CS 580: Algorithm Design and Analysis

Jeremiah Blocki
Purdue University
Spring 2018

Announcement: Homework 3 due February 15t at 11:59PM
Final Exam (Tentative): Thursday, May 3 @ 8AM (PHYS 203)

Recap: Divide and Conquer

Framework: Divide, Conquer and Merge

Example 1: Counting Inversions in O(n log n) time.
Subroutine: Sort-And-Count (divide & conquer)
Count Left-Right inversions (merge) in time O(n) when input is
already sorted
Example 2: Closest Pair of Points in O(n log n) time.
Split input in half by x coordinate and find closest point on
left and right half (8 = min(8,, §,))
Merge: Exploits structural properties of problems
Remove elements at distance > 6 from dividing line L
Sort remaining points by y coordinate to obtain p4,p, ...
Claim: |p; —p;| <d=li—j| <12
Example 3: Integer Multiplication in time O(n!-28)
Divide each n-bit number into two n/2-bit numbers
Key Trick: Only need a=3 multiplications of n/2-bit numbers!

Fast Integer Division Too (!)

Integer division. Given two n-bit (or less) integers s and t,
compute quotient g =[s/tland remainder r = s mod t (such that s=qt+r).

Fact. Complexity of integer division is (almost) same as integer

multiplication.

To compute quotient g: X, = 2% — tx’
. Approximate x =1/t using Newton's method:
. After izlog n iterations, either q=Lsx] or q=[sx .

- If [sx] t > s then g=[s x| (1 multiplication)
- Otherwise q=_sx/
- r=s-qt (1 multiplication)

using fast
multiplication

. Total: O(log n) multiplications and subtractions

Toom-3 Generalization

n

_ . a=22"/3-a2+23-a1+a0
Splitinto 3 parts b =223 .p, 4+ 23-b; + b

Requires: 5 multiplications of n/3 bit humbers and O(1) additions, shifts

n

T(n)=5-T(3

) +0(n)=T(n) € 0(n1°g3 >

/

~ 1.465

Toom-Cook Generalization (split into k parts): (2k-1) multiplications
of n/k bit numbers.

n

T(n)z(Zk—l)-T(k

) +0(n)=>Tn) € O(nlogk(Zk—l))

Ilim (log,(2k—1)) =1

T(n) € 0(n10000001) for |arge enough k

Caveat: Hidden constants increase with k

Schonhage-Strassen algorithm

T(n) € O(n logn loglogn)
Only used for really big humbers: a > 22"

State of the Art Integer Multiplication (Theory): O(n logn g(n)) for
increasing small

g(n) < loglogn

Integer Division:
Input: xy (positive n bit integers)
Output: positive integers q (quotient) and remainder r s.t.
x=qy+r andr <y
Algorithm to compute quotient q and remainder r requires O(log n)
multiplications using Newton's method (approximates roots of a real-
valued polynomial).

Fast Matrix Multiplication: Theory

Q. Multiply two 2-by-2 matrices with 7 scalar multiplications?
A. Yes! [Strassen 1969] @(n:7) =0(n 27

Q. Multiply two 2-by-2 matrices with 6 scalar multiplications?
A. Impossible. [Hopcroft and Kerr 1971] o 59— 02
Q. Two 3-by-3 matrices with 21 scalar multiplications?

A. Also impossible. @(nlog321)zo(n2.77)

Begun, the decimal wars have. [Pan, Bini et al, Schonhage, ...]

. Two 20-by-20 matrices with 4,460 scalar multiplications. O(n 25%)
. Two 48-by-48 matrices with 47,217 scalar multiplications. o(n 271
. A year later. 0N
. December', 1979. o(n 2521813)

. JGHUGF‘Y, 1980. o(n 2.521801)

Fast Matrix Multiplication: Theory

A
w(T)
30 23]
Ela_r______l ______________ w _{Il _________ : -
2.5'---—--&---—- S e e .
E.D 1 Il T | | I 1 I- | = 1 1] 'rr
1968 1969 1975 1976 1977 1978 1979 1980 1981 1982

Fig. 1. w(i) is the best exponent announced by time r.

Best known. O(n?37) [Coppersmith-Winograd, 1987]
Conjecture. O(n*¢) for any ¢ > 0.

Caveat. Theoretical improvements to Strassen are progressively
less practical.

Fast Matrix Multiplication: Theory

20 L =

198 1969 1975 1976 1977 1978 1979 1980 1981 1982

Fig. 1. w(i) is the best exponent announced by time r.

Best known. O(n%37%) [Williams, 2014]
Conjecture. O(n*¢) for any ¢ > 0.

Caveat. Theoretical improvements to Strassen are progressively
less practical.

Fast Matrix Multiplication: Theory

20 L =

198 1969 1975 1976 1977 1978 1979 1980 1981 1982

Fig. 1. w(i) is the best exponent announced by time r.

Best known. O(n%372%) [Le Gall, 2014]
Conjecture. O(n*¢) for any ¢ > 0.

Caveat. Theoretical improvements to Strassen are progressively
less practical.

10

JON KLEINBERG

- EVA TARDOS

PEARSON

e —

Addison
esley

1

Algorithmic Paradigms

Greedy. Build up a solution incrementally, myopically optimizing
some local criterion.

Divide-and-conquer. Break up a problem into sub-problems, solve
each sub-problem independently, and combine solution to sub-
problems to form solution to original problem.

Dynamic programming. Break up a problem into a series of
overlapping sub-problems, and build up solutions to larger and
larger sub-problems.

12

Dynamic Programming History

Bellman. [1950s] Pioneered the systematic study of dynamic programming.

Etymology.
. Dynamic programming = planning over time.
. Secretary of Defense was hostile to mathematical research.
. Bellman sought an impressive name to avoid confrontation.

"it's impossible to use dynamic in a pejorative sense"
"something not even a Congressman could object to"

Reference: Bellman, R. E. Eye of the Hurricane, An Autobiography.

13

Dynamic Programming Applications

Areas.

. Bioinformatics.

. Control theory.

. Information theory.
. Operations research.

. Computer science: theory, graphics, AL, compilers, systems, ...

Some famous dynamic programming algorithms.
. Unix diff for comparing two files.
. Viterbi for hidden Markov models.
. Smith-Waterman for genetic sequence alignment.
. Bellman-Ford for shortest path routing in networks.
. Cocke-Kasami-Younger for parsing context free grammars.

On the board.

Computing Fibonacci numbers

14

6.1 Weighted Interval Scheduling

Weighted Interval Scheduling

Weighted interval scheduling problem.
. Job j starts at ;. finishes at fJ-, and has weight or value v
. Two jobs compatible if they don't overlap.
. Goal: find maximum weight subset of mutually compatible jobs.

j .

> Time

16

17

Unweighted Interval Scheduling (will cover in Greedy paradigms)

Previously Showed: Greedy algorithm works if all weights are 1.
Solution: Sort requests by finish time (ascending order)

Observation. Greedy algorithm can fail spectacularly if arbitrary
weights are allowed.

weight = 999 b

weight = 1 a

v

18

Weighted Interval Scheduling

Notation. Label jobs by finishing time: f; < f, <...<f,.
Def. p(j) = largest index i < j such that job i is compatible with j.

Ex: p(8)=5,p(7)=3,p(2)=0.

1

19

Dynamic Programming: Binary Choice

Notation. OPT(j) = value of optimal solution to the problem
consisting of job requests,?2, ..., j.

. Case 1: OPT selects job j.
- collect profit v,
- can't use incompatible jobs { p(j) + 1, p(j) + 2, .., j-1}
- must include optimal solution to problem consisting of
remaining compatible jobs 1, 2, ..., p(j) \
optimal substructure
. Case 2: OPT does not select job j. /
- must include optimal solution to problem consisting of
remaining compatible jobs 1, 2, ..., j-1

o if =0
OPT(J)_{maX {v;+OPT(p(j)), OPT(j-1)} otherwise

Weighted Interval Scheduling: Brute Force

Brute force algorithm.

T(n) = T(n-1+T(p(n))+O(1)
T(1) =1

Weighted Interval Scheduling: Brute Force

Observation. Recursive algorithm fails spectacularly because of
redundant sub-problems = exponential algorithms.

Ex. Number of recursive calls for family of "layered" instances grows
like Fibonacci sequence (F, > 1.6").

5 T(n) = T(n-1)+T(n-2)+1
3 T =1

p(1) =0, p() = j-2

Key Insight: Do we really need
to repeat this computation?

21

Weighted Interval Scheduling: Memoization

Memoization. Store results of each sub-problem in a cache;
lookup as needed.

22

Weighted Interval Scheduling: Running Time

Claim. Memoized version of algorithm takes O(n log n) time.
. Sort by finish time: O(n log n).
. Computing p(-): O(n log n) via sorting by start time.

. M-Compute-0Opt(j): each invocation takes O(1) time and either
- (i) returns an existing value M[j]
- (ii) fills in one new entry M[j] and makes two recursive calls
. Progress measure ® = # nonempty entries of M[].
- initially ® = 0, throughout @ <n.
- (ii) increases ® by 1 = at most 2n recursive calls.

. Overall running time of M-Compute-Opt(n) is O(n). -

Remark. O(n) if jobs are pre-sorted by start and finish times.

23

24

Weighted Interval Scheduling: Finding a Solution

Q. Dynamic programming algorithms computes optimal value.
What if we want the solution itself?
A. Do some post-processing.

. # of recursive calls <n = O(n).

25

Weighted Interval Scheduling: Bottom-Up

Bottom-up dynamic programming. Unwind recursion.

6.3 Segmented Least Squares

27

Segmented Least Squares

Least squares.
. Foundational problem in statistic and numerical analysis.
. Given n points in the plane: (xq, Y1), (X2, Y¥2), (Xp Yp)-
. Find a line y = ax + b that minimizes the sum of the squared error:

SSE = i (y; —ax, —b)®

i=1

Solution. Calculus = min error is achieved when

a:nZiXiYi — (2 %) (2 i) b:Ziyi —aY. X
N X — (%) ’ 0

28

Segmented Least Squares

Segmented least squares.
. Points lie roughly on a sequence of several line segments.
. Given n points in the plane (x1, Y1), (X2, ¥2), (X, Y, with
. X1< Xy< ... <X, find a sequence of lines that minimizes f(x).

Q. What's a reasonable choice for f(x) to balance accuracy and

parsimony? !
T goodness of fit

number of lines

29

Segmented Least Squares

Segmented least squares.
. Points lie roughly on a sequence of several line segments.
. Given n points in the plane (x4, Y1), (X2, ¥2), (X, Y,) with
- X1< X< ..< X, find a sequence of lines that minimizes:
- the sum of the sums of the squared errors E in each segment
- the number of lines L
. Tradeoff function: E + c L, for some constant ¢ > 0.

30

Dynamic Programming: Multiway Choice

Notation.
- OPT(j) = minimum cost for points py, pi.1 .- .., Pj-
. e(i, j) = minimum sum of squares for points p;, pi.1, P;

To compute OPT(;):
. Last segment uses points p;, pi.y , ..., p; for some.i.
. Cost =e(i, j) + c + OPT(i-1).

| 0 if j=0
OPT(j)= min { e(i,]) +c+OPT(i—1)} otherwise

I<i<j

jr

31

Segmented Least Squares: Algorithm

can be improved to O(n?) by pre-computing various statistics
Running time. O(n3).<—

. Bottleneck = computing e(i, j) for O(n?) pairs, O(n) per pair
using previous formula.

6.4 Knapsack Problem

Knapsack Problem

Knapsack problem.
. Given n objects and a "knapsack."
. Item i weighs w; > O kilograms and has value v; > O.
. Knapsack has capacity of W kilograms.
. Goal: fill knapsack so as to maximize total value.

Ex: {3, 4} has value 40.
1 1

1

2 6 2
3 18)
4 22 6
5 28 7

Greedy: repeatedly add item with maximum ratio v; / w;.
Ex: {5, 2,1} achieves only value = 35 = greedy not
optimal.

34

Dynamic Programming: False Start

Def. OPT(i) = max profit subset of items 1, ..., i.

. Case 1. OPT does not select item i.
- OPT selects bestof {1, 2, ..., i-1}

. Case 2: OPT selects item i.
- accepting item i does not immediately imply that we will have
to reject other items
- without knowing what other items were selected before i,
we don't even know if we have enough room for i

Conclusion. Need more sub-problems!

Dynamic Programming: Adding a New Variable

Def. OPT(i, w) = max profit subset of items 1, ..., i with weight limit w.

. Case 1. OPT does not select item i.
- OPT selects best of { 1, 2, ..., i-1 } using weight limit w

. Case 2: OPT selects item i.
- new weight limit = w - w;
- OPT selects best of { 1, 2, ..., i-1 } using this new weight limit

0 if i=0
OPT(i,w)=90PT(i—1,w) if w,>w
imax{ OPT(i—1,w), v;+ OPT(i—1,w—w;)} otherwise

35

Knapsack Problem: Bottom-Up

Knapsack. Fill up an n-by-W array.

36

¢

{1}

n+1 {1,2}
{1,2,3}
{1,2,3,4}

{1,2,3,4,5}

Knapsack Algorithm

wW+1

v

0
o
o
o
o)
o)
o)

o)
1
1
1
1
1

o O O O -
N N N N -

OPT: {4,63}
value = 22 + 18 = 40

1 1

1
7

1 1
77

-19 24 25 25

22 24 28 29
18 22 28 29 34

w=11

OO A W N -

1
6
18
22
28

L2l Lo e LT e s it

1 1
7 7
25 25

2o 01
34 [40°

1

N O O N

37

38

Knapsack Problem: Running Time

Running time. ©(n W).
. Not polynomial in input size!
- Only need log, W bits to encode each weight
- Problem can be encoded with 0(nlog, W) bits
. "Pseudo-polynomial."
. Decision version of Knapsack is NP-complete. [Chapter 8]

Knapsack approximation algorithm. There exists a poly-time algorithm
that produces a feasible solution that has value within 0.01% of
optimum. [Section 11.8]

