Cryptography CS 555

Week 9:

Number Theory + Public Key Crypto

Readings: Katz and Lindell Chapter 8, B.1, B.2

• Key-Exchange Problem:

- Obi-Wan and Yoda want to communicate securely
- Suppose that
 - Obi-Wan and Yoda don't have time to meet privately and generate a shared secret key
 - Use AES-GCM (requires shared secret key!)
 - Trusted Intermediary: If Obi-Wan and Yoda both have secret keys with Anakin they can exchange a secret key via the trusted party.

- Key-Exchange Problem:
 - Obi-Wan and Yoda want to communicate securely
 - Suppose that
 - Obi-Wan and Yoda don't have time to meet privately and generate a shared secret key
 - Use AES-GCM (requires shared secret key!)
 - Trusted Intermediary: If Obi-Wan and Yoda both have secret keys with Anakin ($K_{Y,A}$ and $K_{O,A}$) they can exchange a secret key via the trusted party.
 - Obi-Wan picks a key K, computes $c = \operatorname{Enc}_{K_{O,A}}(K)$ and sends c to Anakin with instructions to re-encrypt and forward to Yoda.
 - Anakin computes $K = Dec_{K_{O,A}}(c)$ and $c' = Enc_{K_{Y,A}}(K)$ and forwards to Yoda.
 - Yoda recovers $K = Dec_{K_{YA}}(c')$
 - Anakin also learns the secret key
 - Remark: Obi-Wan and Yoda both trust Anakin, but would prefer to keep the key private just in case.

- Key-Exchange Problem:
 - Obi-Wan and Yoda want to communicate securely
 - Trusted Intermediary: If Obi-Wan and Yoda both have secret keys with Anakin ($K_{Y,A}$ and $K_{O,A}$) they can exchange a secret key via the trusted party.
 - **Remark**: Obi-Wan and Yoda both trust Anakin, but would prefer to keep the key private just in case.

- Key-Exchange Problem:
 - Obi-Wan and Yoda want to communicate securely
 - Suppose that
 - Obi-Wan and Yoda don't have time to meet privately and generate one
 - Obi-Wan and Yoda share an asymmetric key with Anakin
 - Can they use Anakin to exchange a secret key?
 - **Remark**: Obi-Wan and Yoda both trust Anakin, but would prefer to keep the key private just in case.
- Need for Public-Key Crypto
 - We can solve the key-exchange problem using public-key cryptography.
 - No solution is known using symmetric key cryptography alone

Symmetric Key Explosion Problem

- Suppose we have n people and each pair of people want to be able to maintain a secure communication channel.
 - How many private keys per person?
 - Answer: n-1

- Key Explosion Problem
 - n can get very big if you are Google or Amazon!

Public Key Encryption: Basic Terminology

- Plaintext/Plaintext Space
 - A message $m \in \mathcal{M}$
- Ciphertext $c \in C$
- Public/Private Key Pair $(pk, sk) \in \mathcal{K}$

Public Key Encryption Syntax

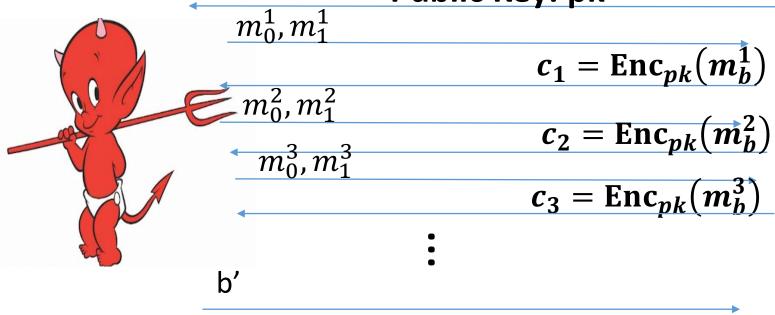
- Three Algorithms
 - $Gen(1^n, R)$ (Key-generation algorithm)
 - Input: Random Bits R
 - Output: $(pk, sk) \in \mathcal{K}$
 - $\operatorname{Enc}_{\operatorname{pk}}(m) \in \mathcal{C}$ (Encryption algoritm.)
 - $Dec_{sk}(c)$ (Decryption algorithm)
 - Input: Secret key sk and a ciphertex c
 - Output: a plaintext message $m \in \mathcal{M}$

Invariant: Dec_{sk}(Enc_{pk}(m))=m

Alice must run key generation algorithm in advance an publishes the public key: pk

Assumption: Adversary only gets to see pk (not sk)

CPA-Security (PubK $_{A,\Pi}^{LR-cpa}(n)$)



Random bit b (pk,sk) = Gen(.)

 $\forall PPT\ A\ \exists\mu\ (\text{negligible})\ \text{s.t}$ $\Pr\left[\text{PubK}_{A,\Pi}^{LR-\text{cpa}}(n)=1\right] \leq \frac{1}{2} + \mu(n)$

Public Key Crypto

- Fact 1: CPA Security and Eavesdropping Security are Equivalent
 - **Key Insight:** The attacker has the public key so he doesn't gain anything from being able to query the encryption oracle!
- Fact 2: Any deterministic encryption scheme is not CPA-Secure
 - Historically overlooked in many real world public key crypto systems
- Fact 3: No Public Key Cryptosystem can achieve Perfect Secrecy!
 - Exercise 11.1
 - **Hint:** Unbounded attacker can keep encrypting the message m using the public key to recover all possible encryptions of m.
- **Key Question:** How do we achieve CPA/CCA-Secure Public Key Encryption?

Number Theory

- Key tool behind (most) public key-crypto
 - RSA, El-Gamal, Diffie-Hellman Key Exchange

- Aside: don't worry we will still use symmetric key crypto
 - It is more efficient in practice
 - First step in many public key-crypto protocols is to generate symmetric key
 - Then communicate using authenticated encryption e.g., AES-GCM

Polynomial Time Factoring Algorithm?

FindPrimeFactor

Input: N

For i=1,...,N

if N/i is an integer then

Output i

Running time: O(N) steps

Correctness: Always returns a factor

Did we just break RSA?

Polynomial Time Factoring Algorithm?

FindPrimeFactor

Input: N

For i=1,...,N

if N/i is an integer then

Output i

We measure running time of an arithmetic algorithm (multiply, divide, GCD, remainder) in terms of the number of bits necessary to encode the inputs.

How many bits ||N|| to encode N? Answer: $||N|| = \log_2(N)$

Running time: O(N) steps

Correctness: Always returns a factor

- Addition
- Multiplication
- Division with Remainder
 - Input: a and divisor b
 - **Output**: quotient q and remainder r < **b** such that

$$a = qb + r$$

Convenient Notation: r = a mod b

Note 1: We require that quotient q and remainder r are both integers

Note 2: If remainder is r=0 (i.e., $\boldsymbol{a}=q\boldsymbol{b}+0$) we say that **b** divides **a** (Notation: b|a)

- Greatest Common Divisor
 - **Example:** gcd(9,15) = 3
- Extended GCD(a,b)
 - Output integers X,Y such that

$$Xa + Yb = \gcd(a, b)$$

Polynomial time in ||a|| and ||b||

- Division with Remainder
 - Input: a and b
 - Output: quotient q and remainder r < b such that

$$a = qb + r$$

- Greatest Common Divisor
 - **Key Observation:** if a = qb + rThen gcd(a,b) = gcd(r, b)=gcd(a mod b, b)

Proof:

- Let d = gcd(a,b). Then d divides both a and b. Thus, d also divides r=a-qb.
 →d=gcd(a,b) ≤ gcd(r, b)
- Let d' = gcd(r, b). Then d' divides both b and r. Thus, d' also divides a = qb+r.
 →gcd(a,b) ≥ gcd(r, b)=d'
- Conclusion: d=d'.

• (Modular Arithmetic) The following operations are polynomial time in ||a|| and ||b|| and ||N||.

- 1. Compute [a mod N]
- 2. Compute sum [(a+b) mod N], difference [(a-b) mod N] or product [ab mod N]
- 3. Determine whether **a** has an inverse \mathbf{a}^{-1} such that $1=[\mathbf{a}\mathbf{a}^{-1} \mod \mathbf{N}]$
- 4. Find **a**⁻¹ if it exists
- 5. Compute the exponentiation [ab mod N]

- (Modular Arithmetic) The in I
- 1. Compute [a mod N]
- 2. Compute sum [/ab mod N

Remark: Part 3 and 4 use extended GCD algorithm

- 3. Determine whether **a** has an inverse \mathbf{a}^{-1} such that $1=[\mathbf{a}\mathbf{a}^{-1} \mod \mathbf{N}]$
- 4. Find **a**⁻¹ if it exists
- 5. Compute the exponentiation [ab mod N]

- (Modular Arithmetic) The following operations are polynomial time in in ||a|| and ||b|| and ||N||.
- 1. Compute [a mod N]
- Compute sum [(a+b) mod N], difference [(a-b) mod N] or product [ab mod N]
- 3. Determine whether **a** has an inverse \mathbf{a}^{-1} such that $1=[\mathbf{a}\mathbf{a}^{-1} \mod \mathbf{N}]$
- 4. Find **a**⁻¹ if it exists
 - Note: a⁻¹ exists if and only if GCD(a,N) = 1.
 - Extended Euclidean Algorithm: Finds integers x,y s.t. ax+Ny =GCD(a,N)=1.
 - **Define:** $a^{-1} = [x \mod N]$ and observe $[aa^{-1} \mod N] = [ax-Ny \mod N] = GCD(a,N)=1$.
- 5. Compute the exponentiation [ab mod N]

- (Modular Arithmetic) The following operations are polynomial time in in ||a|| and ||b|| and ||N||.
- 1. Compute the exponentiation [ab mod N]

Attempt 1:

What is wrong?

(Modular Arithmetic) The following operations are polynomial time in ||a||, ||b|| and ||N||.

1. Compute the exponentiation [ab mod N]

Attempt 2:

If (b=0) return 1
X[0]=a;
For i=1,...,log₂(b)+1
X[i] = X[i-1]*X[i-1]

What is wrong?

The number of bits in $a^{2^{\parallel b \parallel + 1}}$ is $O(2^{\parallel b \parallel + 1})$.

$$X[i] = X[i-1]*X[i-1]$$

$$||\mathbf{a}^{\mathbf{b}} \mod \mathbf{N}| = \mathbf{a}^{\sum_{i} \mathbf{b}[i]2^{i}} \mod \mathbf{N}$$

$$= \prod_{i} X[i]^{\mathbf{b}[i]} \mod \mathbf{N}$$

(Modular Arithmetic) The following operations are polynomial time in ||a||, ||b|| and ||N||.

1. Compute the exponentiation [ab mod N]

Fixed Algorithm:

(Sampling) Let

$$\mathbb{Z}_{N} = \{1, \dots, N\}$$

$$\mathbb{Z}_{N}^{*} = \{x \in \mathbb{Z}_{N} | \gcd(N, x) = 1\}$$

Examples:

$$\mathbb{Z}_{6}^{*} = \{1,5\}$$

$$\mathbb{Z}_7^* = \{1,2,3,4,5,6\}$$

(Sampling) Let

$$\mathbb{Z}_{N} = \{1, \dots, N\}$$

$$\mathbb{Z}_{N}^{*} = \{x \in \mathbb{Z}_{N} | \gcd(N, x) = 1\}$$

- There is a probabilistic polynomial time algorithm (in |N|) to sample from $\mathbb{Z}_{_N}^*$ and \mathbb{Z}_N
- Algorithm to sample from \mathbb{Z}_{N}^{*} is allowed to output "fail" with negligible probability in $\|N\|$.
- Conditioned on not failing sample must be uniform.

Useful Facts

Fact:
$$x, y \in \mathbb{Z}_{N}^{*} \to [xy \mod N] \in \mathbb{Z}_{N}^{*}$$
 where $\mathbb{Z}_{N}^{*} = \{x \in \mathbb{Z}_{N} | \gcd(N, x) = 1\}$

Example 1: $\mathbb{Z}_8^* = \{1,3,5,7\}$

$$[3 \times 7 \mod 8] = [21 \mod 8] = [5 \mod 8] \in \mathbb{Z}_{N}^{*}$$

Proof (by contradiction): Let d:=gcd(xy,N)

Suppose d>1 then for some prime p and integer q we have d=pq.

Now p must divide N and xy (by definition) and hence p must divide either x or y.

(WLOG) say p divides x. In this case gcd(x,N)=p>1, which means $x\notin\mathbb{Z}_{N}^{*}$

$$x, y \in \mathbb{Z}_{N}^{*} \to [xy \mod N] \in \mathbb{Z}_{N}^{*}$$

Fact 1: Let
$$\phi(N) = |\mathbb{Z}_{N}^{*}|$$
 then for any $x \in \mathbb{Z}_{N}^{*}$ we have $\left[x^{\phi(N)} \bmod N\right] = 1$

Example:
$$\mathbb{Z}_8^* = \{1,3,5,7\}, \phi(8) = 4$$
 $\left[3^4 \mod 8\right] = \left[9 \times 9 \mod 8\right] = 1$ $\left[5^4 \mod 8\right] = \left[25 \times 25 \mod 8\right] = 1$ $\left[7^4 \mod 8\right] = \left[49 \times 49 \mod 8\right] = 1$

$$x, y \in \mathbb{Z}_{N}^{*} \to [xy \mod N] \in \mathbb{Z}_{N}^{*}$$

Fact 1: Let $\phi(N) = |\mathbb{Z}_{N}^{*}|$ then for any $x \in \mathbb{Z}_{N}^{*}$ we have $\left[x^{\phi(N)} \mod N\right] = 1$

Fact 2: Let $\phi(N) = |\mathbb{Z}_{N}^{*}|$ and let $N = \prod_{i=1}^{m} p_{i}^{e_{i}}$, where each p_{i} is a distinct prime number and $e_{i} > 0$ then

$$\phi(N) = \prod_{i=1}^{m} (p_i - 1)p_i^{e_i - 1} = N \prod_{i=1}^{m} \left(1 - \frac{1}{p_i}\right)$$

Recap

- Polynomial time algorithms (in bit lengths $\|a\|$, $\|b\|$ and $\|N\|$) to do important stuff
 - GCD(a,b)
 - Find inverse a⁻¹ of a such that 1=[aa⁻¹ mod N] (if it exists)
 - PowerMod: [a^b mod N]
 - Draw uniform sample from $\mathbb{Z}_{N}^{*} = \{x \in \mathbb{Z}_{N} | \gcd(N, x) = 1\}$
 - Randomized PPT algorithm

$$x, y \in \mathbb{Z}_{N}^{*} \to [xy \mod N] \in \mathbb{Z}_{N}^{*}$$

Fact 1: Let
$$\phi(N) = |\mathbb{Z}_{N}^{*}|$$
 then for any $x \in \mathbb{Z}_{N}^{*}$ we have $\left[x^{\phi(N)} \bmod N\right] = 1$

Example:
$$\mathbb{Z}_8^* = \{1,3,5,7\}, \, \phi(8) = 4$$
 $\left[3^4 \mod 8\right] = \left[9 \times 9 \mod 8\right] = 1$ $\left[5^4 \mod 8\right] = \left[25 \times 25 \mod 8\right] = 1$ $\left[7^4 \mod 8\right] = \left[49 \times 49 \mod 8\right] = 1$

$$x, y \in \mathbb{Z}_{N}^{*} \to [xy \mod N] \in \mathbb{Z}_{N}^{*}$$

Fact 1: Let $\phi(N) = |\mathbb{Z}_{N}^{*}|$ then for any $x \in \mathbb{Z}_{N}^{*}$ we have $\left[x^{\phi(N)} \mod N\right] = 1$

Fact 2: Let $\phi(N) = |\mathbb{Z}_{N}^{*}|$ and let $N = \prod_{i=1}^{m} p_{i}^{e_{i}}$, where each p_{i} is a distinct prime number and $e_{i} > 0$ then

$$\phi(N) = \prod_{i=1}^{m} (p_i - 1)p_i^{e_i - 1} = N \prod_{i=1}^{m} \left(1 - \frac{1}{p_i}\right)$$

Fact 2: Let $\phi(N) = |\mathbb{Z}_{N}^{*}|$ and let $N = \prod_{i=1}^{m} p_{i}^{e_{i}}$, where each p_{i} is a distinct prime number and $e_{i} > 0$ then

$$\phi(N) = \prod_{i=1}^{m} (p_i - 1)p_i^{e_i - 1} = N \prod_{i=1}^{m} \left(1 - \frac{1}{p_i}\right)$$

Example 0: Let p be a prime so that $\mathbb{Z}^* = \{1, ..., p-1\}$ $\phi(p) = p\left(1 - \frac{1}{p}\right) = p-1$

Fact 2: Let $\phi(N) = |\mathbb{Z}_{N}^{*}|$ and let $N = \prod_{i=1}^{m} p_{i}^{e_{i}}$, where each p_{i} is a distinct prime number and $e_{i} > 0$ then

$$\phi(N) = \prod_{i=1}^{m} (p_i - 1)p_i^{e_i - 1} = N \prod_{i=1}^{m} \left(1 - \frac{1}{p_i}\right)$$

Example 1: N = 9 = 3² (m=1, e₁=2)

$$\phi(9) = \prod_{i=1}^{2} (p_i - 1)p_i^{2-1} = 2 \times 3$$

Example 1: N = 9 = 3² (m=1, e₁=2)

$$\phi(9) = \prod_{i=1}^{1} (p_i - 1)p_i^{2-1} = 2 \times 3$$

Double Check:
$$\mathbb{Z}_{9}^{*} = \{1,2,4,5,7,8\}$$

Fact 2: Let $\phi(N) = |\mathbb{Z}_{N}^{*}|$ and let $N = \prod_{i=1}^{m} p_{i}^{e_{i}}$, where each p_{i} is a distinct prime number and $e_{i} > 0$ then

$$\phi(N) = \prod_{i=1}^{m} (p_i - 1)p_i^{e_i - 1} = N \prod_{i=1}^{m} \left(1 - \frac{1}{p_i}\right)$$

Example 2: N = 15 =
$$5 \times 3$$
 (m=2, $e_1 = e_2 = 1$)
$$\phi(15) = \prod_{i=1}^{2} (p_i - 1)p_i^{1-1} = (5-1)(3-1) = 8$$

Example 2: N = 15 =
$$5 \times 3$$
 (m=2, $e_1 = e_2 = 1$)
$$\phi(15) = \prod_{i=1}^{2} (p_i - 1)p_i^{1-1} = (5-1)(3-1) = 8$$

Double Check:
$$\mathbb{Z}_{15}^* = \{1,2,4,7,8,11,13,14\}$$

I count 8 elements in \mathbb{Z}_{15}^*

Fact 2: Let $\phi(N) = |\mathbb{Z}_{N}^{*}|$ and let $N = \prod_{i=1}^{m} p_{i}^{e_{i}}$, where each p_{i} is a distinct prime number and $e_{i} > 0$ then

$$\phi(N) = \prod_{i=1}^{m} (p_i - 1)p_i^{e_i - 1} = N \prod_{i=1}^{m} \left(1 - \frac{1}{p_i}\right)$$

Special Case: N = pq (p and q are distinct primes) $\phi(N) = (p-1)(q-1)$

```
Special Case: N = pq (p and q are distinct primes) \phi(N) = (p-1)(q-1)
```

Proof Sketch: If $x \in \mathbb{Z}_{N}$ is not divisible by p or q then $x \in \mathbb{Z}_{N}^{*}$. How many elements are not in \mathbb{Z}_{N}^{*} ?

- Multiples of p: p, 2p, 3p,...,pq (q multiples of p)
- Multiples of q: q, 2q,...,pq (p multiples of q)
- Double Counting? N=pq is in both lists. Any other duplicates?
- No! cq = dp \rightarrow q divides d (since, gcd(p,q)=1) and consequently d $\geq q$
 - Hence, $dp \ge pq = N$

More Useful Facts

Special Case: N = pq (p and q are distinct primes)
$$\phi(N) = (p-1)(q-1)$$

Proof Sketch: If $x \in \mathbb{Z}$ is not divisible by p or q then $x \in \mathbb{Z}_{\mathbb{N}}^*$. How many elements are not in $\mathbb{Z}_{\mathbb{N}}^*$?

- Multiples of p: p, 2p, 3p,...,pq (q multiples of p)
- Multiples of q: q, 2q,...,pq (p multiples of q)
- Answer: p+q-1 elements are not in \mathbb{Z}^* $\phi(N) = N - (p^N + q - 1)$ = pq - p - q + 1 = (p - 1)(q - 1)

Groups

Definition: A (finite) group is a (finite) set \mathbb{G} with a binary operation \circ (over \mathbb{G}) for which we have

- (Closure:) For all $g, h \in \mathbb{G}$ we have $g \circ h \in \mathbb{G}$
- (Identity:) There is an element $e \in \mathbb{G}$ such that for all $g \in \mathbb{G}$ we have $g \circ e = g = e \circ g$
- (Inverses:) For each element $g \in \mathbb{G}$ we can find $h \in \mathbb{G}$ such that $g \circ h = e = h \circ g$. We say that h is the inverse of g.
- (Associativity:) For all $g_1, g_2, g_3 \in \mathbb{G}$ we have $(g_1 \circ g_2) \circ g_3 = g_1 \circ (g_2 \circ g_3)$

We say that the group is abelian if

• (Commutativity:) For all $g, h \in \mathbb{G}$ we have $g \circ h = h \circ g$

Groups

Definition: A (finite) group is a (finite) set G with a binary operation \circ (over G) for which we have

- (Closure:) For all $g, h \in \mathbb{G}$ we have $g \circ h \in \mathbb{G}$
- (Identity:) There is an element $e \in \mathbb{G}$ such that for all $g \in \mathbb{G}$ we have $g \circ e = g = e \circ g$
- (Inverses:) For each element $g \in \mathbb{G}$ we can find $h \in \mathbb{G}$ such that $g \circ h = e = h \circ g$. We say that h is the inverse of g.
- (Associativity:) For all $g_1, g_2, g_3 \in \mathbb{G}$ we have $(g_1 \circ g_2) \circ g_3 = g_1 \circ (g_2 \circ g_3)$

Fact: The identity is unique + inverses must be unique

Proof: If e and e' are both identity then $e = e \circ e' = e'$

If h and h' are both inverses of g then $h = h \circ e = h \circ (g \circ h') = (g \circ h) \circ h' = h'$.

Associativity

Abelian Groups (Examples)

- Example 1: \mathbb{Z}_{N} when \circ denotes addition modulo N
- Identity: 0, since $0 \circ x = [0+x \mod N] = [x \mod N]$.
- Inverse of x? Set $x^{-1}=N-x$ so that $[x^{-1}+x \mod N]=[N-x+x \mod N]=0$.
- Example 2: \mathbb{Z}_{N}^{*} when \circ denotes multiplication modulo N
- Identity: 1, since $1 \circ x = [1(x) \mod N] = [x \mod N]$.
- Inverse of x? Run extended GCD to obtain integers a and b such that $ax + bN = \gcd(x, N) = 1$

Observe that: $x^{-1} = a$. Why?

Abelian Groups (Examples)

- Example 1: \mathbb{Z}_{N} when \circ denotes addition modulo N
- Identity: 0, since $0 \circ x = [0+x \mod N] = [x \mod N]$.
- Inverse of x? Set $x^{-1}=N-x$ so that $[x^{-1}+x \mod N]=[N-x+x \mod N]=0$.
- Example 2: \mathbb{Z}_{N}^{*} when \circ denotes multiplication modulo N
- Identity: 1, since $1 \circ x = [1(x) \mod N] = [x \mod N]$.
- Inverse of x? Run extended GCD to obtain integers a and b such that $ax + bN = \gcd(x, N) = 1$

Observe that: $x^{-1} = a$, since [ax mod N] = [1-bN mod N] = 1

Groups

Lemma 8.13: Let \mathbb{G} be a group with a binary operation \circ (over \mathbb{G}) and let $a,b,c\in\mathbb{G}$. If $a\circ c=b\circ c$ then a=b.

Proof Sketch: Apply the unique inverse to c^{-1} both sides.

$$a \circ c = b \circ c \rightarrow (a \circ c) \circ c^{-1} = (b \circ c) \circ c^{-1}$$

 $\rightarrow a \circ (c \circ c^{-1}) = b \circ (c \circ c^{-1})$
 $\rightarrow a \circ (e) = b \circ (e)$
 $\rightarrow a = b$

(**Remark**: it is not to difficult to show that a group has a *unique* identity and that inverses are *unique*).

Groups

Lemma 8.13: Let \mathbb{G} be a group with a binary operation \circ (over \mathbb{G}) and let $a,b,c\in\mathbb{G}$. If $a\circ c=b\circ c$ then a=b.

Proof Sketch: Apply the unique inverse to c^{-1} both sides.

$$a \circ c = b \circ c \rightarrow (a \circ c) \circ c^{-1} = (b \circ c) \circ c^{-1}$$

 $\rightarrow a \circ (c \circ c^{-1}) = b \circ (c \circ c^{-1})$
 $\rightarrow a \circ (e) = b \circ (e)$
 $\rightarrow a = b$

(**Remark**: it is not to difficult to show that a group has a *unique* identity and that inverses are *unique*).

Definition: Let \mathbb{G} be a group with a binary operation \circ (over \mathbb{G}) let m be a positive integer and let $g \in \mathbb{G}$ be a group element then we define

$$g^m \coloneqq g \circ \cdots \circ g$$

m times

Theorem: Let \mathbb{G} be finite group with size $m = |\mathbb{G}|$ and let $g \in \mathbb{G}$ be a group element then $g^m=1$ (where 1 denotes the unique identity of \mathbb{G}).

Theorem 8.14: Let \mathbb{G} be finite group with size $m = |\mathbb{G}|$ and let $g \in \mathbb{G}$ be a group element then $g^m=1$ (where 1 denotes the unique identity of \mathbb{G}).

Proof: (for abelian group) Let
$$\mathbb{G} = \{g_1, \dots, g_m\}$$
 then we claim $g_1 \circ \dots \circ g_m = (g \circ g_1) \circ \dots \circ (g \circ g_m)$

Why? If
$$(g_i \circ g) = (g_j \circ g)$$
 then $g_j = g_i$ (by Lemma 8.13)

Theorem 8.14: Let \mathbb{G} be finite group with size $m = |\mathbb{G}|$ and let $g \in \mathbb{G}$ be a group element then $g^m=1$ (where 1 denotes the unique identity of \mathbb{G}).

Proof: (for abelian group) Let
$$\mathbb{G} = \{g_1, \dots, g_m\}$$
 then we claim $g_1 \circ \dots \circ g_m = (g \circ g_1) \circ \dots \circ (g \circ g_m)$

Because G is abelian we can re-arrange terms

$$1 \circ (g_1 \circ \cdots \circ g_m) = (g^m) \circ (g_1 \circ \cdots \circ g_m)$$

By Lemma 8.13 we have $1 = g^m$.

OED

Theorem 8.14: Let \mathbb{G} be finite group with size $m = |\mathbb{G}|$ and let $g \in \mathbb{G}$ be a group element then $g^m=1$ (where 1 denotes the unique identity of \mathbb{G}).

Corollary 8.15: Let \mathbb{G} be finite group with size $m = |\mathbb{G}| > 1$ and let $g \in \mathbb{G}$ be a group element then for any integer x we have $g^x = g^{[x \mod m]}$.

Proof: $g^x = g^{qm + [x \mod m]} = 1 \times g^{[x \mod m]}$, where q is unique integer such that $x = qm + [x \mod m]$

Special Case: \mathbb{Z}_{N}^{*} is a group of size $\phi(N)$ so we have now proved

Corollary 8.22: For any $g \in \mathbb{Z}_{\mathbb{N}}^*$ and integer x we have

$$[g^{x} \bmod N] = [g^{[x \bmod \phi(N)]} \bmod N]$$

Chinese Remainder Theorem

Theorem: Let N = pq (where gcd(p,q)=1) be given and let $f: \mathbb{Z}_{N} \to \mathbb{Z}_{p} \times \mathbb{Z}_{q}$ be defined as follows

$$f(x) = ([x \bmod p], [x \bmod q])$$

then

- f is a bijective mapping (invertible)
- f and its inverse f^{-1} : $\mathbb{Z}_p \times \mathbb{Z}_q \to \mathbb{Z}_N$ can be computed efficiently
- $f(x + y) = f(x) + f(y) = ([x + y \mod p], [x + y \mod q])$
- The restriction of f to \mathbb{Z}_{N}^{*} yields a bijective mapping to $\mathbb{Z}_{p}^{*} \times \mathbb{Z}_{q}^{*}$
- For inputs $x, y \in \mathbb{Z}_{N}^{*}$ we have f(x)f(y) = f(xy)

Chinese Remainder Theorem

Application of CRT: Faster computation modulo N=pq.

Example: Compute [11⁵³ mod 15] f(11)=([-1 mod 3],[1 mod 5])

 $f(11^{53}) = ([(-1)^{53} \mod 3], [1^{53} \mod 5]) = (-1, 1)$

$$f^{-1}(-1,1)=11$$

Thus, $11=[11^{53} \mod 15]$

CS 555: Week 10: Topic 1 Finding Prime Numbers, RSA

RSA Key-Generation

KeyGeneration(1ⁿ)

Step 1: Pick two random n-bit primes p and q

Step 2: Let N=pq, $\phi(N) = (p-1)(q-1)$

Step 3: ...

Question: How do we accomplish step one?

Bertrand's Postulate

Theorem 8.32. For any n > 1 the fraction of n-bit integers that are prime is at least $\frac{1}{3n}$.

GenerateRandomPrime(1ⁿ)

```
For i=1 to 3n^2:

p' \leftarrow \{0,1\}^{n-1}

p \leftarrow 1 || p'
```

if isPrime(p) then

return p

return fail

Can we do this in polynomial time?

Bertrand's Postulate

Theorem 8.32. For any n > 1 the fraction of n-bit integers that are prime is at least $\frac{1}{3n}$.

GenerateRandomPrime(1ⁿ)

For i=1 to $3n^2$:

 $p' \leftarrow \{0,1\}^{n-1}$

 $p \leftarrow 1 || p'$

if isPrime(p) then

return p

return fail

Assume for now that we can run isPrime(p). What are the odds that the algorithm fails?

On each iteration the probability that p is not a prime is $\left(1-\frac{1}{3n}\right)$

We fail if we pick a non-prime in all 3n² iterations. The probability of failure is at most

$$\left(1 - \frac{1}{3n}\right)^{3n^2} = \left(\left(1 - \frac{1}{3n}\right)^{3n}\right)^n \le e^{-n}$$

isPrime(p): Miller-Rabin Test

• We can check for primality of p in polynomial time in ||p||.

Theory: Deterministic algorithm to test for primality.

See breakthrough paper "Primes is in P"

Practice: Miller-Rabin Test (randomized algorithm)

- Guarantee 1: If p is prime then the test outputs YES
- Guarantee 2: If p is not prime then the test outputs NO except with negligible probability.

The "Almost" Miller-Rabin Test

```
Input: Integer N and parameter 1^t
Output: "prime" or "composite"

for i=1 to t:

a \leftarrow \{1,...,N-1\}
if a^{N-1} \neq 1 \mod N then return "composite"

Return "prime"
```

Claim: If N is prime then algorithm always outputs "prime" **Proof:** For any $a \in \{1,...,N-1\}$ we have $a^{N-1} = a^{\phi(N)} = 1 \mod N$

The "Almost" Miller-Rabin Test

Input: Integer N and parameter 1^t

Output: "prime" or "composite"

for i=1 to t:

 $a \leftarrow \{1,...,N-1\}$

if $a^{N-1} \neq 1 \mod N$ then return "composite

Return "prime"

Need a bit of extra work to handle Carmichael numbers (see textbook).

Fact: If N is composite and not a Carmichael number then the algorithm outputs "composite" with probability

$$1 - 2^{-t}$$

Input: Integer N and parameter 1^t

Output: "prime" or "composite"

If Even(N) or PerfectPower(N) return "composite"

Else find u (odd) and $r \ge 1$ s.t. $N - 1 = 2^r u$

for j=1 to t:

if $a^u \neq \pm 1 \mod \mathbb{N}$ and $a^{2^l u} \neq -1 \mod \mathbb{N}$ for all $1 \leq i \leq r-1$ return "composite"

Return "prime"

Input: Integer N and parameter 1^t

Output: "prime" or "composite"

If Even(N) or PerfectPower(N) return "compo-

Else find u (odd) and $r \ge 1$ s.t. N - 1 = 2

for j=1 to t:

if $a^u \neq \pm 1 \mod \mathbb{N}$ and $a^{2^i u} \neq -1 \mod \mathbb{N}$ for all $1 \leq i \leq r-1$ return "composite"

Return "prime"

Lemma: If p is prime and $x^2 = 1 \mod p$ then $x = \pm 1 \mod p$

Input: Integer N and parameter 1^t

Output: "prime" or "composite"

If Even(N) or PerfectPower(N) return "composite"

Else find u (odd) and $r \ge 1$ s.t. $N - 1 = 2^r u$

for j=1 to t:

if $a^u \neq \pm 1 \mod N$ and $a^{2^i u} \neq -1 \mod N$ for all $1 \leq i \leq r-1$

return "composite"

Return "prime"

$$(a^{2^{r-1}u})^2 = a^{N-1} \mod N$$
$$= 1 \mod N$$

$$(a^{2^{i}u})^{2} - 1$$

$$= (a^{2^{i-1}u} - 1)(a^{2^{i-1}u} + 1) + 1$$

Input: Integer N and parameter 1^t

Output: "prime" or "composite"

If Even(N) or PerfectPower(N) return "composite"

Else find u (odd) and $r \ge 1$ s.t. $N - 1 = 2^r u$

for j=1 to t:

if $a^u \neq \pm 1 \mod \mathbb{N}$ and $a^{2^i u} \neq -1 \mod \mathbb{N}$ for all $1 \leq i \leq r-1$

return "composite"

Return "prime"

Observe:

$$(a^{2^{r-1}u})^2 = a^{N-1} \mod N$$
$$= 1 \mod N$$

If N is prime we won't return composite $(2^{r_{1}}) = (2^{r-1}) = (2^{r-1})$

$$(a^{2^{r}u}) - \mathbf{1} = (a^{2^{r-1}u} - \mathbf{1})(a^{2^{r-1}u} + \mathbf{1})$$
$$= \dots = (a^{2^{r-2}u} - \mathbf{1})(a^{2^{r-2}u} + \mathbf{1})(a^{2^{r-1}u} + \mathbf{1})$$

Input: Integer N and parameter 1^t

Output: "prime" or "composite"

Else find u (odd) and $r \ge 1$ s.t. $N - 1 = 2 \pmod{N}$

for j=1 to t:

Observe:

$$(a^{2^{r-1}u})^2 = a^{N-1} \mod N$$
$$= 1 \mod N$$

If Even(N) or PerfectPower(N) return "cor One of the factors must be 0

if
$$a^u \neq \pm 1 \mod \mathbb{N}$$
 and $a^{2^i u} \neq -1 \mod \mathbb{N}$ for all $1 \leq i \leq r-1$

Return "prime"

return "composite" If N is prime we won't return composite

$$\mathbf{0} = (a^{2^{r}u}) - \mathbf{1} = \dots = (a^{u} - \mathbf{1}) \prod_{i=0}^{n} (a^{2^{i}u} + \mathbf{1})$$

Back to RSA Key-Generation

KeyGeneration(1ⁿ)

Step 1: Pick two random n-bit primes p and q

Step 2: Let N=pq, $\phi(N) = (p-1)(q-1)$

Step 3: Pick e > 1 such that $gcd(e, \phi(N))=1$

Step 4: Set $d=[e^{-1} \mod \phi(N)]$ (secret key)

Return: N, e, d

- How do we find d?
- **Answer:** Use extended gcd algorithm to find e^{-1} mod $\phi(N)$.

Be Careful Where You Get Your "Random Bits!"

```
int getRandomNumber()
{
    return 4; // chosen by fair dice roll.
    // guaranteed to be random.
}
```

- RSA Keys Generated with weak PRG
 - Implementation Flaw
 - Unfortunately Commonplace
- Resulting Keys are Vulnerable
 - Sophisticated Attack
 - Coppersmith's Method

(Plain) RSA Encryption

- Public Key: PK=(N,e)
- Message $m \in \mathbb{Z}_{N}$ $\mathbf{Enc_{PK}}(m) = \lceil m^e \bmod N \rceil$

• Remark: Encryption is efficient if we use the power mod algorithm.

(Plain) RSA Decryption

- Secret Key: SK=(N,d)
- Ciphertext $c \in \mathbb{Z}_{n}$

$$Dec_{SK}(c) = [c^d \mod N]$$

- Remark 1: Decryption is efficient if we use the power mod algorithm.
- Remark 2: Suppose that $m \in \mathbb{Z}_{N}^{*}$ and let $c=Enc_{PK}(m) = [m^{e} \mod N]$

$$\mathbf{Dec_{SK}(c)} = [(m^e)^d \mod \mathbf{N}] = [m^{ed} \mod \mathbf{N}]$$
$$= [m^{[ed \mod \phi(\mathbf{N})]} \mod \mathbf{N}]$$
$$= [m^1 \mod \mathbf{N}] = m$$

RSA Decryption

- Secret Key: SK=(N,d)
- Ciphertext $c \in \mathbb{Z}_{N}$

$$\mathbf{Dec}_{SK}(c) = [c^d \mod N]$$

- Remark 1: Decryption is efficient if we use the power mod algorithm.
- Remark 2: Suppose that $m \in \mathbb{Z}_{N}^{*}$ and let $c=\operatorname{Enc_{PK}}(m) = [m^{e} \mod N]$ then $\operatorname{Dec_{SK}}(c) = m$
- Remark 3: Even if $m \in \mathbb{Z}_{N} \mathbb{Z}_{N}^{*}$ and let $c = \operatorname{Enc}_{PK}(m) = [m^{e} \mod N]$ then $\operatorname{Dec}_{SK}(c) = m$
 - Use Chinese Remainder Theorem to show this

$$ed = 1 + k(p-1)(q-1)$$

$$\to f(c^d) = ([m^{ed} \mod p], [m^{ed} \mod q]) = ([m^1 \mod p], [m^1 \mod q])$$

$$\to f^{-1}(f(c^d)) = f^{-1}([m^1 \mod p], [m^1 \mod q]) = m$$

Plain RSA (Summary)

- Public Key (pk): N = pq, e such that $GCD(e, \phi(N)) = 1$
 - $\phi(N) = (p-1)(q-1)$ for distinct primes p and q
- Secret Key (sk): N, d such that ed=1 mod $\phi(N)$
- Encrypt(pk=(N,e),m) = $m^e \mod N$
- Decrypt(sk=(N,d),c) = $c^d \mod N$
- Decryption Works because $[c^d \mod N] = [m^{ed} \mod N] = [m^{ed} \mod N] = [m \mod N]$

Factoring Assumption

Let **GenModulus**(1^n) be a randomized algorithm that outputs (N=pq,p,q) where p and q are n-bit primes (except with negligible probability **negl**(n)).

Experiment FACTOR_{A,n}

- 1. $(N=pq,p,q) \leftarrow GenModulus(1^n)$
- 2. Attacker A is given N as input
- 3. Attacker A outputs p' > 1 and q' > 1
- 4. Attacker A wins if N=p'q'.

Factoring Assumption

Experiment FACTOR_{A,n}

- 1. $(N=pq,p,q) \leftarrow GenModulus(1^n)$
- 2. Attacker A is given N as input
- 3. Attacker A outputs p' > 1 and q' > 1
- 4. Attacker A wins (FACTOR_{A,n} = 1) if and only if N=p'q'.

$$\forall PPT \ A \ \exists \mu \ (\text{negligible}) \ \text{s.t.} \ \Pr[\mathsf{FACTOR}_{\mathsf{A},\mathsf{n}} = 1] \leq \mu(n)$$

- Necessary for security of RSA.
- Not known to be sufficient.

RSA-Assumption

RSA-Experiment: RSA-INV_{A.n}

- 1. Run KeyGeneration(1ⁿ) to obtain (N,e,d)
- 2. Pick uniform $y \in \mathbb{Z}_{N}^{*}$
- 3. Attacker A is given N, e, y and outputs $x \in \mathbb{Z}_{N}^{*}$
- 4. Attacker wins (RSA-INV_{A,n}=1) if $x^e = y \mod N$

 $\forall PPT \ A \ \exists \mu \ (\text{negligible}) \ \text{s.t.} \ \Pr[\text{RSA-INVA}_n = 1] \leq \mu(n)$

RSA-Assumption

RSA-Experiment: RSA-INV_{A,n}

- 1. Run KeyGeneration(1ⁿ) to obtain (N,e,d)
- 2. Pick uniform $y \in \mathbb{Z}_{N}^{*}$
- 3. Attacker A is given N, e, y and outputs $x \in \mathbb{Z}_{N}^{*}$
- 4. Attacker wins (RSA-INV_{A,n}=1) if $x^e = y \mod N$

 $\forall PPT \ A \ \exists \mu \ (\text{negligible}) \ \text{s.t.} \ \Pr[\text{RSA-INVA}_n = 1] \leq \mu(n)$

- Plain RSA Encryption behaves like a one-way function
- Attacker cannot invert encryption of random message

Discussion of RSA-Assumption

Plain RSA Encryption behaves like a one-way-function

Decryption key is a "trapdoor" which allows us to invert the OWF

RSA-Assumption → OWFs exist

Recap

- Plain RSA
- Public Key (pk): N = pq, e such that $GCD(e, \phi(N)) = 1$
 - $\phi(N) = (p-1)(q-1)$ for distinct primes p and q
- Secret Key (sk): N, d such that ed=1 mod $\phi(N)$
- Encrypt(pk=(N,e),m) = $m^e \mod N$
- Decrypt(sk=(N,d),c) = $c^d \mod N$
- Decryption Works because $[c^d \mod N] = [m^{ed} \mod N] = [m^{ed} \mod N] = [m \mod N]$

Mathematica Demo

https://www.cs.purdue.edu/homes/jblocki/courses/555 Spring17/slides/Lecture24Demo.nb

http://develop.wolframcloud.com/app/

Note: Online version of mathematica available at https://sandbox.open.wolframcloud.com (reduced functionality, but can be used to solve homework bonus problems)

```
(* Random Seed 123456 is not secure, but it allows us to repeat the experiment *)
      SeedRandom[123456]
(* Step 1: Generate primes for an RSA key *)
      p = RandomPrime[{10^1000, 10^1050}];
      q = RandomPrime[{10^1000, 10^1050}];
      NN = p q; (*Symbol N is protected in mathematica *)
      phi = (p - 1) (q - 1);
```

```
(* Step 1.A: Find e *)
      GCD[phi,7]
Output: 7
(* GCD[phi,7] is not 1, so he have to try a different value of e *)
      GCD[phi,3]
Output: 1
(* We can set e=3 *)
      e=3;
```

```
(* Step 1.B find d s.t. ed = 1 mod N by using the extended GCD algorithm *)
(* Mathematica is clever enough to do this automatically *)
      Solve[e x == 1, Modulus->phi]
Output:
{{x->36469680590663028301700626132883867272718728905205088...
394069421778610209425624440980084481398131}}
(* We can now set d = x *)
      d=364696805.... 8131;
```

```
(* Encrypt the message 200, c= m^e mod N *)
      m = 200;
      PowerMod[m,e,NN]
Output: 8 000 000
(* Hm...That doesn't seem too secure *)
     CubeRoot[PowerMod[m,e,NN]]
Output: 200
(* Moral: if m^e < N then Plain RSA does not hide the message m. *)
```

```
(* Encrypt a larger message, c= m^e mod N *)
      SeedRandom[1234567];
      m2= RandomInteger[{10^1500,10^1501}];
      c=PowerMod[m2,e,NN]
Output: 405215834903772786....... 388068292685976133
(* Does it Decrypt Properly? *)
      PowerMod[c,d, NN]-m2
Output: 0
(* Yes! *)
```

CS 555: Week 10: Topic 2 Attacks on Plain RSA

(Plain) RSA Discussion

 We have not introduced security models like CPA-Security or CCAsecurity for Public Key Cryptosystems

- However, notice that (Plain) RSA Encryption is stateless and deterministic.
- → Plain RSA is not secure against chosen-plaintext attacks
- As we will see Plain RSA is also highly vulnerable to chosen-ciphertext attacks

(Plain) RSA Discussion

- However, notice that (Plain) RSA Encryption is stateless and deterministic.
- → Plain RSA is not secure against chosen-plaintext attacks
- Remark: In a public key setting the attacker who knows the public key always has access to an encryption oracle
- Encrypted messages with low entropy are particularly vulnerable to bruteforce attacks
 - **Example:** If m < B then attacker can recover m from $c = \operatorname{Enc}_{pk}(m)$ after at most B queries to encryption oracle (using public key)

Chosen Ciphertext Attack on Plain RSA

- 1. Attacker intercepts ciphertext $c = [m^e \mod N]$
- 2. Attacker generates ciphertext c' for secret message 2m as follows
- 3. $c' = [(c2^e) \mod N]$
- $4. \qquad = [(m^e 2^e) \bmod N]$
- $= [(2m)^e \bmod N]$
- 6. Attacker asks for decryption of $[c2^e \mod N]$ and receives 2m.
- 7. Divide by two to recover message

Above Example: Shows plain RSA is highly vulnerable to ciphertext-tampering attacks

More Weaknesses: Plain RSA with small e

• (Small Messages) If m^e < N then we can decrypt c = m^e mod N directly e.g., m=c^(1/e)

• (Partially Known Messages) If an attacker knows first 1-(1/e) bits of secret message $m = m_1 || ? ?$ then he can recover m given $\mathbf{Encrypt}(pk, m) = m^e \mod N$

Theorem[Coppersmith]: If p(x) is a polynomial of degree e then in polynomial time (in log(N), 2^e) we can find all m such that p(m) = 0 mod N and $|m| < N^{(1/e)}$

More Weaknesses: Plain RSA with small e

Theorem[Coppersmith]: If p(x) is a polynomial of degree e then in polynomial time (in log(N), e) we can find all m such that p(m) = 0 mod log(N) and log(N)

Example: e = 3, $m = m_1 || m_2$ and attacker knows $m_1(2k \ bits)$ and $c = (m_1 || m_2)^e \mod N$, but not $m_2(k \ bits)$

$$p(x) = (2^k m_1 + x)^3 - c$$

Polynomial has a small root mod N at $x=m_2$ and coppersmith's method will find it!

More Weaknesses: Plain RSA with small e

Theorem[Coppersmith] (Informal): Can also find small roots of bivariate polynomial $p(x_1, x_2)$

- Similar Approach used to factor weak RSA secret keys N=q₁q₂
- Weak PRG → Can guess many of the bits of prime factors
 - Obtain $\widetilde{q_1} \approx q_1$ and $\widetilde{q_2} \approx q_2$
- Coppersmith Attack: Define polynomial p(.,.) as follows $p(x_1, x_2) = (x_1 + \widetilde{q_1})(x_2 + \widetilde{q_2}) N$
- Small Roots of $p(x_1, x_2)$: $x_1 = q_1 \widetilde{q_1}$ and $x_2 = q_2 \widetilde{q_2}$

Fixes for Plain RSA

- Approach 1: RSA-OAEP
 - Incorporates random nonce r
 - CCA-Secure (in random oracle model)
- Approach 2: Use RSA to exchange symmetric key for Authenticated Encryption scheme (e.g., AES)
 - Key Encapsulation Mechanism (KEM)
- More details in future lectures...stay tuned!
 - For now we will focus on attacks on Plain RSA

Chinese Remainder Theorem

Theorem: Let N = pq (where gcd(p,q)=1) be given and let $f: \mathbb{Z}_{N} \to \mathbb{Z}_{p} \times \mathbb{Z}_{q}$ be defined as follows

$$f(x) = ([x \bmod p], [x \bmod q])$$

then

- f is a bijective mapping (invertible)
- f and its inverse f^{-1} : $\mathbb{Z}_p \times \mathbb{Z}_q \to \mathbb{Z}_N$ can be computed efficiently
- $\bullet f(x+y) = f(x) + f(y)$
- The restriction of f to \mathbb{Z}_{N}^{*} yields a bijective mapping to $\mathbb{Z}_{p}^{*} \times \mathbb{Z}_{q}^{*}$
- For inputs $x, y \in \mathbb{Z}_{N}^{*}$ we have f(x)f(y) = f(xy)

Chinese Remainder Theorem

Application of CRT: Faster computation

Example: Compute [11⁵³ mod 15]

 $f(11)=([-1 \mod 3],[1 \mod 5])$

 $f(11^{53}) = ([(-1)^{53} \mod 3], [1^{53} \mod 5]) = (-1,1)$

$$f^{-1}(-1,1)=11$$

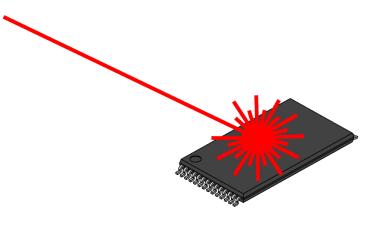
Thus, $11=[11^{53} \mod 15]$

A Side Channel Attack on RSA with CRT

 Suppose that decryption is done via Chinese Remainder Theorem for speed.

$$\operatorname{Dec}_{sk}(c) = c^d \mod N \leftrightarrow (c^d \mod p, c^d \mod q)$$

- Attacker has physical access to smartcard
 - ullet Can mess up computation of $c^d \ mod \ p$
 - Response is R \leftrightarrow $(r, c^d \ mod \ q)$
 - $R m \leftrightarrow (r m \mod p, 0 \mod q)$
 - GCD(R-m,N)=q



Claim: Let m < 2^n be a secret message. For some constant $\alpha = \frac{1}{2} + \varepsilon$. We can recover m in in time $T = 2^{\alpha n}$ with high probability.

```
For r=1,...,T  \begin{aligned} &\det \mathbf{x}_{\mathbf{r}} = [cr^{-e}mod\ N], \text{ where } r^{-e} = (r^{-1})^{e}mod\ N \\ &\text{Sort } \mathbf{L} = \{(r,x_r)\}_{r=1}^{T} \text{ (by the } \mathbf{x}_{\mathbf{r}} \text{ values)} \\ &\text{For s=1,...,T} \\ &\text{if } [s^{e}mod\ N] = x_r \text{ for some r then} \\ &\text{return } [rs\ mod\ N] \end{aligned}
```

```
For r=1,...,T  \begin{aligned} &\text{let } \mathbf{x_r} = [cr^{-e} mod \ N], \text{ where } r^{-e} = (r^{-1})^e mod \ N \\ &\text{Sort } \mathbf{L} = \{(r, x_r)\}_{r=1}^T \text{ (by the } \mathbf{x_r} \text{ values)} \\ &\text{For } \mathbf{s} = 1,..., T \\ &\text{if } [s^e mod \ N] = x_r \text{ for some r then} \\ &\text{return } [rs \ mod \ N] \end{aligned}
```

Analysis:
$$[rs \ mod \ N] = [r(s^e)^d \ mod \ N] = [r(x_r)^d \ mod \ N]$$

= $[r(cr^{-e})^d \ mod \ N] = [rr^{-ed}(c)^d \ mod \ N]$
= $[rr^{-1}m \ mod \ N] = m$

```
For r=1,...,T  \begin{aligned} &\text{let } \mathbf{x_r} = [cr^{-e} mod \ N], \text{ where } r^{-e} = (r^{-1})^e mod \ N \\ &\text{Sort } \mathbf{L} = \{(r, x_r)\}_{r=1}^T \text{ (by the } \mathbf{x_r} \text{ values)} \\ &\text{For s=1,...,T} \\ &\text{if } [s^e mod \ N] = x_r \text{ for some r then} \\ &\text{return } [rs \ mod \ N] \end{aligned}
```

Fact: some constant $\alpha = \frac{1}{2} + \varepsilon$ setting $T = 2^{\alpha n}$ with high probability we will find a pair **s** and \mathbf{x}_r with $[s^e mod \ N] = xr$.

Claim: Let m < 2^n be a secret message. For some constant $\alpha = \frac{1}{2} + \varepsilon$. We can recover m in in time $T = 2^{\alpha n}$ with high probability.

Roughly \sqrt{B} steps to find a secret message m < B

CS 555: Week 10: Topic 3 Discrete Log + DDH Assumption

(Recap) Finite Groups

Definition: A (finite) group is a (finite) set \mathbb{G} with a binary operation \circ (over \mathbb{G}) for which we have

- (Closure:) For all $g, h \in \mathbb{G}$ we have $g \circ h \in \mathbb{G}$
- (Identity:) There is an element $e \in \mathbb{G}$ such that for all $g \in \mathbb{G}$ we have $g \circ e = g = e \circ g$
- (Inverses:) For each element $g \in \mathbb{G}$ we can find $h \in \mathbb{G}$ such that $g \circ h = e$. We say that h is the inverse of g.
- (Associativity:) For all $g_1, g_2, g_3 \in \mathbb{G}$ we have $(g_1 \circ g_2) \circ g_3 = g_1 \circ (g_2 \circ g_3)$

We say that the group is abelian if

• (Commutativity:) For all $g, h \in \mathbb{G}$ we have $g \circ h = h \circ g$

Finite Abelian Groups (Examples)

- Example 1: \mathbb{Z}_{N} when \circ denotes addition modulo N
- Identity: 0, since $0 \circ x = [0+x \mod N] = [x \mod N]$.
- Inverse of x? Set $x^{-1}=N-x$ so that $[x^{-1}+x \mod N]=[N-x+x \mod N]=0$.
- Example 2: \mathbb{Z}_{N}^{*} when \circ denotes multiplication modulo N
- Identity: 1, since $1 \circ x = [1(x) \mod N] = [x \mod N]$.
- Inverse of x? Run extended GCD to obtain integers a and b such that $ax + bN = \gcd(x, N) = 1$

Observe that: $x^{-1} = a$. Why?

Cyclic Group

• Let $\mathbb G$ be a group with order $m=|\mathbb G|$ with a binary operation \circ (over $\mathbb G$) and let $g\in \mathbb G$ be given consider the set

$$\langle g \rangle = \{g^0, g^1, g^2, \dots\}$$

Fact: $\langle g \rangle$ defines a subgroup of \mathbb{G} .

- Identity: g^0
- Closure: $g^i \circ g^j = g^{i+j} \in \langle g \rangle$
- g is called a "generator" of the subgroup.

Fact: Let $r = |\langle g \rangle|$ then $g^i = g^j$ if and only if $i = j \mod r$. Also m is divisible by r.

Finite Abelian Groups (Examples)

Fact: Let p be a prime then \mathbb{Z}_p^* is a cyclic group of order p-1.

• Note: Number of generators g s.t. of $\langle g \rangle = \mathbb{Z}_p^*$ is $\phi(p-1)$

Example (non-generator):
$$p=7$$
, $g=2$ <2>={1,2,4}

Discrete Log Experiment DLog_{A,G}(n)

- 1. Run G(1ⁿ) to obtain a cyclic group \mathbb{G} of order q (with ||q|| = n) and a generator g such that $\langle g \rangle = \mathbb{G}$.
- 2. Select $h \in \mathbb{G}$ uniformly at random.
- 3. Attacker A is given G, q, g, h and outputs integer x.
- 4. Attacker wins (DLog_{A,G}(n)=1) if and only if $g^x=h$.

We say that the discrete log problem is hard relative to generator G if $\forall PPT\ A\ \exists\mu\ (\text{negligible})\ \text{s.t.}\ \Pr[\mathsf{DLog}_{\mathsf{A},\mathsf{n}}=1]\leq\mu(n)$

Diffie-Hellman Problems

Computational Diffie-Hellman Problem (CDH)

- Attacker is given $h_1 = g^{x_1} \in \mathbb{G}$ and $h_2 = g^{x_2} \in \mathbb{G}$.
- Attackers goal is to find $g^{x_1x_2} = (h_1)^{x_2} = (h_2)^{x_1}$
- CDH Assumption: For all PPT A there is a negligible function negl upper bounding the probability that A succeeds with probability at most negl(n).

Decisional Diffie-Hellman Problem (DDH)

- Let $z_0 = g^{x_1x_2}$ and let $z_1 = g^r$, where x_1, x_2 and r are random
- Attacker is given g^{x_1} , g^{x_2} and z_b (for a random bit b)
- Attackers goal is to guess b
- **DDH Assumption**: For all PPT A there is a negligible function negl such that A succeeds with probability at most ½ + negl(n).

Secure key-agreement with DDH

- 1. Alice publishes g^{x_A} and Bob publishes g^{x_B}
- 2. Alice and Bob can both compute $K_{A,B} = g^{x_B} x_A$ but to Eve this key is indistinguishable from a random group element (by DDH)

Remark: Protocol is vulnerable to Man-In-The-Middle Attacks if Bob cannot validate g^{x_A} .

- Example 1: \mathbb{Z}_p^* where p is a random n-bit prime.
 - CDH is believed to be hard
 - DDH is *not* hard (Exercise 13.15)
- **Theorem:** Let p=rq+1 be a random n-bit prime where q is a large λ -bit prime then the set of r^{th} residues modulo p is a cyclic subgroup of order q. Then $\mathbb{G}_r = \{ [h^r mod \ p] | h \in \mathbb{Z}_p^* \}$ is a cyclic subgroup of \mathbb{Z}_p^* of order q.
 - Remark 1: DDH is believed to hold for such a group
 - Remark 2: It is easy to generate uniformly random elements of \mathbb{G}_r
 - Remark 3: Any element (besides 1) is a generator of \mathbb{G}_r

- **Theorem:** Let p=rq+1 be a random n-bit prime where q is a large λ -bit prime then the set of rth residues modulo p is a cyclic subgroup of order q. Then $\mathbb{G}_r = \{[h^r mod \ p] | h \in \mathbb{Z}_p^*\}$ is a cyclic subgroup of \mathbb{Z}_p^* of order q.
 - Closure: $h^r g^r = (hg)^r$
 - Inverse of h^r is $(h^{-1})^r \in \mathbb{G}_r$
 - Size $(h^r)^x = h^{[rx \bmod rq]} = (h^r)^x = h^{r[x \bmod q]} = (h^r)^{[x \bmod q]} \mod p$

Remark: Two known attacks on Discrete Log Problem for \mathbb{G}_r (Section 9.2).

- First runs in time $O(\sqrt{q}) = O(2^{\lambda/2})$
- Second runs in time $2^{O(\sqrt[3]{n}(\log n)^{2/3})}$

Remark: Two known attacks (Section 9.2).

- First runs in time $O(\sqrt{q}) = O(2^{\lambda/2})$ Second runs in time $2^{O(\sqrt[3]{n}(\log n)^{2/3})}$, where n is bit length of p

Goal: Set λ and n to balance attacks

$$\lambda = O\left(\sqrt[3]{n}(\log n)^{2/3}\right)$$

How to sample p=rq+1?

- First sample a random λ -bit prime q and
- Repeatedly check if rq+1 is prime for a random n- λ bit value r

Elliptic Curves Example: Let p be a prime (p > 3) and let A, B be constants. Consider the equation

$$y^2 = x^3 + Ax + B \bmod p$$

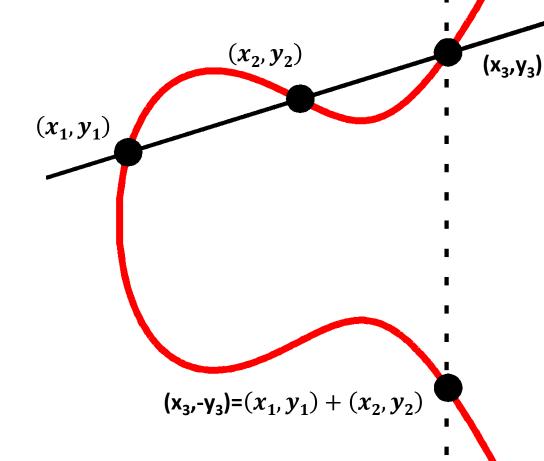
And let

$$E(\mathbb{Z}_p) = \{(x,y) \in \mathbb{Z}_p^2 | y^2 = x^3 + Ax + B \bmod p \} \cup \{\mathcal{O}\}$$

Note: \mathcal{O} is defined to be an additive identity $(x, y) + \mathcal{O} = (x, y)$

What is
$$(x_1, y_1) + (x_2, y_2)$$
?

Elliptic Curve Example



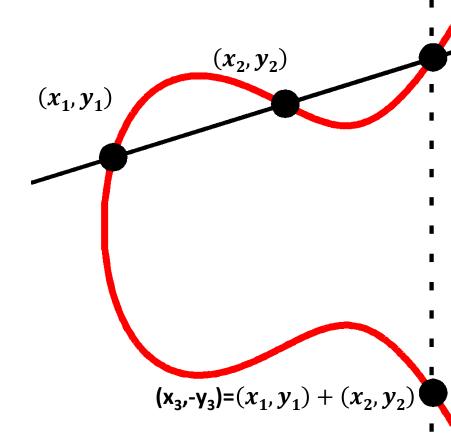
The line passing through (x_1, y_1) and (x_2, y_2) has the equation

$$y = m(x - x_1) + y_1 \bmod P$$

Where the slope

$$m = \left[\frac{y_1 - y_2}{x_1 - x_2} \bmod p\right]$$

Elliptic Curve Example



$$x_3 = [m^2 - x_1 - x_2 \mod p]$$

 $y_3 = [m(x_3 - x_1) + y_1 \mod p]$

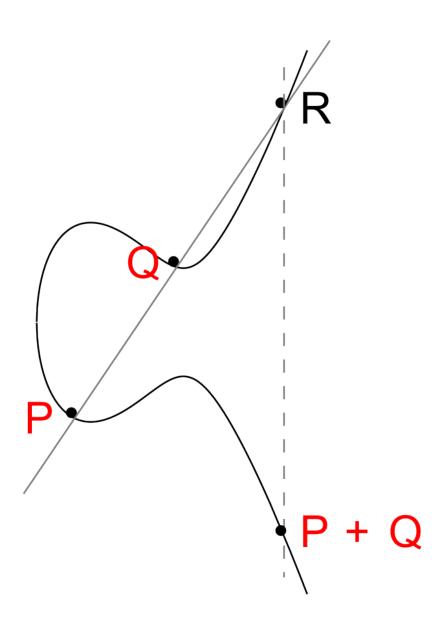
Formally, let
$$m = \left[\frac{y_1 - y_2}{x_1 - x_2} \bmod p \right]$$

 (x_3, y_3)

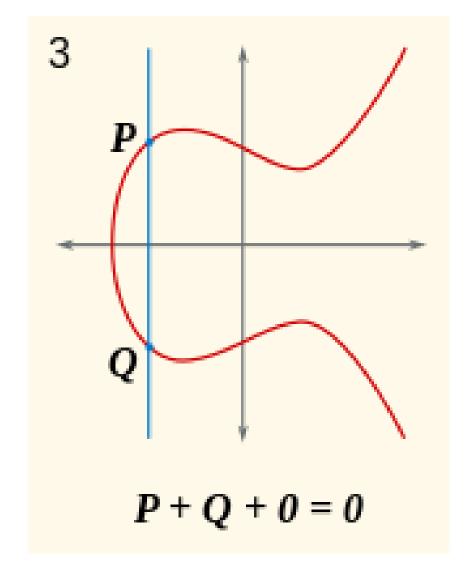
Be the slope. Then the line passing through (x_1, y_1) and (x_2, y_2) has the equation $y = m(x - x_1) + y_1 \mod P$

$$(m(x - x_1) + y_1)^2$$

= $x^3 + Ax + B \mod p$



Elliptic Curve Example



No third point R on the elliptic curve.

$$P+Q=0$$

(Inverse)

Elliptic Curves Example: Let p be a prime (p > 3) and let A, B be constants. Consider the equation

$$y^2 = x^3 + Ax + B \bmod p$$

And let

$$E(\mathbb{Z}_p) = \{(x, y) \in \mathbb{Z}_p^2 | y^2 = x^3 + Ax + B \bmod p \} \cup \{\mathcal{O}\}$$

Fact: $E(\mathbb{Z}_p)$ defines an abelian group

- For appropriate curves the DDH assumption is believed to hold
- If you make up your own curve there is a good chance it is broken...
- NIST has a list of recommendations