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Recap: Divide and Conquer
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Framework: Divide, Conquer and Merge

Example 1: Counting Inversions in O(n log n) time.
• Subroutine: Sort-And-Count  (divide & conquer)
• Count Left-Right inversions (merge) in time O(n) when input is 

already sorted
Example 2: Closest Pair of Points in O(n log n) time.
• Split input in half by x coordinate and find closest point on 

left and right half ( = min(1, 2))
• Merge: Exploits structural properties of problems

• Remove elements at distance >  from dividing line L
• Sort remaining points by y coordinate to obtain ݌ଵ, ଶ݌ …
• Claim: ݌௜ െ ௝݌ ൏ ߜ ⟹ ݅ െ ݆ ൑ 12

Example 3: Integer Multiplication in time O(n1.585)
• Divide each n-bit number into two n/2-bit numbers
• Key Trick: Only need a=3 multiplications of n/2-bit numbers!
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Integer division.  Given two n-bit (or less) integers s and t,
compute quotient q = s / t and remainder r = s mod t (such that s=qt+r).

Fact.  Complexity of integer division is (almost) same as integer 
multiplication.
To compute quotient q:
 Approximate x = 1 / t using Newton's method:
 After i=log n iterations, either q = s xi or q = s xi.

– If s x t > s then q = s x (1 multiplication)
– Otherwise q = s x
– r=s-qt (1 multiplication)

 Total: O(log n) multiplications and subtractions

xi1    2xi  t xi
2

Fast Integer Division Too (!)

using fast
multiplication



Toom-3 Generalization

ܽ ൌ 2ଶ௡/ଷ · ܽଶ ൅ 2
௡
ଷ · ܽଵ ൅ ܽ଴

ܾ ൌ 2ଶ௡/ଷ · ܾଶ ൅ 2
௡
ଷ · ܾଵ ൅ ܾ଴

Requires: 5 multiplications of n/3 bit numbers and O(1) additions, shifts

ܶ ݊ ൌ 5 · ܶ
݊
3 ൅ ܱሺ݊ሻ ⇒ ܶ ݊ ∈ ܱ ݊୪୭୥య ହ

Toom-Cook Generalization (split into k parts): (2k-1) multiplications 
of n/k bit numbers.

						
ܶ ݊ ൌ 2݇ െ 1 · ܶ

݊
݇ ൅ ܱ ݊ ⇒ ܶ ݊ ∈ ܱ ݊୪୭୥ೖ ଶ௞ିଵ 													
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ൎ 1.465

lim
௞→ஶ

log௞ 2݇ െ 1 ൌ 1

Split	into	3	parts

ࢀ ࢔ ∈ ࡻ ૚.૙૙૙૙૙૙૚࢔ for large enough k

Caveat: Hidden constants increase with k



Schönhage–Strassen algorithm

Only used for really big numbers: ଶభఱ

State of the Art Integer Multiplication (Theory): ܱ ݊	 log ݊ 	݃ሺ݊ሻ 	for 
increasing small

Integer Division: 
• Input: x,y (positive n bit integers)
• Output: positive integers q (quotient) and remainder r s.t. 
ݔ																															 ൌ ݕݍ ൅ ݎ and ݎ ൏ ݕ
• Algorithm to compute quotient q and remainder r requires O(log n) 

multiplications using Newton’s method (approximates roots of a real-
valued polynomial).
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Begun, the decimal wars have. [Pan, Bini et al, Schönhage, …]

Fast Matrix Multiplication:  Theory

Q.  Multiply two 2-by-2 matrices with 7 scalar multiplications?

  (n log3 21)  O(n 2.77 )

O(n 2.7801)

  (n log2 6)  O(n 2.59 )

(n log2 7 ) O(n 2.807 )A. Yes!   [Strassen 1969]

Q. Multiply two 2-by-2 matrices with 6 scalar multiplications?
A. Impossible.  [Hopcroft and Kerr 1971]

Q. Two 3-by-3 matrices with 21 scalar multiplications?
A. Also impossible.

 Two 48-by-48 matrices with 47,217 scalar multiplications.

 December, 1979. O(n 2.521813)

O(n 2.521801) January, 1980.

 A year later. O(n 2.7799 )

 Two 20-by-20 matrices with 4,460 scalar multiplications. O(n 2.805)
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Fast Matrix Multiplication:  Theory

Best known.  O(n2.376) [Coppersmith-Winograd, 1987]

Conjecture.  O(n2+) for any  > 0. 

Caveat.  Theoretical improvements to Strassen are progressively
less practical.
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Fast Matrix Multiplication:  Theory

Best known.  O(n2.373) [Williams, 2014] 

Conjecture.  O(n2+) for any  > 0. 

Caveat.  Theoretical improvements to Strassen are progressively
less practical.
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Fast Matrix Multiplication:  Theory

Best known.  O(n2.3729) [Le Gall, 2014] 

Conjecture.  O(n2+) for any  > 0. 

Caveat.  Theoretical improvements to Strassen are progressively
less practical.
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Chapter 6

Dynamic Programming

Slides by Kevin Wayne.
Copyright © 2005 Pearson-Addison Wesley.
All rights reserved.



11

Algorithmic Paradigms

Greedy.  Build up a solution incrementally, myopically optimizing 
some local criterion.

Divide-and-conquer.  Break up a problem into sub-problems, solve 
each sub-problem independently, and combine solution to sub-
problems to form solution to original problem. 

Dynamic programming. Break up a problem into a series of 
overlapping sub-problems, and build up solutions to larger and 
larger sub-problems.
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Dynamic Programming History

Bellman. [1950s] Pioneered the systematic study of dynamic programming.

Etymology.
 Dynamic programming = planning over time.
 Secretary of Defense was hostile to mathematical research.
 Bellman sought an impressive name to avoid confrontation.

Reference:  Bellman, R. E. Eye of the Hurricane, An Autobiography.

"it's impossible to use dynamic in a pejorative sense"
"something not even a Congressman could object to"
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Dynamic Programming Applications

Areas. 
 Bioinformatics.
 Control theory.
 Information theory.
 Operations research.
 Computer science:  theory, graphics, AI, compilers, systems, ….

Some famous dynamic programming algorithms. 
 Unix diff for comparing two files.
 Viterbi for hidden Markov models.
 Smith-Waterman for genetic sequence alignment.
 Bellman-Ford for shortest path routing in networks.
 Cocke-Kasami-Younger for parsing context free grammars.



Computing Fibonacci numbers

On the board.
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6.1  Weighted Interval Scheduling
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Weighted Interval Scheduling

Weighted interval scheduling problem.
 Job j starts at sj, finishes at fj, and has weight or value vj . 
 Two jobs compatible if they don't overlap.
 Goal:  find maximum weight subset of mutually compatible jobs.

Time

f

g

h

e

a

b

c

d

0 1 2 3 4 5 6 7 8 9 10
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Unweighted Interval Scheduling (will cover in Greedy paradigms)

Previously Showed: Greedy algorithm works if all weights are 1.
• Solution: Sort requests by finish time (ascending order)

Observation.  Greedy algorithm can fail spectacularly if arbitrary 
weights are allowed.

Time
0 1 2 3 4 5 6 7 8 9 10 11

b

a

weight = 999

weight = 1
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Weighted Interval Scheduling

Notation.  Label jobs by finishing time:  f1   f2   . . .  fn .
Def.  p(j) = largest index i < j such that job i is compatible with j.

Ex:  p(8) = 5, p(7) = 3, p(2) = 0.

Time

0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5
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Dynamic Programming:  Binary Choice

Notation.  OPT(j) = value of optimal solution to the problem 
consisting of job requests 1, 2, ..., j.

 Case 1:  OPT selects job j.
– collect profit vj

– can't use incompatible jobs { p(j) + 1, p(j) + 2, ..., j - 1 }
– must include optimal solution to problem consisting of 

remaining compatible jobs 1, 2, ...,  p(j)

 Case 2:  OPT does not select job j.
– must include optimal solution to problem consisting of 

remaining compatible jobs 1, 2, ...,  j-1

  
OPT( j) 

0 if  j 0
max v j  OPT( p( j)), OPT( j 1)  otherwise




optimal substructure
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Input: n, s1,…,sn , f1,…,fn , v1,…,vn

Sort jobs by finish times so that f1  f2  ...  fn.

Compute p(1), p(2), …, p(n)

Compute-Opt(j) {
if (j = 0)

return 0
else

return max(vj + Compute-Opt(p(j)), Compute-Opt(j-1))
}

Weighted Interval Scheduling:  Brute Force

Brute force algorithm.

T(n) = T(n-1)+T(p(n))+O(1)
T(1) = 1
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Weighted Interval Scheduling:  Brute Force

Observation.  Recursive algorithm fails spectacularly because of 
redundant sub-problems   exponential algorithms.

Ex.  Number of recursive calls for family of "layered" instances grows 
like Fibonacci sequence (Fn > 1.6n).

3

4

5

1

2

p(1) = 0, p(j) = j-2

5

4 3

3 2 2 1

2 1

1 0

1 0 1 0

T(n) = T(n-1)+T(n-2)+1
T(1) = 1

3

3

Key Insight: Do we really need 
to repeat this computation?
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Input: n, s1,…,sn , f1,…,fn , v1,…,vn

Sort jobs by finish times so that f1  f2  ...  fn.
Compute p(1), p(2), …, p(n)

for j = 1 to n
M[j] = empty

M[0] = 0

M-Compute-Opt(j) {
if (M[j] is empty)

M[j] = max(vj + M-Compute-Opt(p(j)), M-Compute-Opt(j-1))
return M[j]

}

global array

Weighted Interval Scheduling:  Memoization

Memoization.  Store results of each sub-problem in a cache;
lookup as needed.
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Weighted Interval Scheduling:  Running Time

Claim.  Memoized version of algorithm takes O(n log n) time.
 Sort by finish time:  O(n log n).
 Computing p() :  O(n log n) via sorting by start time.

 M-Compute-Opt(j):  each invocation takes O(1) time and either
– (i)  returns an existing value M[j]

– (ii) fills in one new entry M[j] and makes two recursive calls

 Progress measure  = # nonempty entries of M[].
– initially  = 0,  throughout   n. 
– (ii) increases  by 1   at most 2n recursive calls.

 Overall running time of M-Compute-Opt(n) is O(n).   ▪

Remark.  O(n) if jobs are pre-sorted by start and finish times.
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Weighted Interval Scheduling:  Finding a Solution

Q.  Dynamic programming algorithms computes optimal value.
What if we want the solution itself?
A.  Do some post-processing.

 # of recursive calls  n   O(n).

Run M-Compute-Opt(n)
Run Find-Solution(n)

Find-Solution(j) {
if (j = 0)

output nothing
else if (vj + M[p(j)] > M[j-1])

print j
Find-Solution(p(j))

else
Find-Solution(j-1)

}
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Weighted Interval Scheduling:  Bottom-Up

Bottom-up dynamic programming.  Unwind recursion.

Input: n, s1,…,sn , f1,…,fn , v1,…,vn

Sort jobs by finish times so that f1  f2  ...  fn.

Compute p(1), p(2), …, p(n)

Iterative-Compute-Opt {
M[0] = 0
for j = 1 to n

M[j] = max(vj + M[p(j)], M[j-1])
}



6.3  Segmented Least Squares
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Segmented Least Squares

Least squares.
 Foundational problem in statistic and numerical analysis.
 Given n points in the plane:  (x1, y1), (x2, y2) , . . . , (xn, yn).
 Find a line y = ax + b that minimizes the sum of the squared error: 

Solution.  Calculus   min error is achieved when

SSE  ( yi  axi b)2

i1

n


  
a 

n xi yi  ( xi )i ( yi )ii

n xi
2  ( xi )

2
ii

, b 
yi  a xiii

n

x

y
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Segmented Least Squares

Segmented least squares.
 Points lie roughly on a sequence of several line segments.
 Given n points in the plane (x1, y1), (x2, y2) , . . . , (xn, yn) with 
 x1 < x2 < ... < xn, find a sequence of lines that minimizes f(x).

Q.  What's a reasonable choice for f(x) to balance accuracy and 
parsimony?

x

y

goodness of fit

number of lines
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Segmented Least Squares

Segmented least squares.
 Points lie roughly on a sequence of several line segments.
 Given n points in the plane (x1, y1), (x2, y2) , . . . , (xn, yn) with 
 x1 < x2 < ... < xn, find a sequence of lines that minimizes:

– the sum of the sums of the squared errors E in each segment
– the number of lines L

 Tradeoff function:  E + c L, for some constant c > 0.

x

y
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Dynamic Programming:  Multiway Choice

Notation.
 OPT(j) = minimum cost for points p1, pi+1 , . . . , pj.
 e(i, j)   = minimum sum of squares for points pi, pi+1 , . . . , pj.

To compute OPT(j):
 Last segment uses points pi, pi+1 , . . . , pj for some i.
 Cost = e(i, j) + c + OPT(i-1).

  
OPT( j)

0 if  j 0
min

1 i  j
e(i, j)  c  OPT(i 1)  otherwise






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Segmented Least Squares:  Algorithm

Running time.  O(n3).
 Bottleneck = computing e(i, j) for O(n2) pairs, O(n) per pair 

using previous formula.

INPUT: n, p1,…,pN , c

Segmented-Least-Squares() {
M[0] = 0
for j = 1 to n

for i = 1 to j
compute the least square error eij for
the segment pi,…, pj

for j = 1 to n
M[j] = min 1  i  j (eij + c + M[i-1])

return M[n]
}

can be improved to O(n2) by pre-computing various statistics



6.4  Knapsack Problem
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Knapsack Problem

Knapsack problem.
 Given n objects and a "knapsack."
 Item i weighs wi > 0 kilograms and has value vi > 0.
 Knapsack has capacity of W kilograms.
 Goal:  fill knapsack so as to maximize total value.

Ex:  { 3, 4 } has value 40.

Greedy:  repeatedly add item with maximum ratio vi / wi.
Ex: { 5, 2, 1 } achieves only value = 35   greedy not 
optimal.

1

value

18

22

28

1

weight

5

6

6 2

7

#

1

3

4

5

2

W = 11
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Dynamic Programming:  False Start

Def.  OPT(i) = max profit subset of items 1, …, i.

 Case 1:  OPT does not select item i.
– OPT selects best of { 1, 2, …, i-1 } 

 Case 2:  OPT selects item i.
– accepting item i does not immediately imply that we will have 

to reject other items
– without knowing what other items were selected before i,

we don't even know if we have enough room for i

Conclusion.  Need more sub-problems!
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Dynamic Programming:  Adding a New Variable

Def.  OPT(i, w) = max profit subset of items 1, …, i with weight limit w.

 Case 1:  OPT does not select item i.
– OPT selects best of { 1, 2, …, i-1 } using weight limit w 

 Case 2:  OPT selects item i.
– new weight limit = w – wi
– OPT selects best of { 1, 2, …, i–1 } using this new weight limit

  

OPT(i, w) 
0 if  i  0

OPT(i 1, w) if  wi  w
max OPT(i 1, w), vi  OPT(i 1, wwi )  otherwise







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Input: n, W, w1,…,wN, v1,…,vN

for w = 0 to W
M[0, w] = 0

for i = 1 to n
for w = 1 to W

if (wi > w)
M[i, w] = M[i-1, w]

else
M[i, w] = max {M[i-1, w], vi + M[i-1, w-wi ]}

return M[n, W]

Knapsack Problem:  Bottom-Up

Knapsack.  Fill up an n-by-W array.
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Knapsack Algorithm

n + 1

1
Value

18
22
28

1
Weight

5
6

6 2

7

Item
1

3
4
5

2



{ 1, 2 }

{ 1, 2, 3 }

{ 1, 2, 3, 4 }

{ 1 }

{ 1, 2, 3, 4, 5 }

0

0

0

0

0

0

0

1

0

1

1

1

1

1

2

0

6

6

6

1

6

3

0

7

7

7

1

7

4

0

7

7

7

1

7

5

0

7

18

18

1

18

6

0

7

19

22

1

22

7

0

7

24

24

1

28

8

0

7

25

28

1

29

9

0

7

25

29

1

34

10

0

7

25

29

1

34

11

0

7

25

40

1

40

W + 1

W = 11

OPT:  { 4, 3 }
value = 22 + 18 = 40
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Knapsack Problem:  Running Time

Running time.  (n W).
 Not polynomial in input size!  

– Only need logଶܹ bits to encode each weight
– Problem can be encoded with ܱ ݊ logଶܹ bits

 "Pseudo-polynomial."
 Decision version of Knapsack is NP-complete.  [Chapter 8]

Knapsack approximation algorithm.  There exists a poly-time algorithm 
that produces a feasible solution that has value within 0.01% of 
optimum.  [Section 11.8]


