3/5/2018

€S 580: Algorithm Design and Analysis

Jeremiah Blocki
Purdue University
Spring 2018

Travel: I will be attending a conference next week.
Tuesday: Recorded Lecture + return midterms (hopefully)

Thursday: No class (M arch 2)

m Must be completed within 2 weeks (Mae H)
(syllabus). Please e-mail us before then.

Midterm Solutions: Will post on blackboard before Tuesday.

Ford-Fulkerson Algorithm

4 capaci
i
2 ety
10 2 8 6 10
émg,(gi gﬁi 10%

r

Proof of Max-Flow Min-Cut Theorem

(i) = (i)
- Let f be a flow with no augmenting paths.
- Let A be set of vertices reachable from s in residual graph.
. By definitionof A, s € A.

. By definitionof f, 1 ¢ A.

original namﬁyqu

Max Flow Recap

Mewe—Flaw Problom, Min Cot Freblan

- Definition of & =1 flow =) ol & 2-¥ ou¥ (AB)
+ Vabmof o flonf

- Copacityef @ s-tont (AR

Wank Prunlity Lusstna: For ony flaw £ esls-f cut- A 8w
Theorm #(F) < cup(AB) (e, capacihy of mhaum auf i upper
hu?tfﬂﬁ.l
A 5
- lgeritia Fuils]
L]
- Peptefly find sopmentiog pach i noddsal geaph
. Froof of Caracines
S Pl -t Eqpieeres:

2

Max-Flow Min-Cut Theorem

Augmenting path theorem. Flow f is a max flow iff there are no i
augmenting paths.

L

Max-flow min-cut theorem. [Elias-Feinstein-Shannon 1956, Ford-Fulkerson
1956] The value of the max flow is equal to the value of the min
cut.

Pf. We prove both simultaneously by showing TFAE:
(i) There exists a cut (A, B) such that v(f) = cap(A, B).
(ii) Flow f is a max flow.
(iii) There is no augmentin ive to f.

(i) = (ii) This was the corollary to weak duality lemma. \/
oz

(i) = (iii) We show contrapositive. n OT,L (L “)77730{((9
- Let f be a flow. If there exists an augmenting path, then we
can improve f by sending flow along path.

Running Time

Assumption. All capacities are integers between 1 and C.

Invariant. Every flow value f(e) and every residual capacity c¢
(e) remains an integer throughout the algorithm. (e

Theorem. The algorithm ferminates in at most v(f*) < nC
iterations.
Pf. Each augmentation increase value by at least 1. =
™ # ed ?z

Corollary. If C =1, Ford-Fulkerson runs in O(mn) time. cachh

- n- \%“”G{fons Z?fw) time
Integrality theorem. If all capacities are integers, then there
exists a max flow f for which every flow value f(e) is an

integer.
Pf. Since algorithm terminates, theorem follows from
invariant. =

Copyright 2000, Kevin Wayne

3/5/2018

7.3 Choosing Good Augmenting Paths

Choosing Good Augmenting Paths

Use care when selecting augmenting paths.
. Some choices lead to exponential algorithms.

« Clever choices lead to polynomial algorithms.
. If capacities are irrational, algorithm not guaranteed

to terminate!

Goal: choose augmenting paths so that:
« Can find augmenting paths efficiently.
. Few iterations.
—_—

Choose augmenting paths with: [Edmonds-Karp 1972,
Dinitz 1970]

. Fewest number of edges.
el b g

Capacity Scaling

LQQaL\JC!
i wheeN &
Scaling-Max-Flow(G, s, t, c) { o
foreach e e E f(e) « O
A < smallest power of 2 greater than or equal to

Gy « residual 9535 {
wite 2% ¢ O (19
~ G{(A) < A-residual graph
while (there exists augmenting path P_in Gg(A)) {
f « augment(f, c, P) -
update Gg¢(A)

T2

return f

Ford-Fulkerson: Exponential Number of Augmentations

Q. Is generic Ford-Fulkerson algorithm polynomial in input size?
-

m,n,and log C

A. No. If max capacity is C, then algorithm can take C iterations.

1K R 1
¢ c
1 ¥X0
¢ c
1R X1

Capacity Scaling

Intuition. Choosing path with highest bottleneck capacity increases
flow by max possible amount.
. Don't worry about finding exact highest bottleneck path.
+ Maintain scaling parameter A.
« Let 64 () be the subgraph of the residual graph consisting of only
arcs with capacity at least A.

Capacity Scaling: Correctness

Assumption. All edge capacities are integers between 1 and C.
e e

Integrality invariant. All flow and residual capacity values are
integral.

Correctness. If the algorithm terminates, then f is a max flow.
fis a max flow..
PF.

. By integrality invariant, when A= 1 = G¢(A) = 6.
A =4
- Upon terminatjoh of A = 1 phase, there are no augmenting
a2
paths. =

Copyright 2000, Kevin Wayne

3/5/2018

Capacity Scaling: Running Time

Lemma 1. The outer while loop repeats 1 +[log, C1 fimes.
Pf. Initially C <A< 2C, A decreases by a factor of 2 each iteration.
Lemma 2. Let f be the flow at the end of a A-scaling phase. Then the
value of the maximum flow is at most v(f) + m A.

LI M2 o proof onnext slide

Lemma 3. There are at most 2m augmentations per scaling phase.
- Let f be the flow at the end of the previous scaling phase.
L2 s v < m (28).

. Each augmentation in a A-phase increases v(f) by at least A. =

Theorem. The scaling max-flow algorithm finds a max flow in O(m log
_€) augmentations. It can be implemented fo run in O(m? log C) time. =

/
oy n,
inpmé Sia.

Dinic's Max Flow Min-Cut Algorithm

Use Breadth First Search to Compute Level Graph

capacity
G: %
7 Level 3
o=
Level 0
capacity

Discard cross-layer edges

Capacity Scaling: Running Time

Lemma 2. Let f be the flow at the end of a A-scaling phase. Then value
of the maximum flow is at most v(f) + m A. -
Pf. (almost identical to proof of max-Flow min-cut theorem)
« We show that at the end of a A-phase, there exists a cut (A, B)
such that cap(A, B) < v(f)+maA.
Choose A to be the set of nodes reachable from s in G¢(A).
. By definitionof A,s € A. —
By definition of f,t ¢ A.

v(f) = X fe)- X f(e)

eoutofA einto A

original network

Copyright 2000, Kevin Wayne

Dinic's Max Flow Min-Cut Algorithm

Use Breadth First Search to Compute Level Graph

capacity

Discard cross—l‘ay‘er edges
Find Blocking Flow

Dinic's Max Flow Min-Cut Algorithm

Use Breadth First Search to Compute Level Graph

capacity
.
10
Level 3
10
4 o0
o capacity
7
6 10 8 10
(4 10——@—— &7 10>D

Discard cross-layer edges

Dinic's Max Flow Min-Cut Algorithm

Create Residual Graph G¢

Total Flow: 14

3/5/2018

Dinic's Max Flow Min-Cut Algorithm

Dinic's Max Flow Min-Cut Algorithm

Dinic's Max Flow Min-Cut Algorithm
Ram BFS ox &; fo creste ol gragh &;

R BFS on Gy to creade bevel groph Gy
Level 3

6 4
10%}0\
Level 4/

Remark: Number of levels increased. This is not a coincidence!

New Residual Graph G¢
/ :
6y 10 - e‘\
) 2 1<, 10
N\
10 ‘g

Gs:

v
©

_ flow
5
Gre 55/®\ 7 56 :
1 \é} \@

Total Extra Flow: 5
9

Blacking Fiv far low! groph G,

Dinic's Max Flow Min-Cut Algorithm Dinic's Max Flow Min-Cut Algorithm
R BFS ox & o creste leel gragh £, R BF'S an Gy fo creabe beval greph Gy New Residual Graph G¢

: - 1 . 22 5 :

1.6 6

\ ?

‘ 10 G

v Level 0

Qzel 4

Dinic's Max Flow Min-Cut Algorithm

(

Breadth First Search: Yields minimum s-t cutl> We are donel!
Gpa @ . ,
G y capacity
' 8 1
1—Q® 1) 2 6 10
Total Extra Flow: 5
Blaciing Flowr for kevel groph Gy, 10 &:)

Copyright 2000, Kevin Wayne

Finding o Blacking Flow n &,

Dafiaition: W lat Geo(e) damote the capocity of o wdge e
Defiition: ﬂ-mmﬂufhrq-; dlﬂﬂl‘%‘

siefine B{F) = it e Cpra]

FindBlneiiegFlowl
= Dnitialine -
- mmm.mrmuﬂm
St () = I(8) + B(F) for each odge e £
- St RamCapte] = Raipis) — B for sachedgea c P

Analyees Eock ¢ while laop "liminctes” ot aoet ane acge.

Teplicotior: Tarminates after «f mostm roumds.
o oCm+ “)

et con e s et i G o

3/5/2018

Dinic's Algorithm: Correctness and Running Time

£ Tollows dirmcify from Augieniieg Prth Theersn..
Augmanting path Flow i o soe flow B there o no
ewoanting paths

[ow
Rusnaing Thm Anabysiat Lat f; ok offer iteraties
1 {tg = 6} “ G({

Dafinftiens: dnpts{) = hongth o toe shortes directed path from
s1ail

Koy Claim: dogti{Cr,) > dopth{Gy) (depths clumys incrasss}

Dinic's Algorithm: Correctness and Running Time

Pupiogy Thrwm Awrdysis: Lt fj ob el graphy of ter |
E(y, =)

Dafinitionr: dapti{f,) = kengih of $he shertest direched poth from
eto i)

Koy Clain: dopt{tin,) > denthi(%,) {dapth aiwoys icremses)
Tmplienticn: #tterotises is o) mosk 0

"Yima o Smpurta Biovting Flow ia Lavel Groph: ma}
- Usiing spacial dstu-structere calied dynamic rees O(m log r

Tatel Tioez O log] with dymomitc trees. or OfunT) without.

Dinic's Algorithm

o St withmmpty flowrf

« Constract Gy

a5 hﬂflllﬂ‘-ﬂf di L)
o] Graph) ﬂmﬁ,huﬂds,,.
mﬂmﬂﬂfhﬁn
wmmﬂmﬁ-\

4 Glflllf

Aredysie
M&:ﬁﬂmmmﬂnbmmﬁ#ﬂhd‘i
Topplicntion: Abest i i “'—.\4“__“ l

mwmﬂni’ulﬂﬂghf
Ttwl Thwe: Ofm}

Copyright 2000, Kevin Wayne

Dinic's Algorithm: Correctness and Running Time

Barising T Analysist Let Jj ch dord groph cffer Ivercti
1, = 6}

Defimftion: it} = hangth of the shertest directad path from
21 i}

Key Claim: depii{G,,) > depih{6) (depth olnys inorassen)

Proaf: Suppete (for covirdictien) that- %.J&Tﬂﬂgul
- Themty, containgon 24 path of leagth o depiad}

. This poth inrrapasde 15 on cusgeeiie puik for the firw
F'= fiua ~ NG

- "B simce: the ougeenting yth hes length depth{E,) It b she on
mugmertingpathinthe lowl groph Gr,e. ~

- This comtrodicts the clafm that 1 ks ablocking flewin G, 2

7.7 Extensions to Max Flow

Circulation with Demands

Circulation with demands.
. Directed graph 6 = (V, E).
. Edge capacities c(e), e € E.
- Node supply and demands d(v), v € V.

demand if d(v) > O: supply if d(v) « O; fransshipment if d(v) = 0

Def. A circulation is a function that satisfies:

. Foreache < E: 0 < f(e) < c(e) (capacity)
. ForeachveV: >fe)- Xf(e) = d(v) (conservation)
eintov eoutof v

Circulation problem: given (V, E, ¢, d), does there exist a circulation?

3/5/2018

Circulation with Demands

Max flow formulation.

-6 — supply

-8
G:
PN
10 6 4
4%11
0

!

demand

Circulation with Demands

Integrality theorem. If all capacities and demands are
integers, and there exists a circulation, then there exists one
that is integer-valued.

Pf. Follows from max flow formulation and integrality
theorem for max flow.

Characterization. Given (V, E, ¢, d), there does not exists a
circulation iff there exists a node partition (A, B) such that
Zpdy > cap(A,B)

demand by nodes in B exceeds supply
of nodes in B plus max capacity of

. . . edges going from A to B
Pf idea. Look at mincutinG'. g gema e

Circulation with Demands

Necessary condition: sum of supplies = sum of demands.
Yd(v)= ¥ -d(v) = D

v:idw)>0 vidw< 0

Pf. Sum conservation constraints for every demand node v.

8 -6 —— supply

1
7 7 7
10 66 42 ® demand
7 S \O\
3 — 4 — 1

10 0 4N

1 capacity

flow

Copyright 2000, Kevin Wayne

Circulation with Demands

Max flow formulation.
« Add new source s and sink t.
- For each v with d(v) < O, add edge (s, v) with capacity -d(v).
. For each v with d(v) > 0, add edge (v, t) with capacity d(v).
« Claim: G has circulation iff 6' has max flow of value D.

749\

saturates all edges
leaving s and entering t

6 supply

7 7
10 6 4
3 4
0
1o\®/11

9
N

demand

Circulation with Demands and Lower Bounds

Feasible circulation.

. Directed graph 6 = (V, E).

- Edge capacities c(e) and lower bounds 7 (e), e € E.
« Node supply and demands d(v), v € V.

Def. A circulation is a function that satisfies:

. ForeachecE: r(e) < f(e) < c(e) (capacity)
. ForeachveV: Sfe) - Sfe = dwv) (conservation)
eintov eoutofv

Circulation problem with lower bounds. Given (V, E, 7, c, d), does
there exists a a circulation?

3/5/2018

Circulation with Demands and Lower Bounds Survey Design

Idea. Model lower bounds with demands.

one survey question per product

. Survey design.
» Send ((e) units of flow along edge e - Design survey asking n; consumers about n, products.
-+ Update demands of both endpoints. . Can only survey consumer i about product j if they own it.
capacity - Ask consumer i between c; and ¢;' questions.
fover bmf rpper pound | « Ask between pj and p;’ consumers about product j.
V— 2,91 —@) ®— 7 —®
dv) d(w) dw)+ 2 dw)- 2 Goal. Design a survey that meets these specs, if possible.
2] A
Bipartite perfect matching. Special case whenc;=¢;' =p;=p;' = 1.
Theorem. There exists a circulation in G iff there exists a
circulation in G'. If all demands, capacities, and lower bounds in 6
are integers, then there is a circulation in & that is integer-
valued.
Pf sketch. f(e)is a circulation in G iff f'(e) = f(e) - /(e) isa
circulation in6'.
Survey Design
7.8 SUf‘Vey Design Algorithm. Formulate as a circulation problem with lower bounds.

. Include an edge (i, j) if consumer j owns product i.
- Integer circulation < feasible survey design.

products

Copyright 2000, Kevin Wayne

