  LA, v  RB impossible since infinite capacity
– thus, either u  LB or v  RA or both

 Claim 2. |S| = |M|.
– max-flow min-cut theorem   |M| = cap(A, B)
– only edges of form (s, u) or (v, t) contribute to cap(A, B)
– |M| = cap(A, B) = |LB| + |RA| = |S|.   ▪

Register Allocation

59

Register Allocation

Register.  One of k of high-speed memory locations in computer's CPU.

Register allocator.  Part of an optimizing compiler that controls which 
variables are saved in the registers as compiled program executes.

Interference graph.  Nodes are "live ranges."  Edge u-v if there exists 
an operation where both u and v are "live" at the same time.

Observation.  [Chaitin, 1982]  Can solve register allocation problem iff 
interference graph is k-colorable.

Spilling.  If graph is not k-colorable (or we can't find a k-coloring), we 
"spill" certain variables to main memory and swap back as needed.

typically infrequently used
variables that are not in inner loops

say 32

variables or temporaries

60

A Useful Property

Remark. Register allocation problem is NP-hard.

Key fact.  If a node v in graph G has fewer than k neighbors,
G is k-colorable iff G  { v } is k-colorable.

Pf.  Delete node v from G and color G  { v }.
 If G  { v } is not k-colorable, then neither is G.
 If G  { v } is k-colorable, then there is at least one remaining color 

left for v.   ▪

delete v and all incident edges

k = 2

G is 2-colorable even though
all nodes have degree 2

v

k = 3
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Chaitin's Algorithm

Vertex-Color(G, k) {
while (G is not empty) {

Pick a node v with fewer than k 
neighbors

Push v on stack
Delete v and all its incident 

edges
}
while (stack is not empty) {

Pop next node v from the stack
Assign v a color different from 

its neighboring
nodes which have already been 

colored

say, node with fewest neighbors

62

Chaitin's Algorithm

Theorem.  [Kempe 1879, Chaitin 1982]  Chaitin's algorithm produces a
k-coloring of any graph with max degree k-1.
Pf.  Follows from key fact since each node has fewer than k neighbors.

Remark.  If algorithm never encounters a graph where all nodes have 
degree  k, then it produces a k-coloring.

Practice.  Chaitin's algorithm (and variants) are extremely effective 
and widely used in real compilers for register allocation.

algorithm succeeds in k-coloring
many graphs with max degree  k

Basic genres.
 Packing problems:  SET-PACKING, INDEPENDENT SET.
 Covering problems:  SET-COVER, VERTEX-COVER.
 Constraint satisfaction problems:  SAT, 3-SAT.
 Sequencing problems:  HAMILTONIAN-CYCLE, TSP.
 Partitioning problems:  3D-MATCHING, 3-COLOR.
 Numerical problems:  SUBSET-SUM, KNAPSACK.

8.7  Graph Coloring

64

3-Colorability

3-COLOR:  Given an undirected graph G does there exists a way to 
color the nodes red, green, and blue so that no adjacent nodes have the 
same color?

yes instance

65

Register Allocation

Register allocation.  Assign program variables to machine register 
so that no more than k registers are used and no two program 
variables that are needed at the same time are assigned to the 
same register.

Interference graph.  Nodes are program variables names, edge
between u and v if there exists an operation where both u and 
v are "live" at the same time.

Observation.  [Chaitin 1982] Can solve register allocation problem 
iff interference graph is k-colorable.

Fact.  3-COLOR  P k-REGISTER-ALLOCATION for any constant k  3.

66

3-Colorability

Claim.  3-SAT  P 3-COLOR.

Pf.  Given 3-SAT instance , we construct an instance of 3-COLOR that 
is 3-colorable iff  is satisfiable.

Construction.
i. For each literal, create a node.
ii. Create 3 new nodes T, F, B; connect them in a triangle, and connect 

each literal to B.
iii. Connect each literal to its negation.
iv. For each clause, add gadget of 6 nodes and 13 edges.

to be described next
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3-Colorability

Claim.  Graph is 3-colorable iff  is satisfiable.

Pf.   Suppose graph is 3-colorable.
 Consider assignment that sets all T literals to true.
 (ii) ensures each literal is T or F.
 (iii) ensures a literal and its negation are opposites.

T

B

F

x1 x1 x2 x2 xn xnx3 x3

true false

base

68

3-Colorability

Claim.  Graph is 3-colorable iff  is satisfiable.

Pf.   Suppose graph is 3-colorable.
 Consider assignment that sets all T literals to true.
 (ii) ensures each literal is T or F.
 (iii) ensures a literal and its negation are opposites.
 (iv) ensures at least one literal in each clause is T.

T F

B

x1 x2 x3

  Ci  x1 V x2 V x3

6-node gadget

true
false

69

3-Colorability

Claim.  Graph is 3-colorable iff  is satisfiable.

Pf.   Suppose graph is 3-colorable.
 Consider assignment that sets all T literals to true.
 (ii) ensures each literal is T or F.
 (iii) ensures a literal and its negation are opposites.
 (iv) ensures at least one literal in each clause is T.

  Ci  x1 V x2 V x3

T F

B

x1 x2 x3

not 3-colorable if all are red

true false

contradiction

70

3-Colorability

Claim.  Graph is 3-colorable iff  is satisfiable.

Pf.   Suppose 3-SAT formula  is satisfiable.
 Color all true literals T.
 Color node below green node F, and node below that B.
 Color remaining middle row nodes B.
 Color remaining bottom nodes T or F as forced.  ▪

T F

B

x1 x2 x3

a literal set to true in 3-SAT assignment

  Ci  x1 V x2 V x3

true
false

Extra Slides

8.10  A Partial Taxonomy of Hard Problems
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Polynomial-Time Reductions

3-SAT

DIR-HAM-CYCLEINDEPENDENT SET

VERTEX COVER

Dick Karp (1972)
1985 Turing Award

GRAPH 3-COLOR

HAM-CYCLE

TSP

SUBSET-SUM

SCHEDULINGPLANAR 3-COLOR

SET COVER

packing and covering sequencing partitioning numerical

constraint satisfaction

74

Subset Sum (proof from book)

Construction.  Let X  Y  Z be a instance of 3D-MATCHING with 
triplet set T. Let n = |X| = |Y| = |Z| and m = |T|.
 Let X = { x1, x2, x3 x4 },  Y = { y1, y2, y3, y4 } ,  Z = { z1, z2, z3, z4 }
 For each triplet t= (xi, yj, zk )  T, create an integer wt with 3n digits 

that has a 1 in positions i, n+j, and 2n+k.

Claim. 3D-matching iff some subset sums to W = 111,…, 111.

100,010,001

1,010,001,000

1,010,000,010

1,010,000,100

10,001,000,001

100,010,001,000

10,000,010,100

100,001,000,010

100,100,001

x2 y2 z4

x4 y3 z4

x3 y1 z2

x3 y1 z3

x3 y1 z1

x4 y4 z4

x1 y2 z3

x2 y4 z2

x1 y1 z1

Triplet ti wi

0 0 0 1 0 0 0 1 0 0 0 1

0 0 1 0 1 0 0 0 1 0 0 0

0 0 1 0 1 0 0 0 0 0 1 0

0 0 1 0 1 0 0 0 0 1 0 0

0 1 0 0 0 1 0 0 0 0 0 1

1 0 0 0 1 0 0 0 1 0 0 0

0 1 0 0 0 0 0 1 0 1 0 0

1 0 0 0 0 1 0 0 0 0 1 0

0 0 0 1 0 0 1 0 0 0 0 1

x1 x2 x3 x4 y1 y2 y3 y4 z1 z2 z3 z4

111,111,111,111

use base m+1

75

Partition

SUBSET-SUM. Given natural numbers w1, …, wn and an integer W, is 
there a subset that adds up to exactly W?

PARTITION. Given natural numbers v1, …, vm , can they be partitioned 
into two subsets that add up to the same value? 

Claim.  SUBSET-SUM  P PARTITION.
Pf.  Let W, w1, …, wn be an instance of SUBSET-SUM.
 Create instance of PARTITION with m = n+2 elements.

– v1 = w1, v2 = w2, …, vn = wn,   vn+1 = 2 i wi - W,   vn+2 = i wi + W

 There exists a subset that sums to W iff there exists a partition 
since two new elements cannot be in the same partition.  ▪

vn+2 =  i wi + W

vn+1 = 2 i wi - W              

i wi - W

W subset A

subset B

½ i vi

4 Color Theorem

77

Planar 3-Colorability

PLANAR-3-COLOR.  Given a planar map, can it be colored using 3 colors 
so that no adjacent regions have the same color?

YES instance.

78

Planar 3-Colorability

PLANAR-3-COLOR.  Given a planar map, can it be colored using 3 colors 
so that no adjacent regions have the same color?

NO instance.
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Def.  A graph is planar if it can be embedded in the plane in such a way 
that no two edges cross.
Applications:  VLSI circuit design, computer graphics.

Kuratowski's Theorem.  An undirected graph G is non-planar iff it 
contains a subgraph homeomorphic to K5 or K3,3.

Planarity

planar K5:  non-planar K3,3:  non-planar

homeomorphic to K3,3

80

Planarity testing.  [Hopcroft-Tarjan 1974] O(n).

Remark.  Many intractable graph problems can be solved in poly-time if 
the graph is planar; many tractable graph problems can be solved 
faster if the graph is planar.

Planarity Testing

simple planar graph can have at mos

81

Planar Graph 3-Colorability

Q. Is this planar graph 3-colorable?

82

Planar 3-Colorability and Graph 3-Colorability

Claim. PLANAR-3-COLOR  P PLANAR-GRAPH-3-COLOR.

Pf sketch.  Create a vertex for each region, and an edge between 
regions that share a nontrivial border.

83

Planar Graph 3-Colorability

Claim.  W is a planar graph such that:
 In any 3-coloring of W, opposite corners have the same color. 
 Any assignment of colors to the corners in which opposite corners 

have the same color extends to a 3-coloring of W.

Pf.  Only 3-colorings of W are shown below (or by permuting colors).

84

Planar Graph 3-Colorability

Claim.  3-COLOR  P PLANAR-GRAPH-3-COLOR.
Pf.  Given instance of 3-COLOR, draw graph in plane, letting edges cross.
 Replace each edge crossing with planar gadget W.
 In any 3-coloring of W, a  a' and b  b'.
 If a  a' and b  b' then can extend to a 3-coloring of W.

a crossing

a a'

b

b'

a a'

b

b'

gadget W
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Planar Graph 3-Colorability

Claim.  3-COLOR  P PLANAR-GRAPH-3-COLOR.
Pf.  Given instance of 3-COLOR, draw graph in plane, letting edges cross.
 Replace each edge crossing with planar gadget W.
 In any 3-coloring of W, a  a' and b  b'.
 If a  a' and b  b' then can extend to a 3-coloring of W.

multiple crossings

a'a a'

gadget W

W W Wa

86

Planar k-Colorability

PLANAR-2-COLOR.  Solvable in linear time.

PLANAR-3-COLOR.  NP-complete.

PLANAR-4-COLOR.  Solvable in O(1) time.

Theorem.  [Appel-Haken, 1976]  Every planar map is 4-colorable.
 Resolved century-old open problem.
 Used 50 days of computer time to deal with many special cases.
 First major theorem to be proved using computer.

False intuition.  If PLANAR-3-COLOR is hard, then so is PLANAR-4-COLOR
and PLANAR-5-COLOR.

87

Graph minor theorem.  [Robertson-Seymour 1980s]

Corollary.  There exist an O(n3) algorithm to determine if a graph can 
be embedded in the torus in such a way that no two edges cross.

Pf of theorem.  Tour de force.

Polynomial-Time Detour

88

Graph minor theorem.  [Robertson-Seymour 1980s]

Corollary.  There exist an O(n3) algorithm to determine if a graph can 
be embedded in the torus in such a way that no two edges cross.

Mind boggling fact 1.  The proof is highly non-constructive!
Mind boggling fact 2.  The constant of proportionality is enormous!

Theorem.  There exists an explicit O(n) algorithm.
Practice.  LEDA implementation guarantees O(n3).

Polynomial-Time Detour

Unfortunately, for any instance G = (V, E) that one could fit 
into the known universe, one would easily prefer n70 to even 
constant time, if that constant had to be one of Robertson 
and Seymour's.   - David Johnson


