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€S 580: Algorithm Design and Analysis

Jeremiah Blocki
Purdue University
Spring 2018

Travel: I will be attending a conference next week.
Tuesday: Recorded Lecture + return midterms (hopefully)

Thursday: No class (M arch 2)

m Must be completed within 2 weeks (Mae H)
(syllabus). Please e-mail us before then.

Midterm Solutions: Will post on blackboard before Tuesday.

Ford-Fulkerson Algorithm
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Proof of Max-Flow Min-Cut Theorem

(i) = (i)
- Let f be a flow with no augmenting paths.
- Let A be set of vertices reachable from s in residual graph.
. By definitionof A, s € A.

. By definitionof f, 1 ¢ A.
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Max-Flow Min-Cut Theorem

Augmenting path theorem. Flow f is a max flow iff there are no i
augmenting paths.

L

Max-flow min-cut theorem. [Elias-Feinstein-Shannon 1956, Ford-Fulkerson
1956] The value of the max flow is equal to the value of the min
cut.

Pf. We prove both simultaneously by showing TFAE:
(i) There exists a cut (A, B) such that v(f) = cap(A, B).
(ii)  Flow f is a max flow.
(iii)  There is no augmentin ive to f.

(i) = (ii) This was the corollary to weak duality lemma. \/
oz

(i) = (iii) We show contrapositive. n OT,L (L “)77730{((9
- Let f be a flow. If there exists an augmenting path, then we
can improve f by sending flow along path.

Running Time

Assumption. All capacities are integers between 1 and C.

Invariant. Every flow value f(e) and every residual capacity c¢
(e) remains an integer throughout the algorithm. (e

Theorem. The algorithm ferminates in at most v(f*) < nC
iterations.
Pf. Each augmentation increase value by at least 1. =
™ # ed ?z

Corollary. If C =1, Ford-Fulkerson runs in O(mn) time. cachh

- n- \%“”G{fons Z?fw) time
Integrality theorem. If all capacities are integers, then there
exists a max flow f for which every flow value f(e) is an

integer.
Pf. Since algorithm terminates, theorem follows from
invariant. =
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7.3 Choosing Good Augmenting Paths

Choosing Good Augmenting Paths

Use care when selecting augmenting paths.
. Some choices lead to exponential algorithms.

« Clever choices lead to polynomial algorithms.
. If capacities are irrational, algorithm not guaranteed

to terminate!

Goal: choose augmenting paths so that:
« Can find augmenting paths efficiently.
. Few iterations.
—_—

Choose augmenting paths with: [Edmonds-Karp 1972,
Dinitz 1970]

. Fewest number of edges.
el b g

Capacity Scaling
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Scaling-Max-Flow(G, s, t, c) { o
foreach e e E f(e) « O
A < smallest power of 2 greater than or equal to

Gy « residual 9535 {
wite 2% ¢ O (19
~ G{(A) < A-residual graph
while (there exists augmenting path P_in Gg(A)) {
f « augment(f, c, P) -
update Gg¢(A)

T2

return f

Ford-Fulkerson: Exponential Number of Augmentations

Q. Is generic Ford-Fulkerson algorithm polynomial in input size?
-

m,n,and log C

A. No. If max capacity is C, then algorithm can take C iterations.

1K R 1
¢ c
1 ¥X0
¢ c
1R X1

Capacity Scaling

Intuition. Choosing path with highest bottleneck capacity increases
flow by max possible amount.
. Don't worry about finding exact highest bottleneck path.
+ Maintain scaling parameter A.
« Let 64 () be the subgraph of the residual graph consisting of only
arcs with capacity at least A.

Capacity Scaling: Correctness

Assumption. All edge capacities are integers between 1 and C.
e e

Integrality invariant. All flow and residual capacity values are
integral.

Correctness. If the algorithm terminates, then f is a max flow.
fis a max flow..
PF.

. By integrality invariant, when A= 1 = G¢(A) = 6.
A =4
- Upon terminatjoh of A = 1 phase, there are no augmenting
a2
paths. =
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Capacity Scaling: Running Time

Lemma 1. The outer while loop repeats 1 +[log, C1 fimes.
Pf. Initially C <A< 2C, A decreases by a factor of 2 each iteration.
Lemma 2. Let f be the flow at the end of a A-scaling phase. Then the
value of the maximum flow is at most v(f) + m A.

LI M2 o proof onnext slide

Lemma 3. There are at most 2m augmentations per scaling phase.
- Let f be the flow at the end of the previous scaling phase.
L2 s v < m (28).

. Each augmentation in a A-phase increases v(f) by at least A. =

Theorem. The scaling max-flow algorithm finds a max flow in O(m log
_€) augmentations. It can be implemented fo run in O(m? log C) time. =

/
oy n,
inpmé Sia.

Dinic's Max Flow Min-Cut Algorithm

Use Breadth First Search to Compute Level Graph
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Capacity Scaling: Running Time

Lemma 2. Let f be the flow at the end of a A-scaling phase. Then value
of the maximum flow is at most v(f) + m A. -
Pf. (almost identical to proof of max-Flow min-cut theorem)
« We show that at the end of a A-phase, there exists a cut (A, B)
such that cap(A, B) < v(f)+maA.
Choose A to be the set of nodes reachable from s in G¢(A).
. By definitionof A,s € A. —
By definition of f,t ¢ A.

v(f) = X fe)- X f(e)

eoutofA einto A

original network
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Dinic's Max Flow Min-Cut Algorithm

Use Breadth First Search to Compute Level Graph

capacity

Discard cross—l‘ay‘er edges
Find Blocking Flow

Dinic's Max Flow Min-Cut Algorithm

Use Breadth First Search to Compute Level Graph
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Dinic's Max Flow Min-Cut Algorithm

Create Residual Graph G¢

Total Flow: 14
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Dinic's Max Flow Min-Cut Algorithm

Dinic's Max Flow Min-Cut Algorithm

Dinic's Max Flow Min-Cut Algorithm
Ram BFS ox &; fo creste ol gragh &;

R BFS on Gy to creade bevel groph Gy
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Remark: Number of levels increased. This is not a coincidence!
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Dinic's Max Flow Min-Cut Algorithm

(

Breadth First Search: Yields minimum s-t cutl> We are donel!
Gpa @ . ,
G y capacity
' 8 1
1—Q® 1) 2 6 10
Total Extra Flow: 5
Blaciing Flowr for kevel groph Gy, 10 &:)
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Dinic's Algorithm: Correctness and Running Time
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Dinic's Algorithm: Correctness and Running Time
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Dinic's Algorithm: Correctness and Running Time
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7.7 Extensions to Max Flow




Circulation with Demands

Circulation with demands.
. Directed graph 6 = (V, E).
. Edge capacities c(e), e € E.
- Node supply and demands d(v), v € V.

demand if d(v) > O: supply if d(v) « O; fransshipment if d(v) = 0

Def. A circulation is a function that satisfies:

. Foreache < E: 0 < f(e) < c(e) (capacity)
. ForeachveV: >fe)- Xf(e) = d(v) (conservation)
eintov eoutof v

Circulation problem: given (V, E, ¢, d), does there exist a circulation?
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Circulation with Demands

Max flow formulation.

-6 — supply

-8
G:
PN
10 6 4
4%11
0

!

demand

Circulation with Demands

Integrality theorem. If all capacities and demands are
integers, and there exists a circulation, then there exists one
that is integer-valued.

Pf. Follows from max flow formulation and integrality
theorem for max flow.

Characterization. Given (V, E, ¢, d), there does not exists a
circulation iff there exists a node partition (A, B) such that
Zpdy > cap(A,B)

demand by nodes in B exceeds supply
of nodes in B plus max capacity of

. . . edges going from A to B
Pf idea. Look at mincutinG'. g gema e

Circulation with Demands

Necessary condition: sum of supplies = sum of demands.
Yd(v)= ¥ -d(v) = D

v:idw)>0 vidw< 0

Pf. Sum conservation constraints for every demand node v.

8 -6 —— supply

1
7 7 7
10 66 42 ®  demand
7 S \O\
3 — 4 — 1

10 0 4N

1 capacity

flow
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Circulation with Demands

Max flow formulation.
« Add new source s and sink t.
- For each v with d(v) < O, add edge (s, v) with capacity -d(v).
. For each v with d(v) > 0, add edge (v, t) with capacity d(v).
« Claim: G has circulation iff 6' has max flow of value D.

749\

saturates all edges
leaving s and entering t

6 supply
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10 6 4
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0
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Circulation with Demands and Lower Bounds

Feasible circulation.

. Directed graph 6 = (V, E).

- Edge capacities c(e) and lower bounds 7 (e), e € E.
« Node supply and demands d(v), v € V.

Def. A circulation is a function that satisfies:

. ForeachecE: r(e) < f(e) < c(e) (capacity)
. ForeachveV: Sfe) - Sfe = dwv) (conservation)
eintov eoutofv

Circulation problem with lower bounds. Given (V, E, 7, c, d), does
there exists a a circulation?
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Circulation with Demands and Lower Bounds Survey Design

Idea. Model lower bounds with demands.

one survey question per product

. Survey design.
» Send ((e) units of flow along edge e - Design survey asking n; consumers about n, products.
-+ Update demands of both endpoints. . Can only survey consumer i about product j if they own it.
capacity - Ask consumer i between c; and ¢;' questions.
fover bmf rpper pound | « Ask between pj and p;’ consumers about product j.
V— 2,91 —@) ®— 7 —®
dv) d(w) dw)+ 2 dw)- 2 Goal. Design a survey that meets these specs, if possible.
2] A
Bipartite perfect matching. Special case whenc;=¢;' =p;=p;' = 1.
Theorem. There exists a circulation in G iff there exists a
circulation in G'. If all demands, capacities, and lower bounds in 6
are integers, then there is a circulation in & that is integer-
valued.
Pf sketch. f(e)is a circulation in G iff f'(e) = f(e) - /(e) isa
circulation in6'.
Survey Design
7.8 SUf‘Vey Design Algorithm. Formulate as a circulation problem with lower bounds.

. Include an edge (i, j) if consumer j owns product i.
- Integer circulation < feasible survey design.

products
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