
CS 580: Algorithm Design and Analysis

Jeremiah Blocki
Purdue University
Spring 2018

Announcement: Homework 3 due February 15th at 11:59PM
Midterm Exam: Wed, Feb 21 (8PM-10PM) @ MTHW 210

Recap: Dynamic Programming

2

Key Idea: Express optimal solution in terms of solutions to
smaller sub problems

Example 1: Weighted Interval Scheduling
• OPT(j) is optimal solution considering only jobs 1,…,j
• OPT(j) = max{ vj + OPT(p(j)), OPT(j-1)}
• Case 1: Optimal solution includes job j with value vj

• Add job j and eliminate incompatible jobs p(j)+1,…,j-1
• Case 2: Optimal solution does not include job j

Example 2: Segmented Least Squares
• Fit points to a sequence of several line segments
• Goal: Minimize E+cL

• E squared error
• L number of lines

• OPT(j) = min{e(i,j)+OPT(i-1)+c: i< j+1}

OPT(j) is optimal solution
considering only jobs 1,…,j

6.4 Knapsack Problem

4

Knapsack Problem

Knapsack problem.
 Given n objects and a "knapsack."
 Item i weighs wi > 0 kilograms and has value vi > 0.
 Knapsack has capacity of W kilograms.
 Goal: fill knapsack so as to maximize total value.

Ex: { 3, 4 } has value 40.

Greedy: repeatedly add item with maximum ratio vi / wi.
Ex: { 5, 2, 1 } achieves only value = 35 greedy not
optimal.

1

value

18

22

28

1

weight

5

6

6 2

7

#

1

3

4

5

2

W = 11

5

Dynamic Programming: False Start

Def. OPT(i) = max profit subset of items 1, …, i.

 Case 1: OPT does not select item i.
– OPT selects best of { 1, 2, …, i-1 }

 Case 2: OPT selects item i.
– accepting item i does not immediately imply that we will

have to reject other items
– without knowing what other items were selected before i,

we don't even know if we have enough room for i

Conclusion. Need more sub-problems!

6

Dynamic Programming: Adding a New Variable

Def. OPT(i, w) = max profit subset of items 1, …, i with weight limit w.

 Case 1: OPT does not select item i.
– OPT selects best of { 1, 2, …, i-1 } using weight limit w

 Case 2: OPT selects item i.
– new weight limit = w – wi
– OPT selects best of { 1, 2, …, i–1 } using this new weight limit

OPT(i, w)
0 if i 0

OPT(i 1, w) if wi w
max OPT(i 1, w), vi OPT(i 1, wwi) otherwise

7

Input: n, W, w1,…,wN, v1,…,vN

for w = 0 to W
M[0, w] = 0

for i = 1 to n
for w = 1 to W

if (wi > w)
M[i, w] = M[i-1, w]

else
M[i, w] = max {M[i-1, w], vi + M[i-1, w-wi]}

return M[n, W]

Knapsack Problem: Bottom-Up

Knapsack. Fill up an n-by-W array.

8

Knapsack Algorithm

n + 1

1
Value

18
22
28

1
Weight

5
6

6 2

7

Item
1

3
4
5

2

{ 1, 2 }

{ 1, 2, 3 }

{ 1, 2, 3, 4 }

{ 1 }

{ 1, 2, 3, 4, 5 }

0

0

0

0

0

0

0

1

0

1

1

1

1

1

2

0

6

6

6

1

6

3

0

7

7

7

1

7

4

0

7

7

7

1

7

5

0

7

18

18

1

18

6

0

7

19

22

1

22

7

0

7

24

24

1

28

8

0

7

25

28

1

29

9

0

7

25

29

1

34

10

0

7

25

29

1

34

11

0

7

25

40

1

40

W + 1

W = 11

OPT: { 4, 3 }
value = 22 + 18 = 40

9

Knapsack Problem: Running Time

Running time. (n W).
 Not polynomial in input size!

– Only need logଶܹ bits to encode each weight
– Problem can be encoded with ܱ ݊ logଶܹ bits

 "Pseudo-polynomial."
 Decision version of Knapsack is NP-complete. [Chapter 8]

Knapsack approximation algorithm. There exists a poly-time
algorithm that produces a feasible solution that has value
within 0.01% of optimum. [Section 11.8]

6.5 RNA Secondary Structure

11

RNA Secondary Structure

RNA. String B = b1b2bn over alphabet { A, C, G, U }.

Secondary structure. RNA is single-stranded so it tends to loop back
and form base pairs with itself. This structure is essential for
understanding behavior of molecule.

G

U

C

A

GA

A

G

CG

A

U
G

A

U

U

A

G

A

C A

A

C

U

G

A

G

U

C

A

U

C

G

G

G

C

C

G

Ex: GUCGAUUGAGCGAAUGUAACAACGUGGCUACGGCGAGA

complementary base pairs: A-U, C-G

12

RNA Secondary Structure

Secondary structure. A set of pairs S = { (bi, bj) } that satisfy:
 [Watson-Crick.] S is a matching and each pair in S is a

Watson-Crick complement: A-U, U-A, C-G, or G-C.
 [No sharp turns.] The ends of each pair are separated by at

least 4 intervening bases. If (bi, bj) S, then i < j - 4.
 [Non-crossing.] If (bi, bj) and (bk, bl) are two pairs in S, then

we cannot have i < k < j < l.

Free energy. Usual hypothesis is that an RNA molecule will form
the secondary structure with the optimum total free energy.

Goal. Given an RNA molecule B = b1b2bn, find a secondary
structure S that maximizes the number of base pairs.

approximate by number of base pairs

13

RNA Secondary Structure: Examples

Examples.

C

G G

C

A

G

U

U

U A

A U G U G G C C A U

G G

C

A

G

U

U A

A U G G G C A U

C

G G

C

A

U

G

U

U A

A G U U G G C C A U

sharp turn crossingok

G

G
4

base pair

14

RNA Secondary Structure: Subproblems

First attempt. OPT(j) = maximum number of base pairs in a secondary
structure of the substring b1b2bj.

Difficulty. Results in two sub-problems.
 Finding secondary structure in: b1b2bt-1.
 Finding secondary structure in: bt+1bt+2bn-1.

1 t n

match bt and bn

OPT(t-1)

need more sub-problems

15

Dynamic Programming Over Intervals

Notation. OPT(i, j) = maximum number of base pairs in a secondary structure
of the substring bibi+1bj.

 Case 1. If i j - 4.
– OPT(i, j) = 0 by no-sharp turns condition.

 Case 2. Base bj is not involved in a pair.
– OPT(i, j) = OPT(i, j-1)

 Case 3. Base bj pairs with bt for some i t < j - 4.
– non-crossing constraint decouples resulting sub-problems
– OPT(i, j) = 1 + maxt { OPT(i, t-1) + OPT(t+1, j-1) }

take max over t such that i t < j-4 and
bt and bj are Watson-Crick complements

Remark. Same core idea in CKY algorithm to parse context-
free grammars.

16

Bottom Up Dynamic Programming Over Intervals

Q. What order to solve the sub-problems?
A. Do shortest intervals first.

Running time. O(n3).

RNA(b1,…,bn) {
for k = 5, 6, …, n-1

for i = 1, 2, …, n-k
j = i + k
Compute M[i, j]

return M[1, n]
}

using recurrence

0 0 0

0 0

02

3

4

1

i

6 7 8 9

j

17

Dynamic Programming Summary

Recipe.
 Characterize structure of problem.
 Recursively define value of optimal solution.
 Compute value of optimal solution.
 Construct optimal solution from computed information.

Dynamic programming techniques.
 Binary choice: weighted interval scheduling.
 Multi-way choice: segmented least squares.
 Adding a new variable: knapsack.
 Dynamic programming over intervals: RNA secondary structure.

Top-down vs. bottom-up: different people have different intuitions.

Viterbi algorithm for HMM also uses
DP to optimize a maximum likelihood
tradeoff between parsimony and accuracy

CKY parsing algorithm for context-free
grammar has similar structure

6.6 Sequence Alignment

19

String Similarity

How similar are two strings?
 ocurrance

 occurrence

o c u r r a n c e

c c u r r e n c eo

-

o c u r r n c e

c c u r r n c eo

- - a

e -

o c u r r a n c e

c c u r r e n c eo

-

6 mismatches, 1 gap

1 mismatch, 1 gap

0 mismatches, 3 gaps

20

Applications.
 Basis for Unix diff.
 Speech recognition.
 Computational biology.

Edit distance. [Levenshtein 1966, Needleman-Wunsch 1970]
 Gap penalty ; mismatch penalty pq.
 Cost = sum of gap and mismatch penalties.

2 + CA

C G A C C T A C C T

C T G A C T A C A T

T G A C C T A C C T

C T G A C T A C A T

-T

C

C

C

TC + GT + AG+ 2CA

-

Edit Distance

21

Goal: Given two strings X = x1 x2 . . . xm and Y = y1 y2 . . . yn find
alignment of minimum cost.

Def. An alignment M is a set of ordered pairs xi-yj such that each item
occurs in at most one pair and no crossings.

Def. The pair xi-yj and xi'-yj' cross if i < i', but j > j'.

Ex: CTACCG vs. TACATG.
Sol: M = x2-y1, x3-y2, x4-y3, x5-y4, x6-y6.

Sequence Alignment

cost(M) xi y j
(xi , y j) M

mismatch

i : xi unmatched

j : y j unmatched

gap

C T A C C -

T A C A T-

G

G

y1 y2 y3 y4 y5 y6

x2 x3 x4 x5x1 x6

22

Sequence Alignment: Problem Structure

Def. OPT(i, j) = min cost of aligning strings x1 x2 . . . xi and y1 y2 . . . yj.
 Case 1: OPT matches xi-yj.

– pay mismatch for xi-yj + min cost of aligning two strings
x1 x2 . . . xi-1 and y1 y2 . . . yj-1

 Case 2a: OPT leaves xi unmatched.
– pay gap for xi and min cost of aligning x1 x2 . . . xi-1 and y1 y2 . . . yj

 Case 2b: OPT leaves yj unmatched.
– pay gap for yj and min cost of aligning x1 x2 . . . xi and y1 y2 . . . yj-1

OPT (i, j)

j if i 0

min

 xi y j
OPT (i1, j 1)

 OPT (i1, j)
 OPT (i, j 1)

otherwise

i if j 0

23

Sequence Alignment: Algorithm

Analysis. (mn) time and space.
English words or sentences: m, n 10.
Computational biology: m = n = 100,000. 10 billions ops OK, but
10GB array?

Sequence-Alignment(m, n, x1x2...xm, y1y2...yn, ,) {
for i = 0 to m

M[i, 0] = i
for j = 0 to n

M[0, j] = j

for i = 1 to m
for j = 1 to n

M[i, j] = min([xi, yj] + M[i-1, j-1],
 + M[i-1, j],
 + M[i, j-1])

return M[m, n]
}

6.7 Sequence Alignment in Linear Space

25

Sequence Alignment: Linear Space

Q. Can we avoid using quadratic space?

Easy. Optimal value in O(m + n) space and O(mn) time.
 Compute OPT(i, •) from OPT(i-1, •).
 No longer a simple way to recover alignment itself.

Theorem. [Hirschberg 1975] Optimal alignment in O(m + n) space
and O(mn) time.
 Clever combination of divide-and-conquer and dynamic

programming.
 Inspired by idea of Savitch from complexity theory.

26

Edit distance graph.
 Let f(i, j) be shortest path from (0,0) to (i, j).
 Observation: f(i, j) = OPT(i, j).

Sequence Alignment: Linear Space

i-j

m-n

x1

x2

y1

x3

y2 y3 y4 y5 y6

0-0

 xiy j

27

Edit distance graph.
 Let f(i, j) be shortest path from (0,0) to (i, j).
 Observation: f(i, j) = OPT(i, j).

Sequence Alignment: Linear Space

i-j

m-n

x1

x2

y1

x3

y2 y3 y4 y5 y6

0-0

ji yx

࢞࢞ ࢞

y1 y2 y3 y4 y5 y6

-x -----

9

28

Edit distance graph.
 Let f(i, j) be shortest path from (0,0) to (i, j).
 Observation: f(i, j) = OPT(i, j).

Sequence Alignment: Linear Space

i-j

m-n

x1

x2

y1

x3

y2 y3 y4 y5 y6

0-0

 xiy j

9
࢞࢞ ࢞

y1 y2 y3 y4 y5 y6

x

29

Edit distance graph.
 Let f(i, j) be shortest path from (0,0) to (i, j).
 Observation: f(i, j) = OPT(i, j).

Sequence Alignment: Linear Space

i-j

m-n

x1

x2

y1

x3

y2 y3 y4 y5 y6

0-0

 xiy j

࢞࢞ ࢞

y1 y2 y3 y4 y5 y6

x

--

7 ௫య,௬భߙ

30

Edit distance graph.
 Let f(i, j) be shortest path from (0,0) to (i, j).
 Can compute f (•, j) for any j in O(mn) time and O(m + n) space.

Sequence Alignment: Linear Space

i-j

m-n

x1

x2

y1

x3

y2 y3 y4 y5 y6

0-0

j

31

Edit distance graph.
 Let g(i, j) be shortest path from (i, j) to (m, n).
 Can compute by reversing the edge orientations and inverting the

roles of (0, 0) and (m, n)

Sequence Alignment: Linear Space

i-j

m-n

x1

x2

y1

x3

y2 y3 y4 y5 y6

0-0

 xiy j

32

Edit distance graph.
 Let g(i, j) be shortest path from (i, j) to (m, n).
 Can compute g(•, j) for any j in O(mn) time and O(m + n) space.

Sequence Alignment: Linear Space

i-j

m-n

x1

x2

y1

x3

y2 y3 y4 y5 y6

0-0

j

33

Observation 1. The cost of the shortest path that uses (i, j) is
f(i, j) + g(i, j).

Sequence Alignment: Linear Space

i-j

m-n

x1

x2

y1

x3

y2 y3 y4 y5 y6

0-0

34

Observation 2. let q be an index that minimizes f(q, n/2) + g(q, n/2).
Then, the shortest path from (0, 0) to (m, n) uses (q, n/2).

Sequence Alignment: Linear Space

i-j

m-n

x1

x2

y1

x3

y2 y3 y4 y5 y6

0-0

n / 2

q

35

Divide: find index q that minimizes f(q, n/2) + g(q, n/2) using DP.
 Align xq and yn/2.

Conquer: recursively compute optimal alignment in each piece.

Sequence Alignment: Linear Space

i-jx1

x2

y1

x3

y2 y3 y4 y5 y6

0-0

q

n / 2

m-n

36

Theorem. Let T(m, n) = max running time of algorithm on
strings of length at most m and n. T(m, n) = O(mn log n).

Remark. Analysis is not tight because two sub-problems are
of size (q, n/2) and (m - q, n/2). In next slide, we save log n
factor.

Sequence Alignment: Running Time Analysis Warmup

T (m, n) 2T (m, n /2) O(mn) T (m, n) O(mn logn)

37

Theorem. Let T(m, n) = max running time of algorithm on strings of
length m and n. T(m, n) = O(mn).

Pf. (by induction on n)
 O(mn) time to compute f(•, n/2) and g (•, n/2) and find index q.
 T(q, n/2) + T(m - q, n/2) time for two recursive calls.
 Choose constant c so that:

 Base cases: m = 2 or n = 2.
 Inductive hypothesis: T(m, n) 2cmn.

Sequence Alignment: Running Time Analysis

cmn
cmncqncmncqn

cmnnqmccqn
cmnnqmTnqTnmT

2

2/)(22/2
)2/,()2/,(),(

T(m, 2) cm
T(2, n) cn
T(m, n) cmn T(q, n /2) T(m q, n /2)

