Travel: I will be attending a conference next week.
Tuesday: Recorded Lecture + return midterms (hopefully)
Thursday: No class (March 2)
Midterm Regrade? Must be completed within 2 weeks (Mar 13) (syllabus). Please e-mail us before then.
Midterm Solutions: Will post on blackboard before Tuesday.
Max-Flow Problem, Min Cut Problem
- Definition of a s-t flow \(f(e) \) and a s-t cut \((A,B)\)
- Value of a flow \(f \)
- Capacity of a s-t cut \((A,B)\)

Weak Duality Lemma: For any flow \(f \) and s-t cut \(A,B \) we have \(v(f) \leq cap(A,B) \) (i.e., capacity of minimum cut is upper bound on max-flow)

Finding a Max-Flow:
- Greedy algorithm fails!
- Residual Graph
- Ford-Fulkerson Algorithm
 - Repeatedly find augmenting path in residual graph
 - Proof of Correctness
 - Max-Flow Min-Cut Equivalence
Ford-Fulkerson Algorithm

\[G: \]

\[s \]

10

10

10

\[3 \]

2

8

9

\[5 \]

6

10

10

\[4 \]

4

10

10

\[t \]

Capacity

play
Max-Flow Min-Cut Theorem

Augmenting path theorem. Flow f is a max flow iff there are no augmenting paths.

Max-flow min-cut theorem. [Elias-Feinstein-Shannon 1956, Ford-Fulkerson 1956] The value of the max flow is equal to the value of the min cut.

Pf. We prove both simultaneously by showing TFAE:

(i) There exists a cut (A, B) such that $v(f) = \text{cap}(A, B)$.
(ii) Flow f is a max flow.
(iii) There is no augmenting path relative to f.

(i) \Rightarrow (ii) This was the corollary to weak duality lemma.

(ii) \Rightarrow (iii) We show contrapositive. $\neg (iii) \Rightarrow \neg (ii)$

- Let f be a flow. If there exists an augmenting path, then we can improve f by sending flow along path.
Proof of Max-Flow Min-Cut Theorem

(iii) ⇒ (i)

- Let f be a flow with no augmenting paths.
- Let A be set of vertices reachable from s in residual graph.
- By definition of A, $s \in A$.
- By definition of f, $t \notin A$.

Let $v(f)$ be the value of the flow f, which satisfies the following:

$$v(f) = \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ in to } A} f(e)$$

$$v(f) = \sum_{e \text{ out of } A} c(e) - \sum_{e \text{ in to } A} f(e)$$

$$v(f) = \text{cap}(A, B)$$
Running Time

Assumption. All capacities are integers between 1 and \(C \).

Invariant. Every flow value \(f(e) \) and every residual capacity \(c_f(e) \) remains an integer throughout the algorithm.

Theorem. The algorithm terminates in at most \(v(f^*) \leq nC \) iterations.

Pf. Each augmentation increase value by at least 1. \(\Box \)

Corollary. If \(C = 1 \), Ford-Fulkerson runs in \(O(mn) \) time.

Integrality theorem. If all capacities are integers, then there exists a max flow \(f \) for which every flow value \(f(e) \) is an integer.

Pf. Since algorithm terminates, theorem follows from invariant. \(\Box \)
7.3 Choosing Good Augmenting Paths
Q. Is generic Ford-Fulkerson algorithm polynomial in input size?

A. No. If max capacity is C, then algorithm can take C iterations.
Choosing Good Augmenting Paths

Use care when selecting augmenting paths.
- Some choices lead to exponential algorithms.
- Clever choices lead to polynomial algorithms.
- If capacities are irrational, algorithm not guaranteed to terminate!

Goal: choose augmenting paths so that:
- Can find augmenting paths efficiently.
- Few iterations.

Choose augmenting paths with: [Edmonds-Karp 1972, Dinitz 1970]
- Max bottleneck capacity.
- Sufficiently large bottleneck capacity.
- Fewest number of edges.
Intuition. Choosing path with highest bottleneck capacity increases flow by max possible amount.

- Don't worry about finding exact highest bottleneck path.
- Maintain scaling parameter Δ.
- Let $G_f(\Delta)$ be the subgraph of the residual graph consisting of only arcs with capacity at least Δ.

![Graph](attachment:image.png)
Capacity Scaling

Scaling-Max-Flow(G, s, t, c) {
 foreach e ∈ E f(e) ← 0
 Δ ← smallest power of 2 greater than or equal to C
 G_f ← residual graph
 while (Δ ≥ 1) {
 G_f(Δ) ← Δ-residual graph
 while (there exists augmenting path P in G_f(Δ)) {
 f ← augment(f, c, P)
 update G_f(Δ)
 }
 Δ ← Δ / 2
 }
 return f
}
Assumption. All edge capacities are integers between 1 and \(C \).

Integrality invariant. All flow and residual capacity values are integral.

Correctness. If the algorithm terminates, then \(f \) is a max flow.

Pf.
- By integrality invariant, when \(\Delta = 1 \) \(\implies G_f(\Delta) = G_f \).
- Upon termination of \(\Delta = 1 \) phase, there are no augmenting paths. •
Capacity Scaling: Running Time

Lemma 1. The outer while loop repeats \(1 + \lceil \log_2 C \rceil\) times.

Proof. Initially \(C \leq \Delta < 2C\). \(\Delta\) decreases by a factor of 2 each iteration. □

Lemma 2. Let \(f\) be the flow at the end of a \(\Delta\)-scaling phase. Then the value of the maximum flow is at most \(v(f) + m\Delta\).

Lemma 3. There are at most \(2m\) augmentations per scaling phase.

- Let \(f\) be the flow at the end of the previous scaling phase.
- \(L2 \Rightarrow v(f^*) \leq v(f) + m(2\Delta)\).
- Each augmentation in a \(\Delta\)-phase increases \(v(f)\) by at least \(\Delta\). □

Theorem. The scaling max-flow algorithm finds a max flow in \(O(m \log C)\) augmentations. It can be implemented to run in \(O(m^2 \log C)\) time. □
Lemma 2. Let f be the flow at the end of a Δ-scaling phase. Then value of the maximum flow is at most $v(f) + m \Delta$.

Pf. (almost identical to proof of max-flow min-cut theorem)

- We show that at the end of a Δ-phase, there exists a cut (A, B) such that $\text{cap}(A, B) \leq v(f) + m \Delta$.
- Choose A to be the set of nodes reachable from s in $G_f(\Delta)$.
- By definition of A, $s \in A$.
- By definition of f, $t \notin A$.

$$v(f) = \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ in to } A} f(e)$$
$$\geq \sum_{e \text{ out of } A} (c(e) - \Delta) - \sum_{e \text{ in to } A} \Delta$$
$$= \sum_{e \text{ out of } A} c(e) - \sum_{e \text{ out of } A} \Delta - \sum_{e \text{ in to } A} \Delta$$
$$\geq \text{cap}(A, B) - m \Delta.$$
Dinic’s Max Flow Min-Cut Algorithm

Use Breadth First Search to Compute Level Graph

G: Level 0

G_L: Discard cross-layer edges
Dinic’s Max Flow Min-Cut Algorithm

Use Breadth First Search to Compute Level Graph

\[G : \]

\[G_L : \]

Discard cross-layer edges
Dinic’s Max Flow Min-Cut Algorithm

Use Breadth First Search to Compute Level Graph

\[G : \]

\[G_L : \]

Discard cross-layer edges
Find Blocking Flow
Dinic’s Max Flow Min-Cut Algorithm

Create Residual Graph G_f

G_f:

G_L:

Total Flow: 14
Dinic’s Max Flow Min-Cut Algorithm

Run BFS on G_f to create level graph $G_{f,L}$

G_f:

Remark: Number of levels increased. This is not a coincidence!
Dinic's Max Flow Min-Cut Algorithm

Run BFS on G_f to create level graph $G_{f,L}$

G_f: Level 0

Level 1

Level 2

Level 3

Level 4
Dinic’s Max Flow Min-Cut Algorithm

Run BFS on G_f to create level graph $G_{f,L}$

G_f: Level 0

$G_{f,L}$ Level 1
Dinic’s Max Flow Min-Cut Algorithm

Run BFS on G_f to create level graph $G_{f,L}$

G_f: Level 0

Level 1

Level 2

Level 3

Level 4

$G_{f,L}$: Blocking Flow for level graph $G_{f,L}$

Total Extra Flow: 5
Dinic’s Max Flow Min-Cut Algorithm

New Residual Graph G_f

G_f:

$$
\begin{array}{c}
\text{s} & \rightarrow & 1 & \rightarrow & 3 & \rightarrow & \text{2} & \rightarrow & 4 & \rightarrow & \text{t} \\
\text{s} & \rightarrow & 9 & \rightarrow & 3 & \rightarrow & 5 & \rightarrow & \text{t} \\
\text{s} & \rightarrow & 1 & \rightarrow & 3 & \rightarrow & 5 & \rightarrow & \text{t} \\
\end{array}
$$

Total Extra Flow: 5

Blocking Flow for level graph $G_{f,L}$
Dinic’s Max Flow Min-Cut Algorithm

New Residual Graph G_f

G_f:

Breadth First Search: Yields minimum s-t cut! \Rightarrow We are done!
Finding a Blocking Flow in $G_{f,L}$

Definition: We let $C_{f,L}(e)$ denote the capacity of an edge e in $G_{f,L}$

Definition: Given an augmenting flow f' for $G_{f,L}$ and a $s-t$ path P we define $B(P) = \min_{e \in P} C_{f,L}(e)$

FindBlockingFlow($G_{f,L}$)

1. Initialize $\text{RemCap}(e) = C_{f,L}(e)$
2. While there exists a path P with $B(P) > 0$
 - Set $f'(e) = f'(e) + B(P)$ for each edge $e \in P$
 - Set $\text{RemCap}(e) = \text{RemCap}(e) - B(P)$ for each edge $e \in P$

Analysis: Each iteration of while loop “eliminates” at least one edge.

Implication: Terminates after at most m rounds.

Naïve Running Time: $O((m+n)m)$

Amortization: Can enumerate paths in amortized time $O(n)$ per path
Dinic’s Algorithm

1. Start with empty flow f
2. Construct G_f
3. Repeat until s and t are disconnected (no augmenting path)
 1. (Level Graph) Run BFS on G_f to build $G_{f,L}$
 2. (Blocking Flow) Find blocking flow f' in $G_{f,L}$
 3. (Augment) Let $f = f + f'$ and Construct G_f
4. Output f

Analysis:

Claim: Each time we iterate the loop we increase the depth of G_f

Implication: Must terminate in at most n iterations!

Time Per Iteration: $O(nm)$ to find blocking flow f'

Total Time: $O(n^2m)$
Dinic’s Algorithm: Correctness and Running Time

Correctness follows directly from **Augmenting Path Theorem**.

Augmenting path theorem. Flow f is a max flow iff there are no augmenting paths.

Running Time Analysis: Let f_i denote residual graph after iteration i ($G_{f_0} = G$)

Definition: $\text{depth}(G_{f_i}) =$ length of the shortest directed path from s to t.

Key Claim: $\text{depth}(G_{f_{i+1}}) > \text{depth}(G_{f_i})$ (depth always increases)
Dinic’s Algorithm: Correctness and Running Time

Running Time Analysis: Let f_i denote residual graph after iteration i ($G_{f_0} = G$)

Definition: $\text{depth}(G_{f_i}) =$ length of the shortest directed path from s to t.

Key Claim: $\text{depth}(G_{f_{i+1}}) > \text{depth}(G_{f_i})$ (depth always increases)

Proof: Suppose (for contradiction) that $\text{depth}(G_{f_{i+1}}) \leq \text{depth}(G_{f_i})$.

- Then $G_{f_{i+1}}$ contains an s-t path of length $\leq \text{depth}(G_{f_i})$.
- This path corresponds to an augmenting path for the flow $f' = f_{i+1} - f_i$ in G_{f_i}.
- But since the augmenting path has length $\text{depth}(G_{f_i})$ it is also an augmenting path in the level graph $G_{f_i \cdot L}$.
- This contradicts the claim that f' is a blocking flow in $G_{f_i \cdot L}$!
Dinic’s Algorithm: Correctness and Running Time

Running Time Analysis: Let f_i denote residual graph after iteration i ($G_{f_0} = G$)

Definition: depth(G_{f_i}) = length of the shortest directed path from s to t.

Key Claim: depth(G_{f_i+1}) > depth(G_{f_i}) (depth always increases)

Implication: #iterations is at most n

Time to Compute Blocking Flow in Level Graph: $O(mn)$
- Using special data-structure called dynamic trees $O(m \log n)$

Total Time: $O(mn \log n)$ with dynamic trees or $O(mn^2)$ without.
7.7 Extensions to Max Flow
Circulation with Demands

Circulation with demands.
- Directed graph $G = (V, E)$.
- Edge capacities $c(e), e \in E$.
- Node supply and demands $d(v), v \in V$.

Def. A circulation is a function that satisfies:
- For each $e \in E$: $0 \leq f(e) \leq c(e)$ (capacity)
- For each $v \in V$: $\sum_{e \text{ in to } v} f(e) - \sum_{e \text{ out of } v} f(e) = d(v)$ (conservation)

Circulation problem: given (V, E, c, d), does there exist a circulation?
Circulation with Demands

Necessary condition: sum of supplies = sum of demands.

\[\sum_{v : d(v) > 0} d(v) = \sum_{v : d(v) < 0} -d(v) =: D \]

Pf. Sum conservation constraints for every demand node v.

![Diagram of circulation with demands and supplies](image)
Circulation with Demands

Max flow formulation.

\[G:\]

\[\begin{array}{c}
-7 \\
10 \\
3 \\
\end{array} \quad \begin{array}{c}
-8 \\
6 \\
10 \\
\end{array} \quad \begin{array}{c}
7 \\
4 \\
0 \\
\end{array} \quad \begin{array}{c}
9 \\
4 \\
11 \\
\end{array} \quad \begin{array}{c}
-6 \quad \text{supply} \\
\text{demand} \\
\end{array} \]
Max flow formulation.
- Add new source \(s \) and sink \(t \).
- For each \(v \) with \(d(v) < 0 \), add edge \((s, v)\) with capacity \(-d(v)\).
- For each \(v \) with \(d(v) > 0 \), add edge \((v, t)\) with capacity \(d(v)\).
- Claim: \(G \) has circulation iff \(G' \) has max flow of value \(D \).
Integrality theorem. If all capacities and demands are integers, and there exists a circulation, then there exists one that is integer-valued.

Pf. Follows from max flow formulation and integrality theorem for max flow.

Characterization. Given \((V, E, c, d)\), there does not exist a circulation iff there exists a node partition \((A, B)\) such that \(\sum_{v \in B} d_v > \text{cap}(A, B)\).

Pf idea. Look at min cut in \(G'\).
Circulation with Demands and Lower Bounds

Feasible circulation.
- Directed graph $G = (V, E)$.
- Edge capacities $c(e)$ and lower bounds $\ell(e)$, $e \in E$.
- Node supply and demands $d(v)$, $v \in V$.

Def. A circulation is a function that satisfies:
- For each $e \in E$: $\ell(e) \leq f(e) \leq c(e)$ (capacity)
- For each $v \in V$: $\sum_{e \text{ in to } v} f(e) - \sum_{e \text{ out of } v} f(e) = d(v)$ (conservation)

Circulation problem with lower bounds. Given (V, E, ℓ, c, d), does there exist a circulation?
Circulation with Demands and Lower Bounds

Idea. Model lower bounds with demands.
- Send \(\ell(e) \) units of flow along edge \(e \).
- Update demands of both endpoints.

Theorem. There exists a circulation in \(G \) iff there exists a circulation in \(G' \). If all demands, capacities, and lower bounds in \(G \) are integers, then there is a circulation in \(G \) that is integer-valued.

Pf sketch. \(f(e) \) is a circulation in \(G \) iff \(f'(e) = f(e) - \ell(e) \) is a circulation in \(G' \).
7.8 Survey Design
Survey Design

Survey design.

- Design survey asking n_1 consumers about n_2 products.
- Can only survey consumer i about product j if they own it.
- Ask consumer i between c_i and c_i' questions.
- Ask between p_j and p_j' consumers about product j.

Goal. Design a survey that meets these specs, if possible.

Bipartite perfect matching. Special case when $c_i = c_i' = p_i = p_i' = 1$.
Algorithm. Formulate as a circulation problem with lower bounds.

- Include an edge \((i, j)\) if consumer \(j\) owns product \(i\).
- Integer circulation \(\iff\) feasible survey design.