Recap

Polynomial Time Reductions $(X \leq_P Y)$

- Decision problems which have a polynomial time algorithm.

NP

- Decision problems which have a polynomial time proof certification algorithm.
- All YES instances have a short proof.

NP-Hard

- For all $X \in NP$ we have a reduction $X \leq_P Y$.
- A decision problem $Y \in NP$ that is at least as hard any other problem $X \in NP$.

NP-Complete

- A decision problem $Y \in NP$ that is also NP-Hard.
- We know that $P \subset NP$ and $NP \subset EXP$, but not if $P=NP$.

NP-Complete

- A problem Y in NP with the property that for every problem X in NP, $X \leq_P Y$.

Theorem. Suppose Y is an NP-complete problem. Then Y is solvable in poly-time iff $P=NP$.

1. **Pf.** If $P=NP$ then Y can be solved in poly-time since Y is in NP.
2. **Pf.** Suppose Y can be solved in poly-time.
 - Let X be any problem in NP. Since $X \leq_P Y$, we can solve X in poly-time. This implies $NP \subset P$.
 - We already know $P \subset NP$. Thus $P = NP$.

Fundamental question. Do there exist “natural” NP-complete problems?

The “First” NP-Complete Problem

Theorem. CIRCUIT-SAT is NP-complete. [Cook 1971, Levin 1973]

Pf. (sketch)

1. Any algorithm that takes a fixed number of bits n as input and produces a yes/no answer can be represented by such a circuit. Moreover, if algorithm takes poly-time, then circuit is of poly-size.

2. Consider some problem $X \in NP$. It has a poly-time certifier $C(s, t)$. To determine whether s is in X, need to know if there exists a certificate t of length $p(|s|)$ such that $C(s, t) = yes$.

3. View $C(s, 1)$ as an algorithm on $|s| + p(|s|)$ bits (input s, certificate t) and convert it into a poly-size circuit K.
 - first $|s|$ bits are hard-coded with s
 - remaining $p(|s|)$ bits represent bits of t

Example

Ex. Construction below creates a circuit K whose inputs can be set so that K outputs true if graph G has an independent set of size 2.

CIRCUIT-SAT. Given a combinational circuit built out of AND, OR, and NOT gates, is there a way to set the circuit inputs so that the output is 1?
Establishing NP-Completeness

Remark. Once we establish first "natural" NP-complete problem, others fall like dominoes.

Recipe to establish NP-completeness of problem Y.
- Step 1. Show that Y is in NP.
- Step 2. Choose an NP-complete problem X.
- Step 3. Prove that X ≤p Y.

Justification. If X is an NP-complete problem, and Y is a problem in NP with the property that X ≤p Y then Y is NP-complete.

Pf. Let W be any problem in NP. Then W ≤p X ≤p Y.
- By transitivity, W ≤p Y.
- Hence Y is NP-complete.

3-SAT is NP-Complete

Theorem. 3-SAT is NP-complete.

Pf. Suffices to show that CIRCUIT-SAT ≤p 3-SAT since 3-SAT is in NP.
- Let K be any circuit.
- Create a 3-SAT variable x_i for each circuit element i.
- Make circuit compute correct values at each node:
 - x_2 = \neg x_3 \implies add 2 clauses: x_2 \lor \neg x_3, x_1 \lor x_2 \lor \neg x_3
 - x_0 = x_1 \lor x_2 \lor x_3 \implies add 3 clauses: x_0 \lor x_1, x_0 \lor x_2, x_0 \lor x_3
- Hard-coded input values and output value.
 - x_2 = 0 \implies add 1 clause: x_2
 - x_0 = 1 \implies add 1 clause: x_0
- Final step: turn clauses of length < 3 into clauses of length exactly 3.

NP-Completeness

Observation. All problems below are NP-complete and polynomial reduce to one another!

Some NP-Complete Problems

Six basic genres of NP-complete problems and paradigmatic examples.
- Packing problems: SET-PACKING, INDEPENDENT SET.
- Covering problems: SET-COVER, VERTEX-COVER.
- Constraint satisfaction problems: SAT, 3-SAT.
- Sequencing problems: HAM-LON-CYCLE, TSP.
- Partitioning problems: 3D-MATCHING, 3-COLOR.
- Numerical problems: SUBSET-SUM, KNAF-SACK.

Practice. Most NP problems are either known to be in P or NP-complete.

Notable exceptions. Factoring, graph isomorphism, Nash equilibrium.

Extent and Impact of NP-Completeness

Extent of NP-completeness. [Papadimitriou 1995]
- Prime intellectual export of CS to other disciplines.
- 6,000 citations per year (title, abstract, keywords).
 - more than "compiler", "operating system", "database"
- Broad applicability and classification power.
 "Captures vast domains of computational, scientific, mathematical endeavors, and seems to roughly delimit what mathematicians and scientists had been aspiring to compute feasibly."

NP-completeness can guide scientific inquiry.
- 1926: Ising introduces simple model for phase transitions.
- 1944: Onsager solves 2D case in tour de force.
- 19xx: Feynman and other top minds seek 3D solution.

More Hard Computational Problems

Aerospace engineering: optimal mesh partitioning for finite elements.
Biology: protein folding.
Chemical engineering: heat exchanger network synthesis.
Civil engineering: equilibrium of urban traffic flow.
Economics: computation of arbitrage in financial markets with friction.
Electrical engineering: VLSI layout.
Environmental engineering: optimal placement of contaminant sensors.
Financial engineering: find minimum risk portfolio of given return.
Game theory: find Nash equilibrium that maximizes social welfare.
Genomics: phylogeny reconstruction.
Mechanical engineering: structure of turbulence in sheared flows.
Medicine: reconstructing 3-D shape from biplane angiocardio.
Operations research: optimal resource allocation.
Physics: partition function of 3-D Ising model in statistical mechanics.
Politics: Shapley-Shubik voting power.
Pop culture: Minesweeper consistency.
Statistics: optimal experimental design.
8.9 co-NP and the Asymmetry of NP

Asymmetry of NP

We only need to have short proofs of yes instances.

Ex 1. SAT vs. TAUTOLOGY.
- Can prove a CNF formula is satisfiable by giving such an assignment.
- How could we prove that a formula is not satisfiable?

Ex 2. HAM-CYCLE vs. NO-HAM-CYCLE.
- Can prove a graph is Hamiltonian by giving such a Hamiltonian cycle.
- How could we prove that a graph is not Hamiltonian?

Remark. SAT is NP-complete and SAT \equiv P TAUTOLOGY, but how do we classify TAUTOLOGY?

NP and co-NP

NP. Decision problems for which there is a poly-time certifier.

Ex. SAT, HAM-CYCLE, COMPOSITES.

Def. Given a decision problem X, its complement \overline{X} is the same problem with the yes and no answers reverse.

Ex. X = \{ 0, 1, 4, 6, 8, 9, 10, 12, 14, 15, \ldots \}
\overline{X} = \{ 2, 3, 5, 7, 11, 13, 17, 23, 29, \ldots \}

co-NP. Complements of decision problems in NP.

Ex. TAUTOLOGY, NO-HAM-CYCLE, PRIMES.

Good Characterizations

Good Characterization. (Edmonds 1965) NP \cap co-NP.
- If problem X is in both NP and co-NP, then:
 - for yes instance, there is a succinct certificate
 - for no instance, there is a succinct disqualifier
- Provides conceptual leverage for reasoning about a problem.

Ex. Given a bipartite graph, is there a perfect matching.
- If yes, can exhibit a perfect matching.
- If no, can exhibit a set of nodes S such that |N(S)| < |S|.

Observation. P \subseteq NP \cap co-NP.
- Proof of max-flow min-cut theorem led to stronger result that max-flow and min-cut are in P.
- Sometimes finding a good characterization seems easier than finding an efficient algorithm.

Fundamental open question. Does P = NP \cap co-NP?
- Mixed opinions.
- Many examples where problem found to have a non-trivial good characterization, but only years later discovered to be in P.
 - linear programming [Khachiyan, 1979]
 - primality testing [Agrawal-Kayal-Saxena, 2002]

Fact. Factoring is in NP \cap co-NP, but not known to be in P.
- If poly-time algorithm for factoring, can break RSA cryptosystem.
FACTOR is in \(\text{NP} \cap \text{co-NP} \)

FACTORIZE. Given an integer \(x \), find its prime factorization.

FACTOR. Given two integers \(x \) and \(y \), does \(x \) have a nontrivial factor less than \(y \)?

Theorem. FACTOR \(\equiv \) FACTORIZE.

Theorem. FACTOR is in \(\text{NP} \cap \text{co-NP} \).

Pf.
- Certificate: a factor \(p \) of \(x \) that is less than \(y \).
- Disqualifier: the prime factorization of \(x \) (where each prime factor is less than \(y \)), along with a certificate that each factor is prime.

8.5 Sequencing Problems

Basic genres.
- Packing problems: SET-PACKING, INDEPENDENT SET.
- Covering problems: SET-COVER, VERTEX-COVER.
- Constraint satisfaction problems: SAT, 3-SAT.
- Sequencing problems: HAMILTONIAN-CYCLE, TSP.
- Partitioning problems: 3D-MATCHING, 3-COLOR.
- Numerical problems: SUBSET-SUM, KNAPSACK.

Hamiltonian Cycle

HAM-CYCLE: given an undirected graph \(G = (V, E) \), does there exist a simple cycle \(\Gamma \) that contains every node in \(V \)?

Claim. \(\Delta \)-HAM-CYCLE \(\leq \) HAM-CYCLE.

Pf. Given a directed graph \(G = (V, E) \), construct an undirected graph \(G' \) with 3\(n \) nodes.

- Yes: vertices and faces of a dodecahedron.
- No: bipartite graph with odd number of nodes.

Claim. \(\Delta \) has a Hamiltonian cycle iff \(G' \) does.

Pf.
- Suppose \(\Delta \) has a directed Hamiltonian cycle \(\Gamma \).
- Then \(G' \) has an undirected Hamiltonian cycle (same order).
- Suppose \(G' \) has an undirected Hamiltonian cycle \(\Gamma' \).
- \(\Gamma' \) must visit nodes in \(G' \) using one of following two orders:
 - \(B, G, R, B, G, R, B, G, R, B, \ldots \)
 - \(B, G, R, B, G, R, B, G, R, B, \ldots \)
- Blue nodes in \(\Gamma' \) make up directed Hamiltonian cycle \(\Gamma \) in \(G \), or reverse of one.
Claim. 3-SAT \leq_p \text{DIR-HAM-CYCLE}.

Proof. Given an instance Φ of 3-SAT, we construct an instance of \text{DIR-HAM-CYCLE} that has a Hamiltonian cycle iff Φ is satisfiable.

Construction. First, create graph that has 2^n Hamiltonian cycles which correspond in a natural way to 2^n possible truth assignments.
Longest Path

SHORTEST-PATH. Given a digraph $G = (V, E)$, does there exist a simple path of length at most k edges?

LONGEST-PATH. Given a digraph $G = (V, E)$, does there exist a simple path of length at least k edges?

Claim. 3-SAT $\leq P$ LONGEST-PATH.

Pf 1. Redo proof for DIR-HAM-CYCLE, ignoring back-edge from t to s.

Pf 2. Show HAM-CYCLE $\leq P$ LONGEST-PATH.

Traveling Salesperson Problem

TSP. Given a set of n cities and a pairwise distance function $d(u, v)$, is there a tour of length $\leq D$?

Optimal TSP tour
Reference: http://www.tsp.gatech.edu

Traveling Salesperson Problem

TSP. Given a set of n cities and a pairwise distance function $d(u, v)$, is there a tour of length $\leq D$?

Optimal TSP tour
Reference: http://www.tsp.gatech.edu

Traveling Salesperson Problem

TSP. Given a set of n cities and a pairwise distance function $d(u, v)$, is there a tour of length $\leq D$?

Optimal TSP tour
Reference: http://www.tsp.gatech.edu

Traveling Salesperson Problem

TSP. Given a set of n cities and a pairwise distance function $d(u, v)$, is there a tour of length $\leq D$?

HAM-CYCLE: given a graph $G = (V, E)$, does there exist a simple cycle that contains every node in V?

Claim. HAM-CYCLE $\leq P$ TSP.

Pf.
- Given instance $\hat{G} = (V, \hat{E})$ of HAM-CYCLE, create n cities with distance function
 $$d(u, v) = \begin{cases} 1 & \text{if } (u, v) \in \hat{E} \\ 2 & \text{if } (u, v) \notin \hat{E} \end{cases}$$
- TSP instance has tour of length $\leq n$ if \hat{G} is Hamiltonian.

Remark. TSP instance in reduction satisfies Δ-inequality.
3/22/2018

8.7 Graph Coloring

Basic genres:
- Packing problems: SET-PACKING, INDEPENDENT SET.
- Covering problems: SET-COVER, VERTEX-COVER.
- Constraint satisfaction problems: SAT, 3-SAT.
- Sequencing problems: HAMILTONIAN-CYCLE, TSP.
- Partitioning problems: 3D-MATCHING, 3-COLOR.
- Numerical problems: SUBSET-SUM, KNAPSACK.

3-Colorability

3-COLOR: Given an undirected graph ϕ does there exists a way to color the nodes red, green, and blue so that no adjacent nodes have the same color?

3-Colorability

3-COLOR: Given a 3-SAT instance Φ, we construct an instance of 3-COLOR that is 3-colorable iff Φ is satisfiable.

PF. Given 3-SAT instance Φ, we construct an instance of 3-COLOR that is 3-colorable iff Φ is satisfiable.

Construction:
1. For each literal, create a node.
2. Create 3 new nodes T, F, B; connect them in a triangle, and connect each literal to B.
3. Connect each literal to its negation.
4. For each clause, add gadget of 6 nodes and 13 edges.

Claim. 3-SAT \leq_P 3-COLOR.

PF. Given 3-SAT instance Φ, we construct an instance of 3-COLOR that is 3-colorable iff Φ is satisfiable.

Construction:
1. For each literal, create a node.
2. Create 3 new nodes T, F, B; connect them in a triangle, and connect each literal to B.
3. Connect each literal to its negation.
4. For each clause, add gadget of 6 nodes and 13 edges.

Interference graph. Nodes are program variables names, edge between u and v if there exists an operation where both u and v are “live” at the same time.

Observation. [Chaitin 1982] Can solve register allocation problem if interference graph is k-colorable.

Fact. 3-COLOR \leq_P k-REGISTER-ALLOCATION for any constant $k \geq 3$.

Register Allocation

Register allocation. Assign program variables to machine register so that no more than k registers are used and no two program variables that are needed at the same time are assigned to the same register.

Interference graph. Nodes are program variables names, edge between u and v if there exists an operation where both u and v are “live” at the same time.

Observation. [Chaitin 1982] Can solve register allocation problem if interference graph is k-colorable.

Fact. 3-COLOR \leq_P k-REGISTER-ALLOCATION for any constant $k \geq 3$.

3-Colorability

Claim. Graph is 3-colorable iff \(\phi \) is satisfiable.

Pf. \(\Rightarrow \) Suppose graph is 3-colorable.
- Consider assignment that sets all T literals to true.
- (ii) ensures each literal is T or F.
- (iii) ensures a literal and its negation are opposites.
- (iv) ensures at least one literal in each clause is T.

\[C_i = x_1 \lor x_2 \lor x_3 \]

3-Colorability

Claim. Graph is 3-colorable iff \(\phi \) is satisfiable.

Pf. \(\Leftarrow \) Suppose 3-SAT formula \(\phi \) is satisfiable.
- Color all true literals T.
- Color node below green node F, and node below that B.
- Color remaining middle row nodes B.
- Color remaining bottom nodes T or F as forced.

8.10 A Partial Taxonomy of Hard Problems

Polynomial-Time Reductions

Dick Karp (1972) 1985 Turing Award
Subset Sum (proof from book)

Construction. Let $X \cup Y \cup Z$ be an instance of 3D-MATCHING with triplet set T. Let $n = |X| = |Y| = |Z|$ and $m = |T|$.
- Let $X = \{x_1, x_2, x_3, x_4\}$,
- $Y = \{y_1, y_2, y_3, y_4\}$,
- $Z = \{z_1, z_2, z_3, z_4\}$.
- For each triplet $t = (x_i, y_j, z_k)$ of T, create an integer w_t with 3n digits that has a 1 in positions i, $n+j$, and $2n+k$.

Claim. 3D-matching if and only if some subset sums to $W = 111, \ldots, 111$.

<table>
<thead>
<tr>
<th>Triplet t</th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
<th>y_1</th>
<th>y_2</th>
<th>y_3</th>
<th>y_4</th>
<th>z_1</th>
<th>z_2</th>
<th>z_3</th>
<th>z_4</th>
<th>w_t</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_1, y_1, z_1</td>
<td>1</td>
<td>0</td>
<td>$111,111,111$</td>
</tr>
<tr>
<td>x_1, y_2, z_2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>$111,111,111$</td>
</tr>
<tr>
<td>x_1, y_3, z_3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>$111,111,111$</td>
</tr>
<tr>
<td>x_1, y_4, z_4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>$111,111,111$</td>
</tr>
<tr>
<td>x_2, y_1, z_1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>$111,111,111$</td>
</tr>
<tr>
<td>x_2, y_2, z_2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>$111,111,111$</td>
</tr>
<tr>
<td>x_2, y_3, z_3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>$111,111,111$</td>
</tr>
<tr>
<td>x_2, y_4, z_4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>$111,111,111$</td>
</tr>
<tr>
<td>x_3, y_1, z_1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>$111,111,111$</td>
</tr>
<tr>
<td>x_3, y_2, z_2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>$111,111,111$</td>
</tr>
<tr>
<td>x_3, y_3, z_3</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>$111,111,111$</td>
</tr>
<tr>
<td>x_3, y_4, z_4</td>
<td>0</td>
<td>1</td>
<td>$111,111,111$</td>
</tr>
</tbody>
</table>

Planar 3-Colorability

PLANAR-3-COLOR. Given a planar map, can it be colored using 3 colors so that no adjacent regions have the same color?

YES instance.

NO instance.

Planarity

Def. A graph is planar if it can be embedded in the plane in such a way that no two edges cross.

Applications: VLSI circuit design, computer graphics.

Kuratowski’s Theorem. An undirected graph G is non-planar if and only if it contains a subgraph homeomorphic to K_5 or $K_{3,3}$.
Planarity Testing

Planarity testing. (Hopcroft-Tarjan 1974) $O(n)$.

Remark. Many intractable graph problems can be solved in poly-time if the graph is planar; many tractable graph problems can be solved faster if the graph is planar.

Planar Graph 3-Colorability

Claim. W is a planar graph such that:

- In any 3-coloring of W, opposite corners have the same color.
- Any assignment of colors to the corners in which opposite corners have the same color extends to a 3-coloring of W.

Pf. Only 3-colorings of W are shown below (or by permuting colors).

Planar Graph 3-Colorability

Q. Is this planar graph 3-colorable?

Planar Graph 3-Colorability

Claim. 3-COLOR \leq_p PLANAR-GRAPH-3-COLOR.

Pf. Given instance of 3-COLOR, draw graph in plane, letting edges cross.
- Replace each edge crossing with planar gadget W.
- In any 3-coloring of W, $a \neq a'$ and $b \neq b'$.
- If $a \neq a'$ and $b \neq b'$ then can extend to a 3-coloring of W.

multiple crossings gadget W

Planar 3-Colorability and Graph 3-Colorability

Claim. 3-COLOR \leq_p PLANAR-GRAPH-3-COLOR.

Pf. Given instance of 3-COLOR, draw graph in plane, letting edges cross.
- Replace each edge crossing with planar gadget W.
- In any 3-coloring of W, $a = a'$ and $b = b'$.
- If $a = a'$ and $b = b'$ then can extend to a 3-coloring of W.
Planar k-Colorability

PLANAR-2-COLOR. Solvable in linear time.

PLANAR-3-COLOR. NP-complete.

PLANAR-4-COLOR. Solvable in $O(1)$ time.

Theorem. [Appel-Haken, 1976] Every planar map is 4-colorable.

- Resolved century-old open problem.
- Used 50 days of computer time to deal with many special cases.
- First major theorem to be proved using computer.

False intuition. If **PLANAR-3-COLOR** is hard, then so is **PLANAR-4-COLOR** and **PLANAR-5-COLOR**.

Polynomial-Time Detour

Graph minor theorem. [Robertson-Seymour 1980s]

Corollary. There exist an $O(n^3)$ algorithm to determine if a graph can be embedded in the torus in such a way that no two edges cross.

Pf of theorem. Tour de force.

Mind-boggling fact 1. The proof is highly non-constructive!

Mind-boggling fact 2. The constant of proportionality is enormous!

Unfortunately, for any instance $G = (V, E)$ that one could fit into the known universe, one would easily prefer n^{50} to even constant time, if that constant had to be one of Robertson and Seymour’s. - David Johnson

Theorem. There exists an explicit $O(n^3)$ algorithm.

Practice. LEDA implementation guarantees $O(n^3)$.