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Homework 5 due on March 29t at 11:59 PM (on Blackboard)

Circuit Satisfiability

CIRCUIT-SAT. Given a combinational circuit built out of AND, OR, and NOT
gates, is there a way to set the circuit inputs so that the output is 1?

output

yes: 101

hard-coded inputs inputs

Recap

-Polynomial Time Reductions (X< Y)
P
-Decision problems which have a polynomial time algorithm.

NP
Decision problems which have a polynomial time proof certification
algorithm.
- All YES instances have a short proof
-NP-Hard
For all X eNP we have a reduction X <, Y
. A decision problem YENP that is at least as hard any other problem
X eNP
NP-Complete
. A decision problem YENP that is also NP-Hard.
‘We know that P c NP and NPcEXP, but not if P=NP

The "First" NP-Complete Problem

Theorem. CIRCUIT-SAT is NP-complete. [Cook 1971, Levin 1973]
Pf. (sketch)
- Any algorithm that takes a fixed number of bits n as input and
produces a yes/no answer can be represented by such a circuit.
Moreover, if algorithm takes poly-time, then circuit is of poly-size.

sketchy part of proof: fixing the number of bits is important,
and reflects basic distinction between algorithms and circuits

. Consider some problem X in NP. It has a poly-time certifier
C(s, 1).
To determine whether s is in X, need to know if there exists
a certificate t of length p([s|) such that C(s, t) = yes.
. View C(s, t) as an algorithm on [s| + p(|s|) bits (input s,
certificate 1) and convert it into a poly-size circuit K.
- first |s| bits are hard-coded with s
- remaining p(|s|) bits represent bits of t
. Circuit K is satisfiable iff C(s, 1) = yes.

NP-Complete

NP-complete. A problem Y in NP with the property that for every
problem X in NP, X <V
—_—

Theorem. Suppose Y is an NP-complete problem. Then Y is solvable
in poly-time iff P = NP.
Pf. < If P = NP thenY can be solved in poly-time since.Y is in NP.
Pf. = Suppose Y can be solved in poly-time.
. Let X be any problem in NP. Since X <, Y, we can solve X in
poly-time. This implies NP ¢ P.
. We already know P = NP. Thus P = NP. -

Fundamental question. Do there exist "natural" NP-complete
problems?

Example

Ex. Construction below creates a circuit K whose inputs can be set so
that K outputs true iff graph 6 has an independent set of size 2.

independent set of size 2

independent set?
perdent set? (3

set of size 22

6=(V,E),n=3

(2] hard-coded inputs (graph description) n inputs (nodes in independent set)
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Establishing NP-Completeness

Remark. Once we establish first "natural" NP-complete problem,
others fall like dominoes.

Recipe to establish NP-completeness of problem V.

Step 1. Show that Y is in NP.
Step 2. Choose an NP-complete problem X.
Step 3. Prove that X<, V.

Justification. If X is an NP-complete problem, and Y is a problem
in NP with the property that X < ¥ then Y is NP-complete.

Pf. Let W be any problem inNP. Then W <, X <, V.

By transitivity, W <, Y. 1 1
by

. . by definition of
Hence Y is NP-complete. Np-complete

y assumption

Some NP-Complete Problems

Six basic genres of NP-complete problems and paradigmatic
examples.

Packing problems: SET-PACKING, INDEPENDENT SET.
Covering problems: SET-COVER, VERTEX-COVER.
Constraint satisfaction problems: SAT, 3-SAT.
Sequencing problems: HAMILTONIAN-CYCLE, TSP.
Partitioning problems: 3D-MATCHING, 3-COLOR.
Numerical problems: SUBSET-SUM, KNAPSACK.

Practice. Most NP problems are either known to be in P or NP-
complete.

Notable exceptions. Factoring, graph isomorphism, Nash
equilibrium.

3-SAT is NP-Complete

Theorem. 3-SAT is NP-complete.
Pf. Suffices to show that CIRCUIT-SAT <; 3-SAT since 3-SAT is in NP.

Let K be any circuit.
Create a 3-SAT variable x; for each circuit element i.

+ Make circuit compute correct values at each node:

-X;= X3 = add 2 clauses: X,V X, X,V X
- X = X4 v X5 = add 3 clauses:  x,vX;, X VX5, X VXV Xs
- Xp =X A X, = add 3 clauses: X v, X, VX, XV X VX

Hard-coded input values and output value. output
-X5=0 = add1clause: x; X
-Xg=1 = add 1clause: X,

X1 X2

Final step: turn clauses of length < 3 into s T

clauses of length exactly 3. - s - o

0 ? 2

Extent and Impact of NP-Completeness

Extent of NP-completeness. [Papadimitriou 1995]
. Prime intellectual export of CS to other disciplines.
6,000 citations per year (title, abstract, keywords).

- more than "compiler", "operating system", "database"
Broad applicability and classification power.

scientists had been aspiring to compute feasibly."

NP-completeness can guide scientific inquiry.
. 1926: Ising introduces simple model for phase transitions.
. 1944: Onsager solves 2D case in tour de force.
« 19xx: Feynman and other top minds seek 3D solution.
.+ 2000: Istrail proves 3D problem NP-complete.

"Captures vast domains of computational, scientific, mathematical
endeavors, and seems to roughly delimit what mathematicians and

NP-Completeness

Observation. All problems below are NP-complete and polynomial
reduce to one another!

INDEPENDENT SET DIR-HAM-CYCLE GRAPH 3-COLOR SUBSET-SUM

L—— SET COVER TSP

by definition of NP-completeness

CIRCUIT-SAT

|

VERTEX COVER HAM-CYCLE PLANAR 3-COLOR SCHEDULING

.

More Hard Computational Problems

Aerospace engineering: optimal mesh partitioning for finite elements.
Biology: protein folding.

Chemical engineering: heat exchanger network synthesis.

Civil engineering: equilibrium of urban traffic flow.

Economics: computation of arbitrage in financial markets with friction.

Electrical engineering: VLSI layout.

Environmental engineering: optimal placement of contaminant sensors.
Financial engineering: find minimum risk portfolio of given return.
Game theory: find Nash equilibrium that maximizes social welfare.
Genomics: phylogeny reconstruction.

Mechanical engineering: structure of turbulence in sheared flows.
Medicine: reconstructing 3-D shape from biplane angiocardiogram.
Operations research: optimal resource allocation.

Physics: partition function of 3-D Ising model in statistical mechanics.
Politics: Shapley-Shubik voting power.

Pop culture: Minesweeper consistency.

Statistics: optimal experimental design.
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8.9 co-NP and the Asymmetry of NP

NP = co-NP ?

Fundamental question. Does NP = co-NP?
. Do yes instances have succinct certificates iff no instances do?
. Consensus opinion: no.

Theorem. If NP % co-NP, then P = NP.
Pf idea.
. Pis closed under complementation.
. If P= NP, then NP is closed under complementation.
. Inother words, NP = co-NP.
. This is the contrapositive of the theorem.

Asymmetry of NP

Asymmetry of NP. We only need to have short proofs of yes instances.

Ex 1. SAT vs. TAUTOLOGY.
. Can prove a CNF formula is satisfiable by giving such an assignment.
- How could we prove that a formula is not satisfiable?

Ex 2. HAM-CYCLE vs. NO-HAM-CYCLE.
. Can prove a graph is Hamiltonian by giving such a Hamiltonian cycle.
- How could we prove that a graph is not Hamiltonian?

Remark. SAT is NP-complete and SAT =, TAUTOLOGY, but how do we
classify TAUWY'OLOGY?

not even known to be in NP

Good Characterizations

Good characterization. [Edmonds 1965] NP  co-NP.
. If problem X is in both NP and co-NP, then:
- for yes instance, there is a succinct certificate
- for no instance, there is a succinct disqualifier
- Provides conceptual leverage for reasoning about a problem.

Ex. Given a bipartite graph, is there a perfect matching.
- If yes, can exhibit a perfect matching.
- If no, can exhibit a set of nodes S such that [N(S)| < |S|.

NP and co-NP

NP. Decision problems for which there is a poly-time certifier.
Ex. SAT, HAM-CYCLE, COMPOSITES.

Def. Given a decision problem X, its complement X is the same problem
with the yes and no answers reverse.

Ex. X={0,1,4,6,8,9,10,12,14,15, ..}
X={2,3,5,7,11,13,17,23,29, ..}

co-NP. Complements of decision problems in NP.
Ex. TAUTOLOGY, NO-HAM-CYCLE, PRIMES.

Good Characterizations

Observation. P <= NP 1 co-NP.
. Proof of max-flow min-cut theorem led to stronger result
that max-flow and min-cut are in P.
. Sometimes finding a good characterization seems easier than
finding an efficient algorithm.

Fundamental open question. Does P = NP 1 co-NP?

- Mixed opinions.

-« Many examples where problem found to have a non-trivial
good characterization, but only years later discovered fo be
inP.

- linear programming [Khachiyan, 1979]
- primality testing  [Agrawal-Kayal-Saxena, 2002]

Fact. Factoring isin NP N co-NP, but not known to be in P.
!

if poly-time algorithm for factoring,
can break RSA cryptosystem
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FACTOR is in NP n co-NP

FACTORIZE. Given an integer x, find its prime factorization.
FACTOR. Given two integers x and y, does x have a nontrivial
factor less than y?

Theorem. FACTOR = » FACTORIZE.

Theorem. FACTOR is in NP n co-NP.
Pf.
. Certificate: a factor p of x that is less thany.
. Disqualifier: the prime factorization of x (where each prime
factor is less than y), along with a certificate that each
factor is prime.

Hamiltonian Cycle

HAM-CYCLE: given an undirected graph G = (V, E), does there exist a
simple cycle T that contains every node in V.

NO: bipartite graph with odd number of nodes.

8.5 Sequencing Problems

Basic genres.

Packing problems: SET-PACKING, INDEPENDENT SET.
Covering problems: SET-COVER, VERTEX-COVER.
Constraint satisfaction problems: SAT, 3-SAT.
Sequencing problems: HAMILTONIAN-CYCLE, TSP.
Partitioning problems: 3D-MATCHING, 3-COLOR.
Numerical problems: SUBSET-SUM, KNAPSACK

Directed Hamiltonian Cycle

DIR-HAM-CYCLE: given a digraph 6 = (V, E), does there exists a simple
directed cycle I that contains every node in V?

Claim. DIR-HAM-CYCLE <, HAM-CYCLE.

Pf. Given a directed graph G = (V, E), construct an undirected graph G'
with 3n nodes.

Hamiltonian Cycle

HAM-CYCLE: given an undirected graph G = (V, E), does there exist a
simple cycle I' that contains every node in V.

YES: vertices and faces of a dodecahedron.

Directed Hamiltonian Cycle

Claim. 6 has a Hamiltonian cycle iff 6' does.

Pf. =
. Suppose G has a directed Hamiltonian cycle I'.
. Then G' has an undirected Hamiltonian cycle (same order).

Pf. =

« Suppose G' has an undirected Hamiltonian cycle I''.

. I'' must visit nodes in ' using one of following two orders:
..,B,6,R B GRB,GR,B,.
...B,R,G,BR,GBR,G,B,.

. Blue nodes inT"" make up directed Hamiltonian cycle I' in G, or

reverse of one.




3-SAT Reduces to Directed Hamiltonian Cycle
Claim. 3-SAT < DIR-HAM-CYCLE.

Pf. Given an instance ® of 3-SAT, we construct an instance of DIR-
HAM-CYCLE that has a Hamiltonian cycle iff @ is satisfiable.

Construction. First, create graph that has 2" Hamiltonian cycles which
correspond in a natural way to 2" possible truth assignments.
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3-SAT Reduces to Directed Hamiltonian Cycle

Construction. Given 3-SAT instance ® with n variables x; and k clauses.
. For each clause: add a node and 6 edges.

3-SAT Reduces to Directed Hamiltonian Cycle

Construction. Given 3-SAT instance ® with n variables x; and k clauses.
. Construct 6 to have 2" Hamiltonian cycles.
- Intuition: traverse path i from left o right < set variable x;= 1.

~®
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3-SAT Reduces to Directed Hamiltonian Cycle

Claim. @ is satisfiable iff G has a Hamiltonian cycle.

Pf. =

Suppose 3-SAT instance has satisfying assignment x*.

. Then, define Hamiltonian cycle in G as follows:

- if x*;= 1, traverse row i from left to right

- if x*,= 0, traverse row i from right to left

- for each clause Cj, there will be af least one row i in
which we are going in "correct" direction fo splice
node C;into tour

3-SAT Reduces to Directed Hamiltonian Cycle

Construction. Given 3-SAT instance ® with n variables x; and k clauses.
. Construct 6 to have 2" Hamiltonian cycles.

clause node
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3-SAT Reduces to Directed Hamiltonian Cycle

Claim. @ is satisfiable iff G has a Hamiltonian cycle.

Pf. «

Suppose G has a Hamiltonian cycle T
If I enters clause node C;, it must depart on mate edge.
- thus, nodes immediately before and after Cjare
connected by an edge e in 6
- removing C; from cycle, and replacing it with edge e
yields Hamiltonian cycle on 6 - {C; }
Continuing in this way, we are left with Hamiltonian cycle I'*
in
6-{C.Co, ..., C)
Set x*, = 1iff I'' traverses row i left fo right.
Since T visits each clause node CJ , at least one of the paths
is traversed in "correct" direction, and each clause is
satisfied. =




Longest Path

SHORTEST-PATH. Given a digraph G = (V, E), does there exists a simple
path of length at most k edges?

LONGEST-PATH. Given a digraph 6 = (V, E), does there exists a simple
path of length af least k edges?

Claim. 3-SAT <, LONGEST-PATH.

Pf 1. Redo proof for DIR-HAM-CYCLE, ignoring back-edge from t to s.
Pf 2. Show HAM-CYCLE < , LONGEST-PATH.
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Traveling Salesperson Problem

TSP. Given a set of n cities and a pairwise distance function d(u, v), is
there a four of length < D?

11,849 holes to drill in a programmed logic array
Reference: htlp:/jww.tsp.gatech.edu

Traveling Salesperson Problem

TSP. Given a set of n cities and a pairwise distance function d(u, v), is
there a tour of length < D?

Al 13,509 cities in US with a population of at least 500
Reference: http:/fwww.tsp.gatech.edu

Traveling Salesperson Problem

TSP. Given a set of n cities and a pairwise distance function d(u, v), is
there a tour of length < D?

Optimal TSP tour
Reference: hitp:/jww.tsp.gatech.edu

Traveling Salesperson Problem

TSP. Given a set of n cities and a pairwise distance function d(u, v), is
there a tour of length < D?

Optimal TSP tour
Reference: http:/fwww.tsp.gatech.edu

Traveling Salesperson Problem

TSP. Given a set of n cities and a pairwise distance function d(u, v), is
there a tour of length < D?

HAM-CYCLE: given a graph G = (V, E), does there exists a simple cycle
that contains every node in V?

Claim. HAM-CYCLE <, TSP.
Pf.
. Given instance G = (V, E) of HAM-CYCLE, create n cities with

distance function i@ v) € E

daw, vy = {z if(uv) ¢ E

. TSP instance has tour of length < n iff G is Hamiltonian. =

Remark. TSP instance in reduction satisfies A-inequality.




3/22/2018

Mt Hosgy:
EMBEDDING WP-(DHPLETE PROBLEMS 1N RESTAURRNT ORDERS
TuRay

{gorcanes x.

<« AppnzERs —
HED FRUT 215
FRENG FRigS 275

WED LIKE EXATLY $15: 05
WORTH OF APFETIZERS, FEASE.
|

o EXCIYT U

HERE, THESE FRPORS 00 DE Wi, |
PROBLEM [MUGHT HELP YOU OUT !

\ LISTEN, T HAVE 5ix (TR

S SaAD 335 \ THBLES T GET T0—
= PG FRAT A5 PISSERE, OF (URSE. WRRT |

HOT WinGs 255 TG O Tt SAESe /

MozzepEun STICKS 420 . /

SAMPUR PLTE 580
—— GANDWICHES ~—

! a% % I%
b b Al
Randall Munro

http://xked. con/c287 . html

Register Allocation

Register allocation. Assign program variables to machine register
so that no more than k registers are used and no two program
variables that are needed at the same time are assigned to the
same register.

Interference graph. Nodes are program variables names, edge
between u and v if there exists an operation where both u and

v are "live" at the same time.

Observation. [Chaitin 1982] Can solve register allocation problem
iff interference graph is k-colorable.

Fact. 3-COLOR < p k-REGISTER-ALLOCATION for any constant k > 3.

8.7 Graph Coloring

Basic genres.

Packing problems: SET-PACKING, INDEPENDENT SET.
Covering problems: SET-COVER, VERTEX-COVER.
Constraint satisfaction problems: SAT, 3-SAT.
Sequencing problems: HAMILTONIAN-CYCLE, TSP.
Partitioning problems: 3D-MATCHING, 3-COLOR.
Numerical problems: SUBSET-SUM, KNAPSACK

3-Colorability

Claim. 3-SAT < 3-COLOR.

Pf. Given 3-SAT instance ®, we construct an instance of 3-COLOR that
is 3-colorable iff ® is satisfiable.

Construction.
i. For each literal, create a node.
ii. Create 3 new nodes T, F, B; connect them in a friangle, and connect
each literal to B.
iii. Connect each literal to its negation.
iv. For each clause, add gadget of 6 nodes and 13 edges.
t

o be described next

3-Colorability

3-COLOR: Given an undirected graph G does there exists a way to
color the nodes red, green, and blue so that no adjacent nodes have the
same color?

yes instance

3-Colorability

Claim. 6raph is 3-colorable iff ® is satisfiable.

Pf. = Suppose graph is 3-colorable.
« Consider assignment that sets all T literals to true.
. (ii) ensures each literal is T or F.
- (iii) ensures a literal and its negation are opposites.

true false
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3-Colorability
Claim. Graph is 3-colorable iff ® is satisfiable.

Pf. = Suppose graph is 3-colorable.
« Consider assignment that sets all T literals to true.
. (ii) ensures each literal is Tor F.
. (iii) ensures a literal and its negation are opposites.
. (iv) ensures at least one literal in each clause is T.

Ci=x VX Vx

Extra Slides

3-Colorability

Claim. Graph is 3-colorable iff ® is satisfiable.

Pf. = Suppose graph is 3-colorable.
- Consider assignment that sets all T literals to true.
. (ii) ensures each literal is Tor F.
. (iii) ensures a literal and its negation are opposites.
(iv) ensures at least one literal in each clause is T.

Ci=x VX VX

not 3-colorable if all are red

contradiction

8.10 A Partial Taxonomy of Hard Problems

3-Colorability

Claim. Graph is 3-colorable iff ® is satisfiable.

Pf. < Suppose 3-SAT formula @ is satisfiable.
. Color all true literals T.
. Color node below green node F, and node below that B.
- Color remaining middle row nodes B.
- Color remaining bottom nodes T or F as forced. =

Ci=x VX VX

aliteral set to frue in 3-SAT assignment

false

Polynomial-Time Reductions

constraint satisfaction

ey
e
W
INDEPENDENT SET DIR-HAM-CYCLE GRAPH 3-COLOR
VERTEX COVER HAM-CYCLE PLANAR 3-COLOR
SET COVER TSP

packing and covering sequencing partitioning

Dick Karp
(1972)
1985

SUBSET-SUM g

%wa rd

.
SCHEDULING

numerical
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Subset Sum (proof from book)

Construction. Let X UY U Z be a instance of 3D-MATCHING with
triplet set T.Let n=|X| = |Y| = |Z| and m = | T].
. Let X={x;, X2, X3 Xa}, Y={Y1.Y2.Y3.¥a}, Z={21, 2, 23,24}
« For each friplet t= (x; y;, z,) € T, create an integer w; with 3n digits
that has a 1 in positions i, n+j, and 2n+k. \
use base m+1
Claim. 3D-matching iff some subset sums to W = 111,..., 111.

Planar 3-Colorability

PLANAR-3-COLOR. Given a planar map, can it be colored using 3 colors
so that no adjacent regions have the same color?

YES instance.

[Tt L L Ll A Y ——
X ¥ 2z 1.0 0 0 0 1 0 0 0 0 1 o [H005004;600,010]
% Y& % 0 1.0 0 0 0 0 1 0 1 o o [[20;000,00,100]
X ¥ 2z 1.0 0 0 1 00 0 1 0 0 0 100,010,001,000
X% ¥ z 0 1.0 0 0 1 0 0 0 0 0 1 10,001,000,001
X% ¥s 2z 0 0 0 1.0 0 1 0 o o o 1 [NNNE00HI0665608]
% v % 0 010 100 00 1 0 0 1,010,000,100
X ¥ 2z 0 0 1.0 100 0 0 0 1 0 1,010,000,010
% vy z 0 0 1.0 1 0 0 0 1 0 o o EN6I656617606]
X% Y+ 2 0 0 0 1.0 00 10 0 0 1 100,010,001
o
Partition

SUBSET-SUM. Given natural numbers wy, ..., w, and an integer W, is
there a subset that adds up to exactly W?

PARTITION. Given natural numbers v;, ..., v, , can they be partitioned
into two subsets that add up to the same value?
Ny v
Claim. SUBSET-SUM < p PARTITION.
Pf. Let W, wy, .., w, be an instance of SUBSET-SUM.
. Create instance of PARTITION with m = n+2 elements.
SVITWL V2 E Wy, e, Ve T Wy Ve 25w - W, v = Eiwi v W

. There exists a subset that sums to W iff there exists a partition
since two new elements cannot be in the same partition. =

Planar 3-Colorability

PLANAR-3-COLOR. Given a planar map, can it be colored using 3 colors
so that no adjacent regions have the same color?

NO instance.

4 Color Theorem

Planarity

Def. A graph is planar if it can be embedded in the plane in such a way
that no two edges cross.
Applications: VLSI circuit design, computer graphics.

Kj3: non-planar

planar Ks: non-planar

Kuratowski's Theorem. An undirected graph G is non-planar iff it
contains a subgraph homeomorphic to Ks or Kj 3.

homeomorphic to Ky




Planarity Testing

Planarity testing. [Hopcroft-Tarjan 1974] O(n).
A\
simple planar graph can have at mo

Remark. Many intractable graph problems can be solved in poly-time if
the graph is planar; many tractable graph problems can be solved
faster if the graph is planar.
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Planar Graph 3-Colorability

Claim. W is a planar graph such that:
- Inany 3-coloring of W, opposite corners have the same color.
. Any assignment of colors to the corners in which opposite corners
have the same color extends to a 3-coloring of W.

Pf. Only 3-colorings of W are shown below (or by permuting colors).

Planar Graph 3-Colorability

Q. Is this planar graph 3-colorable?

Planar Graph 3-Colorability

Claim. 3-COLOR < p PLANAR-GRAPH-3-COLOR.

Pf. Given instance of 3-COLOR, draw graph in plane, letting edges cross.
- Replace each edge crossing with planar gadget W.
« Inany 3-coloring of W,a#a" andb=b".
. Ifa=a' and b#b' then can extend to a 3-coloring of W.

a crossing

Planar 3-Colorability and Graph 3-Colorability

Claim. PLANAR-3-COLOR < p PLANAR-GRAPH-3-COLOR.

Pf sketch. Create a vertex for each region, and an edge between
regions that share a nontrivial border.

Planar Graph 3-Colorability

Claim. 3-COLOR < p PLANAR-GRAPH-3-COLOR.

Pf. Given instance of 3-COLOR, draw graph in plane, letting edges cross.
- Replace each edge crossing with planar gadget W.
« Inany 3-coloring of W,a#a"andb=b".
. Ifa=a' and b= b' then can extend to a 3-coloring of W.

multiple crossings gadget W

10



Planar k-Colorability
PLANAR-2-COLOR. Solvable in linear time.
PLANAR-3-COLOR. NP-complete.

PLANAR-4-COLOR. Solvable in O(1) time.

Theorem. [Appel-Haken, 1976] Every planar map is 4-colorable.

- Resolved century-old open problem.

- Used 50 days of computer time to deal with many special cases.
- First major theorem to be proved using computer.

False intuition. If PLANAR-3-COLOR is hard, then so is PLANAR-4-COLOR
and PLANAR-5-COLOR.

Polynomial-Time Detour

Graph minor theorem. [Robertson-Seymour 1980s]

Corollary. There exist an O(n®) algorithm to determine if a graph can
be embedded in the forus in such a way that no two edges cross.

Pf of theorem. Tour de force.

Polynomial-Time Detour

Graph minor theorem. [Robertson-Seymour 1980s]

Corollary. There exist an O(n®) algorithm to determine if a graph can
be embedded in the forus in such a way that no two edges cross.

Mind boggling fact 1. The proof is highly non-constructive!
Mind boggling fact 2. The constant of proportionality is enormous!

Unfortunately, for any instance G = (V, E) that one could fit
into the known universe, one would easily prefer n’° to even
constant time, if that constant had to be one of Robertson
and Seymour's. - David Johnson

Theorem. There exists an explicit O(n) algorithm.
Practice. LEDA implementation guarantees O(n?).
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