CS 580: Algorithm Design and Analysis

Jeremiah Blocki Purdue University Spring 2018

Announcement: Homework 3 due February 15th at 11:59PM

Final Exam (Tentative): Thursday, May 3 @ 8AM (PHYS 203)

Recap: Divide and Conquer

Framework: Divide, Conquer and Merge

Example 1: Counting Inversions in O(n log n) time.

- Subroutine: Sort-And-Count (divide & conquer)
- Count Left-Right inversions (merge) in time O(n) when input is already sorted

Example 2: Closest Pair of Points in O(n log n) time.

- Split input in half by x coordinate and find closest point on left and right half $(\delta = \min(\delta_1, \delta_2))$
- · Merge: Exploits structural properties of problems
 - Remove elements at distance > δ from dividing line L
 - Sort remaining points by y coordinate to obtain p_1, p_2 ...
 - Claim: $|p_i p_j| < \delta \Longrightarrow |i j| \le 12$

Example 3: Integer Multiplication in time $O(n^{1.585})$

- Divide each n-bit number into two n/2-bit numbers
- Key Trick: Only need a=3 multiplications of n/2-bit numbers!

Fast Integer Division Too (!)

Integer division. Given two *n*-bit (or less) integers *s* and *t*, compute quotient $q = \lfloor s / t \rfloor$ and remainder $r = s \mod t$ (such that s = qt + r).

Fact. Complexity of integer division is (almost) same as integer multiplication.

To compute quotient q: $x_{i+1} = 2x_i - tx_i^2$ using fast multiplication

- Approximate x = 1 / t using Newton's method:
- After $i = \log n$ iterations, either $q = \lfloor s x_i \rfloor$ or $q = \lceil s x_i \rceil$.
 - If $\lfloor s x \rfloor$ t > s then $q = \lceil s x \rceil$ (1 multiplication)
 - Otherwise $q = \lfloor s x \rfloor$
 - r=s-qt (1 multiplication)
- **Total**: $O(\log n)$ multiplications and subtractions

Toom-3 Generalization

Split into 3 parts
$$a = 2^{2n/3} \cdot a_2 + 2^{\frac{n}{3}} \cdot a_1 + a_0$$

 $b = 2^{2n/3} \cdot b_2 + 2^{\frac{n}{3}} \cdot b_1 + b_0$

Requires: 5 multiplications of n/3 bit numbers and O(1) additions, shifts

$$T(n) = 5 \cdot T\left(\frac{n}{3}\right) + O(n) \Rightarrow T(n) \in O\left(n^{\log_3 5}\right)$$

$$\approx 1.465$$

Toom-Cook Generalization (split into k parts): (2k-1) multiplications of n/k bit numbers.

$$T(n) = (2k-1) \cdot T\left(\frac{n}{k}\right) + O(n) \Rightarrow T(n) \in O\left(n^{\log_k(2k-1)}\right)$$

$$\lim_{k \to \infty} (\log_k(2k-1)) = 1$$

 $T(n) \in O(n^{1.0000001})$ for large enough k

Caveat: Hidden constants increase with k

Schönhage-Strassen algorithm

$$T(n) \in O(n \log n \log \log n)$$

Only used for really big numbers: $a > 2^{2^{15}}$

State of the Art Integer Multiplication (Theory): $O(n \log n \ g(n))$ for increasing small

$$g(n) \ll \log \log n$$

Integer Division:

- **Input:** x,y (positive n bit integers)
- Output: positive integers q (quotient) and remainder r s.t.

$$x = qy + r$$
 and $r < y$

Algorithm to compute quotient q and remainder r requires O(log n) multiplications using Newton's method (approximates roots of a real-valued polynomial).

- Q. Multiply two 2-by-2 matrices with 7 scalar multiplications?
- A. Yes! [Strassen 1969]

$$\Theta(n^{\log_2 7}) = O(n^{2.807})$$

- Q. Multiply two 2-by-2 matrices with 6 scalar multiplications?
- A. Impossible. [Hopcroft and Kerr 1971]

$$\Theta(n^{\log_2 6}) = O(n^{2.59})$$

- Q. Two 3-by-3 matrices with 21 scalar multiplications?
- A. Also impossible.

$$\Theta(n^{\log_3 21}) = O(n^{2.77})$$

Begun, the decimal wars have. [Pan, Bini et al, Schönhage, ...]

• Two 20-by-20 matrices with 4,460 scalar multiplications.

$$O(n^{2.805})$$

• Two 48-by-48 matrices with 47,217 scalar multiplications.

$$O(n^{2.7801})$$

• A year later.

$$O(n^{2.7799})$$

• December, 1979.

$$O(n^{2.521813})$$

January, 1980.

$$O(n^{2.521801})$$

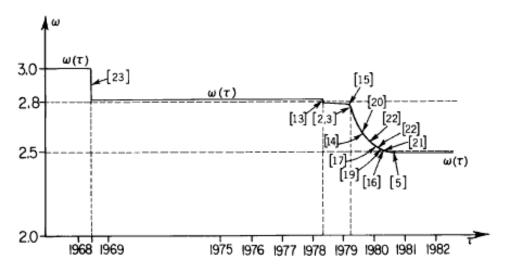


Fig. 1. $\omega(t)$ is the best exponent announced by time τ .

Best known. $O(n^{2.376})$ [Coppersmith-Winograd, 1987]

Conjecture. $O(n^{2+\epsilon})$ for any $\epsilon > 0$.

Caveat. Theoretical improvements to Strassen are progressively less practical.

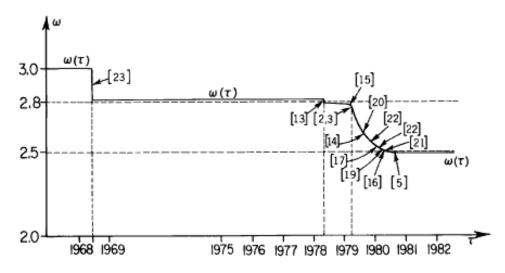


Fig. 1. $\omega(t)$ is the best exponent announced by time τ .

Best known. $O(n^{2.373})$ [Williams, 2014]

Conjecture. $O(n^{2+\epsilon})$ for any $\epsilon > 0$.

Caveat. Theoretical improvements to Strassen are progressively less practical.

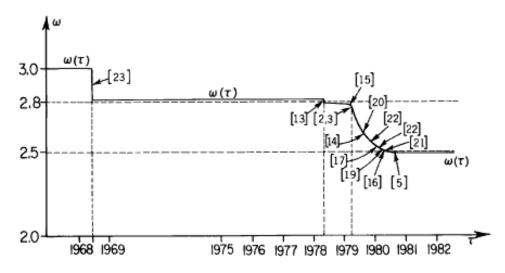
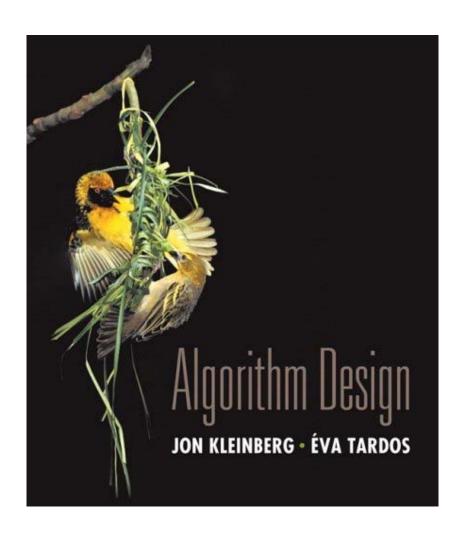


Fig. 1. $\omega(t)$ is the best exponent announced by time τ .

Best known. $O(n^{2.3729})$ [Le Gall, 2014]

Conjecture. $O(n^{2+\epsilon})$ for any $\epsilon > 0$.

Caveat. Theoretical improvements to Strassen are progressively less practical.



Dynamic Programming

Slides by Kevin Wayne. Copyright © 2005 Pearson-Addison Wesley. All rights reserved.

Algorithmic Paradigms

Greedy. Build up a solution incrementally, myopically optimizing some local criterion.

Divide-and-conquer. Break up a problem into sub-problems, solve each sub-problem independently, and combine solution to sub-problems to form solution to original problem.

Dynamic programming. Break up a problem into a series of overlapping sub-problems, and build up solutions to larger and larger sub-problems.

Dynamic Programming History

Bellman. [1950s] Pioneered the systematic study of dynamic programming.

Etymology.

- Dynamic programming = planning over time.
- Secretary of Defense was hostile to mathematical research.
- Bellman sought an impressive name to avoid confrontation.

"it's impossible to use dynamic in a pejorative sense" "something not even a Congressman could object to"

Reference: Bellman, R. E. Eye of the Hurricane, An Autobiography.

Dynamic Programming Applications

Areas.

- Bioinformatics.
- Control theory.
- Information theory.
- Operations research.
- Computer science: theory, graphics, AI, compilers, systems,

Some famous dynamic programming algorithms.

- Unix diff for comparing two files.
- Viterbi for hidden Markov models.
- Smith-Waterman for genetic sequence alignment.
- Bellman-Ford for shortest path routing in networks.
- Cocke-Kasami-Younger for parsing context free grammars.

Computing Fibonacci numbers

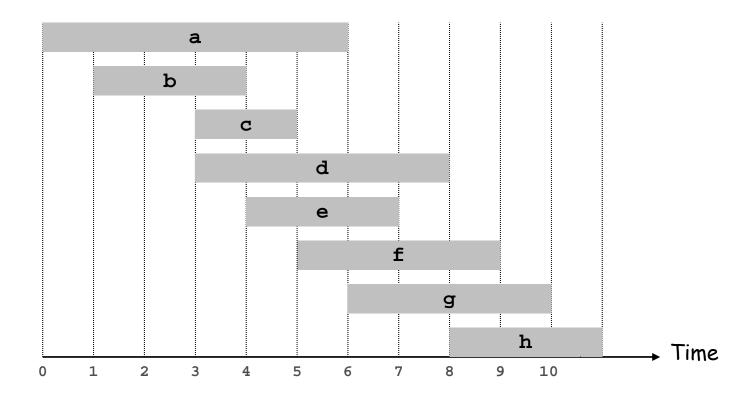
On the board.

6.1 Weighted Interval Scheduling

Weighted Interval Scheduling

Weighted interval scheduling problem.

- \blacksquare Job j starts at s_j , finishes at f_j , and has weight or value v_j .
- Two jobs compatible if they don't overlap.
- Goal: find maximum weight subset of mutually compatible jobs.

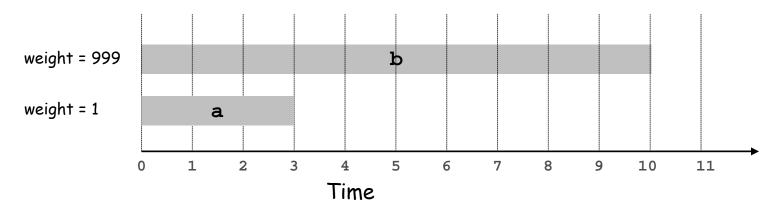


Unweighted Interval Scheduling (will cover in Greedy paradigms)

Previously Showed: Greedy algorithm works if all weights are 1.

• Solution: Sort requests by finish time (ascending order)

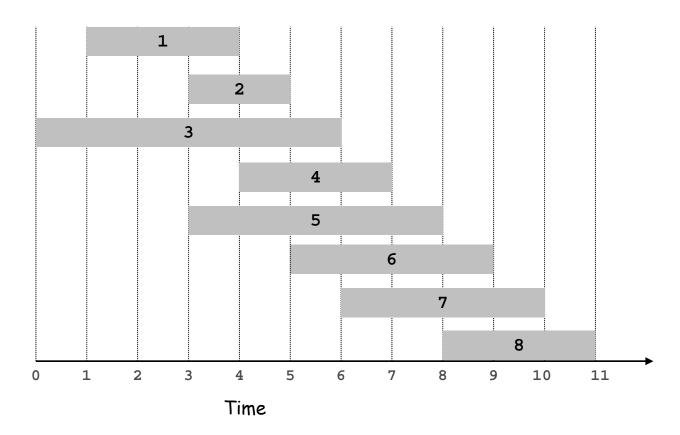
Observation. Greedy algorithm can fail spectacularly if arbitrary weights are allowed.



Weighted Interval Scheduling

Notation. Label jobs by finishing time: $f_1 \le f_2 \le ... \le f_n$. Def. p(j) = largest index i < j such that job i is compatible with j.

Ex: p(8) = 5, p(7) = 3, p(2) = 0.



Dynamic Programming: Binary Choice

Notation. OPT(j) = value of optimal solution to the problem consisting of job requests 1, 2, ..., j.

- Case 1: OPT selects job j.
 - collect profit v_j
 - can't use incompatible jobs { p(j) + 1, p(j) + 2, ..., j 1 }
 - must include optimal solution to problem consisting of remaining compatible jobs 1, 2, ..., p(j)

optimal substructure

- Case 2: OPT does not select job j.
 - must include optimal solution to problem consisting of remaining compatible jobs 1, 2, ..., j-1

$$OPT(j) = \begin{cases} 0 & \text{if } j = 0\\ \max \{ v_j + OPT(p(j)), OPT(j-1) \} & \text{otherwise} \end{cases}$$

Weighted Interval Scheduling: Brute Force

Brute force algorithm.

```
Input: n, s_1,...,s_n, f_1,...,f_n, v_1,...,v_n

Sort jobs by finish times so that f_1 \leq f_2 \leq ... \leq f_n.

Compute p(1), p(2), ..., p(n)

Compute-Opt(j) {
   if (j = 0)
      return 0
   else
      return max(v_j + Compute-Opt(p(j)), Compute-Opt(j-1))
}
```

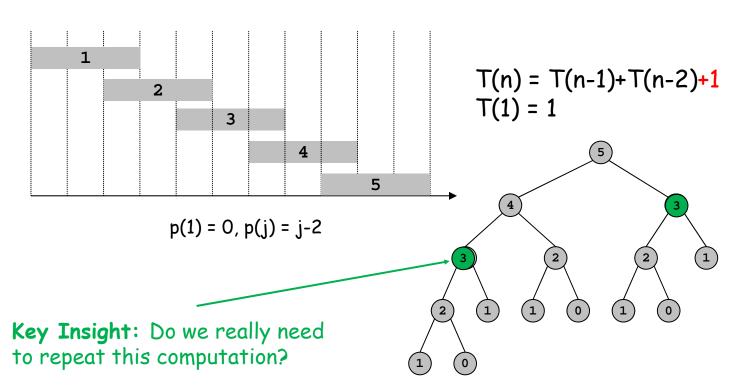
$$T(n) = T(n-1)+T(p(n))+O(1)$$

 $T(1) = 1$

Weighted Interval Scheduling: Brute Force

Observation. Recursive algorithm fails spectacularly because of redundant sub-problems \Rightarrow exponential algorithms.

Ex. Number of recursive calls for family of "layered" instances grows like Fibonacci sequence $(F_n > 1.6^n)$.



Weighted Interval Scheduling: Memoization

Memoization. Store results of each sub-problem in a cache; lookup as needed.

```
Input: n, s<sub>1</sub>,...,s<sub>n</sub>, f<sub>1</sub>,...,f<sub>n</sub>, v<sub>1</sub>,...,v<sub>n</sub>

Sort jobs by finish times so that f<sub>1</sub> ≤ f<sub>2</sub> ≤ ... ≤ f<sub>n</sub>.

Compute p(1), p(2), ..., p(n)

for j = 1 to n
    M[j] = empty

M[0] = 0

global array

M-Compute-Opt(j) {
    if (M[j] is empty)
        M[j] = max(v<sub>j</sub> + M-Compute-Opt(p(j)), M-Compute-Opt(j-1))
    return M[j]
}
```

Weighted Interval Scheduling: Running Time

Claim. Memoized version of algorithm takes O(n log n) time.

- Sort by finish time: O(n log n).
- Computing $p(\cdot)$: $O(n \log n)$ via sorting by start time.
- M-Compute-Opt(j): each invocation takes O(1) time and either
 - (i) returns an existing value M[j]
 - (ii) fills in one new entry M[j] and makes two recursive calls
- Progress measure Φ = # nonempty entries of M[].
 - initially Φ = 0, throughout $\Phi \leq$ n.
 - (ii) increases Φ by $1 \Rightarrow$ at most 2n recursive calls.
- Overall running time of M-Compute-Opt(n) is O(n). •

Remark. O(n) if jobs are pre-sorted by start and finish times.

Weighted Interval Scheduling: Finding a Solution

- Q. Dynamic programming algorithms computes optimal value. What if we want the solution itself?
- A. Do some post-processing.

```
Run M-Compute-Opt(n)
Run Find-Solution(n)

Find-Solution(j) {
   if (j = 0)
      output nothing
   else if (v<sub>j</sub> + M[p(j)] > M[j-1])
      print j
      Find-Solution(p(j))
   else
      Find-Solution(j-1)
}
```

• # of recursive calls \leq n \Rightarrow O(n).

Weighted Interval Scheduling: Bottom-Up

Bottom-up dynamic programming. Unwind recursion.

```
Input: n, s_1,...,s_n, f_1,...,f_n, v_1,...,v_n

Sort jobs by finish times so that f_1 \leq f_2 \leq ... \leq f_n.

Compute p(1), p(2), ..., p(n)

Iterative-Compute-Opt {
    M[0] = 0
    for j = 1 to n
        M[j] = max(v_j + M[p(j)], M[j-1])
}
```

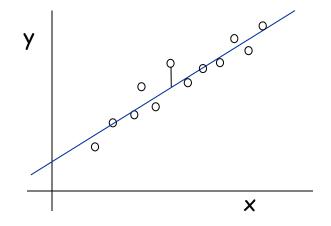
6.3 Segmented Least Squares

Segmented Least Squares

Least squares.

- Foundational problem in statistic and numerical analysis.
- Given n points in the plane: $(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)$.
- Find a line y = ax + b that minimizes the sum of the squared error:

$$SSE = \sum_{i=1}^{n} (y_i - ax_i - b)^2$$



Solution. Calculus \Rightarrow min error is achieved when

$$a = \frac{n \sum_{i} x_{i} y_{i} - (\sum_{i} x_{i}) (\sum_{i} y_{i})}{n \sum_{i} x_{i}^{2} - (\sum_{i} x_{i})^{2}}, \quad b = \frac{\sum_{i} y_{i} - a \sum_{i} x_{i}}{n}$$

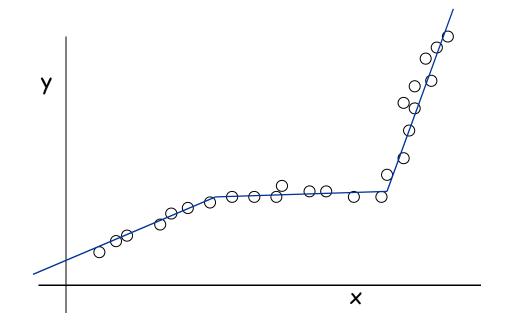
Segmented Least Squares

Segmented least squares.

- Points lie roughly on a sequence of several line segments.
- Given n points in the plane $(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)$ with
- $x_1 < x_2 < ... < x_n$, find a sequence of lines that minimizes f(x).

Q. What's a reasonable choice for f(x) to balance accuracy and parsimony?

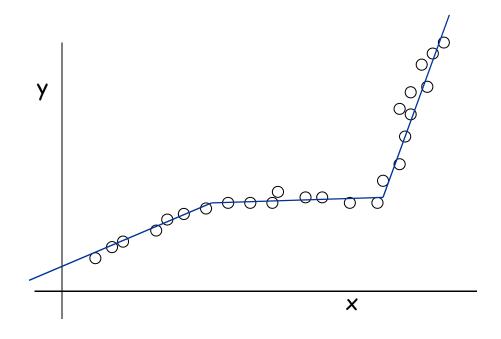
number of lines



Segmented Least Squares

Segmented least squares.

- Points lie roughly on a sequence of several line segments.
- Given n points in the plane $(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)$ with
- $x_1 < x_2 < ... < x_n$, find a sequence of lines that minimizes:
 - the sum of the sums of the squared errors E in each segment
 - the number of lines L
- Tradeoff function: E + c L, for some constant c > 0.



Dynamic Programming: Multiway Choice

Notation.

- OPT(j) = minimum cost for points $p_1, p_{i+1}, \ldots, p_j$.
- e(i, j) = minimum sum of squares for points $p_i, p_{i+1}, \ldots, p_j$.

To compute OPT(j):

- \blacksquare Last segment uses points $p_i,\,p_{i+1}$, . . . , p_j for some i.
- Cost = e(i, j) + c + OPT(i-1).

$$OPT(j) = \begin{cases} 0 & \text{if } j = 0\\ \min_{1 \le i \le j} \left\{ e(i, j) + c + OPT(i - 1) \right\} & \text{otherwise} \end{cases}$$

Segmented Least Squares: Algorithm

```
INPUT: n, p<sub>1</sub>,...,p<sub>N</sub>, c

Segmented-Least-Squares() {
    M[0] = 0
    for j = 1 to n
        for i = 1 to j
            compute the least square error e<sub>ij</sub> for the segment p<sub>i</sub>,..., p<sub>j</sub>

for j = 1 to n
    M[j] = min<sub>1 \leq i \leq j</sub> (e<sub>ij</sub> + c + M[i-1])

return M[n]
}
```

can be improved to $O(n^2)$ by pre-computing various statistics Running time. $O(n^3)$.

■ Bottleneck = computing e(i, j) for $O(n^2)$ pairs, O(n) per pair using previous formula.

6.4 Knapsack Problem

Knapsack Problem

Knapsack problem.

- Given n objects and a "knapsack."
- Item i weighs $w_i > 0$ kilograms and has value $v_i > 0$.
- Knapsack has capacity of W kilograms.
- Goal: fill knapsack so as to maximize total value.

Ex: { 3, 4 } has value 40.

#	value	weight
1	1	1
2	6	2
3	18	5
4	22	6
5	28	7

W = 11

Greedy: repeatedly add item with maximum ratio v_i / w_i . Ex: { 5, 2, 1 } achieves only value = 35 \Rightarrow greedy not optimal.

Dynamic Programming: False Start

Def. OPT(i) = max profit subset of items 1, ..., i.

- Case 1: OPT does not select item i.
 - OPT selects best of { 1, 2, ..., i-1 }
- Case 2: OPT selects item i.
 - accepting item i does not immediately imply that we will have to reject other items
 - without knowing what other items were selected before i,
 we don't even know if we have enough room for i

Conclusion. Need more sub-problems!

Dynamic Programming: Adding a New Variable

Def. OPT(i, w) = max profit subset of items 1, ..., i with weight limit w.

- Case 1: OPT does not select item i.
 - OPT selects best of { 1, 2, ..., i-1 } using weight limit w
- Case 2: OPT selects item i.
 - new weight limit = w wi
 - OPT selects best of { 1, 2, ..., i-1 } using this new weight limit

$$OPT(i, w) = \begin{cases} 0 & \text{if } i = 0 \\ OPT(i-1, w) & \text{if } w_i > w \\ \max\{OPT(i-1, w), v_i + OPT(i-1, w-w_i)\} & \text{otherwise} \end{cases}$$

Knapsack Problem: Bottom-Up

Knapsack. Fill up an n-by-W array.

```
Input: n, W, w<sub>1</sub>,...,w<sub>N</sub>, v<sub>1</sub>,...,v<sub>N</sub>

for w = 0 to W
   M[0, w] = 0

for i = 1 to n
   for w = 1 to W
        if (w<sub>i</sub> > w)
            M[i, w] = M[i-1, w]
        else
            M[i, w] = max {M[i-1, w], v<sub>i</sub> + M[i-1, w-w<sub>i</sub>]}

return M[n, W]
```

Knapsack Algorithm

_____ W + 1 _____

		0	1	2	3	4	5	6	7	8	9	10	11
n + 1	ф	0	0	0	0	0	0	0	0	0	0	0	0
	{ 1 }	0	1	1	1	1	1	1	1	1	1	1	1
	{ 1, 2 }	0	1	6	7	7	7	7	7	7	7	7	7
	{1,2,3}	0	1	6	7	7	18	19	24	25	25	25	25
	{1,2,3,4}	0	1	6	7	7	18	22	24	28	29	29	40
	{1,2,3,4,5}	0	1	6	7	7	18	22	28	29	34	34	40

OPT: { 4, 3 } value = 22 + 18 = 40

W = 11

Item	Value	Weight
1	1	1
2	6	2
3	18	5
4	22	6
5	28	7

Knapsack Problem: Running Time

Running time. $\Theta(n W)$.

- Not polynomial in input size!
 - Only need $\log_2 W$ bits to encode each weight
 - Problem can be encoded with $O(n \log_2 W)$ bits
- "Pseudo-polynomial."
- Decision version of Knapsack is NP-complete. [Chapter 8]

Knapsack approximation algorithm. There exists a poly-time algorithm that produces a feasible solution that has value within 0.01% of optimum. [Section 11.8]