
CS 580: Algorithm Design and Analysis

Jeremiah Blocki
Purdue University
Spring 2018

Travel: I will be attending a conference next week.
Tuesday: Recorded Lecture + return midterms (hopefully)
Thursday: No class
Midterm Regrade? Must be completed within 2 weeks
(syllabus). Please e-mail us before then.
Midterm Solutions: Will post on blackboard before Tuesday.

Max Flow Recap

2

3

Ford-Fulkerson Algorithm

s

2

3

4

5 t10

10

9

8

4

10

1062

G:
capacity

play

4

Max-Flow Min-Cut Theorem

Augmenting path theorem. Flow f is a max flow iff there are no
augmenting paths.

Max-flow min-cut theorem. [Elias-Feinstein-Shannon 1956, Ford-Fulkerson

1956] The value of the max flow is equal to the value of the min
cut.

Pf. We prove both simultaneously by showing TFAE:
(i) There exists a cut (A, B) such that v(f) = cap(A, B).
(ii) Flow f is a max flow.

(iii) There is no augmenting path relative to f.

(i) (ii) This was the corollary to weak duality lemma.

(ii) (iii) We show contrapositive.
 Let f be a flow. If there exists an augmenting path, then we

can improve f by sending flow along path.

5

Proof of Max-Flow Min-Cut Theorem

(iii) (i)
 Let f be a flow with no augmenting paths.
 Let A be set of vertices reachable from s in residual graph.
 By definition of A, s A.
 By definition of f, t A.

v(f) f (e)
e out of A

 f (e)
e in to A

 c(e)
e out of A

 cap(A, B)

original network

s

t

A B

6

Running Time

Assumption. All capacities are integers between 1 and C.

Invariant. Every flow value f(e) and every residual capacity cf

(e) remains an integer throughout the algorithm.

Theorem. The algorithm terminates in at most v(f*) nC
iterations.
Pf. Each augmentation increase value by at least 1. ▪

Corollary. If C = 1, Ford-Fulkerson runs in O(mn) time.

Integrality theorem. If all capacities are integers, then there
exists a max flow f for which every flow value f(e) is an
integer.
Pf. Since algorithm terminates, theorem follows from
invariant. ▪

7.3 Choosing Good Augmenting Paths

8

Ford-Fulkerson: Exponential Number of Augmentations

Q. Is generic Ford-Fulkerson algorithm polynomial in input size?

A. No. If max capacity is C, then algorithm can take C iterations.

s

1

2

t

C

C

0
0

0 0

0

C

C

1 s

1

2

t

C

C

1

0 0

0 0

0X 1

C

C

X

X

X

1

1

1

X

X

1

1X

X

X

1

0

1

m, n, and log C

9

Choosing Good Augmenting Paths

Use care when selecting augmenting paths.
 Some choices lead to exponential algorithms.
 Clever choices lead to polynomial algorithms.
 If capacities are irrational, algorithm not guaranteed

to terminate!

Goal: choose augmenting paths so that:
 Can find augmenting paths efficiently.
 Few iterations.

Choose augmenting paths with: [Edmonds-Karp 1972,
Dinitz 1970]
 Max bottleneck capacity.
 Sufficiently large bottleneck capacity.
 Fewest number of edges.

10

Capacity Scaling

Intuition. Choosing path with highest bottleneck capacity increases
flow by max possible amount.
 Don't worry about finding exact highest bottleneck path.
 Maintain scaling parameter .
 Let Gf () be the subgraph of the residual graph consisting of only

arcs with capacity at least .

110

s

4

2

t1

170

102

122

Gf

110

s

4

2

t

170

102

122

Gf (100)

11

Capacity Scaling

Scaling-Max-Flow(G, s, t, c) {
foreach e E f(e) 0
 smallest power of 2 greater than or equal to C
Gf residual graph

while (1) {
Gf() -residual graph
while (there exists augmenting path P in Gf()) {

f augment(f, c, P)
update Gf()

}
 / 2

}
return f

}

12

Capacity Scaling: Correctness

Assumption. All edge capacities are integers between 1 and C.

Integrality invariant. All flow and residual capacity values are
integral.

Correctness. If the algorithm terminates, then f is a max flow.
Pf.
 By integrality invariant, when = 1 Gf() = Gf.
 Upon termination of = 1 phase, there are no augmenting

paths. ▪

13

Capacity Scaling: Running Time

Lemma 1. The outer while loop repeats 1 + log2 C times.
Pf. Initially C < 2C. decreases by a factor of 2 each iteration. ▪

Lemma 2. Let f be the flow at the end of a -scaling phase. Then the
value of the maximum flow is at most v(f) + m .

Lemma 3. There are at most 2m augmentations per scaling phase.
 Let f be the flow at the end of the previous scaling phase.
 L2 v(f*) v(f) + m (2).
 Each augmentation in a -phase increases v(f) by at least . ▪

Theorem. The scaling max-flow algorithm finds a max flow in O(m log
C) augmentations. It can be implemented to run in O(m2 log C) time. ▪

proof on next slide

14

Capacity Scaling: Running Time

Lemma 2. Let f be the flow at the end of a -scaling phase. Then value
of the maximum flow is at most v(f) + m .
Pf. (almost identical to proof of max-flow min-cut theorem)
 We show that at the end of a -phase, there exists a cut (A, B)

such that cap(A, B) v(f) + m .
 Choose A to be the set of nodes reachable from s in Gf().
 By definition of A, s A.
 By definition of f, t A.

v(f) f (e)
e out of A

 f (e)
e in to A

 (c(e)
e out of A

)
e in to A

 c(e)
e out of A

e out of A

e in to A

 cap(A, B) - m
original network

s

t

A B

Dinic’s Max Flow Min-Cut Algorithm

Use Breadth First Search to Compute Level Graph

15

s

2

3

4

5 t10

10

9

8

4

10

1062

G:
capacity

s

2

3

4

5 t10

10

9

8

4

10

1062
GL

capacity

Level 0

Level 3

Discard cross-layer edges

1

1

Dinic’s Max Flow Min-Cut Algorithm

Use Breadth First Search to Compute Level Graph

16

s

2

3

4

5 t10

10

9

8

4

10

1062

G:
capacity

s

2

3

4

5 t10

10

9

8

4

10

10GL

capacity

Level 0

Level 3

Discard cross-layer edges

1

Dinic’s Max Flow Min-Cut Algorithm

Use Breadth First Search to Compute Level Graph

17

s

2

3

4

5 t10

10

9

8

4

10

1062

G:
capacity

s

2

3

4

5 t10

10

9

8

4

10

10GL

flow

Level 0

Level 3

Discard cross-layer edges
Find Blocking Flow

1

9 9 10

15 4

4

Dinic’s Max Flow Min-Cut Algorithm

Create Residual Graph Gf

18

s

2

3

4

5 t9

5

9

7

4

10

662

Gf: 1 41
5

1

s

2

3

4

5 t10

10

9

8

4

10

10GL

flow

9 9 10

15 4

Total Flow: 14

Dinic’s Max Flow Min-Cut Algorithm

19

s

2

3

4

5 t9

5

9

7

4

10

662

Gf: 1 41
5

1Level 0

Level 3

Level 1

Level 2 Level 4

Remark: Number of levels increased. This is not a coincidence!

Dinic’s Max Flow Min-Cut Algorithm

20

s

2

3

4

5 t9

5

9

7

4

10

662

Gf: 1 41
5

1Level 0

Level 3

Level 1

Level 2 Level 4

s

2

3

4

5 t9

5

9

7

4

10

662
1 41

5

1

Dinic’s Max Flow Min-Cut Algorithm

21

s

2

3

4

5 t9

5

9

7

4

10

662

Gf: 1 41
5

1Level 0

Level 3

Level 4

s

2

3

4

5 t1

5
7

66

Level 1

Level 2

Dinic’s Max Flow Min-Cut Algorithm

22

s

2

3

4

5 t9

5

9

7

4

10

562

Gf: 1 51
5

1Level 0

Level 3

Level 4

s

2

3

4

5 t1

5
7

66

Level 1

Level 2

5
5

5
5

flow

Total Extra Flow: 5

Dinic’s Max Flow Min-Cut Algorithm

New Residual Graph Gf

23

s

2

3

4

5 t9 9

2

4

10

12

Gf: 1 106
10

1

s

2

3

4

5 t1

5
7

56
5

5 5

flow

5

6

Total Extra Flow: 5

Dinic’s Max Flow Min-Cut Algorithm

New Residual Graph Gf

24

s

2

3

4

5 t9 9

2

4

10

12

Gf: 1 106
10

1

6

Breadth First Search: Yields minimum s-t cut! We are done!

Reachable

s

2

3

4

5 t10

10

9

8

4

10

1062

G:
capacity

1

A

25

Dinic’s Algorithm

26

Dinic’s Algorithm: Correctness and Running Time

27

Dinic’s Algorithm: Correctness and Running Time

28

Dinic’s Algorithm: Correctness and Running Time

29

7.7 Extensions to Max Flow

31

Circulation with Demands

Circulation with demands.
 Directed graph G = (V, E).
 Edge capacities c(e), e E.
 Node supply and demands d(v), v V.

Def. A circulation is a function that satisfies:
 For each e E: 0 f(e) c(e) (capacity)
 For each v V: (conservation)

Circulation problem: given (V, E, c, d), does there exist a circulation?

f (e)

e in to v
 f (e)

e out of v
 d (v)

demand if d(v) > 0; supply if d(v) < 0; transshipment if d(v) = 0

32

Necessary condition: sum of supplies = sum of demands.

Pf. Sum conservation constraints for every demand node v.

3

10 6

-7

-8

11

-6

4
9
7

3

10 0

7

4
4

6

6
7
1

4 2

flow

Circulation with Demands

capacity

d (v)

v : d (v) 0
 d (v)

v : d (v) 0
 : D

demand

supply

33

Circulation with Demands

Max flow formulation.

G:
supply

3

10 6

-7

-8

11

-6

9

10 0

7

4

7

4

demand

34

Circulation with Demands

Max flow formulation.
 Add new source s and sink t.
 For each v with d(v) < 0, add edge (s, v) with capacity -d(v).
 For each v with d(v) > 0, add edge (v, t) with capacity d(v).
 Claim: G has circulation iff G' has max flow of value D.

G':
supply

3

10 6 9

0

7

4

7

4

s

t

10 11

7 8 6

saturates all edges
leaving s and entering t

demand

35

Circulation with Demands

Integrality theorem. If all capacities and demands are
integers, and there exists a circulation, then there exists one
that is integer-valued.

Pf. Follows from max flow formulation and integrality
theorem for max flow.

Characterization. Given (V, E, c, d), there does not exists a
circulation iff there exists a node partition (A, B) such that
vB dv > cap(A, B)

Pf idea. Look at min cut in G'.

demand by nodes in B exceeds supply
of nodes in B plus max capacity of
edges going from A to B

36

Circulation with Demands and Lower Bounds

Feasible circulation.
 Directed graph G = (V, E).
 Edge capacities c(e) and lower bounds (e), e E.
 Node supply and demands d(v), v V.

Def. A circulation is a function that satisfies:
 For each e E: (e) f(e) c(e) (capacity)
 For each v V: (conservation)

Circulation problem with lower bounds. Given (V, E, , c, d), does
there exists a a circulation?

f (e)

e in to v
 f (e)

e out of v
 d (v)

37

Circulation with Demands and Lower Bounds

Idea. Model lower bounds with demands.
 Send (e) units of flow along edge e.
 Update demands of both endpoints.

Theorem. There exists a circulation in G iff there exists a
circulation in G'. If all demands, capacities, and lower bounds in G
are integers, then there is a circulation in G that is integer-
valued.

Pf sketch. f(e) is a circulation in G iff f'(e) = f(e) - (e) is a
circulation in G'.

v w[2, 9]

lower bound upper bound

v w
d(v) d(w) d(v) + 2 d(w) - 2

G G'

7

capacity

7.8 Survey Design

39

Survey Design

Survey design.
 Design survey asking n1 consumers about n2 products.
 Can only survey consumer i about product j if they own it.
 Ask consumer i between ci and ci' questions.
 Ask between pj and pj' consumers about product j.

Goal. Design a survey that meets these specs, if possible.

Bipartite perfect matching. Special case when ci = ci' = pi = pi' = 1.

one survey question per product

40

Survey Design

Algorithm. Formulate as a circulation problem with lower bounds.
 Include an edge (i, j) if consumer j owns product i.
 Integer circulation feasible survey design.

s

1

3

5

1'

3'

5'

t

2

4

2'

4'

[c1, c1']

[0, 1]

consumers

[p1, p1']

[0,]

products

