CS 580: Algorithm Design and Analysis

Jeremiah Blocki Purdue University Spring 2018

Announcement: Homework 3 due February 15th at 11:59PM Midterm Exam: Wed, Feb 21 (8PM-10PM) @ MTHW 210

Recap: Dynamic Programming

Key Idea: Express optimal solution in terms of solutions to smaller sub problems

Example 1: Weighted Interval Scheduling

- OPT(j) is optimal solution considering only jobs 1,...,j
- $OPT(j) = max\{v_j + OPT(p(j)), OPT(j-1)\}$
- Case 1: Optimal solution includes job j with value v_i
 - Add job j and eliminate incompatible jobs p(j)+1,...,j-1
- Case 2: Optimal solution does not include job j

Example 2: Segmented Least Squares

- Fit points to a sequence of several line segments
- Goal: Minimize E+cL
 - E squared error OPT(j) is optimal solution
 - L number of lines ______ considering only jobs 1,...,j
- $OPT(j) = min\{e(i, j)+OPT(i-1)+c: i < j+1\}$ •

6.4 Knapsack Problem

Knapsack Problem

Knapsack problem.

- Given n objects and a "knapsack."
- Item i weighs $w_i > 0$ kilograms and has value $v_i > 0$.
- Knapsack has capacity of W kilograms.
- . Goal: fill knapsack so as to maximize total value.

240.	#	value	weight	
	1	1	1	
	2	6	2	
	3	18	5	11
	4	22	6	W = 11
	5	28	7	

Ex: { 3, 4 } has value 40.

Greedy: repeatedly add item with maximum ratio v_i / w_i . Ex: { 5, 2, 1 } achieves only value = 35 \Rightarrow greedy not optimal. Dynamic Programming: False Start

Def. OPT(i) = max profit subset of items 1, ..., i.

- . Case 1: OPT does not select item i.
 - OPT selects best of { 1, 2, ..., i-1 }
- Case 2: OPT selects item i.
 - accepting item i does not immediately imply that we will have to reject other items
 - without knowing what other items were selected before i, we don't even know if we have enough room for i

Conclusion. Need more sub-problems!

Dynamic Programming: Adding a New Variable

Def. OPT(i, w) = max profit subset of items 1, ..., i with weight limit w.

• Case 1: OPT does not select item i.

- OPT selects best of { 1, 2, ..., i-1 } using weight limit w

- Case 2: OPT selects item i.
 - new weight limit = w w_i
 - OPT selects best of { 1, 2, ..., i-1 } using this new weight limit

$$OPT(i, w) = \begin{cases} 0 & \text{if } i = 0\\ OPT(i-1, w) & \text{if } w_i > w\\ \max \{ OPT(i-1, w), v_i + OPT(i-1, w-w_i) \} & \text{otherwise} \end{cases}$$

Knapsack Problem: Bottom-Up

Knapsack. Fill up an n-by-W array.

```
Input: n, W, w<sub>1</sub>,...,w<sub>N</sub>, v<sub>1</sub>,...,v<sub>N</sub>
for w = 0 to W
    M[0, w] = 0
for i = 1 to n
    for w = 1 to W
        if (w<sub>i</sub> > w)
            M[i, w] = M[i-1, w]
        else
            M[i, w] = max {M[i-1, w], v<sub>i</sub> + M[i-1, w-w<sub>i</sub>]}
return M[n, W]
```

Knapsack Algorithm

		→ W + 1 →											
		0	1	2	3	4	5	6	7	8	9	10	11
n + 1	φ	0	0	0	0	0	0	0	0	0	0	0	0
	{1}	0	1	1	1	1	1	1	1	1	1	1	1
	{ 1, 2 }	0	1	6	7	7	7	7	7	7	7	7	7
	{ 1, 2, 3 }	0	1	6	7	7	18	19	24	25	25	25	25
	{ 1, 2, 3, 4 }	0	1	6	7	7	18	22	24	28	29	29	40
L L	{1,2,3,4,5}	0	1	6	7	7	18	22	28	29	34	34	40

OPT: { 4, 3 } value = 22 + 18 = 40

W = 11

Item	Value	Weight
1	1	1
2	6	2
3	18	5
4	22	6
5	28	7

Knapsack Problem: Running Time

Running time. $\Theta(n W)$.

- Not polynomial in input size!
 - Only need log₂ W bits to encode each weight
 - Problem can be encoded with $O(n \log_2 W)$ bits
- "Pseudo-polynomial."
- Decision version of Knapsack is NP-complete. [Chapter 8]

Knapsack approximation algorithm. There exists a poly-time algorithm that produces a feasible solution that has value within 0.01% of optimum. [Section 11.8]

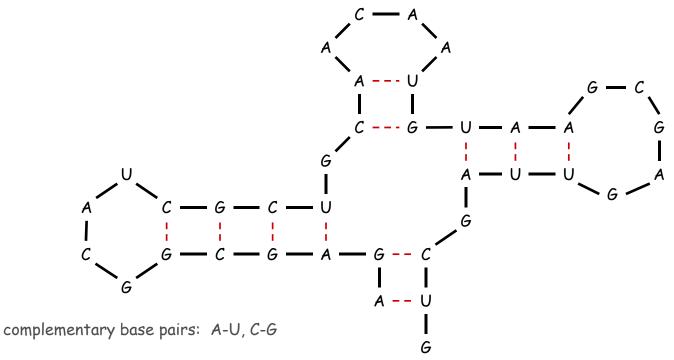
6.5 RNA Secondary Structure

RNA Secondary Structure

RNA. String $B = b_1 b_2 \dots b_n$ over alphabet { A, C, G, U }.

Secondary structure. RNA is single-stranded so it tends to loop back and form base pairs with itself. This structure is essential for understanding behavior of molecule.

Ex: GUCGAUUGAGCGAAUGUAACAACGUGGCUACGGCGAGA



Secondary structure. A set of pairs $S = \{(b_i, b_j)\}$ that satisfy:

- [Watson-Crick.] S is a matching and each pair in S is a Watson-Crick complement: A-U, U-A, C-G, or G-C.
- [No sharp turns.] The ends of each pair are separated by at least 4 intervening bases. If $(b_i, b_j) \in S$, then i < j 4.
- [Non-crossing.] If (b_i, b_j) and (b_k, b_l) are two pairs in S, then we cannot have i < k < j < l.

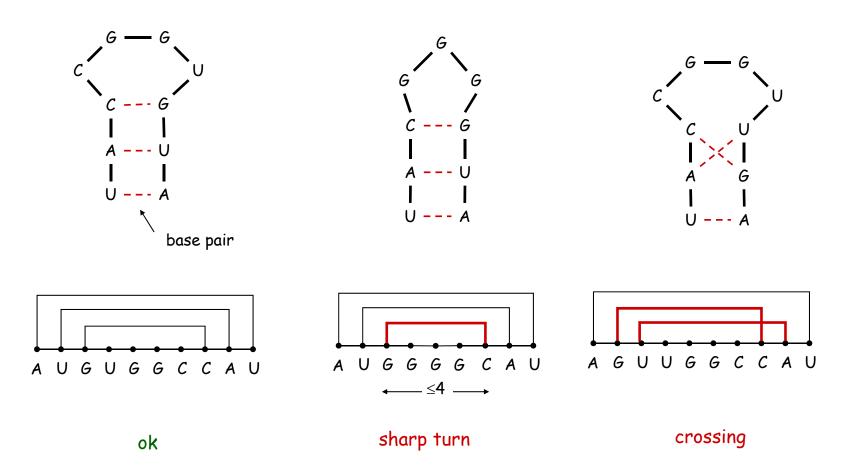
Free energy. Usual hypothesis is that an RNA molecule will form the secondary structure with the optimum total free energy.

approximate by number of base pairs

Goal. Given an RNA molecule $B = b_1 b_2 \dots b_n$, find a secondary structure S that maximizes the number of base pairs.

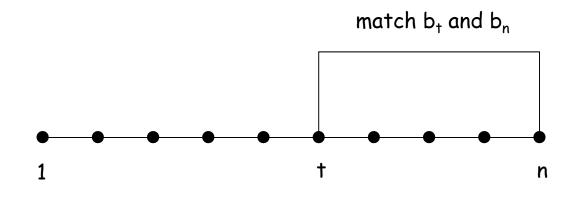
RNA Secondary Structure: Examples

Examples.



RNA Secondary Structure: Subproblems

First attempt. OPT(j) = maximum number of base pairs in a secondary structure of the substring $b_1b_2...b_j$.



Difficulty. Results in two sub-problems.

- Finding secondary structure in: $b_1b_2...b_{t-1}$. $\leftarrow OPT(t-1)$
- Finding secondary structure in: $b_{t+1}b_{t+2}...b_{n-1}$.

need more sub-problems

Dynamic Programming Over Intervals

Notation. OPT(i, j) = maximum number of base pairs in a secondary structure of the substring $b_i b_{i+1} \dots b_j$.

- Case 1. If i ≥ j 4.
 OPT(i, j) = 0 by no-sharp turns condition.
- Case 2. Base b_j is not involved in a pair.
 OPT(i, j) = OPT(i, j-1)
- Case 3. Base b_j pairs with b_t for some $i \le t < j 4$.
 - non-crossing constraint decouples resulting sub-problems

```
- OPT(i, j) = 1 + max_{t} \{ OPT(i, t-1) + OPT(t+1, j-1) \}
```

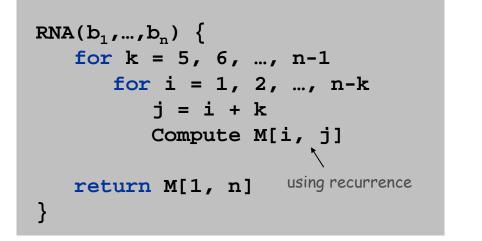
take max over t such that $i \leq t < j-4$ and b_t and b_i are Watson-Crick complements

Remark. Same core idea in CKY algorithm to parse contextfree grammars. Bottom Up Dynamic Programming Over Intervals

i

J

- Q. What order to solve the sub-problems?
- A. Do shortest intervals first.



Dynamic Programming Summary

Recipe.

- Characterize structure of problem.
- Recursively define value of optimal solution.
- . Compute value of optimal solution.
- Construct optimal solution from computed information.

Dynamic programming techniques.

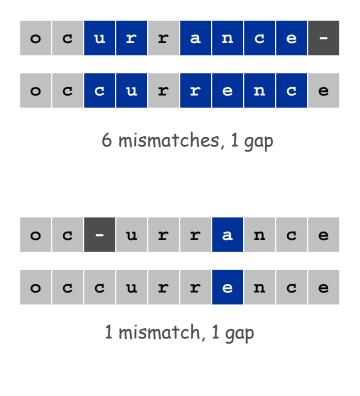
- Binary choice: weighted interval scheduling. Viterbi algorithm for HMM also uses DP to optimize a maximum likelihood
- Multi-way choice: segmented least squares. tradeoff between parsimony and accuracy
- Adding a new variable: knapsack.
- Dynamic programming over intervals: RNA secondary structure.

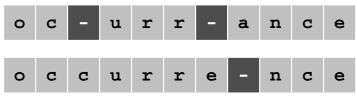
CKY parsing algorithm for context-free grammar has similar structure

Top-down vs. bottom-up: different people have different intuitions.

6.6 Sequence Alignment

String Similarity





⁰ mismatches, 3 gaps

How similar are two strings?

- ocurrance
- occurrence

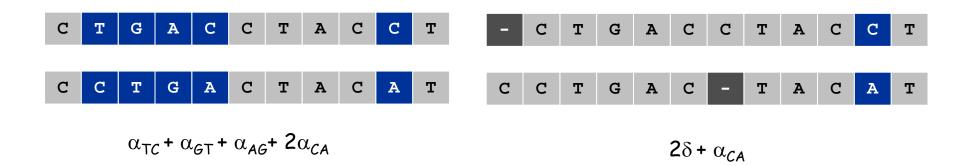
Edit Distance

Applications.

- Basis for Unix diff.
- Speech recognition.
- Computational biology.

Edit distance. [Levenshtein 1966, Needleman-Wunsch 1970]

- Gap penalty δ ; mismatch penalty $\alpha_{\text{pq}}.$
- Cost = sum of gap and mismatch penalties.



Sequence Alignment

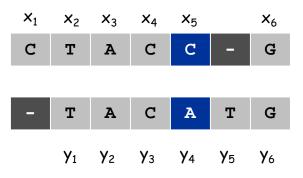
Goal: Given two strings $X = x_1 x_2 ... x_m$ and $Y = y_1 y_2 ... y_n$ find alignment of minimum cost.

Def. An alignment M is a set of ordered pairs $x_i - y_j$ such that each item occurs in at most one pair and no crossings.

Def. The pair $x_i - y_j$ and $x_{i'} - y_{j'}$ cross if i < i', but j > j'.

$$\operatorname{cost}(M) = \underbrace{\sum_{\substack{(x_i, y_j) \in M \\ \text{mismatch}}} \alpha_{x_i y_j}}_{\text{mismatch}} + \underbrace{\sum_{i: x_i \text{ unmatched}} \delta + \sum_{j: y_j \text{ unmatched}} \delta}_{\text{gap}}$$

Ex: CTACCG VS. TACATG. Sol: $M = x_2 - y_1, x_3 - y_2, x_4 - y_3, x_5 - y_4, x_6 - y_6.$



Sequence Alignment: Problem Structure

Def. OPT(i, j) = min cost of aligning strings $x_1 x_2 \dots x_i$ and $y_1 y_2 \dots y_j$.

- Case 1: OPT matches $x_i y_j$.
 - pay mismatch for $x_i y_i$ + min cost of aligning two strings

 $x_1 x_2 \dots x_{i-1}$ and $y_1 y_2 \dots y_{j-1}$

- Case 2a: OPT leaves x_i unmatched.
 - pay gap for x_i and min cost of aligning $x_1 x_2 \dots x_{i-1}$ and $y_1 y_2 \dots y_j$
- Case 2b: OPT leaves y_i unmatched.

- pay gap for y_j and min cost of aligning $x_1 x_2 \dots x_i$ and $y_1 y_2 \dots y_{j-1}$

$$OPT(i, j) = \begin{cases} j\delta & \text{if } i = 0\\ \min \begin{cases} \alpha_{x_i y_j} + OPT(i-1, j-1) \\ \delta + OPT(i-1, j) \\ \delta + OPT(i, j-1) \end{cases} & \text{otherwise} \\ i\delta & \text{if } j = 0 \end{cases}$$

Sequence Alignment: Algorithm

```
Analysis. \Theta(mn) time and space.
English words or sentences: m, n \leq 10.
Computational biology: m = n = 100,000. 10 billions ops OK, but 10GB array?
```

6.7 Sequence Alignment in Linear Space

Q. Can we avoid using quadratic space?

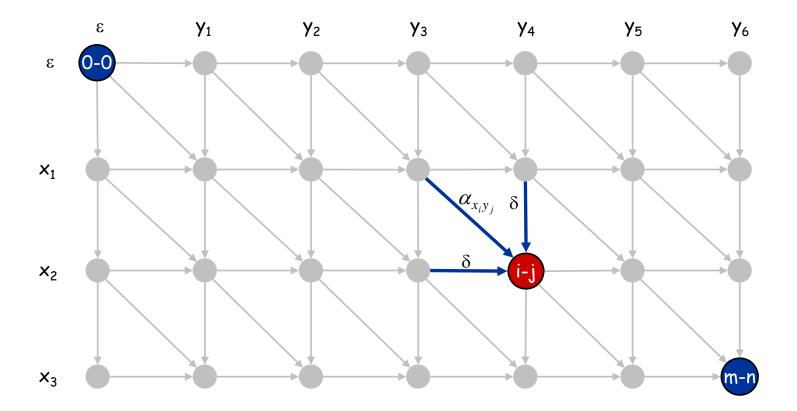
Easy. Optimal value in O(m + n) space and O(mn) time.

- Compute OPT(i, ·) from OPT(i-1, ·).
- No longer a simple way to recover alignment itself.

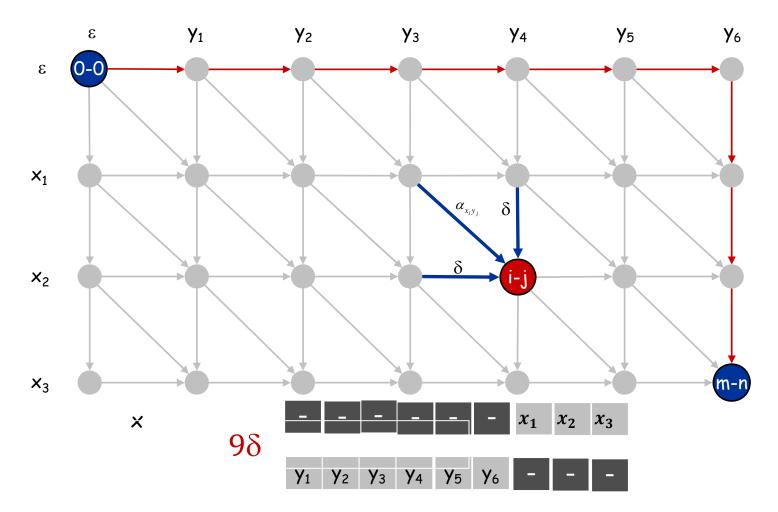
Theorem. [Hirschberg 1975] Optimal alignment in O(m + n) space and O(mn) time.

- Clever combination of divide-and-conquer and dynamic programming.
- Inspired by idea of Savitch from complexity theory.

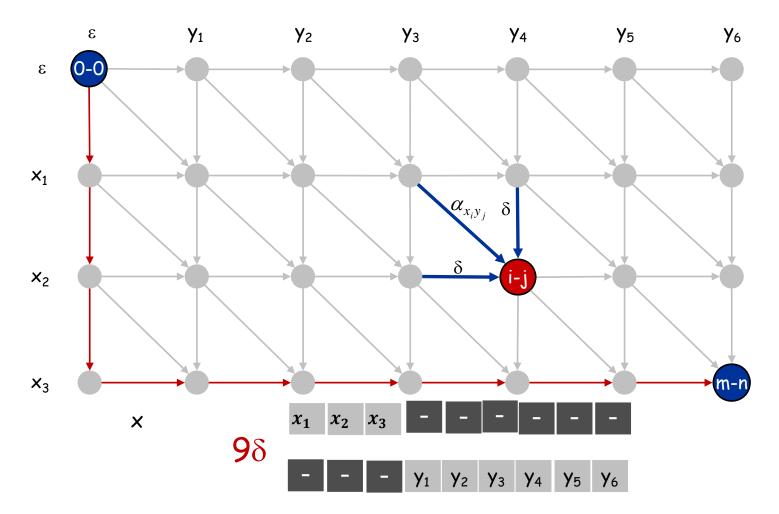
- Let f(i, j) be shortest path from (0,0) to (i, j).
- Observation: f(i, j) = OPT(i, j).



- Let f(i, j) be shortest path from (0,0) to (i, j).
- Observation: f(i, j) = OPT(i, j).



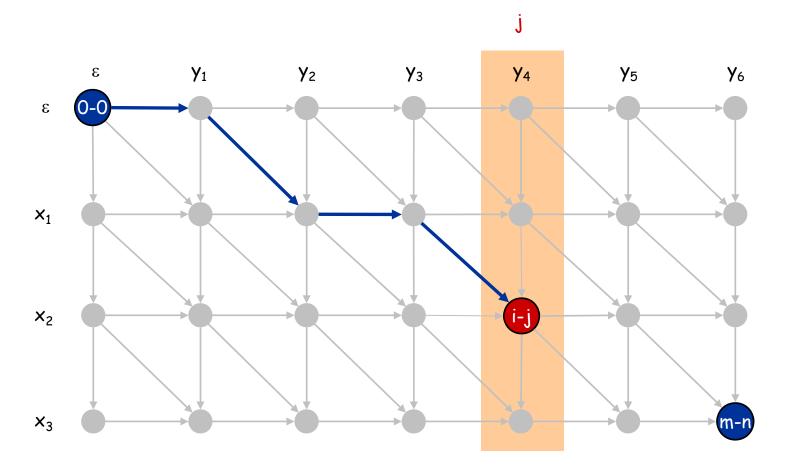
- Let f(i, j) be shortest path from (0,0) to (i, j).
- Observation: f(i, j) = OPT(i, j).



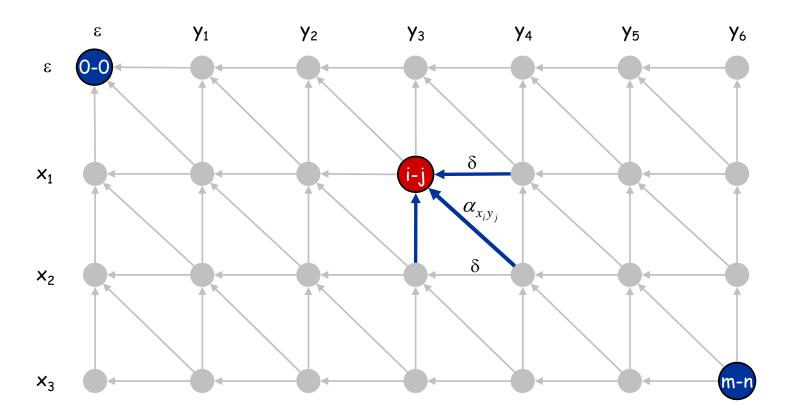
- Let f(i, j) be shortest path from (0,0) to (i, j).
- Observation: f(i, j) = OPT(i, j).



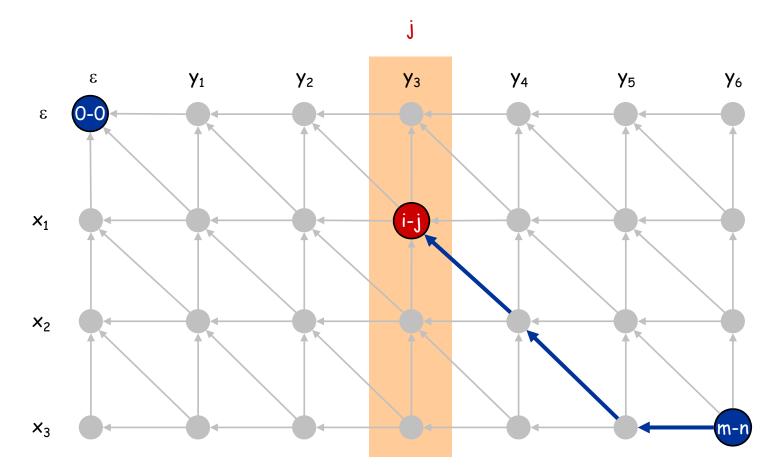
- Let f(i, j) be shortest path from (0,0) to (i, j).
- Can compute $f(\cdot, j)$ for any j in O(mn) time and O(m + n) space.



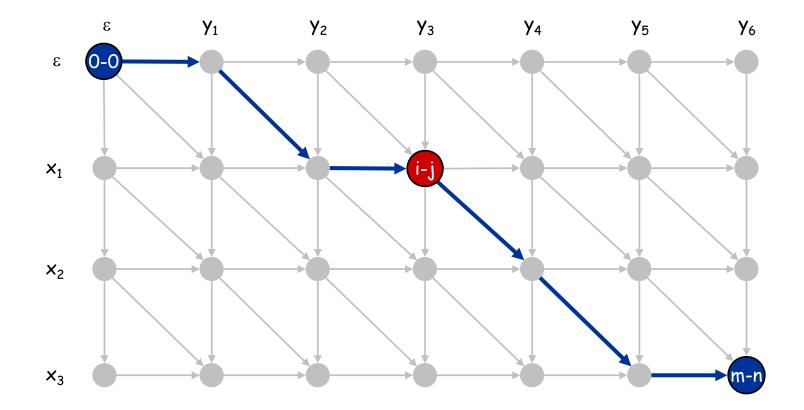
- Let g(i, j) be shortest path from (i, j) to (m, n).
- Can compute by reversing the edge orientations and inverting the roles of (0, 0) and (m, n)



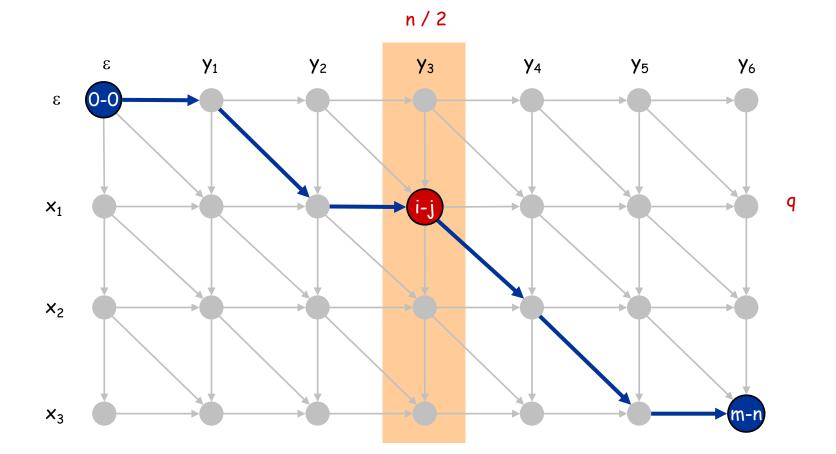
- Let g(i, j) be shortest path from (i, j) to (m, n).
- Can compute $g(\cdot, j)$ for any j in O(mn) time and O(m + n) space.



Observation 1. The cost of the shortest path that uses (i, j) is f(i, j) + g(i, j).

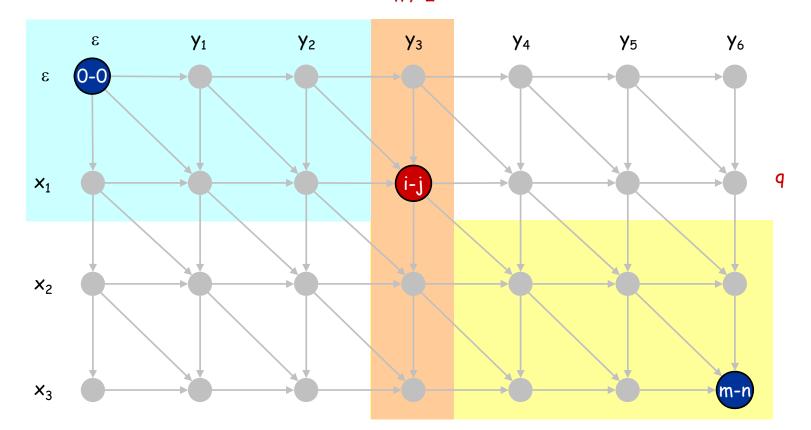


Observation 2. let q be an index that minimizes f(q, n/2) + g(q, n/2). Then, the shortest path from (0, 0) to (m, n) uses (q, n/2).



Divide: find index q that minimizes f(q, n/2) + g(q, n/2) using DP. • Align x_q and $y_{n/2}$.

Conquer: recursively compute optimal alignment in each piece. n/2



35

Sequence Alignment: Running Time Analysis Warmup

Theorem. Let $T(m, n) = \max running time of algorithm on strings of length at most m and n. <math>T(m, n) = O(mn \log n)$.

 $T(m,n) \leq 2T(m, n/2) + O(mn) \implies T(m,n) = O(mn \log n)$

Remark. Analysis is not tight because two sub-problems are of size (q, n/2) and (m - q, n/2). In next slide, we save log n factor.

Theorem. Let T(m, n) = max running time of algorithm on strings of length m and n. T(m, n) = O(mn).

Pf. (by induction on n)

- O(mn) time to compute $f(\cdot, n/2)$ and $g(\cdot, n/2)$ and find index q.
- T(q, n/2) + T(m q, n/2) time for two recursive calls.
- Choose constant c so that:

 $T(m, 2) \leq cm$ $T(2, n) \leq cn$ $T(m, n) \leq cmn + T(q, n/2) + T(m-q, n/2)$

- Base cases: m = 2 or n = 2.
- Inductive hypothesis: $T(m, n) \leq 2cmn$.

$$T(m,n) \leq T(q,n/2) + T(m-q,n/2) + cmn$$

$$\leq 2cqn/2 + 2c(m-q)n/2 + cmn$$

$$= cqn + cmn - cqn + cmn$$

$$= 2cmn$$