Announcement: Homework 3 due February 15th at 11:59PM
Midterm Exam: Wed, Feb 21 (8PM-10PM) @ MTHW 210
Recap: Dynamic Programming

Key Idea: Express optimal solution in terms of solutions to smaller sub problems

Example 1: Knapsack Problem
- Two Dimensional Solution $OPT(j,w)$
 - $OPT(j,w) = \max \{ v_j + OPT(w-w_j), \ OPT(j-1,w) \}$
 - Case 1: Optimal solution includes item j with value v_j
 - Add item j and reduce remaining capacity to $w-w_j$
 - Case 2: Optimal solution does not include item j

Example 2: RNA Secondary Structure
- Goal: Maximize number of matched base pairs
- Constraints: No Sharp Turns, Watson-Crick Complements, No Crossing Edges
 - $OPT(i, j) = \max \{ Opt(i,j-1), \ \max_{t} \{ 1 + OPT(i,t-1) + OPT(t+1,j-1) \} \}$
6.6 Sequence Alignment
String Similarity

How similar are two strings?

- occurance
- occurrence

6 mismatches, 1 gap

1 mismatch, 1 gap

0 mismatches, 3 gaps
Applications.

- Basis for Unix diff.
- Speech recognition.
- Computational biology.

- Gap penalty \(\delta \); mismatch penalty \(\alpha_{pq} \).
- Cost = sum of gap and mismatch penalties.

\[
\begin{align*}
\alpha_{TC} + \alpha_{GT} + \alpha_{AG} + 2\alpha_{CA} & \quad 2\delta + \alpha_{CA}
\end{align*}
\]
Sequence Alignment

Goal: Given two strings $X = x_1 x_2 \ldots x_m$ and $Y = y_1 y_2 \ldots y_n$ find alignment of minimum cost.

Def. An alignment M is a set of ordered pairs x_i-y_j such that each item occurs in at most one pair and no crossings.

Def. The pair x_i-y_j and $x_i'-y_j'$ cross if $i < i'$, but $j > j'$.

$$
\text{cost}(M) = \sum_{(x_i,y_j) \in M} \alpha_{x_iy_j} + \sum_{i: x_i \text{ unmatched}} \delta + \sum_{j: y_j \text{ unmatched}} \delta
$$

Ex: CTACCG vs. TACATG.

Sol: $M = x_2-y_1, x_3-y_2, x_4-y_3, x_5-y_4, x_6-y_6$.

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>Y_1</td>
</tr>
<tr>
<td>T</td>
<td>Y_2</td>
</tr>
<tr>
<td>A</td>
<td>Y_3</td>
</tr>
<tr>
<td>C</td>
<td>Y_4</td>
</tr>
<tr>
<td>C</td>
<td>Y_5</td>
</tr>
<tr>
<td>-</td>
<td>Y_6</td>
</tr>
<tr>
<td>G</td>
<td>G</td>
</tr>
<tr>
<td>x_1</td>
<td>Y_1</td>
</tr>
<tr>
<td>x_2</td>
<td>Y_2</td>
</tr>
<tr>
<td>x_3</td>
<td>Y_3</td>
</tr>
<tr>
<td>x_4</td>
<td>Y_4</td>
</tr>
<tr>
<td>x_5</td>
<td>Y_5</td>
</tr>
<tr>
<td>x_6</td>
<td>Y_6</td>
</tr>
</tbody>
</table>
Def. $OPT(i, j) = \min$ cost of aligning strings $x_1 \times_2 \ldots x_i$ and $y_1 \times_2 \ldots y_j$.

- **Case 1**: OPT matches x_i-y_j.
 - pay mismatch for x_i-y_j + min cost of aligning two strings $x_1 \times_2 \ldots x_{i-1}$ and $y_1 \times_2 \ldots y_{j-1}$

- **Case 2a**: OPT leaves x_i unmatched.
 - pay gap for x_i and min cost of aligning $x_1 \times_2 \ldots x_{i-1}$ and $y_1 \times_2 \ldots y_j$

- **Case 2b**: OPT leaves y_j unmatched.
 - pay gap for y_j and min cost of aligning $x_1 \times_2 \ldots x_i$ and $y_1 \times_2 \ldots y_{j-1}$

$$OPT(i, j) = \begin{cases}
 j\delta & \text{if } i = 0 \\
 \min \begin{cases}
 \alpha_{x_i, y_j} + OPT(i-1, j-1) \\
 \delta + OPT(i-1, j) \\
 \delta + OPT(i, j-1) \\
 \end{cases} & \text{otherwise} \\
 i\delta & \text{if } j = 0
\end{cases}$$
Sequence Alignment: Algorithm

Sequence-Alignment(m, n, x₁x₂...xₘ, y₁y₂...yₙ, δ, α) {
 for i = 0 to m
 M[i, 0] = iδ
 for j = 0 to n
 M[0, j] = jδ

 for i = 1 to m
 for j = 1 to n
 M[i, j] = min(α[xᵢ, yⱼ] + M[i-1, j-1],
 δ + M[i-1, j],
 δ + M[i, j-1])

 return M[m, n]
}

Analysis. \(\Theta(mn) \) time and space.

English words or sentences: \(m, n \leq 10 \).
Computational biology: \(m = n = 100,000 \). 10 billions ops OK, but 10GB array?
6.7 Sequence Alignment in Linear Space
Sequence Alignment: Linear Space

Q. Can we avoid using quadratic space?

Easy. Optimal value in $O(m + n)$ space and $O(mn)$ time.
- Compute $OPT(i, \cdot)$ from $OPT(i-1, \cdot)$.
- No longer a simple way to recover alignment itself.

Theorem. [Hirschberg 1975] Optimal alignment in $O(m + n)$ space and $O(mn)$ time.
- Clever combination of divide-and-conquer and dynamic programming.
- Inspired by idea of Savitch from complexity theory.
Edit distance graph.
- Let $f(i, j)$ be shortest path from $(0,0)$ to (i, j).
- Observation: $f(i, j) = \text{OPT}(i, j)$.
Sequence Alignment: Linear Space

Edit distance graph.

- Let $f(i, j)$ be shortest path from $(0,0)$ to (i, j).
- Observation: $f(i, j) = \text{OPT}(i, j)$.

$$
\begin{array}{ccccccc}
\varepsilon & y_1 & y_2 & y_3 & y_4 & y_5 & y_6 \\
\varepsilon & 0-0 & & & & & \\
x_1 & & & & & & \\
x_2 & & & & & & \\
x_3 & & & & & & \\
x & & & & & & \\
\end{array}
$$
Edit distance graph.

- Let $f(i, j)$ be shortest path from (0,0) to (i, j).
- Observation: $f(i, j) = \text{OPT}(i, j)$.
Edit distance graph.

- Let $f(i, j)$ be shortest path from $(0,0)$ to (i, j).
- Observation: $f(i, j) = \text{OPT}(i, j)$.
Edit distance graph.

- Let $f(i, j)$ be shortest path from $(0,0)$ to (i, j).
- Can compute $f(\cdot, j)$ for any j in $O(mn)$ time and $O(m + n)$ space.
Sequence Alignment: Linear Space

Edit distance graph.
- Let $g(i, j)$ be shortest path from (i, j) to (m, n).
- Can compute by reversing the edge orientations and inverting the roles of $(0, 0)$ and (m, n)
Sequence Alignment: Linear Space

Edit distance graph.
- Let $g(i, j)$ be shortest path from (i, j) to (m, n).
- Can compute $g(\cdot, j)$ for any j in $O(mn)$ time and $O(m + n)$ space.
Observation 1. The cost of the shortest path that uses \((i, j)\) is
\(f(i, j) + g(i, j)\).
Observation 2. Let q be an index that minimizes $f(q, n/2) + g(q, n/2)$. Then, the shortest path from $(0, 0)$ to (m, n) uses $(q, n/2)$.

Sequence Alignment: Linear Space
Sequence Alignment: Linear Space

Divide: find index q that minimizes $f(q, n/2) + g(q, n/2)$ using DP.
- Align x_q and $y_{n/2}$.

Conquer: recursively compute optimal alignment in each piece.

![Alignment Diagram](attachment:image.png)
Theorem. Let $T(m, n) = \max$ running time of algorithm on strings of length at most m and n. $T(m, n) = O(mn \log n)$.

\[T(m, n) \leq 2T(m, n/2) + O(mn) \Rightarrow T(m, n) = O(mn \log n) \]

Remark. Analysis is not tight because two sub-problems are of size $(q, n/2)$ and $(m - q, n/2)$. In next slide, we save log n factor.
Theorem. Let $T(m, n) = \max$ running time of algorithm on strings of length m and n. $T(m, n) = O(mn)$.

Pf. (by induction on n)

- $O(mn)$ time to compute $f(\cdot, n/2)$ and $g(\cdot, n/2)$ and find index q.
- $T(q, n/2) + T(m - q, n/2)$ time for two recursive calls.
- Choose constant c so that:

 \[
 \begin{align*}
 T(m, 2) & \leq cm \\
 T(2, n) & \leq cn \\
 T(m, n) & \leq cmn + T(q, n/2) + T(m - q, n/2)
 \end{align*}
 \]

- Base cases: $m = 2$ or $n = 2$.
- Inductive hypothesis: $T(m, n) \leq 2cmn$.
6.8 Shortest Paths
Shortest Paths

Shortest path problem. Given a directed graph $G = (V, E)$, with edge weights c_{vw}, find shortest path from node s to node t.

Ex. Nodes represent agents in a financial setting and c_{vw} is cost of transaction in which we buy from agent v and sell immediately to w.

allow negative weights

Ex. Nodes represent agents in a financial setting and c_{vw} is cost of transaction in which we buy from agent v and sell immediately to w.

allow negative weights
Shortest Paths: Failed Attempts

Dijkstra. Can fail if negative edge costs.

![Graph 1](image1)

Re-weighting. Adding a constant to every edge weight can fail.

![Graph 2](image2)
Shortest Paths: Negative Cost Cycles

Negative cost cycle.

\[W \]

\[c(W) < 0 \]

Observation. If some path from \(s \) to \(t \) contains a negative cost cycle, there does not exist a shortest \(s \)-\(t \) path; otherwise, there exists one that is simple.
Def. $OPT(i, v) = \text{length of shortest } v \rightarrow t \text{ path } P \text{ using at most } i \text{ edges.}$

- **Case 1:** P uses at most $i-1$ edges.
 - $OPT(i, v) = OPT(i-1, v)$

- **Case 2:** P uses exactly i edges.
 - if (v, w) is first edge, then OPT uses (v, w), and then selects best $w \rightarrow t$ path using at most $i-1$ edges

\[
OPT(i, v) = \begin{cases}
0 & \text{if } i = 0 \\
\min \left\{ OPT(i-1, v), \min_{(v, w) \in E} \left\{ OPT(i-1, w) + c_{vw} \right\} \right\} & \text{otherwise}
\end{cases}
\]

Remark. By previous observation, if no negative cycles, then $OPT(n-1, v) = \text{length of shortest } v \rightarrow t \text{ path.}$
Shortest Paths: Implementation

```
Shortest-Path(G, t) {
    foreach node v ∈ V
        M[0, v] ← ∞
    M[0, t] ← 0

    for i = 1 to n-1
        foreach node v ∈ V
            M[i, v] ← M[i-1, v]
        foreach edge (v, w) ∈ E
            M[i, v] ← min { M[i, v], M[i-1, w] + c_{vw} }
}
```

Analysis. \(\Theta(mn) \) time, \(\Theta(n^2) \) space.

Finding the shortest paths. Maintain a "successor" for each table entry.
Practical improvements.

- Maintain only one array $M[v] = \text{shortest } v \rightarrow t \text{ path that we have found so far}.$
- No need to check edges of the form (v, w) unless $M[w]$ changed in previous iteration.

Theorem. Throughout the algorithm, $M[v]$ is length of some $v \rightarrow t$ path, and after i rounds of updates, the value $M[v]$ is no larger than the length of shortest $v \rightarrow t$ path using $\leq i$ edges.

Overall impact.

- Memory: $O(m + n)$.
- Running time: $O(mn)$ worst case, but substantially faster in practice.
Bellman-Ford: Efficient Implementation

```
Push-Based-Shortest-Path(G, s, t) {
    foreach node v ∈ V {
        M[v] ← ∞
        successor[v] ← φ
    }

    M[t] = 0
    for i = 1 to n-1 {
        foreach node w ∈ V {
            if (M[w] has been updated in previous iteration) {
                foreach node v such that (v, w) ∈ E {
                    if (M[v] > M[w] + c_{vw}) {
                        M[v] ← M[w] + c_{vw}
                        successor[v] ← w
                    }
                }
            }
        }
        If no M[w] value changed in iteration i, stop.
    }
}
```
6.9 Distance Vector Protocol
Distance Vector Protocol

Communication network.
- Node \approx router.
- Edge \approx direct communication link.
- Cost of edge \approx delay on link. \leftarrow naturally nonnegative, but Bellman-Ford used anyway!

Dijkstra's algorithm. Requires global information of network.

Bellman-Ford. Uses only local knowledge of neighboring nodes.

Synchronization. We don't expect routers to run in lockstep. The order in which each foreach loop executes is not important. Moreover, algorithm still converges even if updates are asynchronous.
Distance Vector Protocol

Distance vector protocol.
- Each router maintains a vector of shortest path lengths to every other node (distances) and the first hop on each path (directions).
- Algorithm: each router performs n separate computations, one for each potential destination node.
- "Routing by rumor."

Ex. RIP, Xerox XNS RIP, Novell's IPX RIP, Cisco's IGRP, DEC's DNA Phase IV, AppleTalk's RTMP.

Caveat. Edge costs may change during algorithm (or fail completely).
Path Vector Protocols

Link state routing.
- Each router also stores the entire path.
- Based on Dijkstra's algorithm.
- Avoids "counting-to-infinity" problem and related difficulties.
- Requires significantly more storage.

Ex. Border Gateway Protocol (BGP), Open Shortest Path First (OSPF).
6.10 Negative Cycles in a Graph
Lemma. If $\text{OPT}(n,v) = \text{OPT}(n-1,v)$ for all v, then no negative cycles.

\textbf{Pf.} Bellman-Ford algorithm.

Lemma. If $\text{OPT}(n,v) < \text{OPT}(n-1,v)$ for some node v, then (any) shortest path from v to t contains a cycle W. Moreover W has negative cost.

\textbf{Pf.} (by contradiction)
- Since $\text{OPT}(n,v) < \text{OPT}(n-1,v)$, we know P has exactly n edges.
- By pigeonhole principle, P must contain a directed cycle W.
- Deleting W yields a v-t path with $< n$ edges \Rightarrow W has negative cost.

\[
c(W) < 0
\]
Detecting Negative Cycles

Theorem. Can detect negative cost cycle in $O(mn)$ time.

- Add new node t and connect all nodes to t with 0-cost edge.
- Check if $OPT(n, v) = OPT(n-1, v)$ for all nodes v.
 - if yes, then no negative cycles
 - if no, then extract cycle from shortest path from v to t
Detecting Negative Cycles: Application

Currency conversion. Given n currencies and exchange rates between pairs of currencies, is there an arbitrage opportunity?

Remark. Fastest algorithm very valuable!
Detecting Negative Cycles: Summary

Bellman-Ford. $O(mn)$ time, $O(m + n)$ space.

- Run Bellman-Ford for n iterations (instead of $n-1$).
- Upon termination, Bellman-Ford successor variables trace a negative cycle if one exists.
- See p. 304 for improved version and early termination rule.