
CS 580:  Algorithm Design and Analysis

Jeremiah Blocki
Purdue University
Spring 2018

Travel: I will be attending a conference next week.
Tuesday: Recorded Lecture + return midterms (hopefully)
Thursday: No class 
Midterm Regrade? Must be completed within 2 weeks 
(syllabus). Please e-mail us before then.
Midterm Solutions: Will post on blackboard before Tuesday. 
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Ford-Fulkerson Algorithm
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Max-Flow Min-Cut Theorem

Augmenting path theorem. Flow f is a max flow iff there are no 
augmenting paths. 

Max-flow min-cut theorem.  [Elias-Feinstein-Shannon 1956, Ford-Fulkerson 

1956] The value of the max flow is equal to the value of the min 
cut.

Pf.  We prove both simultaneously by showing TFAE:
(i) There exists a cut (A, B) such that v(f) = cap(A, B).
(ii) Flow f is a max flow.

(iii) There is no augmenting path relative to f.

(i)   (ii)  This was the corollary to weak duality lemma.

(ii)   (iii)  We show contrapositive.
 Let f be a flow. If there exists an augmenting path, then we 

can improve f by sending flow along path.
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Proof of Max-Flow Min-Cut Theorem

(iii)   (i)
 Let f be a flow with no augmenting paths.
 Let A be set of vertices reachable from s in residual graph.
 By definition of A, s  A.
 By definition of f, t  A.

v( f )  f (e)
e out of A

  f (e)
e in to A


 c(e)
e out of A



 cap(A, B)

original network

s

t

A B
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Running Time

Assumption.  All capacities are integers between 1 and C.

Invariant.  Every flow value f(e) and every residual capacity cf 

(e) remains an integer throughout the algorithm.

Theorem.  The algorithm terminates in at most v(f*)  nC
iterations.
Pf.  Each augmentation increase value by at least 1.   ▪

Corollary.  If C = 1, Ford-Fulkerson runs in O(mn) time.

Integrality theorem.  If all capacities are integers, then there 
exists a max flow f for which every flow value f(e) is an 
integer.
Pf.  Since algorithm terminates, theorem follows from 
invariant.   ▪



7.3  Choosing Good Augmenting Paths
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Ford-Fulkerson:  Exponential Number of Augmentations

Q.   Is generic Ford-Fulkerson algorithm polynomial in input size?

A.   No.  If max capacity is C, then algorithm can take C iterations.  
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Choosing Good Augmenting Paths

Use care when selecting augmenting paths.
 Some choices lead to exponential algorithms.
 Clever choices lead to polynomial algorithms.
 If capacities are irrational, algorithm not guaranteed 

to terminate!

Goal:  choose augmenting paths so that:
 Can find augmenting paths efficiently.
 Few iterations.

Choose augmenting paths with:  [Edmonds-Karp 1972, 
Dinitz 1970]
 Max bottleneck capacity.
 Sufficiently large bottleneck capacity.
 Fewest number of edges.
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Capacity Scaling

Intuition.  Choosing path with highest bottleneck capacity increases 
flow by max possible amount.
 Don't worry about finding exact highest bottleneck path.
 Maintain scaling parameter .
 Let Gf () be the subgraph of the residual graph consisting of only 

arcs with capacity at least .
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Capacity Scaling

Scaling-Max-Flow(G, s, t, c) {
foreach e  E  f(e)  0
  smallest power of 2 greater than or equal to C
Gf  residual graph

while (  1) {
Gf()  -residual graph
while (there exists augmenting path P in Gf()) {

f  augment(f, c, P)
update Gf()

}
   / 2

}
return f

}
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Capacity Scaling:  Correctness

Assumption.  All edge capacities are integers between 1 and C. 

Integrality invariant.  All flow and residual capacity values are 
integral.

Correctness.  If the algorithm terminates, then f is a max flow.
Pf.
 By integrality invariant, when  = 1   Gf() = Gf.
 Upon termination of  = 1 phase, there are no augmenting 

paths.  ▪
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Capacity Scaling:  Running Time

Lemma 1.  The outer while loop repeats 1 + log2 C times.
Pf.  Initially C   < 2C.   decreases by a factor of 2 each iteration. ▪

Lemma 2.  Let f be the flow at the end of a -scaling phase. Then the 
value of the maximum flow is at most v(f) + m .

Lemma 3.  There are at most 2m augmentations per scaling phase.
 Let f be the flow at the end of the previous scaling phase.
 L2   v(f*)   v(f) + m (2).
 Each augmentation in a -phase increases v(f) by at least .  ▪

Theorem.  The scaling max-flow algorithm finds a max flow in O(m log 
C) augmentations.  It can be implemented to run in O(m2 log C) time.  ▪

proof on next slide
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Capacity Scaling:  Running Time

Lemma 2.  Let f be the flow at the end of a -scaling phase. Then value 
of the maximum flow is at most v(f) + m .
Pf.   (almost identical to proof of max-flow min-cut theorem)
 We show that at the end of a -phase, there exists a cut (A, B) 

such that cap(A, B)   v(f) + m .
 Choose A to be the set of nodes reachable from s in Gf().
 By definition of A, s  A.
 By definition of f, t  A.

v( f )  f (e)
e out of A

  f (e)
e in to A


 (c(e)
e out of A

 )  
e in to A


 c(e)
e out of A

  
e out of A
  

e in to A


 cap(A, B) - m
original network
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t
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Dinic’s Max Flow Min-Cut Algorithm

Use Breadth First Search to Compute Level Graph
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Dinic’s Max Flow Min-Cut Algorithm

Use Breadth First Search to Compute Level Graph
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Dinic’s Max Flow Min-Cut Algorithm

Use Breadth First Search to Compute Level Graph
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Dinic’s Max Flow Min-Cut Algorithm

Create Residual Graph Gf
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Dinic’s Max Flow Min-Cut Algorithm

19

s

2

3

4

5 t9

5

9

7

4

10

662

Gf: 1 41
5

1Level 0

Level 3

Level 1

Level 2 Level 4

Remark: Number of levels increased. This is not a coincidence!



Dinic’s Max Flow Min-Cut Algorithm
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Dinic’s Max Flow Min-Cut Algorithm
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Dinic’s Max Flow Min-Cut Algorithm
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Dinic’s Max Flow Min-Cut Algorithm

New Residual Graph Gf
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Dinic’s Max Flow Min-Cut Algorithm

New Residual Graph Gf
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Dinic’s Algorithm
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Dinic’s Algorithm: Correctness and Running Time
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Dinic’s Algorithm: Correctness and Running Time
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Dinic’s Algorithm: Correctness and Running Time
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7.7  Extensions to Max Flow
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Circulation with Demands

Circulation with demands.
 Directed graph G = (V, E).
 Edge capacities c(e), e  E.
 Node supply and demands d(v), v  V.

Def.  A circulation is a function that satisfies:
 For each e  E:         0    f(e)    c(e)            (capacity)
 For each v  V: (conservation)

Circulation problem:  given (V, E, c, d), does there exist a circulation?

  
f (e)

e in to v
  f (e)

e out of v
  d (v)

demand if d(v) > 0; supply if d(v) < 0; transshipment if d(v) = 0
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Necessary condition:  sum of supplies = sum of demands.

Pf.  Sum conservation constraints for every demand node v.
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Circulation with Demands

Max flow formulation.
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Circulation with Demands

Max flow formulation.
 Add new source s and sink t.
 For each v with d(v) < 0, add edge (s, v) with capacity -d(v).
 For each v with d(v) > 0, add edge (v, t) with capacity  d(v).
 Claim:  G has circulation iff G' has max flow of value D.
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Circulation with Demands

Integrality theorem.  If all capacities and demands are 
integers, and there exists a circulation, then there exists one 
that is integer-valued.

Pf.  Follows from max flow formulation and integrality 
theorem for max flow.

Characterization.  Given (V, E, c, d), there does not exists a 
circulation iff there exists a node partition (A, B) such that 
vB dv > cap(A, B)

Pf idea.  Look at min cut in G'.

demand by nodes in B exceeds supply
of nodes in B plus max capacity of
edges going from A to B
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Circulation with Demands and Lower Bounds

Feasible circulation.
 Directed graph G = (V, E).  
 Edge capacities c(e) and lower bounds  (e), e  E.
 Node supply and demands d(v), v  V.

Def.  A circulation is a function that satisfies:
 For each e  E:  (e)  f(e)    c(e)     (capacity)
 For each v  V: (conservation)

Circulation problem with lower bounds.  Given (V, E, , c, d), does 
there exists a a circulation?

  
f (e)

e in to v
  f (e)

e out of v
  d (v)
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Circulation with Demands and Lower Bounds

Idea.  Model lower bounds with demands.
 Send (e) units of flow along edge e.
 Update demands of both endpoints.

Theorem.  There exists a circulation in G iff there exists a 
circulation in G'. If all demands, capacities, and lower bounds in G 
are integers, then there is a circulation in G that is integer-
valued.

Pf sketch.  f(e) is a circulation in G iff f'(e) = f(e) - (e) is a 
circulation in G'.

v w[2, 9]

lower bound upper bound

v w
d(v) d(w) d(v) + 2 d(w) - 2

G G'

7

capacity



7.8  Survey Design
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Survey Design

Survey design.
 Design survey asking n1 consumers about n2 products.
 Can only survey consumer i about product j if they own it.
 Ask consumer i between ci and ci' questions.
 Ask between pj and pj' consumers about product j.

Goal.  Design a survey that meets these specs, if possible.

Bipartite perfect matching.  Special case when ci = ci' = pi = pi' = 1.

one survey question per product
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Survey Design

Algorithm.  Formulate as a circulation problem with lower bounds.
 Include an edge (i, j) if consumer j owns product i.
 Integer circulation   feasible survey design.
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