CS 580: Algorithm Design and Analysis

Jeremiah Blocki
Purdue University
Spring 2018

Travel: I will be attending a conference next week.
Tuesday: Recorded Lecture + return midterms (hopefully)

Thursday: No class (M arch fl,)
Midterm Regrade? Must be completed within 2 weeks (Mue 13)

(syllabus). Please e-mail us before then.
Midterm Solutions: Will post on blackboard before Tuesday.

Max Flow Recap

Max-Flow Problem, Min Cut Problem

Definition of a s-t flow f(e) and a s-t cut (A,B)
. Value of a flow f

. Capacity of a s-1 cut (A,B)

Weak Duality Lemma: For any flow f and s-t cut A,B we

have v(f) < cap(4,B) | (i.e., capacity of minimum cut is upper
bound on max-flow)

Finding a Max-Flow:
. Greedy algorithm fails!
Residual 6raph

. Ford-Fulkerson Algorithm
Repeatedly find augmenting path in residual graph

. Proof of Correctness

Max-Flow Min-Cut Equivalence

Ford-Fulkerson Algorithm

capacity

Max-Flow Min-Cut Theorem

Augmenting path theorem. Flow f is a max flow iff there are no

augmenting paths. j

Max-flow min-cut theorem. [Elias-Feinstein-Shannon 1956, Ford-Fulkerson
1956] The value of the max flow is equal to the value of the min
cut.

Pf. We prove both simultaneously by showing TFAE:
(i) There exists a cut (A, B) such that v(f) = cap(A, B).
(i) Flow f is a max flow.

(i) There is no augmenting path relative fo f.

(i) = (ii) This was the corollary to weak duality lemma. \/
N T

(ii) = QiiLWe show contrapositive. f\of (L [i}:?mof(@
. Let f be a flow. If there exists an augmenting path, then we
can improve f by sending flow along path.

Proof of Max-Flow Min-Cut Theorem

(iii) = (i)
- Let f be a flow with no augmenting paths.
. Let A be set of vertices reachable from s in residual graph.

. By definition of A, s € A. @
. By definition of f, t ¢ A.

(h = XA @@

—_— e out of A A

= ce) Yy —
e out of A ~
- B = cap(A,B)
SR
)

A
e
y @

3 é—: ‘ >
AGEIH W -
£(€)=9

original network

Running Time

Assumption. All capacities are integers between 1 and C.

—_—

Invariant. Every flow value f(e) and every residual capacu’r cf
(e) remains an integer throughout the algorithm. Q

Theorem. The algorithm terminates in at most v(f*) < nC
iterations.
Pf. Each augmentation increase value by at least 1. =
M- # ed g5

Corollary. If C=1, Ford- Fulkerson runs in O(mn) time. cacl

— \%.?I'é{mns 0(«//‘) {;me
Integrality theorem. If all capacities are integers, then there
exists a max flow f for which every flow value f(e) is an
Intfeger.
Pf. Since algorithm terminates, theorem follows from
invariant. =

7.3 Choosing Good Augmenting Paths

Ford-Fulkerson: Exponential Number of Augmentations

Q. Is generic Ford-Fulkerson algorithm polynomial in input size?

e
m, n, and log C
— —

A. No. If max capacity is C, then algorithm can take C iterations.

1 X X1
C C
1 ¥XO
C C
1 ¥ X1

Choosing Good Augmenting Paths

Use care when selecting augmenting paths.
. Some choices lead to exponen’rlal alqor'l‘rhms
. Clever choices lead to polynomial algor'l’rhms
. If capacities are irrational, algorithm not guaran‘re’e——d]
to terminatel!

Goal: choose augmenting paths so that:
. Can find augmenting paths efficiently.
- Few iterations.

—

Choose augmenting paths with: [Edmonds-Karp 1972,
Dinitz 1970]

. Max bottleneck capacity. .

. Sufficiently large bottleneck capacity.

. Fewest number of edges.
AR .

Capacity Scaling

Intuition. Choosing path with highest bottleneck capacity increases
flow by max possible amount.
. Don't worry about finding exact highest bottleneck path.

- Maintain scaling parameter A.
. Let G (A) be the subgraph of the residual graph consisting of only
arcs with capacity at least A.

10

1

Capacity Scaling

12

Capacity Scaling: Correctness

Assumption. All edge capacities are integers between 1 and C.

—_—

—

Integrality invariant. All flow and residual capacity values are
integral.

Correctness. If the algorithm terminates, then f is a max flow.
Pf. o
- By infegrality invariant, when A=1 = G¢«(A) = 6.
. Upon ’rer'miw @ phase, there are no augmenting
paths. =

Capacity Scaling: Running Time

Lemma 1. The outer while loop repeats 1+ log, C| times.
Pf. Initially C<A<2C, A decreases by a factor of 2 each iteration. =
Lemma 2. Let f be the flow at the end of a A-scaling phase. Then the
value of the maximum flow is at most v(f) + m A. .
2 __—="<«— proof on next slide
Lemma 3. There are at most 2m augmentations per scaling phase.
. Let f be the flow at the end of the previous scaling phase.

. L2 = v(f*) < &;k m (2K).
. Each augmentation in a_ A-phase increases v(f) by at least A. =

Theorem. The scaling max-flow algorithm finds a max flow in O(m log .
_C) augmentations. It can be implemented to runin O(m? log C) time. -

/
po L/Ir\/
3hpmé S,

13

Capacity Scaling: Running Time

Lemma 2. Let f be the flow at the end of a A-scaling phase. Then value
of the maximum flow is at most v(f) tmA. -
Pf. (almost identical to proof of max-flow min-cut theorem)

. We show that at the end of a A-phase, there exists a cut (A, B)

such that cap(A, B) < v(f) tmA.

. Choose A to be the set of nodes reachable from 8.in G¢(A).

. By definition of A, s € A. —

. By definition of f, t ¢ A.

A ’c(?‘)?ﬂ B
IS RCEIRIC ——
—_— e out of A einto A
> T (c(e)-A) - X
e out of A ei A
B) ‘eoutofAl einto A .

original network

14

Dinic's Max Flow Min-Cut Algorithm

Use Breadth First Search to Compute Level Graph

capacity

Discard cross-layer edges

Dinic's Max Flow Min-Cut Algorithm

Use Breadth First Search to Compute Level Graph

capacity
G: l ; /
10 9?2
Q
|
s 10 =@ 9 O
Level O
2 4 (4
capacity
G, 8 4

10

10
®/ 10——@ : ® 10\@

Discard cross-layer edges

17

Dinic's Max Flow Min-Cut Algorithm

Use Breadth First Search to Compute Level Graph

capacity

Level 3

Discard cross-layer edges
Find Blocking Flow

»(t

flow

18

Dinic's Max Flow Min-Cut Algorithm

Create Residual Graph G;

2) 4 —4 4\
b R

Total Flow: 14

Dinic's Max Flow Min-Cut Algorithm

Run BFS on G; o create level graph Gy,

Level 3
4
‘ £
1 6 6
Le el l
3- _/‘
Level 2 Level4

Remark: Number of levels increased. This is not a coincidencel

19

Dinic's Max Flow Min-Cut Algorithm

Run BFS on G; o create level graph Gy,

Level 3

<
(5)- 10 T

Level 2 Level 4

20

Dinic's Max Flow Min-Cut Algorithm

Run BFS on G; o create level graph Gy,
Level 3

9 &)+ 10 i
Level 2 Level 4

21

Dinic's Max Flow Min-Cut Algorithm

Run BFS on G to create level graph Gy,
Level 3

ir
V71

1 6 zéﬁﬁ)

[

9 ®— 104
Level 2 Level 4

2
Leyel 1

flow
~

5
Gf,L 7

?\5
5 6 6
L@ \@

Total Extra Flow: 5
Blocking Flow for level graph G,

22

23

Dinic's Max Flow Min-Cut Algorithm

New Residual Graph 6;

ﬁ 4 —4)
Gy 10 W 64\

Total Extra Flow: 5
Blocking Flow for level graph Gy,

Dinic's Max Flow Min-Cut Algorithm

WAL\
2 1 °

New Residual Graph 6

Breadth First Search: Yields minimum s-t cut!=> We are donel

e

4 .
/ \ capacity
1 /

6 10

25

Finding a Blocking Flow in G,

Definition: We let Cs;(e) denote the capacity of an edge e in G,
Definition: Given an augmenting flow f' for G¢, and a s-t pa’rﬁ___ﬁ we
define B(P) = mingep Cy (€) T

FindBlockingFlow(Gy ;.)
Initialize RemCap(e) = Cf.(e)
While there exists a path P with B(P) > 0
Set f'(e) = f'(e) + B(P) for each edge e € P
Set RemCap(e) =Wap(e) — B(P) for eachedge e € P

Analysis: Each iteration of while loop "eliminates” at least one edge.

Implication: Terminates after at most m rounds.

OCmHo
Naive Running Time: O((m{m;; > g N y:/
Amortization: Can enumerate paths in amortized time O(n) per path

%

4,

Dinic's Algorithm

Start with empty flow f

Construct G;

Repeat until s and T are disconnected (no augmenting path)
. (Level Graph) w‘ro build G,

. (Blocking Flow) Find blocking flow f in Gf L

» (Augment)Let f=f+f and Construct Gf

Output f

Analysis:

26

Claim: Each time we iterate the loop we increase the depth of G;

Implication: Must terminate in at most n iterations!

—

Time Per Iteration: O(nm) fo find blocking flow f'

—

Total Time: O(n?m)

Dinic's Algorithm: Correctness and Running Time

Correctness follows directly from Augmenting Path Theorem .

Augmenting path ‘rhey Flow f is a max flow iff there are no
augmenting paths.

(o
Running Time Analysis: Let f; denote m@.ph after iteration
i (Gfo =G) o é{;

Definition: depth(Gy,) = length of the shortest directed path from

s to 1). -

Key Claim: depth(Gy,,,) > depth(Gy,) (depth always increases)

27

Dinic's Algorithm: Correctness and Running Time

Running Time Analysis: Let f; denote residual graph after iteration
i (Gfo = G)

Definition: depth(Gy,) = length of the shortest directed path from
s to 1).

Key Claim: depth(Gy,,,) > depth(Gy,) (depth always increases)

Proof: Suppose (for contradiction) that depth(Gy,, .) < depth(Gy,).

Then Gy, contains an s-t path of length < depth(Gr,).
This path corresponds to an augmenting path for The flow
L= fi+1 _fi in Gfi-
. But since the augmenting path has length depth(Gy,) it is also an
]] ‘ﬂ—‘
augmenting path in the level graph Gy, ;.
This contradicts the claim that f’ is a blocking flow in Gy, ;!

28

29

Dinic's Algorithm: Correctness and Running Time

Running Time Analysis: Let f; denote residual graph after iteration
i (Gfo = G)

Definition: depth(Gy,) = length of the shortest directed path from
s to 1).

Key Claim: depth(Gy,,,) > depth(Gy,) (depth always increases)
Implication: #iterations is at most n

Time to Compute Blocking Flow in Level Graph: O(mn)
Using special data-structure called dynamic trees O(m log n)

Total Time: O(mn log n) with dynamic trees or O(mn2) without.

7.7 Extensions to Max Flow

Circulation with Demands

Circulation with demands.
. Directed graph G = (V, E).
. Edge capacities c(e), e € E.

- Node supply and demands d(v), v € V.
T

demand if d(v) > O; supply if d(v) < O; transshipment if d(v) = 0

Def. A circulation is a function that satisfies:

. For eache € E: 0 < f(e) < c(e) (capacity)
. Foreachv e V: > f(e) = Xf(e) = d(v) (conservation)
eintov e out of v

Circulation problem: given (V, E, c, d), does there exist a circulation?

31

Circulation with Demands

Necessary condition: sum of supplies = sum of demands.
>d(v) = > —-d(v) = D

v:d(v)>0 v:d(v)< 0

Pf. Sum conservation constraints for every demand node v.

-8 -6 «— supply
7
2 demand
4 > 11
4\
T capacity

flow

32

33

Max flow formulation.

Circulation with Demands

demand

Circulation with Demands

Max flow formulation.
. Add new source s and sink t.
. For each v with d(v) < O, add edge (s, v) with capacity -d(v).
. For each v with d(v) > O, add edge (v, 1) with capacity d(v).
. Claim: G has circulation iff G' has max flow of value D.

saturates all edges
leaving s and entering t

b — supply

demand
34

Circulation with Demands

Integrality theorem. If all capacities and demands are
intfegers, and there exists a circulation, then there exists one
that is integer-valued.

Pf. Follows from max flow formulation and integrality
theorem for max flow.

Characterization. Given (V, E, c, d), there does not exists a
circulation iff there exists a node partition (A, B) such that

ZVEB dv > CGP(A, B) _— demand by nodes in B exceeds supply

of nodes in B plus max capacity of

. . . . edges going from A to B
Pf idea. Look at mincut inG'.

35

36

Circulation with Demands and Lower Bounds

Feasible circulation.
. Directed graph G = (V, E).
. Edge capacities c(e) and lower bounds / (e), e € E.
- Node supply and demands d(v), v € V.

Def. A circulation is a function that satisfies:

. Foreache € E: () < f(e) < c(e) (capacity)
. Foreachv e V: Sfe) - Yfe) = d(v) (conservation)
egintov e out of v

Circulation problem with lower bounds. Given (V, E, ¢, c, d), does
there exists a a circulation?

Circulation with Demands and Lower Bounds

Idea. Model lower bounds with demands.

. Send /(e) units of flow along edge e.
. Update demands of both endpoints.

capacity
b }
@— 29 —@ © 7@

d(v) d(w) d(v) + 2 dw) - 2
6 o

lower bound upper bound

Theorem. There exists a circulation in G iff there exists a
circulation in G'. If all demands, capacities, and lower bounds in G
are integers, then there is a circulation in G that is integer-
valued.

Pf sketch. f(e) is a circulation in G iff f'(e) = f(e) - /(e) isa
circulation in G'.

37

/.8 Survey Design

39

Survey Design

one survey question per product

Survey design. |
. Design survey asking n; consumers about n, products.
. Can only survey consumer i about product j if they own it.
. Ask consumer i between c; and c¢,' questions.
. Ask between p; and p;" consumers about product .

Goal. Design a survey that meets these specs, if possible.

Bipartite perfect matching. Special case whenc,= ¢, =p,=p; = 1.

40

Survey Design

Algorithm. Formulate as a circulation problem with lower bounds.
- Include an edge (i, j) if consumer j owns product i.
. Integer circulation < feasible survey design.

