
CS 580: Algorithm Design and Analysis

Jeremiah Blocki
Purdue University
Spring 2018

Travel: I will be attending a conference next week.
Tuesday: Recorded Lecture + return midterms (hopefully)
Thursday: No class
Midterm Regrade? Must be completed within 2 weeks
(syllabus). Please e-mail us before then.
Midterm Solutions: Will post on blackboard before Tuesday.

Max Flow Recap

2

3

Ford-Fulkerson Algorithm

s

2

3

4

5 t10

10

9

8

4

10

1062

G:
capacity

play

4

Max-Flow Min-Cut Theorem

Augmenting path theorem. Flow f is a max flow iff there are no
augmenting paths.

Max-flow min-cut theorem. [Elias-Feinstein-Shannon 1956, Ford-Fulkerson

1956] The value of the max flow is equal to the value of the min
cut.

Pf. We prove both simultaneously by showing TFAE:
(i) There exists a cut (A, B) such that v(f) = cap(A, B).
(ii) Flow f is a max flow.

(iii) There is no augmenting path relative to f.

(i)  (ii) This was the corollary to weak duality lemma.

(ii)  (iii) We show contrapositive.
 Let f be a flow. If there exists an augmenting path, then we

can improve f by sending flow along path.

5

Proof of Max-Flow Min-Cut Theorem

(iii)  (i)
 Let f be a flow with no augmenting paths.
 Let A be set of vertices reachable from s in residual graph.
 By definition of A, s  A.
 By definition of f, t  A.

v(f)  f (e)
e out of A

  f (e)
e in to A


 c(e)
e out of A



 cap(A, B)

original network

s

t

A B

6

Running Time

Assumption. All capacities are integers between 1 and C.

Invariant. Every flow value f(e) and every residual capacity cf

(e) remains an integer throughout the algorithm.

Theorem. The algorithm terminates in at most v(f*)  nC
iterations.
Pf. Each augmentation increase value by at least 1. ▪

Corollary. If C = 1, Ford-Fulkerson runs in O(mn) time.

Integrality theorem. If all capacities are integers, then there
exists a max flow f for which every flow value f(e) is an
integer.
Pf. Since algorithm terminates, theorem follows from
invariant. ▪

7.3 Choosing Good Augmenting Paths

8

Ford-Fulkerson: Exponential Number of Augmentations

Q. Is generic Ford-Fulkerson algorithm polynomial in input size?

A. No. If max capacity is C, then algorithm can take C iterations.

s

1

2

t

C

C

0
0

0 0

0

C

C

1 s

1

2

t

C

C

1

0 0

0 0

0X 1

C

C

X

X

X

1

1

1

X

X

1

1X

X

X

1

0

1

m, n, and log C

9

Choosing Good Augmenting Paths

Use care when selecting augmenting paths.
 Some choices lead to exponential algorithms.
 Clever choices lead to polynomial algorithms.
 If capacities are irrational, algorithm not guaranteed

to terminate!

Goal: choose augmenting paths so that:
 Can find augmenting paths efficiently.
 Few iterations.

Choose augmenting paths with: [Edmonds-Karp 1972,
Dinitz 1970]
 Max bottleneck capacity.
 Sufficiently large bottleneck capacity.
 Fewest number of edges.

10

Capacity Scaling

Intuition. Choosing path with highest bottleneck capacity increases
flow by max possible amount.
 Don't worry about finding exact highest bottleneck path.
 Maintain scaling parameter .
 Let Gf () be the subgraph of the residual graph consisting of only

arcs with capacity at least .

110

s

4

2

t1

170

102

122

Gf

110

s

4

2

t

170

102

122

Gf (100)

11

Capacity Scaling

Scaling-Max-Flow(G, s, t, c) {
foreach e  E f(e)  0
  smallest power of 2 greater than or equal to C
Gf  residual graph

while (  1) {
Gf()  -residual graph
while (there exists augmenting path P in Gf()) {

f  augment(f, c, P)
update Gf()

}
   / 2

}
return f

}

12

Capacity Scaling: Correctness

Assumption. All edge capacities are integers between 1 and C.

Integrality invariant. All flow and residual capacity values are
integral.

Correctness. If the algorithm terminates, then f is a max flow.
Pf.
 By integrality invariant, when  = 1  Gf() = Gf.
 Upon termination of  = 1 phase, there are no augmenting

paths. ▪

13

Capacity Scaling: Running Time

Lemma 1. The outer while loop repeats 1 + log2 C times.
Pf. Initially C   < 2C.  decreases by a factor of 2 each iteration. ▪

Lemma 2. Let f be the flow at the end of a -scaling phase. Then the
value of the maximum flow is at most v(f) + m .

Lemma 3. There are at most 2m augmentations per scaling phase.
 Let f be the flow at the end of the previous scaling phase.
 L2  v(f*)  v(f) + m (2).
 Each augmentation in a -phase increases v(f) by at least . ▪

Theorem. The scaling max-flow algorithm finds a max flow in O(m log
C) augmentations. It can be implemented to run in O(m2 log C) time. ▪

proof on next slide

14

Capacity Scaling: Running Time

Lemma 2. Let f be the flow at the end of a -scaling phase. Then value
of the maximum flow is at most v(f) + m .
Pf. (almost identical to proof of max-flow min-cut theorem)
 We show that at the end of a -phase, there exists a cut (A, B)

such that cap(A, B)  v(f) + m .
 Choose A to be the set of nodes reachable from s in Gf().
 By definition of A, s  A.
 By definition of f, t  A.

v(f)  f (e)
e out of A

  f (e)
e in to A


 (c(e)
e out of A

 )  
e in to A


 c(e)
e out of A

  
e out of A
  

e in to A


 cap(A, B) - m
original network

s

t

A B

Dinic’s Max Flow Min-Cut Algorithm

Use Breadth First Search to Compute Level Graph

15

s

2

3

4

5 t10

10

9

8

4

10

1062

G:
capacity

s

2

3

4

5 t10

10

9

8

4

10

1062
GL

capacity

Level 0

Level 3

Discard cross-layer edges

1

1

Dinic’s Max Flow Min-Cut Algorithm

Use Breadth First Search to Compute Level Graph

16

s

2

3

4

5 t10

10

9

8

4

10

1062

G:
capacity

s

2

3

4

5 t10

10

9

8

4

10

10GL

capacity

Level 0

Level 3

Discard cross-layer edges

1

Dinic’s Max Flow Min-Cut Algorithm

Use Breadth First Search to Compute Level Graph

17

s

2

3

4

5 t10

10

9

8

4

10

1062

G:
capacity

s

2

3

4

5 t10

10

9

8

4

10

10GL

flow

Level 0

Level 3

Discard cross-layer edges
Find Blocking Flow

1

9 9 10

15 4

4

Dinic’s Max Flow Min-Cut Algorithm

Create Residual Graph Gf

18

s

2

3

4

5 t9

5

9

7

4

10

662

Gf: 1 41
5

1

s

2

3

4

5 t10

10

9

8

4

10

10GL

flow

9 9 10

15 4

Total Flow: 14

Dinic’s Max Flow Min-Cut Algorithm

19

s

2

3

4

5 t9

5

9

7

4

10

662

Gf: 1 41
5

1Level 0

Level 3

Level 1

Level 2 Level 4

Remark: Number of levels increased. This is not a coincidence!

Dinic’s Max Flow Min-Cut Algorithm

20

s

2

3

4

5 t9

5

9

7

4

10

662

Gf: 1 41
5

1Level 0

Level 3

Level 1

Level 2 Level 4

s

2

3

4

5 t9

5

9

7

4

10

662
1 41

5

1

Dinic’s Max Flow Min-Cut Algorithm

21

s

2

3

4

5 t9

5

9

7

4

10

662

Gf: 1 41
5

1Level 0

Level 3

Level 4

s

2

3

4

5 t1

5
7

66

Level 1

Level 2

Dinic’s Max Flow Min-Cut Algorithm

22

s

2

3

4

5 t9

5

9

7

4

10

562

Gf: 1 51
5

1Level 0

Level 3

Level 4

s

2

3

4

5 t1

5
7

66

Level 1

Level 2

5
5

5
5

flow

Total Extra Flow: 5

Dinic’s Max Flow Min-Cut Algorithm

New Residual Graph Gf

23

s

2

3

4

5 t9 9

2

4

10

12

Gf: 1 106
10

1

s

2

3

4

5 t1

5
7

56
5

5 5

flow

5

6

Total Extra Flow: 5

Dinic’s Max Flow Min-Cut Algorithm

New Residual Graph Gf

24

s

2

3

4

5 t9 9

2

4

10

12

Gf: 1 106
10

1

6

Breadth First Search: Yields minimum s-t cut! We are done!

Reachable

s

2

3

4

5 t10

10

9

8

4

10

1062

G:
capacity

1

A

25

Dinic’s Algorithm

26

Dinic’s Algorithm: Correctness and Running Time

27

Dinic’s Algorithm: Correctness and Running Time

28

Dinic’s Algorithm: Correctness and Running Time

29

7.7 Extensions to Max Flow

31

Circulation with Demands

Circulation with demands.
 Directed graph G = (V, E).
 Edge capacities c(e), e  E.
 Node supply and demands d(v), v  V.

Def. A circulation is a function that satisfies:
 For each e  E: 0  f(e)  c(e) (capacity)
 For each v  V: (conservation)

Circulation problem: given (V, E, c, d), does there exist a circulation?

f (e)

e in to v
  f (e)

e out of v
  d (v)

demand if d(v) > 0; supply if d(v) < 0; transshipment if d(v) = 0

32

Necessary condition: sum of supplies = sum of demands.

Pf. Sum conservation constraints for every demand node v.

3

10 6

-7

-8

11

-6

4
9
7

3

10 0

7

4
4

6

6
7
1

4 2

flow

Circulation with Demands

capacity

d (v)

v : d (v)  0
   d (v)

v : d (v)  0
 : D

demand

supply

33

Circulation with Demands

Max flow formulation.

G:
supply

3

10 6

-7

-8

11

-6

9

10 0

7

4

7

4

demand

34

Circulation with Demands

Max flow formulation.
 Add new source s and sink t.
 For each v with d(v) < 0, add edge (s, v) with capacity -d(v).
 For each v with d(v) > 0, add edge (v, t) with capacity d(v).
 Claim: G has circulation iff G' has max flow of value D.

G':
supply

3

10 6 9

0

7

4

7

4

s

t

10 11

7 8 6

saturates all edges
leaving s and entering t

demand

35

Circulation with Demands

Integrality theorem. If all capacities and demands are
integers, and there exists a circulation, then there exists one
that is integer-valued.

Pf. Follows from max flow formulation and integrality
theorem for max flow.

Characterization. Given (V, E, c, d), there does not exists a
circulation iff there exists a node partition (A, B) such that
vB dv > cap(A, B)

Pf idea. Look at min cut in G'.

demand by nodes in B exceeds supply
of nodes in B plus max capacity of
edges going from A to B

36

Circulation with Demands and Lower Bounds

Feasible circulation.
 Directed graph G = (V, E).
 Edge capacities c(e) and lower bounds  (e), e  E.
 Node supply and demands d(v), v  V.

Def. A circulation is a function that satisfies:
 For each e  E:  (e)  f(e)  c(e) (capacity)
 For each v  V: (conservation)

Circulation problem with lower bounds. Given (V, E, , c, d), does
there exists a a circulation?

f (e)

e in to v
  f (e)

e out of v
  d (v)

37

Circulation with Demands and Lower Bounds

Idea. Model lower bounds with demands.
 Send (e) units of flow along edge e.
 Update demands of both endpoints.

Theorem. There exists a circulation in G iff there exists a
circulation in G'. If all demands, capacities, and lower bounds in G
are integers, then there is a circulation in G that is integer-
valued.

Pf sketch. f(e) is a circulation in G iff f'(e) = f(e) - (e) is a
circulation in G'.

v w[2, 9]

lower bound upper bound

v w
d(v) d(w) d(v) + 2 d(w) - 2

G G'

7

capacity

7.8 Survey Design

39

Survey Design

Survey design.
 Design survey asking n1 consumers about n2 products.
 Can only survey consumer i about product j if they own it.
 Ask consumer i between ci and ci' questions.
 Ask between pj and pj' consumers about product j.

Goal. Design a survey that meets these specs, if possible.

Bipartite perfect matching. Special case when ci = ci' = pi = pi' = 1.

one survey question per product

40

Survey Design

Algorithm. Formulate as a circulation problem with lower bounds.
 Include an edge (i, j) if consumer j owns product i.
 Integer circulation  feasible survey design.

s

1

3

5

1'

3'

5'

t

2

4

2'

4'

[c1, c1']

[0, 1]

consumers

[p1, p1']

[0, ]

products

