
CS 580:  Algorithm Design and Analysis

Jeremiah Blocki
Purdue University
Spring 2018

Travel: I will be attending a conference next week.
Tuesday: Recorded Lecture + return midterms (hopefully)
Thursday: No class 
Midterm Regrade? Must be completed within 2 weeks 
(syllabus). Please e-mail us before then.
Midterm Solutions: Will post on blackboard before Tuesday. 
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Ford-Fulkerson Algorithm
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Max-Flow Min-Cut Theorem

Augmenting path theorem. Flow f is a max flow iff there are no 
augmenting paths. 

Max-flow min-cut theorem.  [Elias-Feinstein-Shannon 1956, Ford-Fulkerson 

1956] The value of the max flow is equal to the value of the min 
cut.

Pf.  We prove both simultaneously by showing TFAE:
(i) There exists a cut (A, B) such that v(f) = cap(A, B).
(ii) Flow f is a max flow.

(iii) There is no augmenting path relative to f.

(i)   (ii)  This was the corollary to weak duality lemma.

(ii)   (iii)  We show contrapositive.
 Let f be a flow. If there exists an augmenting path, then we 

can improve f by sending flow along path.
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Proof of Max-Flow Min-Cut Theorem

(iii)   (i)
 Let f be a flow with no augmenting paths.
 Let A be set of vertices reachable from s in residual graph.
 By definition of A, s  A.
 By definition of f, t  A.

v( f )  f (e)
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Running Time

Assumption.  All capacities are integers between 1 and C.

Invariant.  Every flow value f(e) and every residual capacity cf 

(e) remains an integer throughout the algorithm.

Theorem.  The algorithm terminates in at most v(f*)  nC
iterations.
Pf.  Each augmentation increase value by at least 1.   ▪

Corollary.  If C = 1, Ford-Fulkerson runs in O(mn) time.

Integrality theorem.  If all capacities are integers, then there 
exists a max flow f for which every flow value f(e) is an 
integer.
Pf.  Since algorithm terminates, theorem follows from 
invariant.   ▪



7.3  Choosing Good Augmenting Paths
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Ford-Fulkerson:  Exponential Number of Augmentations

Q.   Is generic Ford-Fulkerson algorithm polynomial in input size?

A.   No.  If max capacity is C, then algorithm can take C iterations.  
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Choosing Good Augmenting Paths

Use care when selecting augmenting paths.
 Some choices lead to exponential algorithms.
 Clever choices lead to polynomial algorithms.
 If capacities are irrational, algorithm not guaranteed 

to terminate!

Goal:  choose augmenting paths so that:
 Can find augmenting paths efficiently.
 Few iterations.

Choose augmenting paths with:  [Edmonds-Karp 1972, 
Dinitz 1970]
 Max bottleneck capacity.
 Sufficiently large bottleneck capacity.
 Fewest number of edges.
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Capacity Scaling

Intuition.  Choosing path with highest bottleneck capacity increases 
flow by max possible amount.
 Don't worry about finding exact highest bottleneck path.
 Maintain scaling parameter .
 Let Gf () be the subgraph of the residual graph consisting of only 

arcs with capacity at least .
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Capacity Scaling

Scaling-Max-Flow(G, s, t, c) {
foreach e  E  f(e)  0
  smallest power of 2 greater than or equal to C
Gf  residual graph

while (  1) {
Gf()  -residual graph
while (there exists augmenting path P in Gf()) {

f  augment(f, c, P)
update Gf()

}
   / 2

}
return f

}
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Capacity Scaling:  Correctness

Assumption.  All edge capacities are integers between 1 and C. 

Integrality invariant.  All flow and residual capacity values are 
integral.

Correctness.  If the algorithm terminates, then f is a max flow.
Pf.
 By integrality invariant, when  = 1   Gf() = Gf.
 Upon termination of  = 1 phase, there are no augmenting 

paths.  ▪
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Capacity Scaling:  Running Time

Lemma 1.  The outer while loop repeats 1 + log2 C times.
Pf.  Initially C   < 2C.   decreases by a factor of 2 each iteration. ▪

Lemma 2.  Let f be the flow at the end of a -scaling phase. Then the 
value of the maximum flow is at most v(f) + m .

Lemma 3.  There are at most 2m augmentations per scaling phase.
 Let f be the flow at the end of the previous scaling phase.
 L2   v(f*)   v(f) + m (2).
 Each augmentation in a -phase increases v(f) by at least .  ▪

Theorem.  The scaling max-flow algorithm finds a max flow in O(m log 
C) augmentations.  It can be implemented to run in O(m2 log C) time.  ▪

proof on next slide
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Capacity Scaling:  Running Time

Lemma 2.  Let f be the flow at the end of a -scaling phase. Then value 
of the maximum flow is at most v(f) + m .
Pf.   (almost identical to proof of max-flow min-cut theorem)
 We show that at the end of a -phase, there exists a cut (A, B) 

such that cap(A, B)   v(f) + m .
 Choose A to be the set of nodes reachable from s in Gf().
 By definition of A, s  A.
 By definition of f, t  A.

v( f )  f (e)
e out of A

  f (e)
e in to A


 (c(e)
e out of A

 )  
e in to A


 c(e)
e out of A

  
e out of A
  

e in to A


 cap(A, B) - m
original network

s

t

A B



Dinic’s Max Flow Min-Cut Algorithm

Use Breadth First Search to Compute Level Graph
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Dinic’s Max Flow Min-Cut Algorithm

Use Breadth First Search to Compute Level Graph
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Dinic’s Max Flow Min-Cut Algorithm

Use Breadth First Search to Compute Level Graph
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Dinic’s Max Flow Min-Cut Algorithm

Create Residual Graph Gf
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Dinic’s Max Flow Min-Cut Algorithm
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Dinic’s Max Flow Min-Cut Algorithm

20

s

2

3

4

5 t9

5

9

7

4

10

662

Gf: 1 41
5

1Level 0

Level 3

Level 1

Level 2 Level 4

s

2

3

4

5 t9

5

9

7

4

10

662
1 41

5

1



Dinic’s Max Flow Min-Cut Algorithm
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Dinic’s Max Flow Min-Cut Algorithm
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Dinic’s Max Flow Min-Cut Algorithm

New Residual Graph Gf
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Dinic’s Max Flow Min-Cut Algorithm

New Residual Graph Gf
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Dinic’s Algorithm
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Dinic’s Algorithm: Correctness and Running Time
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Dinic’s Algorithm: Correctness and Running Time
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Dinic’s Algorithm: Correctness and Running Time
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7.7  Extensions to Max Flow
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Circulation with Demands

Circulation with demands.
 Directed graph G = (V, E).
 Edge capacities c(e), e  E.
 Node supply and demands d(v), v  V.

Def.  A circulation is a function that satisfies:
 For each e  E:         0    f(e)    c(e)            (capacity)
 For each v  V: (conservation)

Circulation problem:  given (V, E, c, d), does there exist a circulation?

  
f (e)

e in to v
  f (e)

e out of v
  d (v)

demand if d(v) > 0; supply if d(v) < 0; transshipment if d(v) = 0
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Necessary condition:  sum of supplies = sum of demands.

Pf.  Sum conservation constraints for every demand node v.
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Circulation with Demands

Max flow formulation.
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Circulation with Demands

Max flow formulation.
 Add new source s and sink t.
 For each v with d(v) < 0, add edge (s, v) with capacity -d(v).
 For each v with d(v) > 0, add edge (v, t) with capacity  d(v).
 Claim:  G has circulation iff G' has max flow of value D.
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Circulation with Demands

Integrality theorem.  If all capacities and demands are 
integers, and there exists a circulation, then there exists one 
that is integer-valued.

Pf.  Follows from max flow formulation and integrality 
theorem for max flow.

Characterization.  Given (V, E, c, d), there does not exists a 
circulation iff there exists a node partition (A, B) such that 
vB dv > cap(A, B)

Pf idea.  Look at min cut in G'.

demand by nodes in B exceeds supply
of nodes in B plus max capacity of
edges going from A to B
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Circulation with Demands and Lower Bounds

Feasible circulation.
 Directed graph G = (V, E).  
 Edge capacities c(e) and lower bounds  (e), e  E.
 Node supply and demands d(v), v  V.

Def.  A circulation is a function that satisfies:
 For each e  E:  (e)  f(e)    c(e)     (capacity)
 For each v  V: (conservation)

Circulation problem with lower bounds.  Given (V, E, , c, d), does 
there exists a a circulation?

  
f (e)

e in to v
  f (e)

e out of v
  d (v)
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Circulation with Demands and Lower Bounds

Idea.  Model lower bounds with demands.
 Send (e) units of flow along edge e.
 Update demands of both endpoints.

Theorem.  There exists a circulation in G iff there exists a 
circulation in G'. If all demands, capacities, and lower bounds in G 
are integers, then there is a circulation in G that is integer-
valued.

Pf sketch.  f(e) is a circulation in G iff f'(e) = f(e) - (e) is a 
circulation in G'.

v w[2, 9]

lower bound upper bound

v w
d(v) d(w) d(v) + 2 d(w) - 2

G G'

7

capacity



7.8  Survey Design
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Survey Design

Survey design.
 Design survey asking n1 consumers about n2 products.
 Can only survey consumer i about product j if they own it.
 Ask consumer i between ci and ci' questions.
 Ask between pj and pj' consumers about product j.

Goal.  Design a survey that meets these specs, if possible.

Bipartite perfect matching.  Special case when ci = ci' = pi = pi' = 1.

one survey question per product
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Survey Design

Algorithm.  Formulate as a circulation problem with lower bounds.
 Include an edge (i, j) if consumer j owns product i.
 Integer circulation   feasible survey design.
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