€S 580: Algorithm Design and Analysis

2/12/2018

Jeremiah Blocki
Purdue University
Spring 2018

Announcement: Homework 3 due February 15™ at 11:59PM
Midterm Exam: Wed, Feb 21 (8PM-10PM) @ MTHW 210

6.4 Knapsack Problem

Dynamic Programming: False Start

Def. OPT(i) = max profit subset of items 1, ..., i.

« Case 1: OPT does not select item i.
- OPT selects bestof {1, 2, .., i-1}

. Case 2: OPT selects item i.
- accepting item i does not immediately imply that we will
have to reject other items
- without knowing what other items were selected before i,
we don't even know if we have enough room for i

Conclusion. Need more sub-problems!

Recap: Dynamic Programming

Key Idea: Express optimal solution in terms of solutions to
smaller sub problems

Example 1: Weighted Interval Scheduling
OPT(j) is optimal solution considering only jobs 1,..,j
OPT(§) = max{ v; + OPT(p(j)), OPT(j-1)}
Case 1: Optimal solution includes job j with value v;
Add job j and eliminate incompatible jobs p(j)+1,....j-1
Case 2: Optimal solution does not include job j

Example 2: Segmented Least Squares
Fit points to a sequence of several line segments
Goal: Minimize E+cL
E squared error OPTQ) i§ opYimaIA solution .
L number of lines considering only jobs 1,..,§

OPT(j) = minfe(i, j)+OPT(i-1)+c: i< j+1}

Copyright 2000, Kevin Wayne

Knapsack Problem

Knapsack problem.
. Given nobjects and a "knapsack."
- Item i weighs w; > O kilograms and has value v;> 0.
. Knapsack has capacity of W kilograms.
- Goal: fill knapsack so as to maximize total value.

Ex: { 3,4} has value 40. m
1 1

1

2 6
3 18
4 22
5 28

N o o N

Greedy: repeatedly add item with maximum ratio v; / w;.
Ex: {5, 2,1} achieves only value = 35 = greedy not
optimal.

Dynamic Programming: Adding a New Variable

Def. OPT(i, w) = max profit subset of items 1, ..., i with weight limit w.

. Case 1: OPT does not select item i.
- OPT selects best of { 1, 2, ..., i-1} using weight limit w

- Case 2: OPT selects item i.
- new weight limit = w - w;
- OPT selects best of { 1, 2, ..., i-1} using this new weight limit

0 ifi=0
OPT (i, W)= OPT(i-1,w) if w>w
max{OPT(i—1,w), V;+ OPT(i—l,w-w,)} otherwise

2/12/2018

Knapsack Problem: Bottom-Up
Knapsack. Fill up an n-by-W array.
Input: n, W, Wy,., Wy, Vi,.,Vy

for w=0 toW
M[O, w] = 0

return M[n, W]

MLi, w] = max {M[i-1, w], v; + M[i-1, w-w;]}

Knapsack Problem: Running Time

Running time. ©(n W).
- Not polynomial in input size!
- Only need log, W bits to encode each weight
- Problem can be encoded with 0(nlog, W) bits
. "Pseudo-polynomial."
. Decision version of Knapsack is NP-complete. [Chapter 8]

Knapsack approximation algorithm. There exists a poly-time
algorithm that produces a feasible solution that has value
within 0.01% of optimum. [Section 11.8]

RNA Secondary Structure

RNA. String B = b;b,...b, over alphabet { A, C, 6, U }.

Secondary structure. RNA is single-stranded so it tends to loop back
and form base pairs with itself. This structure is essential for
understanding behavior of molecule.

Ex: GUCGAUUGAGCGAAUGUAACAACGUGGCUACGGCGAGA

C—A
N
A A
AN 7/
Ay 6—c
[/ \
C---6—U—A—A 6
Vo | |
v A—U—U A
- | ~e—
A
6
| ' : Ve
c 6—C—6—A—G c
N7 I
6
A--U
complementary base pairs: A-U, C-G |
6

Knapsack Algorithm

1
7
25
29
34

11
77
25 25
29 [l40)
34 [40)

W+1
[o]1]z]s 4]sl6[7 8] wou]
6 [0lo o 0 o 0o 0o o 0o 0 0 o0
1y o1 1111
nel 12y Mt s 7 7 7 7 7 7
(1,23) o 1 6 7 7 @1 22 25
{1,2,3,4) 0 1 6 7 7 18 22 24 28
{1,2,3,45) 0 1 6 7 7 18 22 28 29
OT: (4.3)
value = 22 + 18 = 40 1 1 1
2 6 2
Wzl 3 18 5
4 2 6
5 28 7

6.5 RNA Secondary Structure

RNA Secondary Structure

Secondary structure. A set of pairs S = { (b;, b)) } that satisfy:
. [Watson-Crick.] S is a matching and each pair in S is a
Watson-Crick complement: A-U, U-A, C-G, or 6-C.
« [No sharp turns.] The ends of each pair are separated by at
least 4 intervening bases. If (b;, bJ) e S, theni<j-4.
« [Non-crossing.] If (b;, bj) and (by, b)) are two pairs in S, then
we cannot have i<k<j<I.

Free energy. Usual hypothesis is that an RNA molecule will form
the secondary structure with the optimum total free energy.
\

approximate by number of base pairs

Goal. Given an RNA molecule B = bb,...b,, find a secondary
structure S that maximizes the number of base pairs.

Copyright 2000, Kevin Wayne

2/12/2018

RNA Secondary Structure: Examples

Examples.
6—6 3
c/ \U 5/ \@
N\ 7
C---6 \ /
[C---6
A==y [N
| | A---U
U---A [
U---A
base pair
AUGUGGCCAU AUGGG6G CAU AGUUGGCCAU
—t
ok sharp turn crossing

Dynamic Programming Over Intervals

Notation. OPT(i, j) = maximum number of base pairs in a secondary structure

of the substring bjb,;...b;.

.« Casel Ifi>j-4.
- OPT(i, j) = O by no-sharp turns condition.

- Case 2. Base bj is not involved in a pair.
- OPT(i, j) = OPT(i, j-1)

- Case 3. Base bj pairs with b, for some i <t<j-4.
- non-crossing constraint decouples resulting sub-problems
- OPT(i, j) = 1+ max, { OPT(i, t-1) + OPT(t+1, j-1) }

take max over t such that i < t < -4 and
b, and b are Watson-Crick complements

Remark. Same core idea in CKY algorithm to parse context-
free grammars.

5

Dynamic Programming Summary

Recipe.
+ Characterize structure of problem.
. Recursively define value of optimal solution.
- Compute value of optimal solution.
. Construct optimal solution from computed information.

Dynamic programming techniques.
+ Binary choice: weighted interval scheduling. é?’i:gu;“‘\q::;:hnmnf::\ljt’r\v\”\‘Z‘:\?ﬁizj
. Multi-way choice: segmented least squares, e benveen parsimony end accuracy
+ Adding a new variable: knapsack.
. Dynamic programming over intervals: RNA secondary structure.

CKY parsing algarithm for context-free
grammar has similar structure

Top-down vs. bottom-up: different people have different intuitions.

RNA Secondary Structure: Subproblems

First attempt. OPT(j) = maximum number of base pairs in a secondary
structure of the substring byb,...b;.

match b, and b,

Difficulty. Results in two sub-problems.
« Finding secondary structure in: b;b,...b.
- Finding secondary structure in: by,by.,...by 1.
~

L — OPT(H-D)

need more sub-problems

Bottom Up Dynamic Programming Over Intervals

Q. What order to solve the sub-problems?
A. Do shortest intervals first.

return M[1, n] usingrecurrence 6 7 8 9

Running time. O(n3).

6.6 Sequence Alignment

Copyright 2000, Kevin Wayne

String Similarity

How similar are two strings?
. ocurrance

- - I - ONEaE
- [- CHE

6 mismatches, 1 gap

. occurrence

o cBur rBnce

1 mismatch, 1 gap

o cElur rBance

0 mismatches, 3 gaps

Sequence Alignment

Goal: Given two strings X = x; X, ... Xqand Y =y y, . ..y, find
alignment of minimum cost.

Def. Analignment M is a set of ordered pairs x;-y; such that each item
occurs in at most one pair and no crossings.

Def. The pair x;-y; and x;-y; cross if i <i', but j>j'.

cost(M) = X Ay, + Y 5+ Y 4

) €M i3 unmatched -y j unmatched

“mismateh e

Ex: CTACCG vs. TACATG.
Soli M = Xz-y1, X3-Y2, Xa~Y3, X5-Ya, Xs~Ye-

Sequence Alignment: Algorithm

Sequence-Alignment(m, N, X;X;---Xp, Y1¥2---Yn, 8, @) {
for i =0tom

fori=1tom
for j=1ton
MLi, §1 = minCalx;, y;] + M[i-1, §-1],
5 + M[i-1, 1,

& + MLi, j-11D

return M[m, n]

Analysis. ®(mn) time and space.

English words or sentences: m,n <10.

Computational biology: m = n=100,000. 10 billions ops OK, but
10GB array?

Edit Distance

Applications.
« Basis for Unix diff.
- Speech recognition.
. Computational biology.

Edit distance. [Levenshtein 1966, Needleman-Wunsch 1970]

- Gap penalty &; mismatch penalty opq.
« Cost = sum of gap and mismatch penalties.

o 7| Bic *AacBlT BctcaccTacHl>T
& c[7]c |~ CHREVSRCY » B

e O+ Oagt 20ca 25+ ocs

cctoeoaclllTaclT

Sequence Alignment: Problem Structure

Def. OPT(i, j) = min cost of aligning strings x; X, ... x;andy1y,...y;
. Case I: OPT matches x;-y;.
- pay mismatch for x;-y; + min cost of aligning two strings
XgXp...Xigandyryz. .. Y1
. Case 2a: OPT leaves x; unmatched.
- pay gap for x; and min cost of aligning x; X, ... xijandy;yz ... y;
- Case 2b: OPT leaves y; unmatched.
- pay gap for y; and min cost of aligning x; X, ... x;and y1 yz ... yj1

ifi=0
@y, +OPT(i-1, j~1)
OPT(, j)={ min { S+OPT(-L, j) otherwise
S+OPT(i, j~1)
is if j=0

6.7 Sequence Alignment in Linear Space

Copyright 2000, Kevin Wayne

2/12/2018

Sequence Alignment: Linear Space
Q. Can we avoid using quadratic space?

Easy. Optimal value in O(m + n) space and O(mn) time.
. Compute OPT(i, -) from OPT(i-1, -).
« No longer a simple way to recover alignment itself.

Theorem. [Hirschberg 1975] Optimal alignment in O(m + n) space
and O(mn) time.
« Clever combination of divide-and-conquer and dynamic
programming.
. Inspired by idea of Savitch from complexity theory.

2/12/2018

Sequence Alignment: Linear Space

Edit distance graph.
- Let f(i, j) be shortest path from (0,0) to (i, j).
. Observation: (i, j) = OPT(i, j).

€ Y1 Yz Y3 Ya Ys Yo
@
X
Xz
% $
., EEEEEE. .

novevs v v v EAEE

Sequence Alignment: Linear Space

Edit distance graph.
- Let f(i, j) be shortest path from (0,0) to (i, j).
. Observation: (i, j) = OPT(i, j).

€ Y1 Yz Y3 Ya Ys Ye

|
AN

x3 S . - —

x = o«
78+ gy, [- |- EARARARARAR

Sequence Alignment: Linear Space

Edit distance graph.
« Let f(i, j) be shortest path from (0,0) to (i, j).
- Observation: f(i, j) = OPT(i, j).

& Y Y2 Ys Ya Ys Ye

- @

X

* ®

Copyright 2000, Kevin Wayne

Sequence Alignment: Linear Space

Edit distance graph.
- Let f(i, j) be shortest path from (0,0) to (i, j).
. Observation: f(i, j) = OPT(i, j).

e Y Yz Y3 Ya Y5 Ye

Xy

|

SRR S S S

x m e R
93
=

By ovvove v v

Sequence Alignment: Linear Space

Edit distance graph.
. Let f(i, j) be shortest path from (0,0) to (i, j).
- Can compute f (-, j) for any j in O(mn) time and O(m + n) space.
J
€ " Y ¥s Ya ¥s Yo
[@—. \

X, —_—

2/12/2018

Sequence Alignment: Linear Space

Edit distance graph.
. Let g(i, j) be shortest path from (i, j) to (m, n).
. Can compute by reversing the edge orientations and inverting the
roles of (0, 0) and (m, n)

€ A Yz Y3 Ya ¥s Ye

- @

X1

X2

* ®

Sequence Alignment: Linear Space

Observation 1. The cost of the shortest path that uses (i, j) is
(i,) + 90, J).

€ Y1 Y2 Y3 Ya Ys Yo

Xy

xe N

% —®

Sequence Alignment: Linear Space

Divide: find index q that minimizes f(q, n/2) + g(q, n/2) using DP.
. Align x, and y,/,.
Conquer: recursively compute optimal alignment in each piece.
n/e

€ Y1 Yz Y3 Ya ¥s Yo

f
0]
X @ q

X2

. ®

Sequence Alignment: Linear Space

Edit distance graph.
- Let g(i, j) be shortest path from (i, j) to (m, n).
. Can compute g(+, j) for any j in O(mn) time and O(m + n) space.

J

& Y Yz Y3 Ya Y5 Yo

- @

X

Moo

Sequence Alignment: Linear Space

Observation 2. let q be an index that minimizes f(q, n/2) + g(q, n/2).

Then, the shortest path from (0, 0) to (m, n) uses (q, n/2).
n/2

& Y Yz Y3 Ya Y5 Yo

XZ N

Sequence Alignment: Running Time Analysis Warmup

Theorem. Let T(m, n) = max running time of algorithm on
strings of length at most m and n. T(m, n) = O(mn log n).

T(m,n) < 2T(m, n/2) + O(mn) = T(m,n) = O(mn logn)

Remark. Analysis is not tight because two sub-problems are
of size (9, n/2) and (m - q, n/2). In next slide, we save log n
factor.

Copyright 2000, Kevin Wayne

2/12/2018

Sequence Alignment: Running Time Analysis

Theorem. Let T(m, n) = max running time of algorithm on strings of
length m and n. T(m, n) = O(mn).

Pf. (by induction on n)
- O(mn) time to compute f(+, n/2) and g (+, n/2) and find index q.
« T(q,n/2) + T(m - q, n/2) time for two recursive calls.
- Choose constant ¢ so that:

T(m, 2) < cm
T2, n) < cn
T(m, n) < cmn+T(q, n/2)+T(m-q, n/2)

. Basecasesim=2orn=2.
« Inductive hypothesis: T(m,n)< 2cmn.

T(mn) < T(q,n/2)+T(m-gq,n/2)+cmn
< 2cqn/2+2¢(m-q)n/2+cmn
= cgn+cmn—cqn+cmn

= 2cmn

Copyright 2000, Kevin Wayne 7

