CS 580: Algorithm Design and Analysis

Jeremiah Blocki
Purdue University
Spring 2018

Announcement: Homework 3 due February 15 at 11:59PM
Midterm Exam: Wed, Feb 21 (8PM-10PM) @ MTHW 210

Recap: Dynamic Programming

Key Idea: Express optimal solution in terms of solutions to
smaller sub problems

Example 1: Weighted Interval Scheduling
OPT(j) is optimal solution considering only jobs 1,..,j
OPT(j) = max{ v; + OPT(p(j)), OPT(j-1)}
Case 1: Optimal solution includes job j with value v,
Add job j and eliminate incompatible jobs p(j)+1,...,j-1
Case 2: Optimal solution does not include job j

Example 2: Segmented Least Squares
Fit points to a sequence of several line segments
Goal: Minimize E+cL
E squared error OPT(j) is optimal solution
L number of lines considering only jobs 1,..,j

OPT(j) = min{e(i,j)*OPT(i-1)+c: i< j+1}

6.4 Knapsack Problem

Knapsack Problem

Knapsack problem.
. Given n objects and a "knapsack."
. Item i weighs w; > O kilograms and has value v; > O.
. Knapsack has capacity of W kilograms.
. Goal: fill knapsack so as to maximize total value.

1 1 1
2 6 2
3 18 5
W =
4 22 6
5 28 7

Greedy: repeatedly add item with maximum ratio v; / w;.
Ex: {5, 2,1} achieves only value = 35 = greedy not
optimal.

11

Dynamic Programming: False Start

Def. OPT(i) = max profit subset of items 1, ..., i.

. Case 1. OPT does not select item i.
- OPT selects bestof {1, 2, ..., i-1}

. Case 2: OPT selects item i.
- accepting item i does not immediately imply that we will
have to reject other items
- without knowing what other items were selected before i,
we don't even know if we have enough room for i

Conclusion. Need more sub-problems!

Dynamic Programming: Adding a New Variable

Def. OPT(i, w) = max profit subset of items 1, ..., i with weight limit w.

. Case 1. OPT does not select item i.
- OPT selects best of { 1, 2, ..., i-1 } using weight limit w

. Case 2: OPT selects item i.
- new weight limit = w - w;
- OPT selects best of { 1, 2, ..., i-1 } using this new weight limit

0 if i=0
OPT(i,w)=90PT(i—1,w) if w,>w
imax{ OPT(i—1,w), v;+ OPT(i—1,w—w;)} otherwise

Knapsack Problem: Bottom-Up

Knapsack. Fill up an n-by-W array.

Knapsack Algorithm

W+1

ﬂ-----ﬂ-ﬂﬂ

K
{1} B : @ 1 1 1 1 1 1 1 1 1
o (,zy [o8 1 6 7 7 AR AN
{12 3} o 1 6 7 7 -19 24 25 25 25 25
{1,234y 0 1 6 7 7 22 24 28 29 29 [40
{12345} 0 1 6 7 7 18 22 28 29 34 34-

oo (4,3

value = 22 + 18 = 40 1 1 1
2 6 2

W=11 3 18 5

4 22 6

5 28 7

Knapsack Problem: Running Time

Running time. ©(n W).
. Not polynomial in input size!
- Only need log, W bits to encode each weight
- Problem can be encoded with 0(nlog, W) bits
. "Pseudo-polynomial."
. Decision version of Knapsack is NP-complete. [Chapter 8]

Knapsack approximation algorithm. There exists a poly-time
algorithm that produces a feasible solution that has value
within 0.01% of optimum. [Section 11.8]

6.5 RNA Secondary Structure

RNA Secondary Structure

RNA. String B = b;b,...b, over alphabet { A, C, G, U }.

Secondary structure. RNA is single-stranded so it tends to loop back
and form base pairs with itself. This structure is essential for
understanding behavior of molecule.

Ex: GUCGAUUGAGCGAAUGUAACAACGUGGCUACGGCGAGA
C—A

/ N\
A A
N\ /
A---U 66— C
| | / \
C---6=—U—A—A G
/ 1 1 1 I
G 1 1 1
U A—U—U A
RN | | ~g—
A C G C U :
| o _
C G C G A G --
N 7 |
© A

complementary base pairs: A-U, C-G

1

12

RNA Secondary Structure

Secondary structure. A set of pairs S = { (b;, bj) } that satisfy:
. [Watson-Crick.] S is a matching and each pair in S is a
Watson-Crick complement: A-U, U-A, C-6G, or G-C.
. [No sharp turns.] The ends of each pair are separated by at
least 4 intervening bases. If (b, b)) e S, theni«<j-4.
. [Non-crossing.] If (b;, b;) and (by, b)) are two pairs in S, then
we cannot have i< k< j<|.

Free energy. Usual hypothesis is that an RNA molecule will form
the secondary structure with the optimum total free e\ner'gy.

approximate by number of base pairs

Goal. Given an RNA molecule B = b;b,...b,, find a secondary
structure S that maximizes the number of base pairs.

13

Examples.

base pair

RNA Secondary Structure: Examples

®
C e
oK,
oK,
O e
(@}
>

ok

G

7\ 6—6
G G C/
\ /
¢---6 \c u/
| | | <
A---U A6
I I | |
U==-4 U---A

U AUGGGG C AU AGUUGGCEC
<4

sharp turn

crossing

RNA Secondary Structure: Subproblems

First attempt. OPT(j) = maximum number of base pairs in a secondary

structure of the substring bb,...b;.

match b, and b,

Difficulty. Results in two sub-problems.
. Finding secondary structure in: b;b,...b; ;. «— OPT(t-1)

. Finding secondary structure in: b,,;b,,,...b, ;.
\

need more sub-problems

Dynamic Programming Over Intervals

Notation. OPT(i, j) = maximum number of base pairs in a secondary structure
of the substring bb,,;...b;.

. Casel Ifix>j-4.
- OPT(i, j) = O by no-sharp turns condition.

. Case 2. Base b; is not involved in a pair.
- OPT(, j) = OPT(, j-1)

. Case 3. Base b, pairs with b; for some i <t«<j- 4.
- non-crossing constraint decouples resulting sub-problems
- OPT(i, j) = 1 + max, { OPT(i, t-1) + OPT(++1, j-1) }
\

take max over t such that i <t < j-4 and
b, and b; are Watson-Crick complements

Remark. Same core idea in CKY algorithm to parse context-
free grammars.

15

16

Bottom Up Dynamic Programming Over Intervals

Q. What order to solve the sub-problems?
A. Do shortest intervals first.

) S S I N

6 7 8 9

Running time. O(n3).

Dynamic Programming Summary

Recipe.
. Characterize structure of problem.
. Recursively define value of optimal solution.
. Compute value of optimal solution.
. Construct optimal solution from computed information.

Dynamic programming techniques.
. Binary choice: weighted interval scheduling. 'iferoi algerithm for HMM also uses

DP to optimize a maximum likelihood
tradeoff between parsimony and accuracy

- Multi-way choice: segmented least squares.
. Adding a new variable: knapsack. /
. Dynamic programming over intervals: RNA secondary structure.

AN

CKY parsing algorithm for context-free
grammar has similar structure

Top-down vs. bottom-up: different people have different intuitions.

17

6.6 Sequence Alignment

19

o

o

- i - DEEE
- 2 - MK -

6 mismatches, 1 gap

N I - L
CCUI"I"HHCG

1 mismatch, 1 gap

S Tl TR
Ccurre.nc

O mismatches, 3 gaps

String Similarity

How similar are two strings?
« OCurrance

» OCcurrence

20

Edit Distance

Applications.

. Basis for Unix diff.

. Speech recognition.

. Computational biology.

Edit distance. [Levenshtein 1966, Needleman-Wunsch 1970]
- Gap penalty &; mismatch penalty o,
. Cost = sum of gap and mismatch penalties.

CC T A c T
cc T A CT

Qe+ OgT+ Oagt 20ca

-CTGACCTACT

CCTGAC-TACT

28 + Oeca

Sequence Alignment

Goal: Given two strings X = x; X, ... X,and Y =y, y, ...y, find
alignment of minimum cost.

Def. Analignment M is a set of ordered pairs x;-y; such that each item
occurs in at most one pair and no crossings.

Def. The pair x;-y; and x;-y; cross if i<i’, but j>j'.

costtM) = > « + > 0+ > 0

XiYij
(Xj,yj) e M i :Xj unmatched j:y; unmatched
misr;atch g\a;p
x]. XZ x3 x4 X5 X6
Ex: CTACCG vs. TACATG. c 7 A ¢ KB ¢

Solt M = Xo-y1, X3-Y2, Xa-Y3, X5-Y4, Xe~Ye-

21

Sequence Alignment: Problem Structure

Def. OPT(i, j) = min cost of aligning strings x; x, ... x;andy;y,...Y;.

. Case 1: OPT matches x;-y;.

- pay mismatch for x;-y; + min cost of aligning two strings

Xy Xz ... Xipandyyys ... Y

. Case 2a: OPT leaves x; unmatched.

- pay gap for x; and min cost of aligning x; x, ... x;yandy;y, ...y,
. Case 2b: OPT leaves y; unmatched.

- pay gap for y; and min cost of alighing x; X, ... x;and y; y, . . . yjq

o if i=0
Ay y, +OPT(-1, j-1)
OPT(, j)=7 min y 0+0OPT(i—1, j) otherwise
\ o+0PT(, j—1)

i5 if j=0

22

23

Sequence Alignment: Algorithm

Analysis. ®(mn) time and space.

English words or sentences: m, n <10.

Computational biology: m = n=100,000. 10 billions ops OK, but
10GB array?

6.7 Sequence Alignment in Linear Space

25

Sequence Alignment: Linear Space

Q. Can we avoid using quadratic space?

Easy. Optimal value in O(m + n) space and O(mn) time.
. Compute OPT(i, *) from OPT(i-1, *).
. No longer a simple way to recover alignment itself.

Theorem. [Hirschberg 1975] Optimal alignment in O(m + n) space
and O(mn) time.
. Clever combination of divide-and-conquer and dynamic
programming.
. Inspired by idea of Savitch from complexity theory.

Sequence Alignment: Linear Space

Edit distance graph.
. Let (i, j) be shortest path from (0,0) to (i, j).
. Observation: f(i, j) = OPT(i, j).

2 Y1 Y2 Y3 Ya Y5 Ye

Sequence Alignment: Linear Space

Edit distance graph.
. Let f(i, j) be shortest path from (0,0) to (i, j).
. Observation: (i, j) = OPT(i, j).

2 Y1 Y2 Y3 Ya Y5 Ye

€ @——f > >

v
v
\ 4

X 95 —-—-q- *1 %2 X3
Yi Y2 Y3 Y4 Y5 Ye ---

Sequence Alignment: Linear Space

Edit distance graph.
. Let f(i, j) be shortest path from (0,0) to (i, j).
. Observation: (i, j) = OPT(i, j).

€ Y1 Y2 Y3 Y4 Y5 Yo
. @
\ 4
X1
v
X2
v
X3 > >

X a = x
95
--- Yi Y2 Y3 Ya Y5 Ve

Sequence Alignment: Linear Space

Edit distance graph.
. Let f(i, j) be shortest path from (0,0) to (i, j).
. Observation: (i, j) = OPT(i, j).

& Y1 Y2 Y3 Y4 Y5 Ye
- @
Xq '
X '
\
“ @

x » = = [

70 + «
X3,Y1 !! Y Y2 Y3 Y4 Y5 Ye

30

Sequence Alignment: Linear Space

Edit distance graph.
. Let (i, j) be shortest path from (0,0) to (i, j).
. Can compute f (-, j) for any j in O(mn) time and O(m + n) space.

J

€ Y1 Y2 Y3 Ya Y5 Ye

31

Sequence Alignment: Linear Space

Edit distance graph.
. Let g(i, j) be shortest path from (i, j) to (m, n).
. Can compute by reversing the edge orientations and inverting the
roles of (0, 0) and (m, n)

2 Y1 Y2 Y3 Ya Y5 Yo

32

Sequence Alignment: Linear Space

Edit distance graph.
. Let g(i, j) be shortest path from (i, j) to (m, n).
. Can compute g(, j) for any j in O(mn) time and O(m + n) space.

J

€ Y1 Y2 Y3 Y4 Y5 Yo

AN

33

Sequence Alignment: Linear Space

Observation 1. The cost of the shortest path that uses (i, j) is
fi,)+ a(i,).

2 Y1 Y2 Y3 Ya Y5 Ye

34

Sequence Alignment: Linear Space

Observation 2. let q be an index that minimizes f(q, n/2) + g(q, n/2).
Then, the shortest path from (O, 0) to (m, n) uses (g, n/2).

n/?2

€ Y1 Y2 Y3 Y4 Y5 Ye

35

Sequence Alignment: Linear Space

Divide: find index q that minimizes f(q, n/2) + g(q, n/2) using DP.
. Align x, and y, .

Conquer: recursively compute optimal alignment in each piece.
n/2

2 Y1 Y Y3 Ya Y5 Yo

: ® q

36

Sequence Alignment: Running Time Analysis Warmup

Theorem. Let T(m, n) = max running time of algorithm on
strings of length at most m and n. T(m, n) = O(mn log n).

T(m,n) < 2T(m, n/2) + O(mn) = T(m,n) = O(mn logn)

Remark. Analysis is not tight because two sub-problems are
of size (g, n/2) and (m - q, n/2). In next slide, we save log n
factor.

Sequence Alignment: Running Time Analysis

Theorem. Let T(m, n) = max running time of algorithm on strings of
length m and n. T(m, n) = O(mn).

Pf. (by induction on n)

37

. O(mn) time to compute f(+, n/2) and g (+, n/2) and find index q.
. T(q,n/2) + T(m - q, n/2) time for two recursive calls.
. Choose constant ¢ so that:

T(m, 2) < cm
T(2, n) £ c¢n
T(m,n) < cmn+T(q, n/2)+T(m—-q, n/2)

. Basecasesim=2o0orn=2.
. Inductive hypothesis: T(m, n) < 2cmn.

T(m,n) T(g,n/2)+T(m-qg,n/2)+cmn
2cgn/2+2c(m—qg)n/2+cmn
cgn+cmn—cgn +cmn

2cmn

<
<

