Midterm Exam Tomorrow Night: Wed, Feb 21 (8PM-10PM) @ MTHW 210
Course Recap: (Or, What Could be On the First Midterm?)

Gale-Shapley, Stable Matching Problem

Asymptotic Analysis (e.g., Big O notation)

Recurrence Relationships

Greedy Algorithms

Graph Algorithms

Divide-And-Conquer + Recurrence Relationships

Dynamic Programming

Basic Questions about Network Flow (today)
Midterm 1

Practice Midterm and Solutions Posted on Blackboard
- Solutions posted yesterday (Monday)
- No electronics (laptop, calculator, smart phone etc...)
- May prepare one 3x5 inch index card with any notes you want
 - No additional notes

- Exam is 2 hours (8PM to 10PM)
 - Practice exam is longer than the real midterm
 - Topics are reasonably representative of real midterm
Chapter 7
Network Flow
Soviet Rail Network, 1955

Maximum Flow and Minimum Cut

Max flow and min cut.
- Two very rich algorithmic problems.
- Cornerstone problems in combinatorial optimization.
- Beautiful mathematical duality.

Nontrivial applications / reductions.
- Data mining.
- Open-pit mining.
- Project selection.
- Airline scheduling.
- Bipartite matching.
- Baseball elimination.
- Image segmentation.
- Network connectivity.
- Network reliability.
- Distributed computing.
- Egalitarian stable matching.
- Security of statistical data.
- Network intrusion detection.
- Multi-camera scene reconstruction.
- Many many more ...
Flow network.

- Abstraction for material flowing through the edges.
- $G = (V, E)$ = directed graph, no parallel edges.
- Two distinguished nodes: $s = \text{source}, t = \text{sink}$.
- $c(e)$ = capacity of edge e.

Minimum Cut Problem

![Diagram of a flow network with nodes labeled as source, sink, and various other nodes with capacities.]
Def. An s-t cut is a partition \((A, B)\) of \(V\) with \(s \in A\) and \(t \in B\).

Def. The capacity of a cut \((A, B)\) is:
\[
\text{cap}(A, B) = \sum_{e \text{ out of } A} c(e)
\]
Def. An *s-t cut* is a partition \((A, B)\) of \(V\) with \(s \in A\) and \(t \in B\).

Def. The capacity of a cut \((A, B)\) is:

\[
\text{cap}(A, B) = \sum_{e \text{ out of } A} c(e)
\]

Capacity = 9 + 15 + 8 + 30 = 62
Min s-t cut problem. Find an s-t cut of minimum capacity.

Capacity = 10 + 8 + 10 = 28
Def. An s-t flow is a function that satisfies:
- For each $e \in E$: $0 \leq f(e) \leq c(e)$ [capacity]
- For each $v \in V - \{s, t\}$: $\sum_{e \text{ in } v} f(e) = \sum_{e \text{ out of } v} f(e)$ [conservation]

Def. The value of a flow f is: $v(f) = \sum_{e \text{ out of } s} f(e)$.
Def. An s-t flow is a function that satisfies:

- For each \(e \in E \):
 \[0 \leq f(e) \leq c(e) \]
 \([\text{capacity}]\)

- For each \(v \in V - \{s, t\} \):
 \[\sum_{e \text{ in to } v} f(e) = \sum_{e \text{ out of } v} f(e) \]
 \([\text{conservation}]\)

Def. The value of a flow \(f \) is:

\[v(f) = \sum_{e \text{ out of } s} f(e). \]
Max flow problem. Find s-t flow of maximum value.

Value = 28
Flow value lemma. Let f be any flow, and let (A, B) be any s-t cut. Then, the net flow sent across the cut is equal to the amount leaving s.

$$\sum_{e \text{ out of } A} f(e) - \sum_{e \text{ in to } A} f(e) = v(f)$$
Flow value lemma. Let f be any flow, and let (A, B) be any s-t cut. Then, the net flow sent across the cut is equal to the amount leaving s.

\[\sum_{e \text{ out of } A} f(e) - \sum_{e \text{ in to } A} f(e) = v(f) \]
Flow value lemma. Let f be any flow, and let (A, B) be any s-t cut. Then, the net flow sent across the cut is equal to the amount leaving s.

$$\sum_{e \text{ out of } A} f(e) - \sum_{e \text{ in to } A} f(e) = v(f)$$

Value = $10 - 4 + 8 - 0 + 10 = 24$
Flows and Cuts

Flow value lemma. Let f be any flow, and let (A, B) be any s-t cut. Then

$$\sum_{e \text{ out of } A} f(e) - \sum_{e \text{ in to } A} f(e) = v(f).$$

Pf.

$$v(f) = \sum_{e \text{ out of } s} f(e)$$

by flow conservation, all terms except $v = s$ are 0

$$\rightarrow = \sum_{v \in A} \left(\sum_{e \text{ out of } v} f(e) - \sum_{e \text{ in to } v} f(e) \right)$$

$$= \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ in to } A} f(e).$$
Weak duality. Let \(f \) be any flow, and let \((A, B)\) be any \(s-t \) cut. Then the value of the flow is at most the capacity of the cut.

\[
\text{Cut capacity} = 30 \implies \text{Flow value} \leq 30
\]
Weak duality. Let f be any flow. Then, for any s-t cut (A, B) we have $v(f) \leq \text{cap}(A, B)$.

Pf.

\[
v(f) = \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ in to } A} f(e)
\leq \sum_{e \text{ out of } A} f(e)
\leq \sum_{e \text{ out of } A} c(e)
= \text{cap}(A, B)
\]
Corollary. Let f be any flow, and let (A, B) be any cut. If $v(f) = \text{cap}(A, B)$, then f is a max flow and (A, B) is a min cut.

Value of flow = 28
Cut capacity = 28 \Rightarrow Flow value \leq 28
Towards a Max Flow Algorithm

Greedy algorithm.

- Start with $f(e) = 0$ for all edge $e \in E$.
- Find an s-t path P where each edge has $f(e) < c(e)$.
- Augment flow along path P.
- Repeat until you get stuck.
Greedy algorithm.
- Start with $f(e) = 0$ for all edge $e \in E$.
- Find an s-t path P where each edge has $f(e) < c(e)$.
- Augment flow along path P.
- Repeat until you get stuck.
Towards a Max Flow Algorithm

Greedy algorithm.
- Start with $f(e) = 0$ for all edge $e \in E$.
- Find an s-t path P where each edge has $f(e) < c(e)$.
- Augment flow along path P.
- Repeat until you get stuck.

\[\text{locally optimality} \neq \text{global optimality} \]

$\text{greedy} = 20$

$\text{opt} = 30$
Residual Graph

Original edge: \(e = (u, v) \in E \).
- Flow \(f(e) \), capacity \(c(e) \).

Residual edge.
- "Undo" flow sent.
- \(e = (u, v) \) and \(e^R = (v, u) \).
- Residual capacity:

\[
c_f(e) = \begin{cases}
 c(e) - f(e) & \text{if } e \in E \\
 f(e) & \text{if } e^R \in E
\end{cases}
\]

Residual graph: \(G_f = (V, E_f) \).
- Residual edges with positive residual capacity.
- \(E_f = \{e : f(e) < c(e)\} \cup \{e^R : f(e) > 0\} \).
Ford-Fulkerson Algorithm

G:

![Graph Diagram]
Augmenting Path Algorithm

Augment\((f, c, P) \) {
 \(b \leftarrow \text{bottleneck}(P) \)
 \begin{align*}
 \text{foreach } e \in P \{ \\
 \text{if } (e \in E) \quad f(e) \leftarrow f(e) + b \\
 \text{else} \quad f(e^R) \leftarrow f(e^R) - b
 \}
 \}
 \text{return } f
}

Ford-Fulkerson\((G, s, t, c) \) {
 \begin{align*}
 \text{foreach } e \in E \quad f(e) \leftarrow 0 \\
 G_\varepsilon \leftarrow \text{residual graph}
 \end{align*}
 \text{while (there exists augmenting path } P) \{ \\
 f \leftarrow \text{Augment}(f, c, P) \\
 \text{update } G_\varepsilon
 \}
 \text{return } f
}

Max-Flow Min-Cut Theorem

Augmenting path theorem. Flow \(f \) is a max flow iff there are no augmenting paths.

Max-flow min-cut theorem. [Elias-Feinstein-Shannon 1956, Ford-Fulkerson 1956]
The value of the max flow is equal to the value of the min cut.

Pf. We prove both simultaneously by showing TFAE:
 (i) There exists a cut \((A, B)\) such that \(v(f) = \text{cap}(A, B) \).
 (ii) Flow \(f \) is a max flow.
 (iii) There is no augmenting path relative to \(f \).

(i) \(\Rightarrow \) (ii) This was the corollary to weak duality lemma.

(ii) \(\Rightarrow \) (iii) We show contrapositive.
 • Let \(f \) be a flow. If there exists an augmenting path, then we can improve \(f \) by sending flow along path.
Proof of Max-Flow Min-Cut Theorem

(iii) ⇒ (i)

- Let \(f \) be a flow with no augmenting paths.
- Let \(A \) be set of vertices reachable from \(s \) in residual graph.
- By definition of \(A \), \(s \in A \).
- By definition of \(f \), \(t \notin A \).

\[
v(f) = \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ in to } A} f(e)
\]

\[
= \sum_{e \text{ out of } A} c(e)
\]

\[
= \text{cap}(A, B)
\]
Running Time

Assumption. All capacities are integers between 1 and C.

Invariant. Every flow value $f(e)$ and every residual capacity $c_f(e)$ remains an integer throughout the algorithm.

Theorem. The algorithm terminates in at most $v(f^*) \leq nC$ iterations.

Pf. Each augmentation increase value by at least 1. ▪

Corollary. If $C = 1$, Ford-Fulkerson runs in $O(mn)$ time.

Integrality theorem. If all capacities are integers, then there exists a max flow f for which every flow value $f(e)$ is an integer.

Pf. Since algorithm terminates, theorem follows from invariant. ▪
7.3 Choosing Good Augmenting Paths
Ford-Fulkerson: Exponential Number of Augmentations

Q. Is generic Ford-Fulkerson algorithm polynomial in input size?

A. No. If max capacity is \(C \), then algorithm can take \(C \) iterations.

\[m, n, \text{ and } \log C \]
Choosing Good Augmenting Paths

Use care when selecting augmenting paths.
- Some choices lead to exponential algorithms.
- Clever choices lead to polynomial algorithms.
- If capacities are irrational, algorithm not guaranteed to terminate!

Goal: choose augmenting paths so that:
- Can find augmenting paths efficiently.
- Few iterations.

Choose augmenting paths with: [Edmonds-Karp 1972, Dinitz 1970]
- Max bottleneck capacity.
- Sufficiently large bottleneck capacity.
- Fewest number of edges.
Intuition. Choosing path with highest bottleneck capacity increases flow by max possible amount.
- Don't worry about finding exact highest bottleneck path.
- Maintain scaling parameter Δ.
- Let $G_f(\Delta)$ be the subgraph of the residual graph consisting of only arcs with capacity at least Δ.

![Diagram of residual graph G_f and $G_f(100)$](image)
Capacity Scaling

Scaling-Max-Flow(G, s, t, c) {
 foreach e ∈ E f(e) ← 0
 Δ ← smallest power of 2 greater than or equal to C
 G_\Delta ← residual graph

 while (Δ ≥ 1) {
 G_\Delta ← Δ-residual graph
 while (there exists augmenting path P in G_\Delta) {
 f ← augment(f, c, P)
 update G_\Delta
 }
 Δ ← Δ / 2
 }
 return f
}
Capacity Scaling: Correctness

Assumption. All edge capacities are integers between 1 and C.

Integrality invariant. All flow and residual capacity values are integral.

Correctness. If the algorithm terminates, then f is a max flow.

Pf.
- By integrality invariant, when $\Delta = 1 \Rightarrow G_f(\Delta) = G_f$.
- Upon termination of $\Delta = 1$ phase, there are no augmenting paths. □
Capacity Scaling: Running Time

Lemma 1. The outer while loop repeats $1 + \lceil \log_2 C \rceil$ times.

Pf. Initially $C \leq \Delta < 2C$. Δ decreases by a factor of 2 each iteration. □

Lemma 2. Let f be the flow at the end of a Δ-scaling phase. Then the value of the maximum flow is at most $v(f) + m \Delta$. ← proof on next slide

Lemma 3. There are at most $2m$ augmentations per scaling phase.
 - Let f be the flow at the end of the previous scaling phase.
 - $L2 \Rightarrow v(f^*) \leq v(f) + m (2\Delta)$.
 - Each augmentation in a Δ-phase increases $v(f)$ by at least Δ. □

Theorem. The scaling max-flow algorithm finds a max flow in $O(m \log C)$ augmentations. It can be implemented to run in $O(m^2 \log C)$ time. □
Lemma 2. Let f be the flow at the end of a Δ-scaling phase. Then value of the maximum flow is at most $v(f) + m \Delta$.

Pf. (almost identical to proof of max-flow min-cut theorem)

- We show that at the end of a Δ-phase, there exists a cut (A, B) such that $\text{cap}(A, B) \leq v(f) + m \Delta$.

- Choose A to be the set of nodes reachable from s in $G_f(\Delta)$.

- By definition of A, $s \in A$.

- By definition of f, $t \notin A$.

\[
v(f) = \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ in to } A} f(e)
\geq \sum_{e \text{ out of } A} (c(e) - \Delta) - \sum_{e \text{ in to } A} \Delta
= \sum_{e \text{ out of } A} c(e) - \sum_{e \text{ out of } A} \Delta - \sum_{e \text{ in to } A} \Delta
\geq \text{cap}(A, B) - m\Delta\]

original network