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Recap

.Linear Programming
Very Powerful Technique (Subject of Entire Courses)
: WUsing Linear Programming as a Tool
+ Solving Network Flow using Linear Programming
. Finding Minimax Optimal Strategy in 2-Player Zero Sum Game
- Operations Research (Brewery Example)

. . \
.Solving Linear Programs

Simplex Intuition:
- Optimal point is an "extreme point”
- No "local optimum”
Simplex Runs in Exponential Time in Worst Case
- But other algorithms (e.g., Ellipsoid) run in polynomial time

T,




Chapter 8

NP and Computational
Intractability
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Algorithm Design Patterns and Anti-Patterns

Algorithm design patterns.
. Greedy.
. _Divide-and-conquer.
. Dynamic programming.

+ Dudlity.

. Reductions.

. Local search.
-_
. Randomization.

Algorithm design anti-patterns.

. NP-completeness.

. PSPACE-completeness. -
. Undecidability.

HOL “&(07

Ex.
O(nh log n) interval scheduling.

O(n IOQ n Mg}/g

O(n?) edit dls’rance

wffnw?é

| O(n3)\bipartite matching.
3———\1

k) algorithm unlikely.

O(nk) certification
algorithm unlikely.

No algorithm possible.



8.1 Polynomial-Time Reductions




Classify Problems According to Computational Requirements

Q. Which problems will we be able to solve in practice?

. \

A working definition. [von Neumann 1953, Godel 1956 Cobham 1964, Edmonds 1965, Rabin

1966 Cz’ OO
Those with polynomial-time algorithms.

Yes Probably no

Shortest path Longest path p‘HQ rﬂ(
Matching / - 3D-matching
Min cut \_/ Max cut
/ M N P-Ha d
/ﬂ(\fﬂ Planar 4-color

_Planar 3- color'
Bipartite vertex cover Ver"rex cover

Primality testing




Classify Problems

Desiderata. Classify problems according to those that can be
solved in polynomial-time and those that cannot.

—

_Provably requires exponential-time. \/
. Given a Turing machine, does it halt in at most k steps?
- Given a board position in an n-by-n generalization of chess,
Ean black guarantee a win? &ﬁPA(EhCo/M/@Ze

Frustrating news. Huge number of fundamental problems have
defied classification for decades. (p::

)
This chapter. Show that these fundamental problems are
"computationally equivalent" and appear to be différent
manifestations of one really hard problem.




Polynomial-Time Re

XEpY  VSp2
Desiderata’. Suppose we could solve X in pglynomial- ‘rlme What )\

else could we solve in polynomial time?

don t confuse with re

_Reduction. Problem X polynomlal r'educes to problem Y if arbitrary
instances of problem X can be solved using:
e
. Polynomial humber of standard computational steps, plus
—_—
. Polynomial number of calls to oracle that solves problem Y.

computational model supplemented by special piece
of hardware ’rha’r solves instances of Y in a single step

choty X

Notation. X <, Y.

Remarks.
- We pay for time to write down ms‘rances sent lrpo D

instances of Y must be of polynomial size
. Note: Cook reducibility.

in contrast to Karp reductiong



Polynomial-Time Reduction

Purpose. Classify problems according to relative difficulty.

Design algorithms. If X <, Y and Y can be solved in polynomial-time,
then X can also be solved in polynomial time.

Establish intractability. If X <, Y and X cannot be solved in
polynomial-time, then Y cannot be solved in polynomial time.

Establish equivalence. If X <, Y and Y <, X, we use notation X=,V.
\ — -

up to cost of reduction



Reduction By Simple Equivalence

Basic reduction strategies.
= Reduction by simple equivalence.
= Reduction from special case to general case.
= Reduction by encoding with gadgets.



Independent Set

INDEPENDENT SET: Given a graph 6 = (V, E) and an integer K, is there a
subset of vertices S c V such that |S| > k, and for each edge at most

. . . . - \
one of its endpoints is in S?

Ex. Is there anindependent set of size > 6? Yes.
Ex. Is there anindependent set of size >7? No.

—0
O—@

() independent set




Vertex Cover

VERTEX COVER: Given a graph G = (V, E) and an integer k, is there a
subset of vertices S c V such that |S| <k, and for each edge, at least
one of its endpoints is in S? S

Ex. Is there a vertex cover of size <4? VYes.
Ex. Is there avertex cover of size <3? No.

O —
O /\
/\

C O "0

‘ vertex cover
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Vertex Cover and Independent Set

Claim. VERTEX-COVER =, INDEPENDENT-SET.
Pf. We show S is an independent set iff V — S is a vertex cover.

Ce— ]

]
1

() independent set

‘ vertex cover
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Vertex Cover and Independent Set

Claim. VERTEX-COVER =, INDEPENDENT-SET.

Pf. We show S is an independent set iff V- S is a vertex
—

cover.

- Let S be any independent set.
. Consider an arbitrary edge (u, v).
- Sindependent >u¢ Sorve¢ S => ueV-SorveV-5.

. Thus, V- S covers (u, v). ;—:7 \/ § iﬁ \/C

. Let V- S be any vertex cover.

. Consider two nodes(u_e\Sand ves.

. Observe that (u, v) ¢ E since V - S is a vertex cover.

- Thus, no two nodes in S are joined by anedge = S
independent seft. =




Reduction from Special Case to General Case

Basic reduction strategies.
= Reduction by simple equivalence.
= Reduction from special case to general case.
= Reduction by encoding with gadgets.
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Set Cover

SET COVER: Given a set U of elements, a collection S, S,, ..., Sy of
subsets of U, and an integer k, does there exist a collection of < k of
these sets whose union is equal o U?

—

Sample application.
. m available pieces of software.
. Set U of n capabilities that we would like our system to have.
. The ith piece of software provides the set S; — U of capabilities.
. Goal: achieve all n capabilities using fewest pieces of software.

P e ——

Ex:

U=0LR3% 5,80

k=2

1:{317} 54: '
52={3,4,5,6}‘ 55:{5}

S;={1} Se= {1.2,6,7}




Vertex Cover Reduces to Set Cover

Claim. VERTEX-COVER < p SET-COVER,

Pf. Given a VERTEX-COVER instance G = (V, E), k, we construct a set
cover instance whose size equals the size of the vertex cover instance.

Construction.
. Create S_ET-CO\ER instance:
-k=k, ﬁsvz{e e E: eincident to v}

3 .\ 3 .
. Set-cover of size < k iff vertex cover of size <k. =
=R Rl

VERTEX COVER

SET COVER

U={12,3,4,56,7}

—

={2,4}

.={3,7
és,ﬁ\___ = (5)
5, = (1) 5:{1.2,6.7)

17
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Polynomial-Time Reduction

Basic strategies.
. Reduction by simple equivalence.
- Reduction fromspecial case to general case.

\/—\

. Reduction by encoding with gadgets.




8.2 Reductions via "Gadgets"

Basic reduction strategies.
= Reduction by simple equivalence.
= Reduction from special case to general case.
= Reduction via "gadgets.”



Satisfiability

Literal: A Boolean variable or its negation. X OF X
— _ o ! _ !

Clause: A disjunction of literals. =XV X VX

hl\.%‘——\t

Coniuncti | - tional
onjunctive normal form: A propositiona ® = CACACIAC,
formula ® that is the conjunction of clauses. — — -+ =

SAT: Given CNF formula @, does it have a satisfying truth
assignment?

3-SAT: SAT where each clause contains (at most) 3 literals.

~——— /
\/ each corr\eys to a different variabV
Ex: (x1 vV X, v x3l/\ (x1 V X, V x3) (% v X)) A £X1 V X, V x3)
\——\
Yes: x, = true, x, = true x; = false.

—_——T——— — —————

20



3 Satisfiability Reduces to Independent Set

Claim. 3-SAT <, INDEPENDENT-SET.

Pf. Given an instance @ of 3-SAT, we construct an instance (G, k) of
INDEPENDENT-SET that has an independent set of size k iff @ is
satisfiable.

Construction.
. G contains 3 vertices for each clause, one for each literal.

. Connect 3 literals in a clause in a triangle.
. Connect literal to each of its negations.




22

3 Satisfiability Reduces to Independent Set

Claim. G contains independent set of size k = |®| iff @ is
satisfiable.

Pf. = Let S be independent set of size k.
. S must contain exactly one vertex in each triangle.
. Set these literals to true. «— and any other variables in a consistent way
. Truth assignment is consistent and all clauses are satisfied.

Pf < Given satisfying assignment, select one true literal from
each triangle. This is an independent set of size k. =
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Review

Basic reduction strategies.
. Simple equivalence: INDEPENDENT-SET =, VERTEX-COVER.
. Special case to general case: VERTEX-COVER <, SET-COVER.
. Encoding with gadgets: 3-SAT <, INDEPENDENT-SET.

Transitivity. If X<, Y and Y <, Z, then X <, Z.
Pf idea. Compose the two algorithms.

Ex: 3-SAT <, INDEPENDENT-SET < ;, VERTEX-COVER <, SET-
COVER.
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Self-Reducibility

Decision problem. Does there exist a vertex cover of size
< k?

Search problem. Find vertex cover of minimum cardinality.

Self-reducibility. Search problem <, decision version.
. Applies to all (NP-complete) problems in this chapter.
. Justifies our focus on decision problems.

Ex: to find min cardinality vertex cover.
. (Binary) search for cardinality k* of min vertex cover.
. Find a vertex v such that 6 —{ v} has a vertex cover of
size < k* - 1.
- any vertex in any min vertex cover will have this
property
: del d all incident ed
. Include v in the vertex cover. elete v and ol incident ecges
. . . A
. Recursively find a min vertex cover in G — {v}.



8.3 Definition of NP




Decision Problems

Decision problem.
. X is a set of strings.
. Instance: string s.
. Algorithm A solves problem X: A(s) = yes iff s € X.

Polynomial time. Algorithm A runs in poly-time if for every string
s, A(s) terminates in at most p(|s|) "steps", where p(-) is some

olynomial.
poly length of s

PRIMES: X={2,3,5,7,11,13,17, 23, 29, 31, 37, ...}
Algorithm. [Agrawal-Kayal-Saxena, 2002] p(|s]|) = |s|®.

26



Definition of P

P. Decision problems for which there is a poly-time algorithm.

27



28

NP

Certification algorithm intuition.
. Certifier views things from "managerial" viewpoint.
. Certifier doesn't determine whether s € X onits own;
rather, it checks a proposed proof t that s € X.

Def. Algorithm C(s, 1) is a certifier for problem X if for every
string s, s € X iff there exists a string t such that C(s, t) = yes.

"certificate" or "witness"

NP. Decision problems for which there exists a poly-time

certifier. T
C(s, t) is a poly-time algorithm and

|| < p(|s|) for some polynomial p(-).

Remark. NP stands for nondeterministic polynomial-time.
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Certifiers and Certificates: Composite

COMPOSITES. Given an integer s, is s composite?

Certificate. A nontrivial factor t of s. Note that such a certificate
exists iff s is composite. Moreover |t| < |s|.

Cerfifier'. boolean C(S, t) {

iIT (t<1ort=>=>>s)
return false

else 1T (s 1s a multiple of t)
return true

else
return false

¥

Instance. s = 437,669.
Certificate. Tt = 541 or 809. «—— 437,669 = 541 x 809

Conclusion. COMPOSITES is in NP.
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Certifiers and Certificates: 3-Satisfiability

SAT. Given a CNF formula @, is there a satisfying assignment?

Certificate. An assignment of truth values to the n boolean variables.

Certifier. Check that each clause in ® has at least one true literal.

Ex.
(X_IVXZVX3)/\(X1VX_ZVX3)A(XIVX2VX4)A(;1VX_3VE)

instance s

certificate t

Conclusion. SAT is in NP.



Certifiers and Certificates: Hamiltonian Cycle

HAM-CYCLE. Given an undirected graph G = (V, E), does there exist a
simple cycle C that visits every node?

Certificate. A permutation of the n nodes.

Certifier. Check that the permutation contains each node in V exactly
once, and that there is an edge between each pair of adjacent nodes in
the permutation.

Conclusion. HAM-CYCLE is in NP.

instance s certificate t

31



32

P, NP, EXP

P. Decision problems for which there is a poly-time algorithm.
EXP. Decision problems for which there is an exponential-time algorithm.
NP. Decision problems for which there is a poly-time certifier.

Claim. P < NP.

Pf. Consider any problem X in P.
. By definition, there exists a poly-time algorithm A(s) that solves X.
. Certificate: t = ¢, certifier C(s, 1) = A(s).

Claim. NP < EXP.

Pf. Consider any problem X in NP.
. By definition, there exists a poly-time certifier C(s, t) for X.
. To solve input s, run C(s, t) on all strings t with [+]| < p(|s]).
. Return yes, if C(s, t) returns yes for any of these.



The Main Question: P Versus NP

Does P = NP? [Cook 1971, Edmonds, Levin, Yablonski, Godel]
. Is the decision problem as easy as the certification problem?
. Clay $1 million prize.

If P NP If P= NP

would break RSA cryptography

(and potentially collawomy)

If yes: Efficient algorithms for 3-COLOR, TSP, FACTOR, SAT, ...
If no: No efficient algorithms possible for 3-COLOR, TSP, SAT, ...

Consensus opinion on P = NP? Probably no.

33



The Simpson's: P = NP?

Copyright © 1990, Matt Groening




P = NP?

o
S
S
|
-
-+
=
L

Copyright ® 2000, Twentieth Century Fox
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Looking for a Job?

Some writers for the Simpsons and Futurama.

. J. Steward Burns. M.S. in mathematics, Berkeley, 1993.

. David X. Cohen. M.S. in computer science, Berkeley, 1992.

. Al Jean. B.S. in mathematics, Harvard, 1981.

. Ken Keeler. Ph.D. in applied mathematics, Harvard, 1990.

. Jeff Westbrook. Ph.D. in computer science, Princeton, 1989.



