CS 580: Algorithm Design and Analysis

Jeremiah Blocki Purdue University Spring 2018

Homework 5 due tonight at 11:59 PM (on Blackboard) Midterm 2 on April 4th at 8PM (MATH 175) Practice Midterm Released Soon 3x5 Index Card (Double Sided)

Midterm 2

. When?

- April 4th from 8PM to 10PM (2 hours)
- . Where?
 - MATH 175
- What can I bring?
 - 3x5 inch index card with your notes (double sided)
 - No electronics (phones, computers, calculators etc...)

Midterm 2

· When?

- April 4th from 8PM to 10PM (2 hours)
- · Where?
 - MATH 175
- · What material should I study?
 - The midterm will cover recent topics more heavily
 - Network Flow
 - Max-Flow Min-Cut, Augmenting Paths, etc...
 - Ford Fulkerson, Dinic's Algorithm etc...
 - Applications of Network Flow (e.g., Maximum Bipartite Matching)
 - Linear Programming
 - NP-Completeness
 - Polynomial time reductions, P, NP, NP-Hard, NP-Complete, coNP
 - PSPACE (only basic questions)

Recap

Circuit SAT is NP-Complete

- Circuit SAT is in NP
- For all decision problems X in NP we have (X \leq_P Circuit SAT)

.3-SAT is NP-Complete

Decision problems which have a polynomial time algorithm.

.Template for proving a problem Y is NP-Complete

8.9 co-NP and the Asymmetry of NP

Asymmetry of NP

Asymmetry of NP. We only need to have short proofs of yes instances.

Ex 1. SAT vs. TAUTOLOGY.

- Can prove a CNF formula is satisfiable by giving such an assignment.
- . How could we prove that a formula is not satisfiable?

Ex 2. HAM-CYCLE vs. NO-HAM-CYCLE.

- Can prove a graph is Hamiltonian by giving such a Hamiltonian cycle.
- . How could we prove that a graph is not Hamiltonian?

Remark. SAT is NP-complete and SAT = $_{P}$ TAUTOLOGY, but how do we classify TAUTOLOGY?

not even known to be in NP

NP and co-NP

NP. Decision problems for which there is a poly-time certifier. Ex. SAT, HAM-CYCLE, COMPOSITES.

Def. Given a decision problem X, its complement \overline{X} is the same problem with the yes and no answers reverse.

Ex. X = { 0, 1, 4, 6, 8, 9, 10, 12, 14, 15, ... } X = { 2, 3, 5, 7, 11, 13, 17, 23, 29, ... }

co-NP. Complements of decision problems in NP. Ex. TAUTOLOGY, NO-HAM-CYCLE, PRIMES.

$$NP = co-NP$$
?

Fundamental question. Does NP = co-NP?

- Do yes instances have succinct certificates iff no instances do?
- Consensus opinion: no.

Theorem. If NP \neq co-NP, then P \neq NP. Pf idea.

- P is closed under complementation.
- If P = NP, then NP is closed under complementation.
- In other words, NP = co-NP.
- . This is the contrapositive of the theorem.

Good Characterizations

Good characterization. [Edmonds 1965] NP \cap co-NP.

- If problem X is in both NP and co-NP, then:
 - for $_{\ensuremath{\text{yes}}}$ instance, there is a succinct certificate
 - for ${\tt no}$ instance, there is a succinct disqualifier
- Provides conceptual leverage for reasoning about a problem.
- Ex. Given a bipartite graph, is there a perfect matching.
 - If yes, can exhibit a perfect matching.
- If no, can exhibit a set of nodes S such that |N(S)| < |S|.

Observation. $P \subseteq NP \cap co-NP$.

- Proof of max-flow min-cut theorem led to stronger result that max-flow and min-cut are in P.
- Sometimes finding a good characterization seems easier than finding an efficient algorithm.

Fundamental open question. Does $P = NP \cap co-NP$?

- Mixed opinions.
- Many examples where problem found to have a non-trivial good characterization, but only years later discovered to be in P.
 - linear programming [Khachiyan, 1979]
 - primality testing [Agrawal-Kayal-Saxena, 2002]

Fact. Factoring is in NP \cap co-NP, but not known to be in P.

if poly-time algorithm for factoring, can break RSA cryptosystem

FACTOR is in NP \cap co-NP

FACTORIZE. Given an integer x, find its prime factorization. FACTOR. Given two integers x and y, does x have a nontrivial factor less than y?

```
Theorem. FACTOR = _{P} FACTORIZE.
```

```
Theorem. FACTOR is in NP \cap co-NP. Pf.
```

- Certificate: a factor p of x that is less than y.
- Disqualifier: the prime factorization of x (where each prime factor is less than y), along with a certificate that each factor is prime.
 - Verifier can
 - ${\mathscr N}$ verify that all factors are prime and their product is ${\boldsymbol x}$
 - verify that all prime factors are greater than y

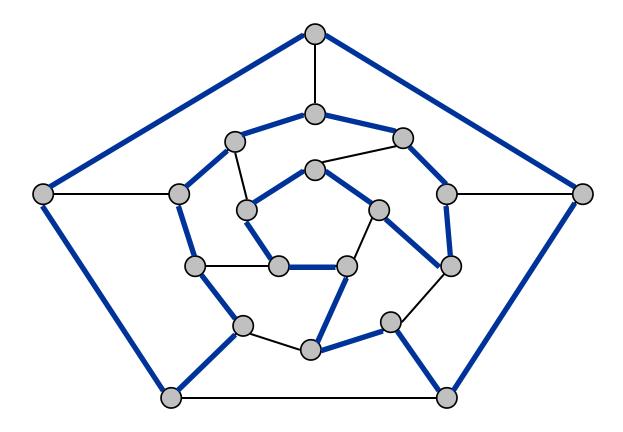
8.5 Sequencing Problems

Basic genres.

- Packing problems: SET-PACKING, INDEPENDENT SET.
- Covering problems: SET-COVER, VERTEX-COVER.
- Constraint satisfaction problems: SAT, 3-SAT.
- Sequencing problems: HAMILTONIAN-CYCLE, TSP.
- Partitioning problems: 3D-MATCHING, 3-COLOR.
- Numerical problems: SUBSET-SUM, KNAPSACK.

Hamiltonian Cycle

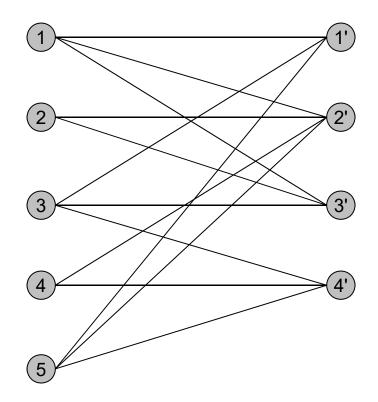
HAM-CYCLE: given an undirected graph G = (V, E), does there exist a simple cycle Γ that contains every node in V.



YES: vertices and faces of a dodecahedron.

Hamiltonian Cycle

HAM-CYCLE: given an undirected graph G = (V, E), does there exist a simple cycle Γ that contains every node in V.



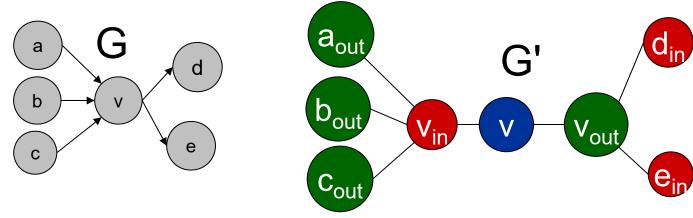
NO: bipartite graph with odd number of nodes.

Directed Hamiltonian Cycle

DIR-HAM-CYCLE: given a digraph G = (V, E), does there exists a simple directed cycle Γ that contains every node in V?

Claim. DIR-HAM-CYCLE \leq_{P} HAM-CYCLE.

Pf. Given a directed graph G = (V, E), construct an undirected graph G' with 3n nodes.



Directed Hamiltonian Cycle

Claim. G has a Hamiltonian cycle iff G' does.

Pf. \Rightarrow

- . Suppose G has a directed Hamiltonian cycle $\Gamma.$
- . Then G' has an undirected Hamiltonian cycle (same order).
 - For each node v in directed path cycle replace v with v_{in},v,v_{out}

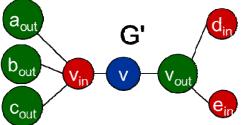
Pf. ⇐

- . Suppose G' has an undirected Hamiltonian cycle $\Gamma^{\prime}.$
- Γ' must visit nodes in G' using one of following two orders:

..., B, G, R, B, G, R, B, G, R, B, ...

..., B, R, G, B, R, G, B, R, G, B, ...

• Blue nodes in Γ' make up directed Hamiltonian cycle Γ in G, or reverse of one.



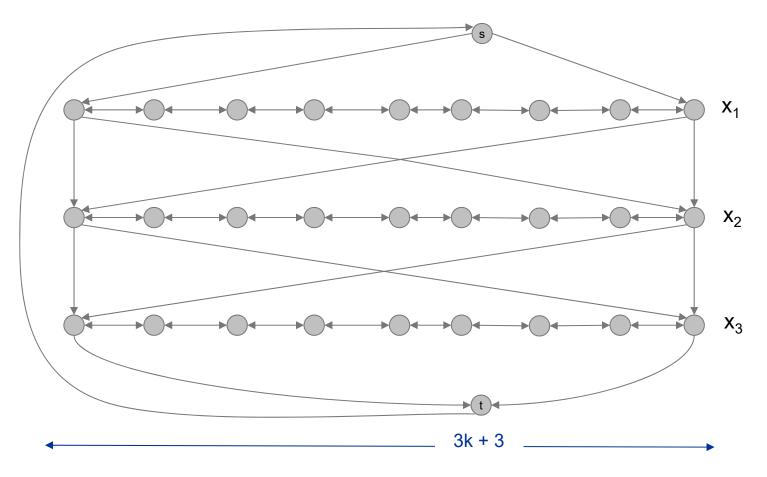
Claim. $3-SAT \leq_{P} DIR-HAM-CYCLE$.

Pf. Given an instance Φ of 3-SAT, we construct an instance of DIR-HAM-CYCLE that has a Hamiltonian cycle iff Φ is satisfiable.

Construction. First, create graph that has 2ⁿ Hamiltonian cycles which correspond in a natural way to 2ⁿ possible truth assignments.

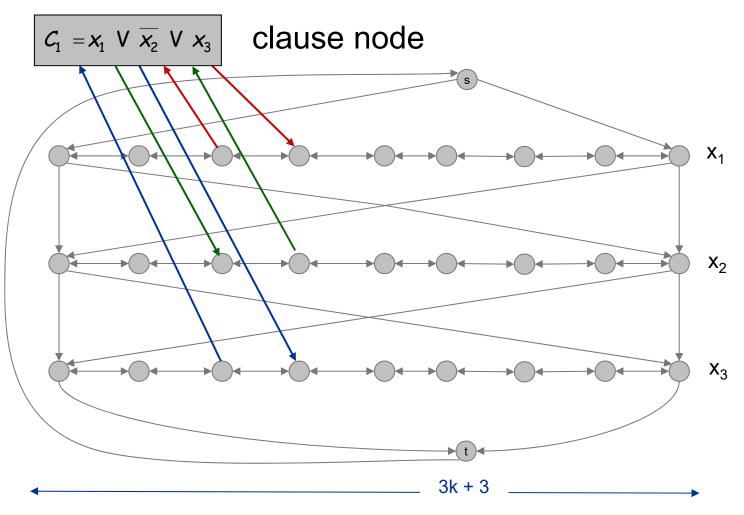
Construction. Given 3-SAT instance Φ with n variables x_i and k clauses.

- Construct G to have 2ⁿ Hamiltonian cycles.
- Intuition: traverse path i from left to right \Leftrightarrow set variable $x_i = 1$.



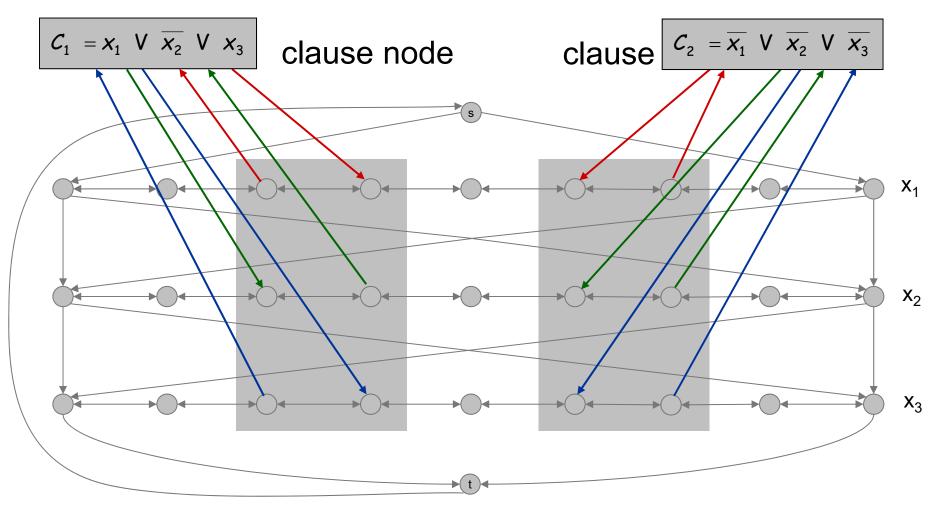
Construction. Given 3-SAT instance Φ with n variables x_i and k clauses.

• Construct G to have 2ⁿ Hamiltonian cycles.



Construction. Given 3-SAT instance Φ with n variables \textbf{x}_i and k clauses.

For each clause: add a node and 6 edges.



Claim. Φ is satisfiable iff G has a Hamiltonian cycle.

Pf. \Rightarrow

- Suppose 3-SAT instance has satisfying assignment x*.
- Then, define Hamiltonian cycle in G as follows:
 - if $x_i^* = 1$, traverse row i from left to right
 - if x*_i = 0, traverse row i from right to left
 - for each clause C_j, there will be at least one row i in which we are going in "correct" direction to splice node C_j into tour

Claim. Φ is satisfiable iff G has a Hamiltonian cycle.

Pf. ⇐

- . Suppose G has a Hamiltonian cycle $\Gamma.$
- . If Γ enters clause node \textit{C}_j , it must depart on mate edge.
 - thus, nodes immediately before and after C_j are connected by an edge e in G
 - removing C_j from cycle, and replacing it with edge e yields Hamiltonian cycle on G { C_j }
- Continuing in this way, we are left with Hamiltonian cycle Γ' in

 $G - \{ C_1, C_2, \ldots, C_k \}.$

- Set $x_i^* = 1$ iff Γ' traverses row i left to right.
- Since Γ visits each clause node C_j, at least one of the paths is traversed in "correct" direction, and each clause is satisfied.

Longest Path

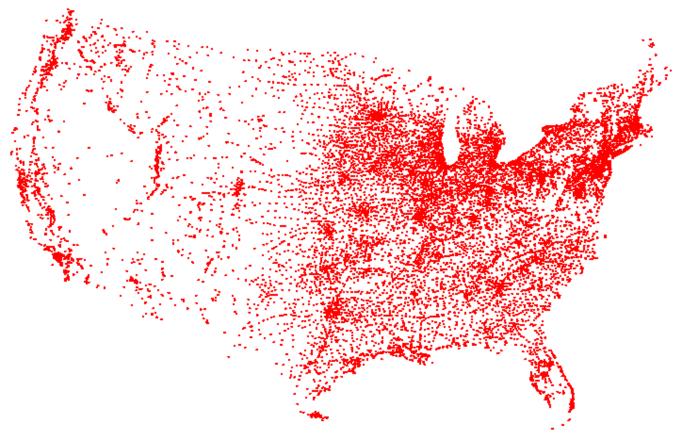
SHORTEST-PATH. Given a digraph G = (V, E), does there exists a simple path of length at most k edges?

LONGEST-PATH. Given a digraph G = (V, E), does there exists a simple path of length at least k edges?

Claim. $3-SAT \leq_{P} LONGEST-PATH$.

Pf 1. Redo proof for DIR-HAM-CYCLE, ignoring back-edge from t to s. Pf 2. Show HAM-CYCLE \leq_{P} LONGEST-PATH.

TSP. Given a set of n cities and a pairwise distance function d(u, v), is there a tour of length $\leq D$?



All 13,509 cities in US with a population of at least 500 Reference: http://www.tsp.gatech.edu

TSP. Given a set of n cities and a pairwise distance function d(u, v), is there a tour of length $\leq D$?

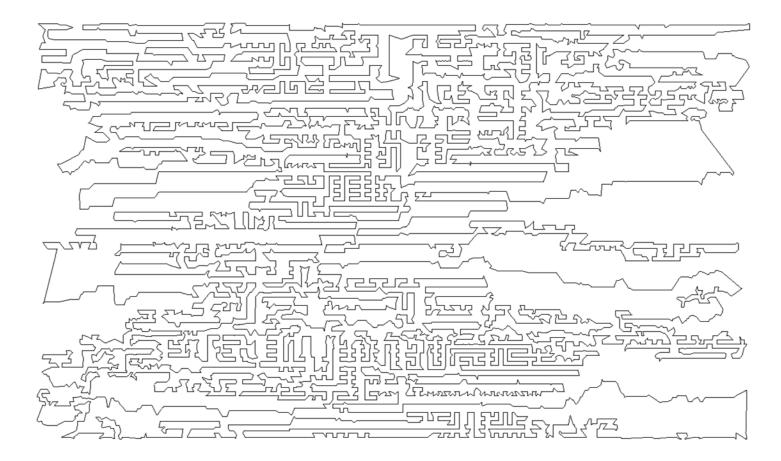
Optimal TSP tour Reference: http://www.tsp.gatech.edu

TSP. Given a set of n cities and a pairwise distance function d(u, v), is there a tour of length $\leq D$?



11,849 holes to drill in a programmed logic array Reference: http://www.tsp.gatech.edu

TSP. Given a set of n cities and a pairwise distance function d(u, v), is there a tour of length $\leq D$?



Optimal TSP tour Reference: http://www.tsp.gatech.edu

TSP. Given a set of n cities and a pairwise distance function d(u, v), is there a tour of length $\leq D$?

HAM-CYCLE: given a graph G = (V, E), does there exists a simple cycle that contains every node in V?

Claim. HAM-CYCLE \leq_{P} TSP. Pf.

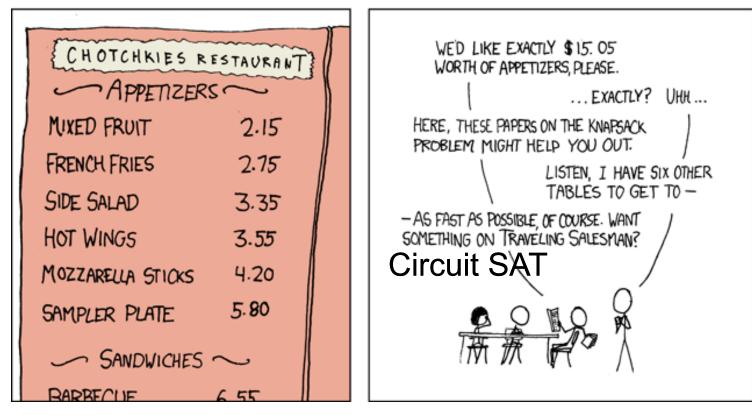
• Given instance G = (V, E) of HAM-CYCLE, create n cities with distance function $\begin{bmatrix} 1 & \text{if } (u, v) \in F \end{bmatrix}$

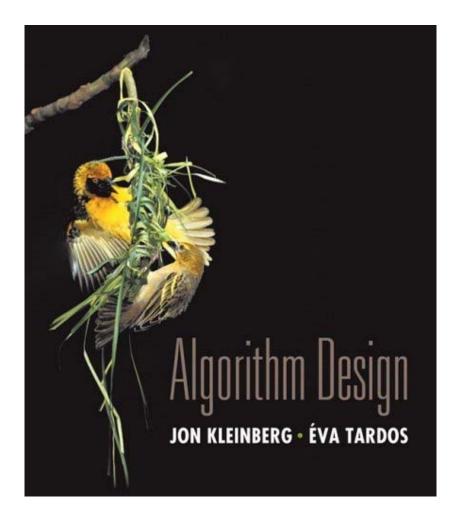
$$d(u, v) = \begin{cases} 1 & \text{if } (u, v) \in E \\ 2 & \text{if } (u, v) \notin E \end{cases}$$

• TSP instance has tour of length \leq n iff G is Hamiltonian. •

Remark. TSP instance in reduction satisfies Δ -inequality.

MY HOBBY: EMBEDDING NP-COMPLETE PROBLEMS IN RESTAURANT ORDERS





Extending the Limits of Tractability

Slides by Kevin Wayne. Copyright @ 2005 Pearson-Addison Wesley. All rights reserved.

Coping With NP-Completeness

Q. Suppose I need to solve an NP-complete problem. What should I do?

A. Theory says you're unlikely to find poly-time algorithm.

Must sacrifice one of three desired features.

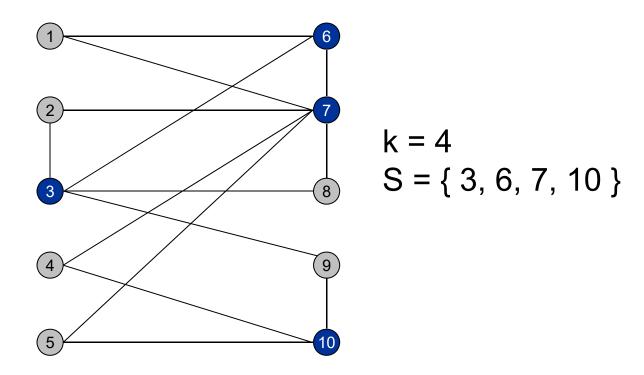
- Solve problem to optimality.
- Solve problem in polynomial time.
- Solve arbitrary instances of the problem.

This lecture. Solve some special cases of NP-complete problems that arise in practice.

10.1 Finding Small Vertex Covers

Vertex Cover

VERTEX COVER: Given a graph G = (V, E) and an integer k, is there a subset of vertices $S \subseteq V$ such that $|S| \le k$, and for each edge (u, v) either $u \in S$, or $v \in S$, or both.



Finding Small Vertex Covers

Q. What if k is small?

Brute force. $O(k n^{k+1})$.

- Try all $C(n, k) = O(n^k)$ subsets of size k.
- Takes O(kn) time to check whether a subset is a vertex cover.

Goal. Limit exponential dependency on k, e.g., to $O(2^k k n)$.

```
Ex. n = 1,000, k = 10.
Brute. k n^{k+1} = 10^{34} \Rightarrow infeasible.
Better. 2^k k n = 10^7 \Rightarrow feasible.
```

Remark. If k is a constant, algorithm is poly-time; if k is a small constant, then it's also practical.

Finding Small Vertex Covers

delete v and all incident edges

Claim. Let u-v be an edge of G. G has a vertex cover of size $\leq k$ iff at least one of $G - \{u\}$ and $G - \{v\}$ has a vertex cover of size $\leq k-1$.

Pf. \Rightarrow

- Suppose G has a vertex cover S of size $\leq k$.
- S contains either u or v (or both). Assume it contains u.
- $S \{u\}$ is a vertex cover of $G \{u\}$.

Pf. \Leftarrow

- Suppose S is a vertex cover of $G \{u\}$ of size $\leq k-1$.
- . Then $S \cup \{u\}$ is a vertex cover of G. $\, \bullet \,$

Claim. If G has a vertex cover of size k, it has \leq k(n-1) edges. Pf. Each vertex covers at most n-1 edges. • Finding Small Vertex Covers: Algorithm

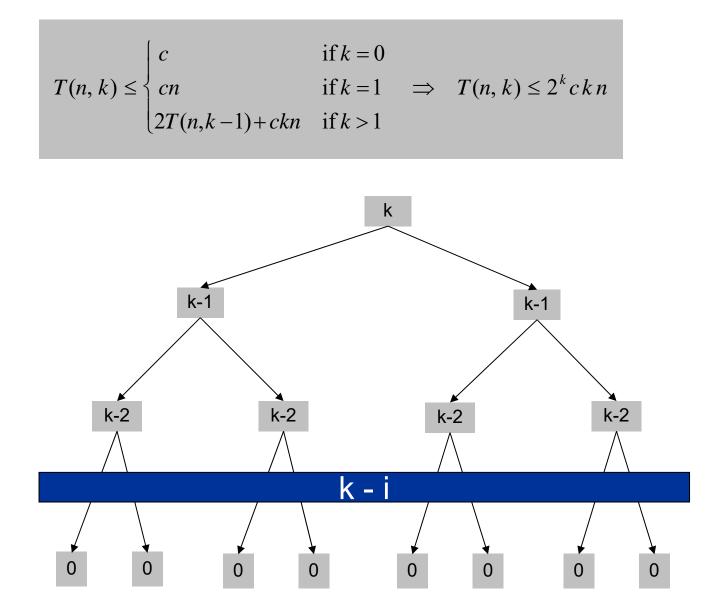
Claim. The following algorithm determines if G has a vertex cover of size $\leq k$ in O(2^k kn) time.

```
boolean Vertex-Cover(G, k) {
    if (G contains no edges) return true
    if (G contains ≥ kn edges) return false
    let (u, v) be any edge of G
    a = Vertex-Cover(G - {u}, k-1)
    b = Vertex-Cover(G - {v}, k-1)
    return a or b
}
```

Pf.

- Correctness follows from previous two claims.
- There are ≤ 2^{k+1} nodes in the recursion tree; each invocation takes O(kn) time.

Finding Small Vertex Covers: Recursion Tree



10.2 Solving NP-Hard Problems on Trees

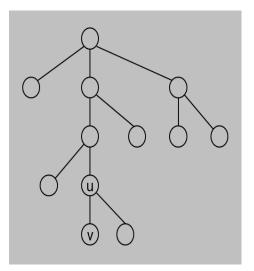
Independent Set on Trees

Independent set on trees. Given a tree, find a maximum cardinality subset of nodes such that no two share an edge.

Fact. A tree on at least two nodes has at least two leaf nodes.

degree = 1

Key observation. If v is a leaf, there exists a maximum size independent set containing v.



Pf. (exchange argument)

- . Consider a max cardinality independent set S.
- . If $v \in S$, we're done.
- If u ∉ S and v ∉ S, then S ∪ {v} is independent ⇒ S not maximum.
- . IF $u \in S$ and $v \notin S$, then $S \cup \{v\} \{u\}$ is independent.

Independent Set on Trees: Greedy Algorithm

Theorem. The following greedy algorithm finds a maximum cardinality independent set in forests (and hence trees).

```
Independent-Set-In-A-Forest(F) {
   S ← φ
   while (F has at least one edge) {
      Let e = (u, v) be an edge such that v is a
leaf
      Add v to S
      Delete from F nodes u and v, and all edges
      incident to them.
   }
  return S
}
```

Pf. Correctness follows from the previous key observation. •

Remark. Can implement in O(n) time by considering nodes in postorder.

Weighted Independent Set on Trees

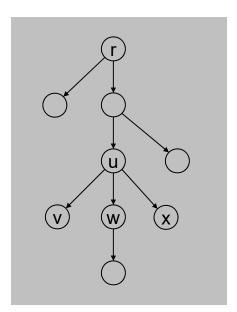
Weighted independent set on trees. Given a tree and node weights $w_v > 0$, find an independent set S that maximizes $\Sigma_{v \in S} w_v$.

Observation. If (u, v) is an edge such that v is a leaf node, then either OPT includes u, or it includes all leaf nodes incident to u.

Dynamic programming solution. Root tree at some node, say r.

- OPT_{in} (u) = max weight independent set of subtree rooted at u, containing u.
- OPT_{out}(u) = max weight independent set of subtree rooted at u, not containing u.

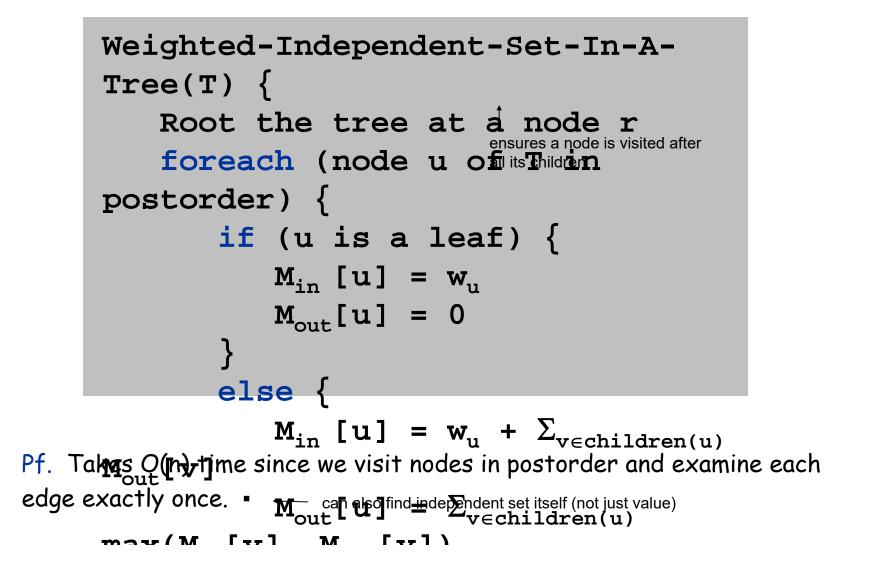
$$OPT_{in}(u) = w_u + \sum_{v \in children(u)} OPT_{out}(v)$$
$$OPT_{out}(u) = \sum_{v \in children(u)} \left\{ OPT_{in}(v), OPT_{out}(v) \right\}$$



children(u) = { v, w, x }

Weighted Independent Set on Trees: Dynamic Programming Algorithm

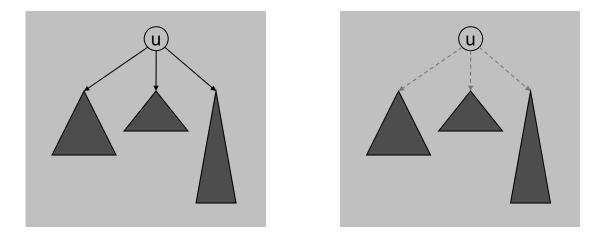
Theorem. The dynamic programming algorithm finds a maximum weighted independent set in a tree in O(n) time.



42

Context

Independent set on trees. This structured special case is tractable because we can find a node that breaks the communication among the subproblems in different subtrees.



see Chapter 10.4, but proceed with caution

Graphs of bounded tree width. Elegant generalization of trees that:

- Captures a rich class of graphs that arise in practice.
- Enables decomposition into independent pieces.

10.3 Circular Arc Coloring

Wavelength-Division Multiplexing

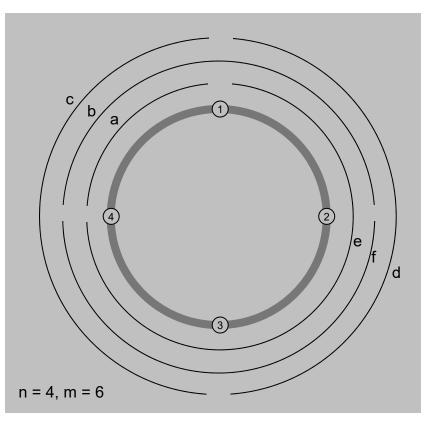
Wavelength-division multiplexing (WDM). Allows m communication streams (arcs) to share a portion of a fiber optic cable, provided they are transmitted using different wavelengths.

Ring topology. Special case is when network is a cycle on n nodes.

Bad news. NP-complete, even on rings.

Brute force. Can determine if k colors suffice in O(k^m) time by trying all k-colorings.

Goal. $O(f(k)) \cdot poly(m, n)$ on rings.



Wavelength-Division Multiplexing

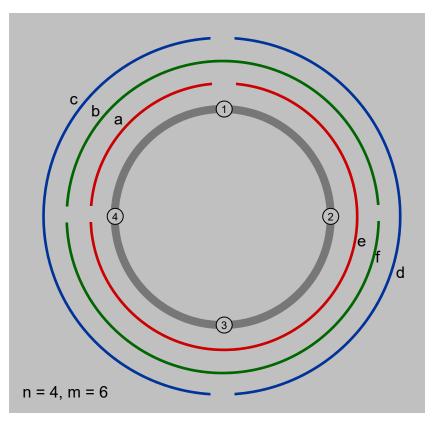
Wavelength-division multiplexing (WDM). Allows m communication streams (arcs) to share a portion of a fiber optic cable, provided they are transmitted using different wavelengths.

Ring topology. Special case is when network is a cycle on n nodes.

Bad news. NP-complete, even on rings.

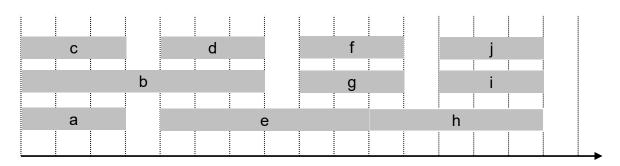
Brute force. Can determine if k colors suffice in O(k^m) time by trying all k-colorings.

Goal. $O(f(k)) \cdot poly(m, n)$ on rings.



Review: Interval Coloring

Interval coloring. Greedy algorithm finds coloring such that number of colors equals depth of schedule.

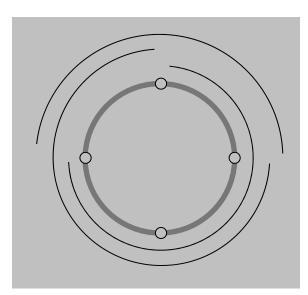


Maximum number of streams at one location

Circular arc coloring.

- Weak duality: number of colors \geq depth.
- Strong duality does not hold.

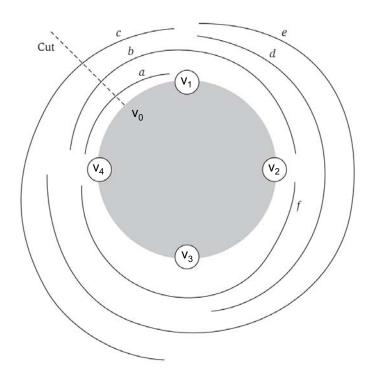
max depth = 2 min colors = 3

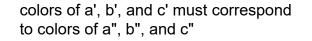


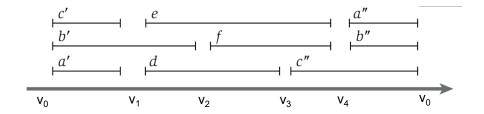
(Almost) Transforming Circular Arc Coloring to Interval Coloring

Circular arc coloring. Given a set of n arcs with depth $d \le k$, can the arcs be colored with k colors?

Equivalent problem. Cut the network between nodes v_1 and v_n . The arcs can be colored with k colors iff the intervals can be colored with k colors in such a way that "sliced" arcs have the same color.



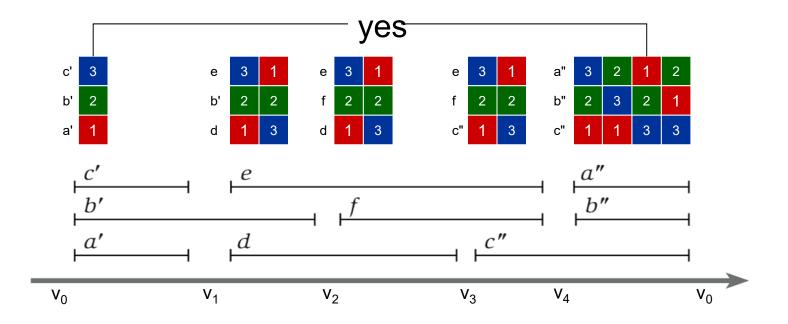




Circular Arc Coloring: Dynamic Programming Algorithm

Dynamic programming algorithm.

- Assign distinct color to each interval which begins at cut node v_0 .
- At each node $v_{\rm i},$ some intervals may finish, and others may begin.
- Enumerate all k-colorings of the intervals through v_i that are consistent with the colorings of the intervals through v_{i-1} .
- The arcs are k-colorable iff some coloring of intervals ending at cut node v_0 is consistent with original coloring of the same intervals.



Circular Arc Coloring: Running Time

Running time. $O(k! \cdot n)$.

- n phases of the algorithm.
- Bottleneck in each phase is enumerating all consistent colorings.
- There are at most k intervals through v_i, so there are at most k! colorings to consider.

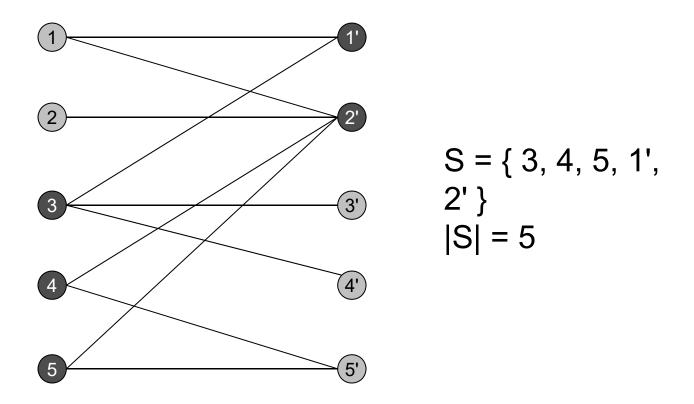
Remark. This algorithm is practical for small values of k (say k = 10) even if the number of nodes n (or paths) is large.

Extra Slides

Vertex Cover in Bipartite Graphs

Vertex Cover

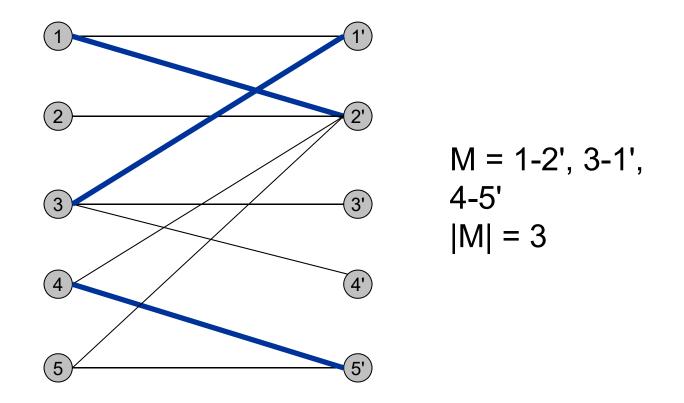
Vertex cover. Given an undirected graph G = (V, E), a vertex cover is a subset of vertices $S \subseteq V$ such that for each edge $(u, v) \in E$, either $u \in S$ or $v \in S$ or both.



Vertex Cover

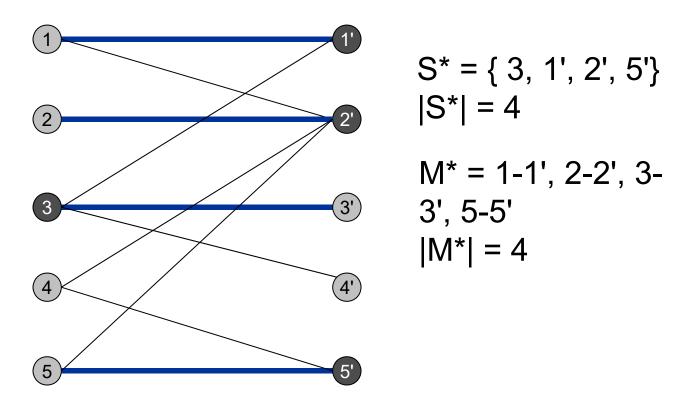
Weak duality. Let M be a matching, and let S be a vertex cover. Then, $|M| \le |S|$.

Pf. Each vertex can cover at most one edge in any matching.



Vertex Cover: König-Egerváry Theorem

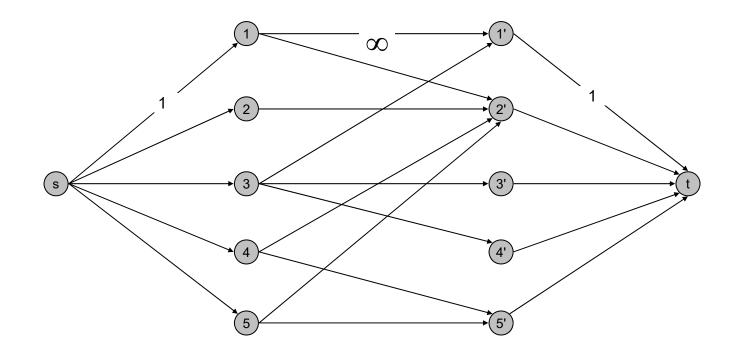
König-Egerváry Theorem. In a bipartite graph, the max cardinality of a matching is equal to the min cardinality of a vertex cover.



Vertex Cover: Proof of König-Egerváry Theorem

König-Egerváry Theorem. In a bipartite graph, the max cardinality of a matching is equal to the min cardinality of a vertex cover.

- Suffices to find matching M and cover S such that |M| = |S|.
- Formulate max flow problem as for bipartite matching.
- Let M be max cardinality matching and let (A, B) be min cut.



Vertex Cover: Proof of König-Egerváry Theorem

König-Egerváry Theorem. In a bipartite graph, the max cardinality of a matching is equal to the min cardinality of a vertex cover.

- Suffices to find matching M and cover S such that |M| = |S|.
- Formulate max flow problem as for bipartite matching.
- Let M be max cardinality matching and let (A, B) be min cut.
- Define $L_A = L \cap A$, $L_B = L \cap B$, $R_A = R \cap A$, $R_B = R \cap B$.
- Claim 1. $S = L_B \cup R_A$ is a vertex cover.
 - consider (u, v) $\in E$
 - $u \in L_A, v \in R_B$ impossible since infinite capacity
 - thus, either $u \in L_B$ or $v \in R_A$ or both
- Claim 2. |5| = |M|.
 - max-flow min-cut theorem \Rightarrow |M| = cap(A, B)
 - only edges of form (s, u) or (v, t) contribute to cap(A, B)
 - $-|M| = cap(A, B) = |L_B| + |R_A| = |S|.$

Register Allocation

Register. One of k of high-speed memory locations in computer's CPU.

Register allocator. Part of an optimizing compiler that controls which variables are saved in the registers as compiled program executes.

Interference graph. Nodes are "live ranges." Edge u-v if there exists an operation where both u and v are "live" at the same time.

Observation. [Chaitin, 1982] Can solve register allocation problem iff interference graph is k-colorable.

Spilling. If graph is not k-colorable (or we can't find a k-coloring), we "spill" certain variables to main memory and swap back as needed.

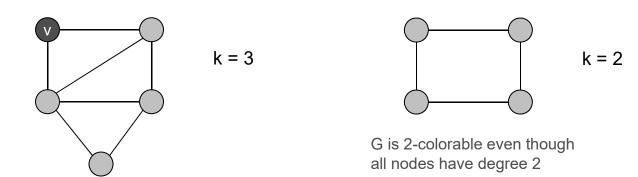
typically infrequently used variables that are not in inner loops

Remark. Register allocation problem is NP-hard.

Key fact. If a node v in graph G has fewer than k neighbors, G is k-colorable iff $G - \{v\}$ is k-colorable.

Pf. Delete node v from G and color $G - \{v\}$.

- If $G \{v\}$ is not k-colorable, then neither is G.
- If G {v} is k-colorable, then there is at least one remaining color left for v.



Chaitin's Algorithm

```
while (G is not empty) {
     Pick a node v with fewer than k
neighbors
     Push v on stack
     Delete v and all its incident
edges
  while (stack is not empty) {
     Pop next node v from the stack
     Assign v a color different from
its neighboring
     nodes which have already been
colored
```

Chaitin's Algorithm

Theorem. [Kempe 1879, Chaitin 1982] Chaitin's algorithm produces a k-coloring of any graph with max degree k-1. Pf. Follows from key fact since each node has fewer than k neighbors.

algorithm succeeds in k-coloring many graphs with max degree $\geq k$

Remark. If algorithm never encounters a graph where all nodes have degree $\geq k$, then it produces a k-coloring.

 \checkmark

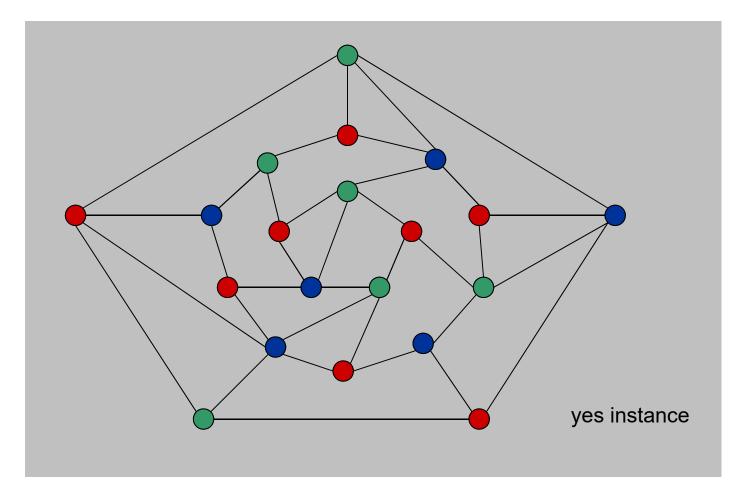
Practice. Chaitin's algorithm (and variants) are extremely effective and widely used in real compilers for register allocation.

8.7 Graph Coloring

Basic genres.

- Packing problems: SET-PACKING, INDEPENDENT SET.
- Covering problems: SET-COVER, VERTEX-COVER.
- Constraint satisfaction problems: SAT, 3-SAT.
- Sequencing problems: HAMILTONIAN-CYCLE, TSP.
- Partitioning problems: 3D-MATCHING, 3-COLOR.
- Numerical problems: SUBSET-SUM, KNAPSACK.

3-COLOR: Given an undirected graph G does there exists a way to color the nodes red, green, and blue so that no adjacent nodes have the same color?



Register allocation. Assign program variables to machine register so that no more than k registers are used and no two program variables that are needed at the same time are assigned to the same register.

Interference graph. Nodes are program variables names, edge between u and v if there exists an operation where both u and v are "live" at the same time.

Observation. [Chaitin 1982] Can solve register allocation problem iff interference graph is k-colorable.

Fact. 3-COLOR \leq_{P} k-REGISTER-ALLOCATION for any constant $k \geq 3$.

Claim. $3-SAT \leq P 3$ -COLOR.

Pf. Given 3-SAT instance Φ , we construct an instance of 3-COLOR that is 3-colorable iff Φ is satisfiable.

Construction.

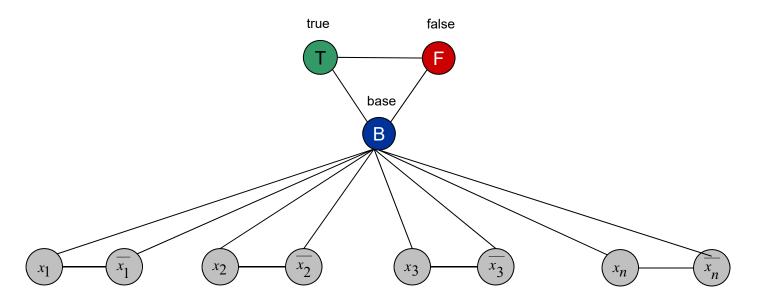
- i. For each literal, create a node.
- ii. Create 3 new nodes T, F, B; connect them in a triangle, and connect each literal to B.
- iii. Connect each literal to its negation.
- iv. For each clause, add gadget of 6 nodes and 13 edges.

to be described next

Claim. Graph is 3-colorable iff Φ is satisfiable.

Pf. \Rightarrow Suppose graph is 3-colorable.

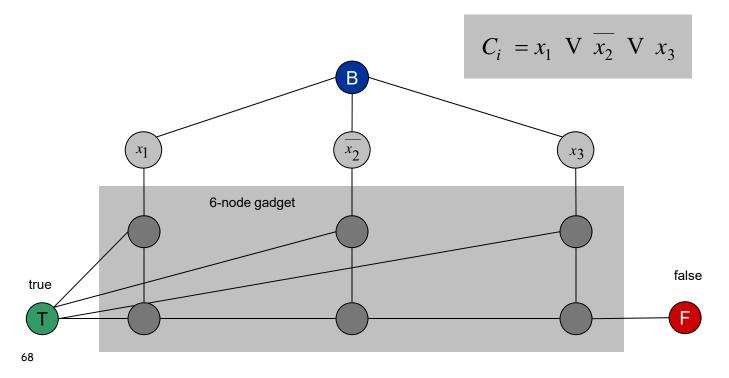
- Consider assignment that sets all T literals to true.
- . (ii) ensures each literal is T or F.
- . (iii) ensures a literal and its negation are opposites.



Claim. Graph is 3-colorable iff Φ is satisfiable.

Pf. \Rightarrow Suppose graph is 3-colorable.

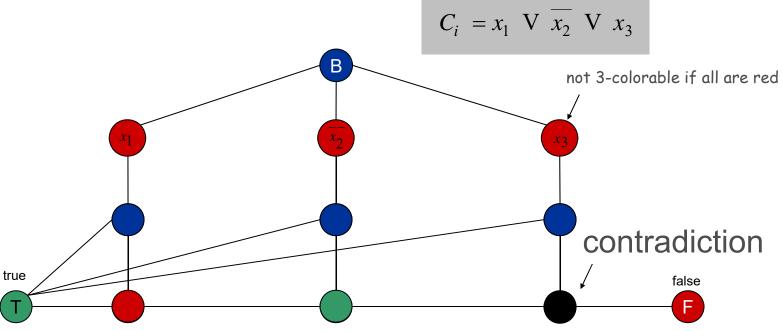
- Consider assignment that sets all T literals to true.
- . (ii) ensures each literal is T or F.
- . (iii) ensures a literal and its negation are opposites.
- . (iv) ensures at least one literal in each clause is T.



Claim. Graph is 3-colorable iff Φ is satisfiable.

Pf. \Rightarrow Suppose graph is 3-colorable.

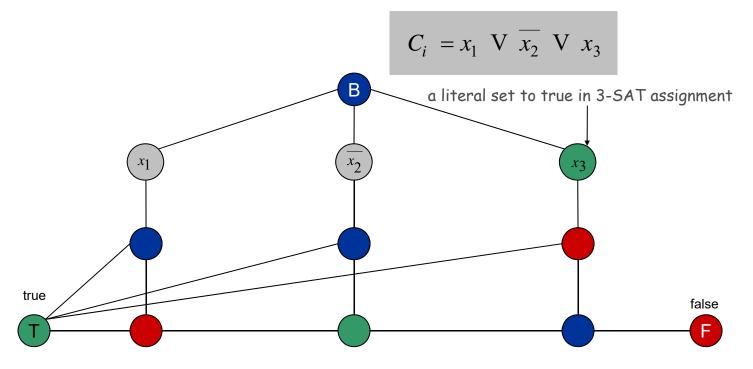
- Consider assignment that sets all T literals to true.
- (ii) ensures each literal is T or F.
- . (iii) ensures a literal and its negation are opposites.
- . (iv) ensures at least one literal in each clause is T.



Claim. Graph is 3-colorable iff Φ is satisfiable.

Pf. \leftarrow Suppose 3-SAT formula Φ is satisfiable.

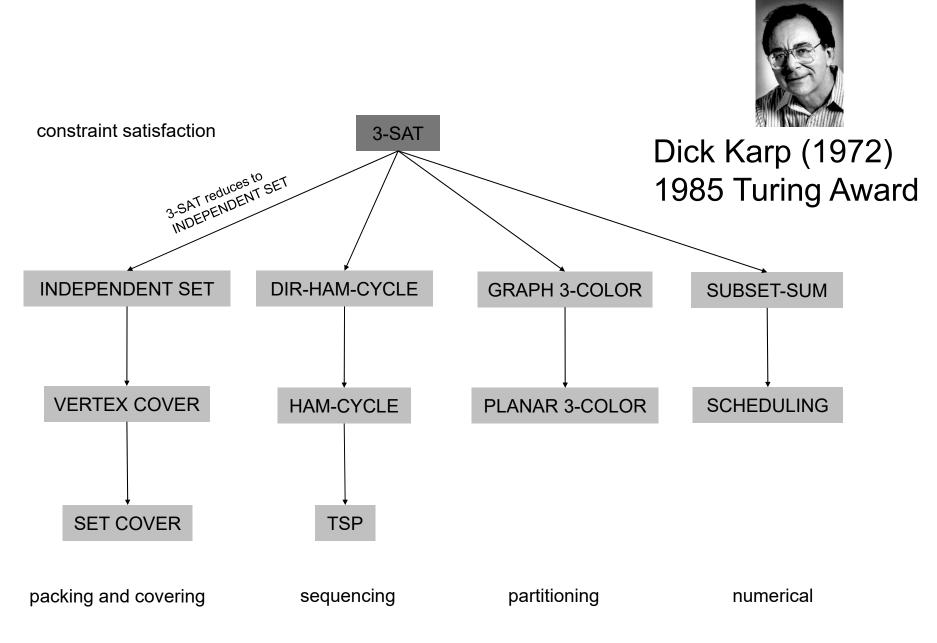
- Color all true literals T.
- Color node below green node F, and node below that B.
- Color remaining middle row nodes B.
- Color remaining bottom nodes T or F as forced.



Extra Slides

8.10 A Partial Taxonomy of Hard Problems

Polynomial-Time Reductions



Subset Sum (proof from book)

Construction. Let $X \cup Y \cup Z$ be a instance of 3D-MATCHING with triplet set T. Let n = |X| = |Y| = |Z| and m = |T|.

- Let X = { x_1, x_2, x_3, x_4 }, Y = { y_1, y_2, y_3, y_4 }, Z = { z_1, z_2, z_3, z_4 }
- For each triplet t= $(x_i, y_j, z_k) \in T$, create an integer w_t with 3n digits that has a 1 in positions i, n+j, and 2n+k.

use base m+1

Triplet t _i			x ₁	x ₂	x ₃	x ₄	У ₁	у ₂	У ₃	У ₄	Z ₁	Z ₂	Z ₃	Z ₄	W _i
X ₁	У ₂	Z_3	1	0	0	0	0	1	0	0	0	0	1	0	100,001,000,010
x ₂	У ₄	Z ₂	0	1	0	0	0	0	0	1	0	1	0	0	10,000,010,100
X ₁	У ₁	Z ₁	1	0	0	0	1	0	0	0	1	0	0	0	100,010,001,000
X ₂	У ₂	Z_4	0	1	0	0	0	1	0	0	0	0	0	1	10,001,000,001
X ₄	У 3	Z_4	0	0	0	1	0	0	1	0	0	0	0	1	100,100,001
X ₃	У ₁	Z ₂	0	0	1	0	1	0	0	0	0	1	0	0	1,010,000,100
X ₃	У ₁	Z_3	0	0	1	0	1	0	0	0	0	0	1	0	1,010,000,010
X ₃	У ₁	Z ₁	0	0	1	0	1	0	0	0	1	0	0	0	1,010,001,000
x ₄	У ₄	Z_4	0	0	0	1	0	0	0	1	0	0	0	1	100,010,001
															111,111,111,111

Claim. 3D-matching iff some subset sums to W = 111,..., 111.

Partition

SUBSET-SUM. Given natural numbers $w_1, ..., w_n$ and an integer W, is there a subset that adds up to exactly W?

PARTITION. Given natural numbers $v_1,\,...,\,v_m$, can they be partitioned into two subsets that add up to the same value?

[\] ½ Σ_i V_i

Claim. SUBSET-SUM \leq_{P} PARTITION.

Pf. Let W, w_1 , ..., w_n be an instance of SUBSET-SUM.

• Create instance of PARTITION with m = n+2 elements.

 $-v_1 = w_1, v_2 = w_2, ..., v_n = w_n, v_{n+1} = 2 \sum_i w_i - W, v_{n+2} = \sum_i w_i + W$

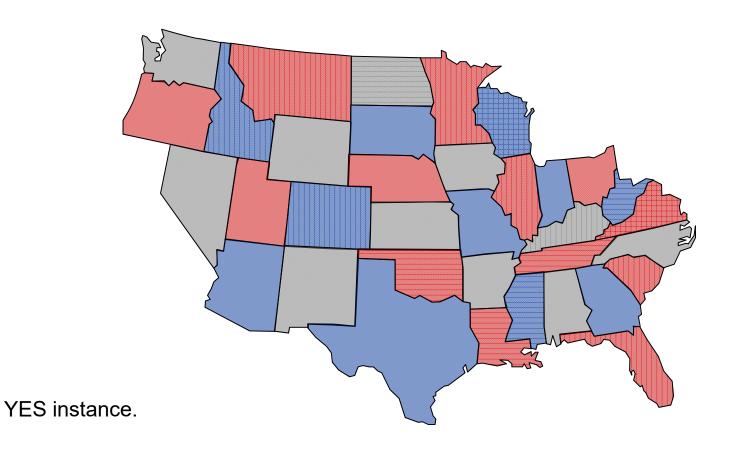
 There exists a subset that sums to W iff there exists a partition since two new elements cannot be in the same partition.

$$v_{n+1} = 2 \Sigma_i w_i - W$$
Wsubset A $v_{n+2} = \Sigma_i w_i + W$ $\Sigma_i w_i - W$ subset B

4 Color Theorem

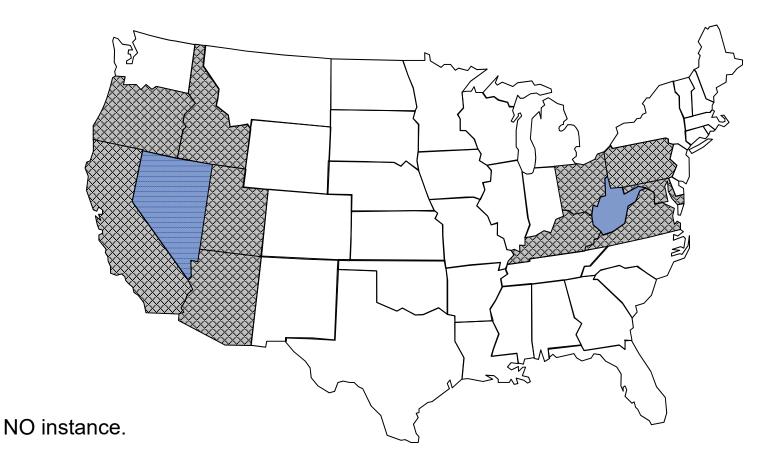
Planar 3-Colorability

PLANAR-3-COLOR. Given a planar map, can it be colored using 3 colors so that no adjacent regions have the same color?



Planar 3-Colorability

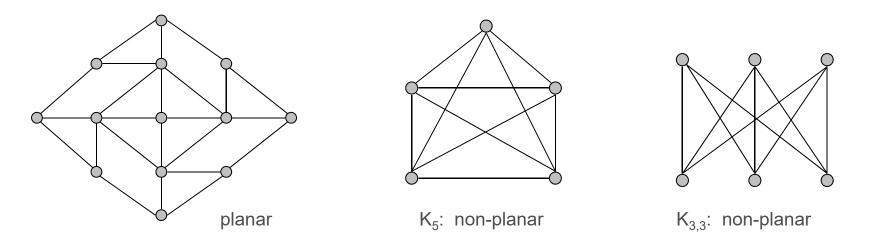
PLANAR-3-COLOR. Given a planar map, can it be colored using 3 colors so that no adjacent regions have the same color?



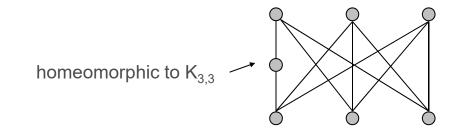
Planarity

Def. A graph is planar if it can be embedded in the plane in such a way that no two edges cross.

Applications: VLSI circuit design, computer graphics.



Kuratowski's Theorem. An undirected graph G is non-planar iff it contains a subgraph homeomorphic to K_5 or $K_{3,3}$.

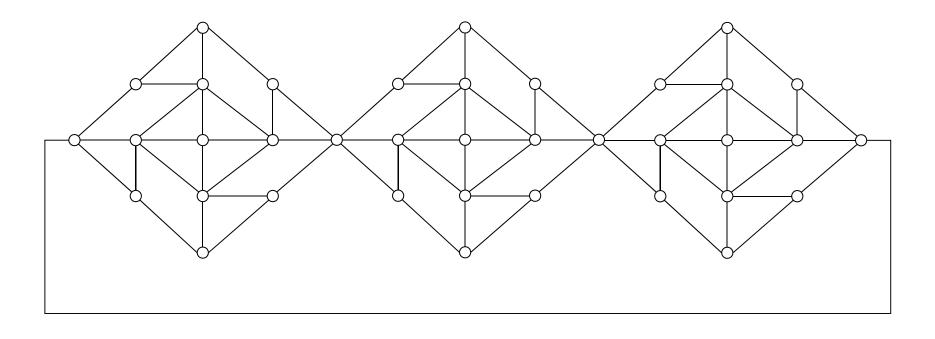


```
Planarity testing. [Hopcroft-Tarjan 1974] O(n).
```

```
simple planar graph can have at mos
```

Remark. Many intractable graph problems can be solved in poly-time if the graph is planar; many tractable graph problems can be solved faster if the graph is planar.

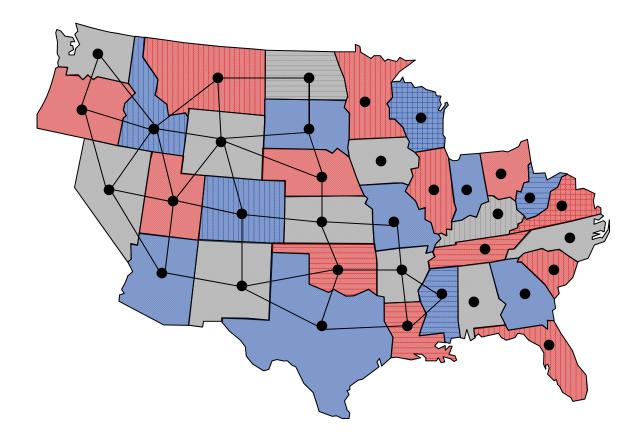
Q. Is this planar graph 3-colorable?



Planar 3-Colorability and Graph 3-Colorability

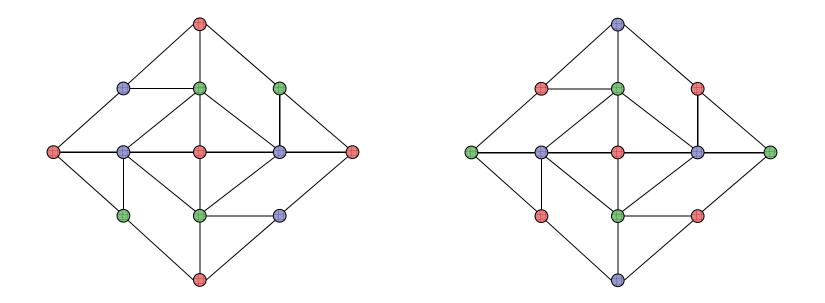
Claim. PLANAR-3-COLOR \leq_{P} PLANAR-GRAPH-3-COLOR.

Pf sketch. Create a vertex for each region, and an edge between regions that share a nontrivial border.



Claim. W is a planar graph such that:

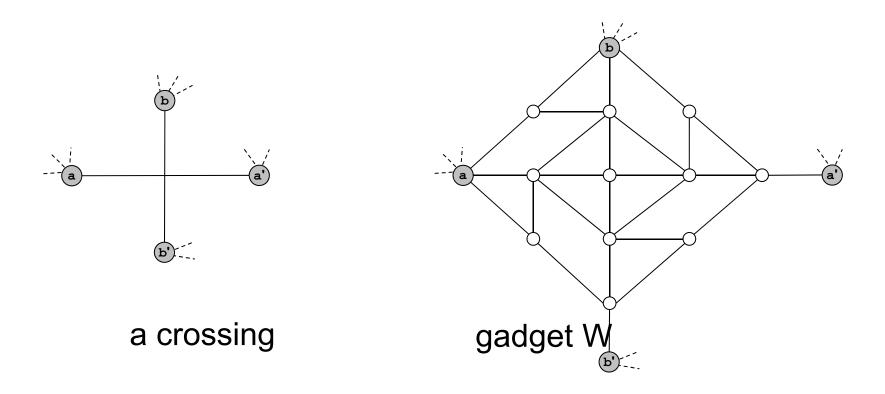
- In any 3-coloring of W, opposite corners have the same color.
- Any assignment of colors to the corners in which opposite corners have the same color extends to a 3-coloring of W.
- Pf. Only 3-colorings of W are shown below (or by permuting colors).



Claim. 3-COLOR \leq_{P} PLANAR-GRAPH-3-COLOR.

Pf. Given instance of 3-COLOR, draw graph in plane, letting edges cross.

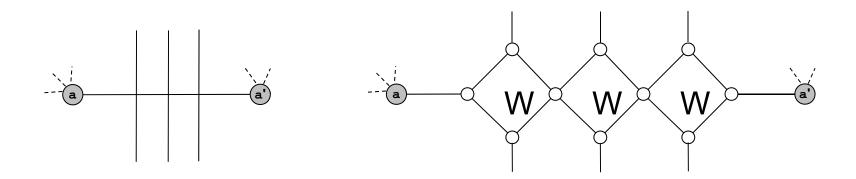
- Replace each edge crossing with planar gadget W.
- In any 3-coloring of W, $a \neq a'$ and $b \neq b'$.
- If $a \neq a'$ and $b \neq b'$ then can extend to a 3-coloring of W.



Claim. 3-COLOR \leq_{P} PLANAR-GRAPH-3-COLOR.

Pf. Given instance of 3-COLOR, draw graph in plane, letting edges cross.

- Replace each edge crossing with planar gadget W.
- In any 3-coloring of W, $a \neq a'$ and $b \neq b'$.
- If $a \neq a'$ and $b \neq b'$ then can extend to a 3-coloring of W.



multiple crossings

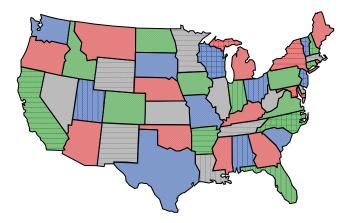
gadget W

Planar k-Colorability

PLANAR-2-COLOR. Solvable in linear time.

PLANAR-3-COLOR. NP-complete.

PLANAR-4-COLOR. Solvable in O(1) time.



Theorem. [Appel-Haken, 1976] Every planar map is 4-colorable.

- Resolved century-old open problem.
- Used 50 days of computer time to deal with many special cases.
- First major theorem to be proved using computer.

False intuition. If PLANAR-3-COLOR is hard, then so is PLANAR-4-COLOR and PLANAR-5-COLOR.

Polynomial-Time Detour

Graph minor theorem. [Robertson-Seymour 1980s]

Corollary. There exist an $O(n^3)$ algorithm to determine if a graph can be embedded in the torus in such a way that no two edges cross.

Pf of theorem. Tour de force.

Polynomial-Time Detour

Graph minor theorem. [Robertson-Seymour 1980s]

Corollary. There exist an $O(n^3)$ algorithm to determine if a graph can be embedded in the torus in such a way that no two edges cross.

Mind boggling fact 1. The proof is highly non-constructive! Mind boggling fact 2. The constant of proportionality is enormous!

> Unfortunately, for any instance G = (V, E) that one could fit into the known universe, one would easily prefer n⁷⁰ to even *constant* time, if that constant had to be one of Robertson and Seymour's. - David Johnson

Theorem. There exists an explicit O(n) algorithm. Practice. LEDA implementation guarantees $O(n^3)$.