
Cryptography
CS 555

Week 9:
• Number Theory + Public Key Crypto
Readings: Katz and Lindell Chapter 8, B.1, B.2

1Spring 2021

Limits of Symmetric Crypto

• Key-Exchange Problem:
• Obi-Wan and Yoda want to communicate securely
• Suppose that

• Obi-Wan and Yoda don’t have time to meet privately and generate a shared secret key
• Use AES-GCM (requires shared secret key!)
• Trusted Intermediary: If Obi-Wan and Yoda both have secret keys with Anakin they can

exchange a secret key via the trusted party.

2

Limits of Symmetric Crypto
• Key-Exchange Problem:

• Obi-Wan and Yoda want to communicate securely
• Suppose that

• Obi-Wan and Yoda don’t have time to meet privately and generate a shared secret key
• Use AES-GCM (requires shared secret key!)
• Trusted Intermediary: If Obi-Wan and Yoda both have secret keys with Anakin (KY,A and KO,A) they can

exchange a secret key via the trusted party.
• Obi-Wan picks a key K, computes 𝑐𝑐 = Enc𝐾𝐾𝑂𝑂,𝐴𝐴(𝐾𝐾) and sends 𝑐𝑐 to Anakin with instructions to re-encrypt

and forward to Yoda.
• Anakin computes K = Dec𝐾𝐾𝑂𝑂,𝐴𝐴(𝑐𝑐) and 𝑐𝑐′ = Enc𝐾𝐾𝑌𝑌,𝐴𝐴(𝐾𝐾) and forwards to Yoda.
• Yoda recovers 𝐾𝐾 = Dec𝐾𝐾𝑌𝑌,𝐴𝐴(𝑐𝑐′)
• Anakin also learns the secret key

• Remark: Obi-Wan and Yoda both trust Anakin, but would prefer to keep the key private just in case.

3

Limits of Symmetric Crypto
• Key-Exchange Problem:

• Obi-Wan and Yoda want to communicate securely
• Trusted Intermediary: If Obi-Wan and Yoda both have secret keys with Anakin (KY,A and

KO,A) they can exchange a secret key via the trusted party.
• Remark: Obi-Wan and Yoda both trust Anakin, but would prefer to keep the key private

just in case.

4

Limits of Symmetric Crypto

• Key-Exchange Problem:
• Obi-Wan and Yoda want to communicate securely
• Suppose that

• Obi-Wan and Yoda don’t have time to meet privately and generate one
• Obi-Wan and Yoda share an asymmetric key with Anakin
• Can they use Anakin to exchange a secret key?
• Remark: Obi-Wan and Yoda both trust Anakin, but would prefer to keep the key private

just in case.

• Need for Public-Key Crypto
• We can solve the key-exchange problem using public-key cryptography.
• No solution is known using symmetric key cryptography alone

5

Symmetric Key Explosion Problem

• Suppose we have n people and
each pair of people want to be able
to maintain a secure communication
channel.

• How many private keys per person?
• Answer: n-1

• Key Explosion Problem
• n can get very big if you are Google or Amazon!

6

Public Key Encryption: Basic Terminology

• Plaintext/Plaintext Space
• A message m ∈ ℳ

• Ciphertext c ∈ 𝒞𝒞
• Public/Private Key Pair 𝒑𝒑𝒑𝒑, 𝒔𝒔𝒔𝒔 ∈ 𝓚𝓚

7

Public Key Encryption Syntax

• Three Algorithms
• Gen(1𝑛𝑛,𝑅𝑅) (Key-generation algorithm)

• Input: Random Bits R
• Output: 𝒑𝒑𝒑𝒑, 𝒔𝒔𝒔𝒔 ∈ 𝓚𝓚

• Encpk(𝑚𝑚) ∈ 𝒞𝒞 (Encryption algorithm)
• Decsk(𝑐𝑐) (Decryption algorithm)

• Input: Secret key sk and a ciphertex c
• Output: a plaintext message m ∈ ℳ

• Invariant: Decsk(Encpk(m))=m

Alice must run key generation
algorithm in advance an publishes the

public key: pk

Assumption: Adversary only gets to
see pk (not sk)

8

CPA-Security (PubKA,Π
LR−cpa n)

9

𝑚𝑚0
1,𝑚𝑚1

1

Random bit b
(pk,sk) = Gen(.)

𝒄𝒄𝟏𝟏 = 𝐄𝐄𝐄𝐄𝐄𝐄𝒑𝒑𝒑𝒑 𝒎𝒎𝒃𝒃
𝟏𝟏

b’

𝒄𝒄𝟐𝟐 = 𝐄𝐄𝐄𝐄𝐄𝐄𝒑𝒑𝒑𝒑 𝒎𝒎𝒃𝒃
𝟐𝟐

𝒄𝒄𝟑𝟑 = 𝐄𝐄𝐄𝐄𝐄𝐄𝒑𝒑𝒑𝒑 𝒎𝒎𝒃𝒃
𝟑𝟑

𝑚𝑚0
3,𝑚𝑚1

3

…

∀𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴 ∃𝜇𝜇 (negligible) s. t
Pr PubKA,Π

LR−cpa n = 1 ≤
1
2

+ 𝜇𝜇(𝑛𝑛)

𝑚𝑚0
2,𝑚𝑚1

2

Public Key: pk

Public Key Crypto

• Fact 1: CPA Security and Eavesdropping Security are Equivalent
• Key Insight: The attacker has the public key so he doesn’t gain anything from being able to

query the encryption oracle!

• Fact 2: Any deterministic encryption scheme is not CPA-Secure
• Historically overlooked in many real world public key crypto systems

• Fact 3: No Public Key Cryptosystem can achieve Perfect Secrecy!
• Exercise 11.1
• Hint: Unbounded attacker can keep encrypting the message m using the public key to recover

all possible encryptions of m.

• Key Question: How do we achieve CPA/CCA-Secure Public Key Encryption?

10

Number Theory

• Key tool behind (most) public key-crypto
• RSA, El-Gamal, Diffie-Hellman Key Exchange

• Aside: don’t worry we will still use symmetric key crypto
• It is more efficient in practice
• First step in many public key-crypto protocols is to generate symmetric key

• Then communicate using authenticated encryption e.g., AES-GCM

11

Polynomial Time Factoring Algorithm?

FindPrimeFactor
Input: N
For i=1,…,N

if N/i is an integer then
Output i

Running time: O(N) steps
Correctness: Always returns a factor

12

Did we just break RSA?

Polynomial Time Factoring Algorithm?

FindPrimeFactor
Input: N
For i=1,…,N

if N/i is an integer then
Output i

Running time: O(N) steps
Correctness: Always returns a factor

13

We measure running time of an arithmetic
algorithm (multiply, divide, GCD, remainder) in

terms of the number of bits necessary to encode
the inputs.

How many bits 𝑁𝑁 to encode N?
Answer: 𝑁𝑁 = log2(N)

Polynomial Time Operations on Integers

• Addition
• Multiplication
• Division with Remainder

• Input: a and divisor b
• Output: quotient q and remainder r < b such that

𝒂𝒂 = 𝑞𝑞𝒃𝒃 + 𝑟𝑟
Convenient Notation: r = a mod b
Note 1: We require that quotient q and remainder r are both integers
Note 2: If remainder is 𝑟𝑟 = 0 (i.e., 𝒂𝒂 = 𝑞𝑞𝒃𝒃 + 0) we say that b divides a (Notation: b|a)

• Greatest Common Divisor
• Example: gcd(9,15) = 3

• Extended GCD(a,b)
• Output integers X,Y such that

𝑋𝑋𝒂𝒂 + 𝑌𝑌𝒃𝒃 = gcd(𝒂𝒂,𝒃𝒃)

14

Polynomial time in 𝑎𝑎 and 𝑏𝑏

Polynomial Time Operations on Integers

• Division with Remainder
• Input: a and b
• Output: quotient q and remainder r < b such that

𝒂𝒂 = 𝑞𝑞𝒃𝒃 + 𝑟𝑟
• Greatest Common Divisor

• Key Observation: if 𝒂𝒂 = 𝑞𝑞𝒃𝒃 + 𝑟𝑟
Then gcd(a,b) = gcd(r, b)=gcd(a mod b, b)

Proof:
• Let d = gcd(a,b). Then d divides both a and b. Thus, d also divides r=a-qb.

d=gcd(a,b) ≤ gcd(r, b)
• Let d’ = gcd(r, b). Then d’ divides both b and r. Thus, d’ also divides a = qb+r.
gcd(a,b) ≥ gcd(r, b)=d’

• Conclusion: d=d’.

15

More Polynomial Time Operations on Integers

• (Modular Arithmetic) The following operations are polynomial time
in 𝑎𝑎 and 𝑏𝑏 and 𝑁𝑁 .

1. Compute [a mod N]
2. Compute sum [(a+b) mod N], difference [(a-b) mod N] or product

[ab mod N]
3. Determine whether a has an inverse a-1 such that 1=[aa-1 mod N]
4. Find a-1 if it exists
5. Compute the exponentiation [ab mod N]

16

More Polynomial Time Operations on Integers

• (Modular Arithmetic) The following operations are polynomial time in
in 𝑎𝑎 and 𝑏𝑏 and 𝑁𝑁 .

1. Compute [a mod N]
2. Compute sum [(a+b) mod N], difference [(a-b) mod N] or product

[ab mod N]
3. Determine whether a has an inverse a-1 such that 1=[aa-1 mod N]
4. Find a-1 if it exists
5. Compute the exponentiation [ab mod N]

17

Remark: Part 3 and 4 use extended GCD
algorithm

More Polynomial Time Operations on Integers

• (Modular Arithmetic) The following operations are polynomial time in in
𝑎𝑎 and 𝑏𝑏 and 𝑁𝑁 .

1. Compute [a mod N]
2. Compute sum [(a+b) mod N], difference [(a-b) mod N] or product [ab

mod N]
3. Determine whether a has an inverse a-1 such that 1=[aa-1 mod N]
4. Find a-1 if it exists

• Note: a-1 exists if and only if GCD(a,N) = 1.
• Extended Euclidean Algorithm: Finds integers x,y s.t. ax+Ny =GCD(a,N)=1.
• Define: a-1 =[x mod N] and observe [aa-1 mod N]=[ax-Ny mod N] = GCD(a,N)=1.

5. Compute the exponentiation [ab mod N]

18

More Polynomial Time Operations on Integers

• (Modular Arithmetic) The following operations are polynomial time in
in 𝑎𝑎 and 𝑏𝑏 and 𝑁𝑁 .

1. Compute the exponentiation [ab mod N]

Attempt 1:

X =1
For i=1,…,b

X = X*a

19

What is wrong?

More Polynomial Time Operations on Integers

(Modular Arithmetic) The following operations are polynomial time in 𝑎𝑎 , 𝑏𝑏 and 𝑁𝑁 .
1. Compute the exponentiation [ab mod N]

Attempt 2:
If (b=0) return 1
X[0]=a;
For i=1,…,log2(b)+1

X[i] = X[i-1]*X[i-1] // Invariant: X[i] = 𝒂𝒂2𝑖𝑖

[ab mod N]=𝒂𝒂∑𝑖𝑖 𝒃𝒃[𝑖𝑖]2𝑖𝑖mod 𝐍𝐍
= �

𝑖𝑖

X[i]b[i] mod 𝐍𝐍

20

What is wrong?

The number of bits in 𝒂𝒂2 𝑏𝑏 +1 is
O(2 𝑏𝑏 +1).

More Polynomial Time Operations on Integers

(Modular Arithmetic) The following operations are polynomial time in 𝑎𝑎 , 𝑏𝑏 and 𝑁𝑁 .
1. Compute the exponentiation [ab mod N]

Fixed Algorithm:
If (b=0) return 1
X[0]=a;
For i=1,…,log2(b)+1

X[i] = X[i-1]*X[i-1] mod N // Invariant: X[i] = 𝒂𝒂2𝑖𝑖 mod N
[ab mod N]=𝒂𝒂∑𝑖𝑖 𝒃𝒃[𝑖𝑖]2𝑖𝑖mod 𝐍𝐍

= �
𝑖𝑖

X[i]b[i] mod 𝐍𝐍

21

More Polynomial Time Operations on Integers

(Sampling) Let
ℤ𝑁𝑁 = 1, … ,𝑁𝑁

ℤ
𝑁𝑁
∗ = 𝑥𝑥 ∈ ℤ𝑁𝑁 gcd 𝑁𝑁, 𝑥𝑥 = 1

Examples:
ℤ6∗ = 1,5

ℤ7∗ = 1,2,3,4,5,6

22

More Polynomial Time Operations on Integers

(Sampling) Let
ℤ𝑁𝑁 = 1, … ,𝑁𝑁

ℤ
𝑁𝑁
∗ = 𝑥𝑥 ∈ ℤ𝑁𝑁 gcd 𝑁𝑁, 𝑥𝑥 = 1

• There is a probabilistic polynomial time algorithm (in |N|) to sample from
ℤ
𝑁𝑁
∗ and ℤ𝑁𝑁

• Algorithm to sample from ℤ
𝑁𝑁
∗ is allowed to output “fail” with negligible

probability in 𝑁𝑁 .
• Conditioned on not failing sample must be uniform.

23

Useful Facts

Fact: 𝑥𝑥,𝑦𝑦 ∈ ℤ
N

∗ → [𝑥𝑥𝑥𝑥 mod N] ∈ ℤ
N

∗ where ℤ
𝑁𝑁

∗ = 𝑥𝑥 ∈ ℤ𝑁𝑁 gcd 𝑁𝑁, 𝑥𝑥 = 1

Example 1: ℤ8∗ = 1,3,5,7

3 × 7 mod 8 = 21 mod 8 = [5 mod 8] ∈ ℤ
N

∗

Proof (by contradiction): Let d:=gcd(xy,N)
Suppose d>1 then for some prime p and integer q we have d=pq.
Now p must divide N and xy (by definition) and hence p must divide either x or y.
(WLOG) say p divides x. In this case gcd(x,N)=p > 1, which means 𝑥𝑥 ∉ ℤ

N

∗

24

More Useful Facts

𝑥𝑥,𝑦𝑦 ∈ ℤ
N
∗ → [𝑥𝑥𝑥𝑥 mod N] ∈ ℤ

N
∗

Fact 1: Let 𝝓𝝓 𝑵𝑵 = ℤ
N
∗ then for any 𝑥𝑥 ∈ ℤ

N
∗ we have

𝑥𝑥𝝓𝝓 𝑵𝑵 mod N = 1

Example: ℤ8∗ = 1,3,5,7 , 𝜙𝜙 8 = 4
3𝟒𝟒mod 8 = 9 × 9mod 8 = 1

5𝟒𝟒mod 8 = 25 × 25 mod 8 = 1
7𝟒𝟒mod 8 = 49 × 49 mod 8 = 1

25

More Useful Facts

𝑥𝑥,𝑦𝑦 ∈ ℤ
N

∗ → [𝑥𝑥𝑥𝑥 mod N] ∈ ℤ
N

∗

Fact 1: Let 𝝓𝝓 𝑵𝑵 = ℤ
N

∗ then for any 𝑥𝑥 ∈ ℤ
N

∗ we have 𝑥𝑥𝝓𝝓 𝑵𝑵 mod N = 1

Fact 2: Let 𝝓𝝓 𝑵𝑵 = ℤ
N

∗ and let 𝑁𝑁 = ∏𝑖𝑖=1
𝑚𝑚 𝑝𝑝𝑖𝑖

𝑒𝑒𝑖𝑖, where each 𝑝𝑝𝑖𝑖 is a distinct
prime number and ei > 0 then

𝝓𝝓 𝑵𝑵 = �
𝑖𝑖=1

𝑚𝑚

(𝑝𝑝𝑖𝑖 − 1)𝑝𝑝𝑖𝑖
𝑒𝑒𝑖𝑖−1 = N�

𝑖𝑖=1

𝑚𝑚

1 −
1
𝑝𝑝𝑖𝑖

26

Recap

• Polynomial time algorithms (in bit lengths 𝒂𝒂 , 𝒃𝒃 and 𝐍𝐍) to do
important stuff

• GCD(a,b)
• Find inverse a-1 of a such that 1=[aa-1 mod N] (if it exists)
• PowerMod: [ab mod N]
• Draw uniform sample from ℤ

𝑁𝑁

∗ = 𝑥𝑥 ∈ ℤ𝑁𝑁 gcd 𝑁𝑁, 𝑥𝑥 = 1
• Randomized PPT algorithm

27

More Useful Facts

𝑥𝑥,𝑦𝑦 ∈ ℤ
N
∗ → [𝑥𝑥𝑥𝑥 mod N] ∈ ℤ

N
∗

Fact 1: Let 𝝓𝝓 𝑵𝑵 = ℤ
N
∗ then for any 𝑥𝑥 ∈ ℤ

N
∗ we have

𝑥𝑥𝝓𝝓 𝑵𝑵 mod N = 1

Example: ℤ8∗ = 1,3,5,7 , 𝜙𝜙 8 = 4
3𝟒𝟒mod 8 = 9 × 9mod 8 = 1

5𝟒𝟒mod 8 = 25 × 25 mod 8 = 1
7𝟒𝟒mod 8 = 49 × 49 mod 8 = 1

28

More Useful Facts

𝑥𝑥,𝑦𝑦 ∈ ℤ
N

∗ → [𝑥𝑥𝑥𝑥 mod N] ∈ ℤ
N

∗

Fact 1: Let 𝝓𝝓 𝑵𝑵 = ℤ
N

∗ then for any 𝑥𝑥 ∈ ℤ
N

∗ we have 𝑥𝑥𝝓𝝓 𝑵𝑵 mod N = 1

Fact 2: Let 𝝓𝝓 𝑵𝑵 = ℤ
N

∗ and let 𝑁𝑁 = ∏𝑖𝑖=1
𝑚𝑚 𝑝𝑝𝑖𝑖

𝑒𝑒𝑖𝑖, where each 𝑝𝑝𝑖𝑖 is a distinct
prime number and ei > 0 then

𝝓𝝓 𝑵𝑵 = �
𝑖𝑖=1

𝑚𝑚

(𝑝𝑝𝑖𝑖 − 1)𝑝𝑝𝑖𝑖
𝑒𝑒𝑖𝑖−1 = N�

𝑖𝑖=1

𝑚𝑚

1 −
1
𝑝𝑝𝑖𝑖

29

More Useful Facts

Fact 2: Let 𝝓𝝓 𝑵𝑵 = ℤ
N
∗ and let 𝑁𝑁 = ∏𝑖𝑖=1

𝑚𝑚 𝑝𝑝𝑖𝑖
𝑒𝑒𝑖𝑖, where each 𝑝𝑝𝑖𝑖 is a

distinct prime number and ei > 0 then

𝝓𝝓 𝑵𝑵 = �
𝑖𝑖=1

𝑚𝑚

(𝑝𝑝𝑖𝑖 − 1)𝑝𝑝𝑖𝑖
𝑒𝑒𝑖𝑖−1 = 𝑁𝑁�

𝑖𝑖=1

𝑚𝑚

1 −
1
𝑝𝑝𝑖𝑖

Example 0: Let p be a prime so that ℤ
p
∗ = 1, … , 𝑝𝑝 − 1

𝝓𝝓 𝒑𝒑 = 𝑝𝑝 1 −
1
𝑝𝑝

= 𝑝𝑝 − 1

30

More Useful Facts

Fact 2: Let 𝝓𝝓 𝑵𝑵 = ℤ
N

∗ and let 𝑁𝑁 = ∏𝑖𝑖=1
𝑚𝑚 𝑝𝑝𝑖𝑖

𝑒𝑒𝑖𝑖, where each 𝑝𝑝𝑖𝑖 is a distinct
prime number and ei > 0 then

𝝓𝝓 𝑵𝑵 = �
𝑖𝑖=1

𝑚𝑚

(𝑝𝑝𝑖𝑖 − 1)𝑝𝑝𝑖𝑖
𝑒𝑒𝑖𝑖−1 = 𝑁𝑁�

𝑖𝑖=1

𝑚𝑚

1 −
1
𝑝𝑝𝑖𝑖

Example 1: N = 9 = 32 (m=1, e1=2)

𝝓𝝓 𝟗𝟗 = �
𝑖𝑖=1

1

(𝑝𝑝𝑖𝑖 − 1)𝑝𝑝𝑖𝑖2−1 = 2 × 3

31

More Useful Facts

Example 1: N = 9 = 32 (m=1, e1=2)

𝝓𝝓 𝟗𝟗 = �
𝑖𝑖=1

1

(𝑝𝑝𝑖𝑖 − 1)𝑝𝑝𝑖𝑖2−1 = 2 × 3

Double Check: ℤ
9
∗ = 1,2,4,5,7,8

32

More Useful Facts

Fact 2: Let 𝝓𝝓 𝑵𝑵 = ℤ
N

∗ and let 𝑁𝑁 = ∏𝑖𝑖=1
𝑚𝑚 𝑝𝑝𝑖𝑖

𝑒𝑒𝑖𝑖, where each 𝑝𝑝𝑖𝑖 is a distinct
prime number and ei > 0 then

𝝓𝝓 𝑵𝑵 = �
𝑖𝑖=1

𝑚𝑚

(𝑝𝑝𝑖𝑖 − 1)𝑝𝑝𝑖𝑖
𝑒𝑒𝑖𝑖−1 = 𝑁𝑁�

𝑖𝑖=1

𝑚𝑚

1 −
1
𝑝𝑝𝑖𝑖

Example 2: N = 15 = 5 × 3 (m=2, e1=e2=1)

𝝓𝝓 𝟏𝟏𝟏𝟏 = �
𝑖𝑖=1

2

(𝑝𝑝𝑖𝑖 − 1)𝑝𝑝𝑖𝑖1−1 = 5 − 1 3 − 1 = 8

33

More Useful Facts

Example 2: N = 15 = 5 × 3 (m=2, e1=e2=1)

𝝓𝝓 𝟏𝟏𝟏𝟏 = �
𝑖𝑖=1

2

(𝑝𝑝𝑖𝑖 − 1)𝑝𝑝𝑖𝑖1−1 = 5 − 1 3 − 1 = 8

Double Check: ℤ
15
∗ = 1,2,4,7,8,11,13,14

I count 8 elements in ℤ
15
∗

34

More Useful Facts

Fact 2: Let 𝝓𝝓 𝑵𝑵 = ℤ
N
∗ and let 𝑁𝑁 = ∏𝑖𝑖=1

𝑚𝑚 𝑝𝑝𝑖𝑖
𝑒𝑒𝑖𝑖, where each 𝑝𝑝𝑖𝑖 is a

distinct prime number and ei > 0 then

𝝓𝝓 𝑵𝑵 = �
𝑖𝑖=1

𝑚𝑚

(𝑝𝑝𝑖𝑖 − 1)𝑝𝑝𝑖𝑖
𝑒𝑒𝑖𝑖−1 = N�

𝑖𝑖=1

𝑚𝑚

1 −
1
𝑝𝑝𝑖𝑖

Special Case: N = pq (p and q are distinct primes)
𝝓𝝓 𝑵𝑵 = 𝑝𝑝 − 1 𝑞𝑞 − 1

35

More Useful Facts

Special Case: N = pq (p and q are distinct primes)
𝝓𝝓 𝑵𝑵 = 𝑝𝑝 − 1 𝑞𝑞 − 1

Proof Sketch: If 𝑥𝑥 ∈ ℤ
N

is not divisible by p or q then 𝑥𝑥 ∈ ℤ
N
∗. How many elements

are not in ℤ
N
∗ ?

• Multiples of p: p, 2p, 3p,…,pq (q multiples of p)
• Multiples of q: q, 2q,…,pq (p multiples of q)
• Double Counting? N=pq is in both lists. Any other duplicates?
• No! cq = dp q divides d (since, gcd(p,q)=1) and consequently d ≥ 𝑞𝑞

• Hence, dp ≥ 𝑝𝑝𝑝𝑝 = 𝑁𝑁

36

More Useful Facts

Special Case: N = pq (p and q are distinct primes)
𝝓𝝓 𝑵𝑵 = 𝑝𝑝 − 1 𝑞𝑞 − 1

Proof Sketch: If 𝑥𝑥 ∈ ℤ
N

is not divisible by p or q then 𝑥𝑥 ∈ ℤ
N
∗. How many

elements are not in ℤ
N
∗ ?

• Multiples of p: p, 2p, 3p,…,pq (q multiples of p)
• Multiples of q: q, 2q,…,pq (p multiples of q)
• Answer: p+q-1 elements are not in ℤ

N
∗

𝝓𝝓 𝑵𝑵 = 𝑵𝑵− 𝒑𝒑 + 𝒒𝒒 − 𝟏𝟏
= 𝐩𝐩𝐩𝐩 − 𝐩𝐩 − 𝐪𝐪 + 𝟏𝟏 = (𝐩𝐩 − 𝟏𝟏)(𝐪𝐪 − 𝟏𝟏)

37

Groups

Definition: A (finite) group is a (finite) set 𝔾𝔾 with a binary operation ∘ (over
G) for which we have
• (Closure:) For all g, h ∈ 𝔾𝔾 we have g ∘ h ∈ 𝔾𝔾
• (Identity:) There is an element e ∈ 𝔾𝔾 such that for all g ∈ 𝔾𝔾 we have

g ∘ e = g = e ∘ g
• (Inverses:) For each element g ∈ 𝔾𝔾 we can find h ∈ 𝔾𝔾 such that g ∘ h =

e = h ∘ g. We say that h is the inverse of g.
• (Associativity:) For all g1, g2, g3 ∈ 𝔾𝔾 we have

g1 ∘ g2 ∘ g3 = g1 ∘ g2 ∘ g3
We say that the group is abelian if
• (Commutativity:) For all g, h ∈ 𝔾𝔾 we have g ∘ h = h ∘ g

38

Groups

Definition: A (finite) group is a (finite) set 𝔾𝔾 with a binary operation ∘ (over G) for
which we have
• (Closure:) For all g, h ∈ 𝔾𝔾 we have g ∘ h ∈ 𝔾𝔾
• (Identity:) There is an element e ∈ 𝔾𝔾 such that for all g ∈ 𝔾𝔾 we have

g ∘ e = g = e ∘ g
• (Inverses:) For each element g ∈ 𝔾𝔾 we can find h ∈ 𝔾𝔾 such that g ∘ h = e = h ∘

g. We say that h is the inverse of g.
• (Associativity:) For all g1, g2, g3 ∈ 𝔾𝔾 we have

g1 ∘ g2 ∘ g3 = g1 ∘ g2 ∘ g3
Fact: The identity is unique + inverses must be unique
Proof: If e and e′ are both identity then e = e ∘ e′ = e′
If h and h′ are both inverses of g then h = h ∘ e = h ∘ g ∘ h′ = g ∘ h ∘ ℎ′ = ℎ′.

39
Associativity

Abelian Groups (Examples)

• Example 1: ℤ
𝑁𝑁

when ∘ denotes addition modulo N
• Identity: 0, since 0 ∘ x =[0+x mod N] = [x mod N].
• Inverse of x? Set x-1=N-x so that [x-1+x mod N] = [N-x+x mod N] = 0.

• Example 2: ℤ
𝑁𝑁
∗ when ∘ denotes multiplication modulo N

• Identity: 1, since 1∘ x =[1(x) mod N] = [x mod N].
• Inverse of x? Run extended GCD to obtain integers a and b such that

𝑎𝑎𝑎𝑎 + 𝑏𝑏𝑏𝑏 = gcd 𝑥𝑥,𝑁𝑁 = 1
Observe that: x-1 = a. Why?

40

Abelian Groups (Examples)

• Example 1: ℤ
𝑁𝑁

when ∘ denotes addition modulo N
• Identity: 0, since 0 ∘ x =[0+x mod N] = [x mod N].
• Inverse of x? Set x-1=N-x so that [x-1+x mod N] = [N-x+x mod N] = 0.

• Example 2: ℤ
𝑁𝑁
∗ when ∘ denotes multiplication modulo N

• Identity: 1, since 1∘ x =[1(x) mod N] = [x mod N].
• Inverse of x? Run extended GCD to obtain integers a and b such that

𝑎𝑎𝑎𝑎 + 𝑏𝑏𝑏𝑏 = gcd 𝑥𝑥,𝑁𝑁 = 1
Observe that: x-1 = a, since [ax mod N] = [1-bN mod N] = 1

41

Groups

Lemma 8.13: Let 𝔾𝔾 be a group with a binary operation ∘ (over G) and let
a, b, c ∈ 𝔾𝔾. If a ∘ c = b ∘ c then a = b.

Proof Sketch: Apply the unique inverse to 𝑐𝑐−1 both sides.
a ∘ c = b ∘ c  a ∘ c ∘ 𝑐𝑐−1= b ∘ c ∘ 𝑐𝑐−1

 a ∘ c ∘ 𝑐𝑐−1 = b ∘ c ∘ 𝑐𝑐−1

 a ∘ 𝑒𝑒 = b ∘ 𝑒𝑒
 a = b

(Remark: it is not to difficult to show that a group has a unique identity and
that inverses are unique).

42

Groups

Lemma 8.13: Let 𝔾𝔾 be a group with a binary operation ∘ (over G) and let
a, b, c ∈ 𝔾𝔾. If a ∘ c = b ∘ c then a = b.

Proof Sketch: Apply the unique inverse to 𝑐𝑐−1 both sides.
a ∘ c = b ∘ c  a ∘ c ∘ 𝑐𝑐−1= b ∘ c ∘ 𝑐𝑐−1

 a ∘ c ∘ 𝑐𝑐−1 = b ∘ c ∘ 𝑐𝑐−1

 a ∘ 𝑒𝑒 = b ∘ 𝑒𝑒
 a = b

(Remark: it is not to difficult to show that a group has a unique identity and
that inverses are unique).

43

Group Exponentiation

Definition: Let 𝔾𝔾 be a group with a binary operation ∘ (over G)
let m be a positive integer and let g ∈ 𝔾𝔾 be a group element
then we define

𝑔𝑔𝑚𝑚 ≔ g ∘ ⋯ ∘ g

Theorem: Let 𝔾𝔾 be finite group with size m = 𝔾𝔾 and let g ∈
𝔾𝔾 be a group element then 𝑔𝑔𝑚𝑚=1 (where 1 denotes the
unique identity of 𝔾𝔾).

44

m times

Group Exponentiation

Theorem 8.14: Let 𝔾𝔾 be finite group with size m = 𝔾𝔾 and let
g ∈ 𝔾𝔾 be a group element then 𝑔𝑔𝑚𝑚=1 (where 1 denotes the
unique identity of 𝔾𝔾).

Proof: (for abelian group) Let 𝔾𝔾 = 𝑔𝑔1, … ,𝑔𝑔𝑚𝑚 then we claim
𝑔𝑔1 ∘ ⋯∘ 𝑔𝑔𝑚𝑚 = 𝑔𝑔 ∘ 𝑔𝑔1 ∘ ⋯ ∘ 𝑔𝑔 ∘ 𝑔𝑔𝑚𝑚

Why? If 𝑔𝑔𝑖𝑖 ∘ 𝑔𝑔 = 𝑔𝑔𝑗𝑗 ∘ 𝑔𝑔 then 𝑔𝑔𝑗𝑗 = 𝑔𝑔𝑖𝑖 (by Lemma 8.13)

45

Group Exponentiation

Theorem 8.14: Let 𝔾𝔾 be finite group with size m = 𝔾𝔾 and let
g ∈ 𝔾𝔾 be a group element then 𝑔𝑔𝑚𝑚=1 (where 1 denotes the
unique identity of 𝔾𝔾).

Proof: (for abelian group) Let 𝔾𝔾 = 𝑔𝑔1, … ,𝑔𝑔𝑚𝑚 then we claim
𝑔𝑔1 ∘ ⋯∘ 𝑔𝑔𝑚𝑚 = 𝑔𝑔 ∘ 𝑔𝑔1 ∘ ⋯ ∘ 𝑔𝑔 ∘ 𝑔𝑔𝑚𝑚

Because 𝔾𝔾 is abelian we can re-arrange terms
1 ∘ 𝑔𝑔1 ∘ ⋯ ∘ 𝑔𝑔𝑚𝑚 = 𝑔𝑔𝑚𝑚 ∘ 𝑔𝑔1 ∘ ⋯ ∘ 𝑔𝑔𝑚𝑚

By Lemma 8.13 we have 1 = 𝑔𝑔𝑚𝑚. QED

46

Group Exponentiation

Theorem 8.14: Let 𝔾𝔾 be finite group with size m = 𝔾𝔾 and let
g ∈ 𝔾𝔾 be a group element then 𝑔𝑔𝑚𝑚=1 (where 1 denotes the
unique identity of 𝔾𝔾).

Corollary 8.15: Let 𝔾𝔾 be finite group with size m = 𝔾𝔾 > 1
and let g ∈ 𝔾𝔾 be a group element then for any integer x we
have 𝑔𝑔𝑥𝑥 = 𝑔𝑔[𝑥𝑥 𝑚𝑚𝑚𝑚𝑚𝑚 𝑚𝑚].
Proof: 𝑔𝑔𝑥𝑥 = 𝑔𝑔𝑞𝑞𝑞𝑞+[𝑥𝑥 𝑚𝑚𝑚𝑚𝑚𝑚 𝑚𝑚] = 1 × 𝑔𝑔[𝑥𝑥 𝑚𝑚𝑚𝑚𝑚𝑚 𝑚𝑚], where q is
unique integer such that x=qm+ [𝑥𝑥 𝑚𝑚𝑚𝑚𝑚𝑚 𝑚𝑚]

47

Group Exponentiation

Special Case: ℤ
𝑁𝑁

∗ is a group of size 𝝓𝝓 𝑵𝑵 so we have now
proved

Corollary 8.22: For any 𝑔𝑔 ∈ ℤ
N

∗ and integer x we have

𝑔𝑔𝑥𝑥mod N = 𝑔𝑔[𝑥𝑥 𝑚𝑚𝑚𝑚𝑚𝑚 𝝓𝝓 𝑵𝑵]mod N

48

Chinese Remainder Theorem

Theorem: Let N = pq (where gcd(p,q)=1) be given and let 𝑓𝑓:ℤ
N
→ ℤ𝑝𝑝 ×

ℤ𝑞𝑞 be defined as follows
𝑓𝑓 𝑥𝑥 = [𝑥𝑥 𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝], [𝑥𝑥 𝑚𝑚𝑚𝑚𝑚𝑚 𝑞𝑞]

then
• f is a bijective mapping (invertible)
• f and its inverse 𝑓𝑓−1:ℤ𝑝𝑝 × ℤ𝑞𝑞 → ℤ

N
can be computed efficiently

• 𝑓𝑓 𝑥𝑥 + 𝑦𝑦 = 𝑓𝑓 𝑥𝑥 + 𝑓𝑓 𝑦𝑦 = [𝑥𝑥 + 𝑦𝑦 𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝], [𝑥𝑥 + 𝑦𝑦 𝑚𝑚𝑚𝑚𝑚𝑚 𝑞𝑞]
• The restriction of f to ℤ

𝑁𝑁
∗ yields a bijective mapping to ℤ

𝑝𝑝
∗ × ℤ

𝑞𝑞
∗

• For inputs 𝑥𝑥, 𝑦𝑦 ∈ ℤ
𝑁𝑁
∗ we have 𝑓𝑓 𝑥𝑥 𝑓𝑓 𝑦𝑦 = 𝑓𝑓 𝑥𝑥𝑥𝑥

49

Chinese Remainder Theorem

Application of CRT: Faster computation modulo N=pq.

Example: Compute [1153 mod 15]
f(11)=([-1 mod 3],[1 mod 5])
f(1153) =([(-1)53 mod 3],[153 mod 5])= (-1,1)

𝑓𝑓−1(-1,1)=11

Thus, 11=[1153 mod 15]

50

CS 555: Week 10: Topic 1
Finding Prime Numbers, RSA

51

RSA Key-Generation

KeyGeneration(1n)
Step 1: Pick two random n-bit primes p and q
Step 2: Let N=pq, 𝜙𝜙 𝑁𝑁 = (𝑝𝑝 − 1)(𝑞𝑞 − 1)
Step 3: …

Question: How do we accomplish step one?

53

Bertrand’s Postulate

Theorem 8.32. For any n > 1 the fraction of n-bit integers that are prime is at least ⁄1 3𝑛𝑛.

GenerateRandomPrime(1n)
For i=1 to 3n2:

p’ {0,1}n-1

p 1‖𝑝𝑝𝑝
if isPrime(p) then

return p
return fail

54

Can we do this in
polynomial time?

Bertrand’s Postulate

Theorem 8.32. For any n > 1 the fraction of n-bit integers that are prime is at least ⁄1 3𝑛𝑛.

GenerateRandomPrime(1n)
For i=1 to 3n2:

p’ {0,1}n-1

p 1‖𝑝𝑝𝑝
if isPrime(p) then

return p
return fail

55

Assume for now that we can run isPrime(p). What are the
odds that the algorithm fails?

On each iteration the probability that p is not a prime is
1 − 1

3𝑛𝑛

We fail if we pick a non-prime in all 3n2 iterations. The
probability of failure is at most

1 −
1
3𝑛𝑛

3𝑛𝑛2

= 1 −
1
3𝑛𝑛

3𝑛𝑛
𝑛𝑛

≤ 𝑒𝑒−𝑛𝑛

isPrime(p): Miller-Rabin Test

• We can check for primality of p in polynomial time in 𝑝𝑝 .

Theory: Deterministic algorithm to test for primality.
• See breakthrough paper “Primes is in P”

Practice: Miller-Rabin Test (randomized algorithm)
• Guarantee 1: If p is prime then the test outputs YES
• Guarantee 2: If p is not prime then the test outputs NO except with

negligible probability.

56https://www.cse.iitk.ac.in/users/manindra/algebra/primality_v6.pdf

https://www.cse.iitk.ac.in/users/manindra/algebra/primality_v6.pdf

The “Almost” Miller-Rabin Test

Input: Integer N and parameter 1t

Output: “prime” or “composite”
for i=1 to t:

a  {1,…,N-1}
if 𝑎𝑎𝑁𝑁−1 ≠ 1 mod N then return “composite”

Return “prime”

Claim: If N is prime then algorithm always outputs “prime”
Proof: For any a ∈ {1,…,N−1} we have 𝑎𝑎𝑁𝑁−1 = 𝑎𝑎𝜙𝜙 𝑁𝑁 = 1 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁

57

The “Almost” Miller-Rabin Test

Input: Integer N and parameter 1t

Output: “prime” or “composite”
for i=1 to t:

a  {1,…,N-1}
if 𝑎𝑎𝑁𝑁−1 ≠ 1 mod N then return “composite”

Return “prime”

Fact: If N is composite and not a Carmichael number then the algorithm
outputs “composite” with probability

1 − 2−𝑡𝑡

58

Need a bit of extra work to
handle Carmichael

numbers (see textbook).

Miller-Rabin Primality Test

Input: Integer N and parameter 1t

Output: “prime” or “composite”
If Even(N) or PerfectPower(N) return “composite”
Else find 𝑢𝑢 (odd) and 𝑟𝑟 ≥ 1 s.t. N − 1 = 2𝑟𝑟𝑢𝑢
for j=1 to t:

if 𝑎𝑎𝑢𝑢 ≠ ±1 mod N and 𝑎𝑎2𝑖𝑖𝑢𝑢 ≠ −1 mod N for all 1 ≤ 𝑖𝑖 ≤ 𝑟𝑟 − 1
return “composite”

Return “prime”

59

Miller-Rabin Primality Test

Input: Integer N and parameter 1t

Output: “prime” or “composite”
If Even(N) or PerfectPower(N) return “composite”
Else find 𝑢𝑢 (odd) and 𝑟𝑟 ≥ 1 s.t. N − 1 = 2𝑟𝑟𝑢𝑢
for j=1 to t:

if 𝑎𝑎𝑢𝑢 ≠ ±1 mod N and 𝑎𝑎2𝑖𝑖𝑢𝑢 ≠ −1 mod N for all 1 ≤ 𝑖𝑖 ≤ 𝑟𝑟 − 1
return “composite”

Return “prime”

60

Lemma: If p is prime and
𝑥𝑥2 = 1 mod p then

𝑥𝑥 = ±1 mod p

Miller-Rabin Primality Test

Input: Integer N and parameter 1t

Output: “prime” or “composite”
If Even(N) or PerfectPower(N) return “composite”
Else find 𝑢𝑢 (odd) and 𝑟𝑟 ≥ 1 s.t. N − 1 = 2𝑟𝑟𝑢𝑢
for j=1 to t:

if 𝑎𝑎𝑢𝑢 ≠ ±1 mod N and 𝑎𝑎2𝑖𝑖𝑢𝑢 ≠ −1 mod N for all 1 ≤ 𝑖𝑖 ≤ 𝑟𝑟 − 1
return “composite”

Return “prime”

61

Observe:

𝑎𝑎2𝑟𝑟−1𝑢𝑢
𝟐𝟐

= 𝑎𝑎𝑁𝑁−1 mod N
= 1 mod N

𝑎𝑎2𝑖𝑖𝑢𝑢
𝟐𝟐
− 𝟏𝟏

= 𝑎𝑎2𝑖𝑖−1𝑢𝑢 − 𝟏𝟏 𝑎𝑎2𝑖𝑖−1𝑢𝑢 + 𝟏𝟏 + 𝟏𝟏

Miller-Rabin Primality Test

Input: Integer N and parameter 1t

Output: “prime” or “composite”
If Even(N) or PerfectPower(N) return “composite”
Else find 𝑢𝑢 (odd) and 𝑟𝑟 ≥ 1 s.t. N − 1 = 2𝑟𝑟𝑢𝑢
for j=1 to t:

if 𝑎𝑎𝑢𝑢 ≠ ±1 mod N and 𝑎𝑎2𝑖𝑖𝑢𝑢 ≠ −1 mod N for all 1 ≤ 𝑖𝑖 ≤ 𝑟𝑟 − 1
return “composite”

Return “prime”

62

Observe:

𝑎𝑎2𝑟𝑟−1𝑢𝑢
𝟐𝟐

= 𝑎𝑎𝑁𝑁−1 mod N
= 1 mod N

If N is prime we won’t return composite
𝑎𝑎2𝑟𝑟𝑢𝑢 − 𝟏𝟏 = 𝑎𝑎2𝑟𝑟−1𝑢𝑢 − 𝟏𝟏 𝑎𝑎2𝑟𝑟−1𝑢𝑢 + 𝟏𝟏

= ⋯ = 𝑎𝑎2𝑟𝑟−2𝑢𝑢 − 𝟏𝟏 𝑎𝑎2𝑟𝑟−2𝑢𝑢 + 𝟏𝟏 𝑎𝑎2𝑟𝑟−1𝑢𝑢 + 𝟏𝟏

Miller-Rabin Primality Test

Input: Integer N and parameter 1t

Output: “prime” or “composite”
If Even(N) or PerfectPower(N) return “composite”
Else find 𝑢𝑢 (odd) and 𝑟𝑟 ≥ 1 s.t. N − 1 = 2𝑟𝑟𝑢𝑢
for j=1 to t:

if 𝑎𝑎𝑢𝑢 ≠ ±1 mod N and 𝑎𝑎2𝑖𝑖𝑢𝑢 ≠ −1 mod N for all 1 ≤ 𝑖𝑖 ≤ 𝑟𝑟 − 1
return “composite”

Return “prime”

63

Observe:

𝑎𝑎2𝑟𝑟−1𝑢𝑢
𝟐𝟐

= 𝑎𝑎𝑁𝑁−1 mod N
= 1 mod N

If N is prime we won’t return composite

𝟎𝟎 = 𝑎𝑎2𝑟𝑟𝑢𝑢 − 𝟏𝟏 = ⋯ = 𝑎𝑎𝑢𝑢 − 𝟏𝟏 �
𝒊𝒊=𝟎𝟎

𝒓𝒓−𝟏𝟏

𝑎𝑎2𝑖𝑖𝑢𝑢 + 𝟏𝟏

One of the factors must be 0
(mod N)

Back to RSA Key-Generation

KeyGeneration(1n)
Step 1: Pick two random n-bit primes p and q
Step 2: Let N=pq, 𝜙𝜙 𝑁𝑁 = (𝑝𝑝 − 1)(𝑞𝑞 − 1)
Step 3: Pick e > 1 such that gcd(e, 𝜙𝜙 𝑁𝑁)=1
Step 4: Set d=[e-1 mod 𝜙𝜙 𝑁𝑁] (secret key)
Return: N, e, d

• How do we find d?
• Answer: Use extended gcd algorithm to find e-1mod 𝜙𝜙 𝑁𝑁 .

64

Be Careful Where You Get Your “Random Bits!”

• RSA Keys Generated with weak PRG
• Implementation Flaw
• Unfortunately Commonplace

• Resulting Keys are Vulnerable
• Sophisticated Attack
• Coppersmith’s Method

65
The Return of Coppersmith's Attack: Practical Factorization of Widely Used RSA Moduli (CCS 2017)

(Plain) RSA Encryption

• Public Key: PK=(N,e)
• Message m ∈ ℤ

N EncPK(m) = 𝑚𝑚𝑒𝑒 mod N

• Remark: Encryption is efficient if we use the power mod algorithm.

66

(Plain) RSA Decryption

• Secret Key: SK=(N,d)
• Ciphertext c ∈ ℤ

N DecSK(c) = 𝑐𝑐𝑑𝑑 mod N

• Remark 1: Decryption is efficient if we use the power mod algorithm.
• Remark 2: Suppose that m ∈ ℤ

N

∗ and let c=EncPK(m) = 𝑚𝑚𝑒𝑒 mod N

DecSK(c) = 𝑚𝑚𝑒𝑒 𝑑𝑑 mod N = 𝑚𝑚𝑒𝑒𝑒𝑒 mod N
= 𝑚𝑚[𝑒𝑒𝑒𝑒 𝑚𝑚𝑚𝑚𝑚𝑚 𝝓𝝓 𝑵𝑵] mod N

= 𝑚𝑚1 mod N = 𝑚𝑚

67

RSA Decryption

• Secret Key: SK=(N,d)
• Ciphertext c ∈ ℤ

N DecSK(c) = 𝑐𝑐𝑑𝑑 mod N

• Remark 1: Decryption is efficient if we use the power mod algorithm.
• Remark 2: Suppose that m ∈ ℤ

N

∗ and let c=EncPK(m) = 𝑚𝑚𝑒𝑒 mod N then
DecSK(c) = 𝑚𝑚

• Remark 3: Even if m ∈ ℤ
N
− ℤ

N

∗ and let c = EncPK(m) = 𝑚𝑚𝑒𝑒 mod N then
DecSK(c) = 𝑚𝑚

• Use Chinese Remainder Theorem to show this
𝑒𝑒𝑒𝑒 = 1 + 𝑘𝑘 𝑝𝑝 − 1 𝑞𝑞 − 1

→ f 𝑐𝑐𝑑𝑑 = 𝑚𝑚𝑒𝑒𝑒𝑒 mod p , 𝑚𝑚𝑒𝑒𝑒𝑒 mod q = 𝑚𝑚1 mod p , 𝑚𝑚1 mod q
→ 𝑓𝑓−1 f 𝑐𝑐𝑑𝑑 = 𝑓𝑓−1 𝑚𝑚1 mod p , 𝑚𝑚1 mod q = 𝑚𝑚

68

Plain RSA (Summary)

• Public Key (pk): N = pq, e such that GCD e,𝜙𝜙 𝑁𝑁 = 1
• 𝜙𝜙 𝑁𝑁 = 𝑝𝑝 − 1 𝑞𝑞 − 1 for distinct primes p and q

• Secret Key (sk): N, d such that ed=1 mod 𝜙𝜙 𝑁𝑁
• Encrypt(pk=(N,e),m) = 𝑚𝑚𝒆𝒆 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁
• Decrypt(sk=(N,d),c) = 𝑐𝑐𝒅𝒅 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁

• Decryption Works because
𝑐𝑐𝑑𝑑mod N = 𝑚𝑚𝑒𝑒𝑒𝑒mod N = 𝑚𝑚[𝑒𝑒𝑒𝑒 𝑚𝑚𝑚𝑚𝑚𝑚 𝝓𝝓 𝑵𝑵]mod N = 𝑚𝑚 mod N

69

Factoring Assumption

Let GenModulus(1n) be a randomized algorithm that outputs
(N=pq,p,q) where p and q are n-bit primes (except with negligible
probability negl(n)).

Experiment FACTORA,n

1. (N=pq,p,q)  GenModulus(1n)
2. Attacker A is given N as input
3. Attacker A outputs p’ > 1 and q’ > 1
4. Attacker A wins if N=p’q’.

70

Factoring Assumption

Experiment FACTORA,n

1. (N=pq,p,q)  GenModulus(1n)
2. Attacker A is given N as input
3. Attacker A outputs p’ > 1 and q’ > 1
4. Attacker A wins (FACTORA,n = 1) if and only if N=p’q’.

∀𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴 ∃𝜇𝜇 (negligible) s. t Pr FACTORA,n = 1 ≤ 𝜇𝜇(𝑛𝑛)

71

• Necessary for security of RSA.
• Not known to be sufficient.

RSA-Assumption

RSA-Experiment: RSA-INVA,n

1. Run KeyGeneration(1n) to obtain (N,e,d)
2. Pick uniform y ∈ ℤ

N
∗

3. Attacker A is given N, e, y and outputs x ∈ ℤ
N
∗

4. Attacker wins (RSA-INVA,n=1) if 𝑥𝑥𝑒𝑒 = y mod N

∀𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴 ∃𝜇𝜇 (negligible) s. t Pr RSA−INVA,n = 1 ≤ 𝜇𝜇(𝑛𝑛)

72

RSA-Assumption

RSA-Experiment: RSA-INVA,n

1. Run KeyGeneration(1n) to obtain (N,e,d)
2. Pick uniform y ∈ ℤ

N
∗

3. Attacker A is given N, e, y and outputs x ∈ ℤ
N
∗

4. Attacker wins (RSA-INVA,n=1) if 𝑥𝑥𝑒𝑒 = y mod N

∀𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴 ∃𝜇𝜇 (negligible) s. t Pr RSA−INVA,n = 1 ≤ 𝜇𝜇(𝑛𝑛)

73

• Plain RSA Encryption behaves like a one-way function
• Attacker cannot invert encryption of random message

Discussion of RSA-Assumption

• Plain RSA Encryption behaves like a one-way-function

• Decryption key is a “trapdoor” which allows us to invert the OWF

• RSA-Assumption  OWFs exist

74

Recap

• Plain RSA
• Public Key (pk): N = pq, e such that GCD e,𝜙𝜙 𝑁𝑁 = 1

• 𝜙𝜙 𝑁𝑁 = 𝑝𝑝 − 1 𝑞𝑞 − 1 for distinct primes p and q
• Secret Key (sk): N, d such that ed=1 mod 𝜙𝜙 𝑁𝑁
• Encrypt(pk=(N,e),m) = 𝑚𝑚𝒆𝒆 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁
• Decrypt(sk=(N,d),c) = 𝑐𝑐𝒅𝒅 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁

• Decryption Works because
𝑐𝑐𝑑𝑑mod N = 𝑚𝑚𝑒𝑒𝑒𝑒mod N = 𝑚𝑚[𝑒𝑒𝑒𝑒 𝑚𝑚𝑚𝑚𝑚𝑚 𝝓𝝓 𝑵𝑵]mod N = 𝑚𝑚 mod N

75

Mathematica Demo

https://www.cs.purdue.edu/homes/jblocki/courses/555_Spring17/slid
es/Lecture24Demo.nb

http://develop.wolframcloud.com/app/

Note: Online version of mathematica available at
https://sandbox.open.wolframcloud.com (reduced functionality, but
can be used to solve homework bonus problems)

76

https://www.cs.purdue.edu/homes/jblocki/courses/555_Spring17/slides/Lecture24Demo.nb
http://develop.wolframcloud.com/app/
https://sandbox.open.wolframcloud.com/

(Toy) RSA Implementation in Mathematica

(* Random Seed 123456 is not secure, but it allows us to repeat the experiment *)
SeedRandom[123456]

(* Step 1: Generate primes for an RSA key *)
p = RandomPrime[{10^1000, 10^1050}];
q = RandomPrime[{10^1000, 10^1050}];
NN = p q; (*Symbol N is protected in mathematica *)
phi = (p - 1) (q - 1);

77
https://www.cs.purdue.edu/homes/jblocki/courses/555_Spring17/slides/Lecture24Demo.nb

https://www.cs.purdue.edu/homes/jblocki/courses/555_Spring17/slides/Lecture24Demo.nb

(Toy) RSA Implementation in Mathematica

(* Step 1.A: Find e *)
GCD[phi,7]

Output: 7
(* GCD[phi,7] is not 1, so he have to try a different value of e *)

GCD[phi,3]
Output: 1
(* We can set e=3 *)

e=3;

78
https://www.cs.purdue.edu/homes/jblocki/courses/555_Spring17/slides/Lecture24Demo.nb

https://www.cs.purdue.edu/homes/jblocki/courses/555_Spring17/slides/Lecture24Demo.nb

(Toy) RSA Implementation in Mathematica

(* Step 1.B find d s.t. ed = 1 mod N by using the extended GCD algorithm *)
(* Mathematica is clever enough to do this automatically *)

Solve[e x == 1, Modulus->phi]
Output:
{{x->36469680590663028301700626132883867272718728905205088...
……
394069421778610209425624440980084481398131}}
(* We can now set d = x *)

d=364696805…. 8131;

79

(Toy) RSA Implementation in Mathematica

(* Double Check 1 = [ed mod 𝜙𝜙 𝑁𝑁] *)
Mod [e d, (p-1)(q-1)]

Output: 1
(* Encrypt the message 200, c= m^e mod N *)

m = 200;
PowerMod[m,e,NN]

Output: 8 000 000

80

(Toy) RSA Implementation in Mathematica

(* Encrypt the message 200, c= m^e mod N *)
m = 200;
PowerMod[m,e,NN]

Output: 8 000 000
(* Hm...That doesn't seem too secure *)

CubeRoot[PowerMod[m,e,NN]]
Output: 200

(* Moral: if 𝑚𝑚𝑒𝑒 < 𝑁𝑁 then Plain RSA does not hide the message m. *)

81

RSA Implementation in Mathematica

(* Encrypt a larger message, c= m^e mod N *)
SeedRandom[1234567];
m2= RandomInteger[{10^1500,10^1501}];
c=PowerMod[m2,e,NN]

Output: 405215834903772786……… 388068292685976133

(* Does it Decrypt Properly? *)
PowerMod[c,d, NN]-m2

Output: 0
(* Yes! *)

82

CS 555: Week 10: Topic 2
Attacks on Plain RSA

83

(Plain) RSA Discussion

• We have not introduced security models like CPA-Security or CCA-
security for Public Key Cryptosystems

• However, notice that (Plain) RSA Encryption is stateless and
deterministic.
Plain RSA is not secure against chosen-plaintext attacks
• As we will see Plain RSA is also highly vulnerable to chosen-ciphertext

attacks

84

(Plain) RSA Discussion

• However, notice that (Plain) RSA Encryption is stateless and deterministic.
Plain RSA is not secure against chosen-plaintext attacks

• Remark: In a public key setting the attacker who knows the public key
always has access to an encryption oracle

• Encrypted messages with low entropy are particularly vulnerable to brute-
force attacks

• Example: If 𝑚𝑚 < 𝐵𝐵 then attacker can recover 𝑚𝑚 from c = Encpk 𝑚𝑚 after at most 𝐵𝐵
queries to encryption oracle (using public key)

85

Chosen Ciphertext Attack on Plain RSA

1. Attacker intercepts ciphertext 𝑐𝑐 = 𝑚𝑚𝑒𝑒 mod N
2. Attacker generates ciphertext c’ for secret message 2m as follows
3. c’ = 𝑐𝑐2𝑒𝑒 mod N
4. = 𝑚𝑚𝑒𝑒2𝑒𝑒 mod N
5. = 2𝑚𝑚 𝑒𝑒 mod N
6. Attacker asks for decryption of 𝑐𝑐2𝑒𝑒 mod N and receives 2m.
7. Divide by two to recover message
Above Example: Shows plain RSA is highly vulnerable to ciphertext-
tampering attacks

86

More Weaknesses: Plain RSA with small e

• (Small Messages) If me < N then we can decrypt c = me mod N directly
e.g., m=c(1/e)

• (Partially Known Messages) If an attacker knows first 1-(1/e) bits of
secret message m = m1‖? ? then he can recover m given

𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄 pk, m = 𝑚𝑚𝑒𝑒 mod N

Theorem[Coppersmith]: If p(x) is a polynomial of degree e then in
polynomial time (in log(N), 2e) we can find all m such that p(m) = 0 mod
N and |m|<N(1/e)

87

More Weaknesses: Plain RSA with small e

Theorem[Coppersmith]: If p(x) is a polynomial of degree e then in
polynomial time (in log(N), e) we can find all m such that p(m) = 0 mod
N and |m|<N(1/e)

Example: e = 3, 𝑚𝑚 = 𝑚𝑚1‖𝑚𝑚2 and attacker knows 𝑚𝑚1 2𝑘𝑘 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 and 𝒄𝒄 =
𝑚𝑚1‖𝑚𝑚2

𝑒𝑒mod N, but not 𝑚𝑚2 𝑘𝑘 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
𝑝𝑝 𝑥𝑥 = 2𝑘𝑘𝑚𝑚1 + 𝑥𝑥 3 − 𝑐𝑐

Polynomial has a small root mod N at x= 𝑚𝑚2 and coppersmith’s method
will find it!

88D. Coppersmith (1996). "Finding a Small Root of a Univariate Modular Equation".

More Weaknesses: Plain RSA with small e

Theorem[Coppersmith] (Informal): Can also find small roots of
bivariate polynomial p 𝒙𝒙𝟏𝟏,𝒙𝒙𝟐𝟐

• Similar Approach used to factor weak RSA secret keys N=q1q2

• Weak PRG  Can guess many of the bits of prime factors
• Obtain �𝑞𝑞1 ≈ 𝑞𝑞1 and �𝑞𝑞2 ≈ 𝑞𝑞2

• Coppersmith Attack: Define polynomial p(.,.) as follows
p 𝒙𝒙𝟏𝟏,𝒙𝒙𝟐𝟐 = 𝒙𝒙𝟏𝟏 + �𝒒𝒒𝟏𝟏 𝒙𝒙𝟐𝟐 + �𝒒𝒒𝟐𝟐 − 𝑵𝑵

• Small Roots of p 𝒙𝒙𝟏𝟏,𝒙𝒙𝟐𝟐 : 𝑥𝑥1 = 𝑞𝑞1 −�𝑞𝑞1 and 𝑥𝑥2 = 𝑞𝑞2 − �𝑞𝑞2

89D. Coppersmith (1996). "Finding a Small Root of a Bivariate Integer Equation; Factoring with high bits known"

90
The Return of Coppersmith's Attack: Practical Factorization of Widely Used RSA Moduli (CCS 2017)

Fixes for Plain RSA

• Approach 1: RSA-OAEP
• Incorporates random nonce r
• CCA-Secure (in random oracle model)

• Approach 2: Use RSA to exchange symmetric key for Authenticated
Encryption scheme (e.g., AES)

• Key Encapsulation Mechanism (KEM)

• More details in future lectures…stay tuned!
• For now we will focus on attacks on Plain RSA

93

Chinese Remainder Theorem

Theorem: Let N = pq (where gcd(p,q)=1) be given and let 𝑓𝑓:ℤ
N
→ ℤ𝑝𝑝 ×

ℤ𝑞𝑞 be defined as follows
𝑓𝑓 𝑥𝑥 = [𝑥𝑥 𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝], [𝑥𝑥 𝑚𝑚𝑚𝑚𝑚𝑚 𝑞𝑞]

then
• f is a bijective mapping (invertible)
• f and its inverse𝑓𝑓−1:ℤ𝑝𝑝 × ℤ𝑞𝑞 → ℤ

N
can be computed efficiently

• 𝑓𝑓 𝑥𝑥 + 𝑦𝑦 = 𝑓𝑓 𝑥𝑥 + 𝑓𝑓(𝑦𝑦)
• The restriction of f to ℤ

𝑁𝑁
∗ yields a bijective mapping to ℤ

𝑝𝑝
∗ × ℤ

𝑞𝑞
∗

• For inputs 𝑥𝑥, 𝑦𝑦 ∈ ℤ
𝑁𝑁
∗ we have 𝑓𝑓 𝑥𝑥 𝑓𝑓 𝑦𝑦 = 𝑓𝑓 𝑥𝑥𝑥𝑥

94

Chinese Remainder Theorem

Application of CRT: Faster computation

Example: Compute [1153 mod 15]
f(11)=([-1 mod 3],[1 mod 5])
f(1153) =([(-1)53 mod 3],[153 mod 5])= (-1,1)

𝑓𝑓−1(-1,1)=11

Thus, 11=[1153 mod 15]

95

A Side Channel Attack on RSA with CRT

• Suppose that decryption is done via Chinese Remainder Theorem for
speed.

𝐃𝐃𝐃𝐃𝐃𝐃𝒔𝒔𝒔𝒔 𝒄𝒄 = 𝒄𝒄𝒅𝒅 𝒎𝒎𝒎𝒎𝒎𝒎 𝑵𝑵 ↔ 𝒄𝒄𝒅𝒅 𝒎𝒎𝒎𝒎𝒎𝒎 𝒑𝒑, 𝒄𝒄𝒅𝒅 𝒎𝒎𝒎𝒎𝒎𝒎 𝒒𝒒

• Attacker has physical access to smartcard
• Can mess up computation of 𝒄𝒄𝒅𝒅 𝒎𝒎𝒎𝒎𝒎𝒎 𝒑𝒑
• Response is R ↔ 𝒓𝒓, 𝒄𝒄𝒅𝒅 𝒎𝒎𝒎𝒎𝒎𝒎 𝒒𝒒
• R − m ↔ 𝒓𝒓 −𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎 𝒑𝒑,𝟎𝟎𝒎𝒎𝒎𝒎𝒎𝒎 𝒒𝒒
• GCD(R-m,N)=q

96

Recovering Encrypted Message faster than
Brute-Force
Claim: Let m < 2n be a secret message. For some constant 𝛼𝛼 = 1

2
+ 𝜀𝜀.

We can recover m in in time 𝑇𝑇 = 2𝛼𝛼𝑛𝑛 with high probability.

For r=1,…,T
let xr = 𝑐𝑐𝑟𝑟−𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁 , where 𝑟𝑟−𝑒𝑒 = 𝑟𝑟−1 𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁

Sort 𝐋𝐋 = 𝒓𝒓,𝒙𝒙𝒓𝒓 𝒓𝒓=𝟏𝟏
𝑻𝑻 (by the xr values)

For s=1,…,T
if 𝑠𝑠𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁 = 𝒙𝒙𝒓𝒓 for some r then

return 𝑟𝑟𝑟𝑟 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁

97

Recovering Encrypted Message faster than
Brute-Force
For r=1,…,T

let xr = 𝑐𝑐𝑟𝑟−𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁 , where 𝑟𝑟−𝑒𝑒 = 𝑟𝑟−1 𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁
Sort 𝐋𝐋 = 𝒓𝒓,𝒙𝒙𝒓𝒓 𝒓𝒓=𝟏𝟏

𝑻𝑻 (by the xr values)
For s=1,…,T

if 𝑠𝑠𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁 = 𝑥𝑥𝑟𝑟 for some r then
return 𝑟𝑟𝑟𝑟 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁

Analysis: 𝑟𝑟𝑟𝑟 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁 = 𝑟𝑟 𝑠𝑠𝑒𝑒 𝑑𝑑 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁 = 𝑟𝑟 𝑥𝑥𝑟𝑟 𝑑𝑑 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁
= 𝑟𝑟 𝑐𝑐𝑟𝑟−𝑒𝑒 𝑑𝑑 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁 = 𝑟𝑟𝑟𝑟−𝑒𝑒𝑒𝑒 𝑐𝑐 𝑑𝑑 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁

= 𝑟𝑟𝑟𝑟−1𝑚𝑚 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁 = m

98

Recovering Encrypted Message faster than
Brute-Force
For r=1,…,T

let xr = 𝑐𝑐𝑟𝑟−𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁 , where 𝑟𝑟−𝑒𝑒 = 𝑟𝑟−1 𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁
Sort 𝐋𝐋 = 𝒓𝒓,𝒙𝒙𝒓𝒓 𝒓𝒓=𝟏𝟏

𝑻𝑻 (by the xr values)
For s=1,…,T

if 𝑠𝑠𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁 = 𝑥𝑥𝑟𝑟 for some r then
return 𝑟𝑟𝑟𝑟 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁

Fact: some constant 𝛼𝛼 = 1
2

+ 𝜀𝜀 setting 𝑇𝑇 = 2𝛼𝛼𝛼𝛼 with high probability
we will find a pair s and xr with 𝑠𝑠𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁 = 𝑥𝑥𝑥𝑥.

99

Recovering Encrypted Message faster than
Brute-Force
Claim: Let m < 2n be a secret message. For some constant 𝛼𝛼 = 1

2
+ 𝜀𝜀.

We can recover m in in time 𝑇𝑇 = 2𝛼𝛼𝑛𝑛 with high probability.

Roughly 𝐵𝐵 steps to find a secret message m < B

100

CS 555: Week 10: Topic 3
Discrete Log + DDH Assumption

101

(Recap) Finite Groups

Definition: A (finite) group is a (finite) set 𝔾𝔾 with a binary operation ∘ (over
G) for which we have
• (Closure:) For all g, h ∈ 𝔾𝔾 we have g ∘ h ∈ 𝔾𝔾
• (Identity:) There is an element e ∈ 𝔾𝔾 such that for all g ∈ 𝔾𝔾 we have

g ∘ e = g = e ∘ g
• (Inverses:) For each element g ∈ 𝔾𝔾 we can find h ∈ 𝔾𝔾 such that g ∘ h = e.

We say that h is the inverse of g.
• (Associativity:) For all g1, g2, g3 ∈ 𝔾𝔾 we have

g1 ∘ g2 ∘ g3 = g1 ∘ g2 ∘ g3
We say that the group is abelian if
• (Commutativity:) For all g, h ∈ 𝔾𝔾 we have g ∘ h = h ∘ g

102

Finite Abelian Groups (Examples)

• Example 1: ℤ
𝑁𝑁

when ∘ denotes addition modulo N
• Identity: 0, since 0 ∘ x =[0+x mod N] = [x mod N].
• Inverse of x? Set x-1=N-x so that [x-1+x mod N] = [N-x+x mod N] = 0.

• Example 2: ℤ
𝑁𝑁
∗ when ∘ denotes multiplication modulo N

• Identity: 1, since 1∘ x =[1(x) mod N] = [x mod N].
• Inverse of x? Run extended GCD to obtain integers a and b such that

𝑎𝑎𝑎𝑎 + 𝑏𝑏𝑏𝑏 = gcd 𝑥𝑥,𝑁𝑁 = 1
Observe that: x-1 = a. Why?

103

Cyclic Group

• Let 𝔾𝔾 be a group with order m = 𝔾𝔾 with a binary operation ∘ (over G)
and let g ∈ 𝔾𝔾 be given consider the set

𝑔𝑔 = 𝑔𝑔0,𝑔𝑔1,𝑔𝑔2, …

Fact: 𝑔𝑔 defines a subgroup of 𝔾𝔾.
• Identity: 𝑔𝑔0

• Closure: 𝑔𝑔𝑖𝑖 ∘ 𝑔𝑔𝑗𝑗 = 𝑔𝑔𝑖𝑖+𝑗𝑗 ∈ 𝑔𝑔
• g is called a “generator” of the subgroup.

Fact: Let r = 𝑔𝑔 then 𝑔𝑔𝑖𝑖 = 𝑔𝑔𝑗𝑗 if and only if 𝑖𝑖 = 𝑗𝑗 𝑚𝑚𝑚𝑚𝑚𝑚 𝑟𝑟. Also m is divisible
by r.

104

Finite Abelian Groups (Examples)

Fact: Let p be a prime then ℤ𝑝𝑝∗ is a cyclic group of order p-1.
• Note: Number of generators g s.t. of 𝑔𝑔 = ℤ𝑝𝑝∗ is 𝜙𝜙 𝑝𝑝 − 1

Example (non-generator): p=7, g=2
<2>={1,2,4}

Example (generator): p=7, g=5
<2>={1,5,4,6,2,3}

105

Discrete Log Experiment DLogA,G(n)

1. Run G(1n) to obtain a cyclic group 𝔾𝔾 of order q (with 𝑞𝑞 = 𝑛𝑛) and
a generator g such that < g >= 𝔾𝔾.

2. Select h ∈ 𝔾𝔾 uniformly at random.
3. Attacker A is given 𝔾𝔾, q, g, h and outputs integer x.
4. Attacker wins (DLogA,G(n)=1) if and only if gx=h.

We say that the discrete log problem is hard relative to generator G if
∀𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴 ∃𝜇𝜇 (negligible) s. t Pr DLogA,n = 1 ≤ 𝜇𝜇(𝑛𝑛)

106

Diffie-Hellman Problems

Computational Diffie-Hellman Problem (CDH)
• Attacker is given h1 = 𝑔𝑔𝑥𝑥1 ∈ 𝔾𝔾 and h2 = 𝑔𝑔𝑥𝑥2 ∈ 𝔾𝔾.
• Attackers goal is to find 𝑔𝑔𝑥𝑥1𝑥𝑥2= h1

𝑥𝑥2 = h2
𝑥𝑥1

• CDH Assumption: For all PPT A there is a negligible function negl upper
bounding the probability that A succeeds with probability at most negl(n).

Decisional Diffie-Hellman Problem (DDH)
• Let z0 = 𝑔𝑔𝑥𝑥1𝑥𝑥2 and let z1 = 𝑔𝑔𝑟𝑟, where x1,x2 and r are random
• Attacker is given 𝑔𝑔𝑥𝑥1, 𝑔𝑔𝑥𝑥2 and 𝑧𝑧𝑏𝑏 (for a random bit b)
• Attackers goal is to guess b
• DDH Assumption: For all PPT A there is a negligible function negl such that

A succeeds with probability at most ½ + negl(n).

107

Secure key-agreement with DDH

1. Alice publishes 𝑔𝑔𝑥𝑥𝐴𝐴 and Bob publishes 𝑔𝑔𝑥𝑥𝐵𝐵
2. Alice and Bob can both compute 𝐾𝐾𝐴𝐴,𝐵𝐵 = 𝑔𝑔𝑥𝑥𝐵𝐵 𝑥𝑥𝐴𝐴 but to Eve this key is

indistinguishable from a random group element (by DDH)

Remark: Protocol is vulnerable to Man-In-The-Middle Attacks if Bob
cannot validate 𝑔𝑔𝑥𝑥𝐴𝐴.

108

Can we find a cyclic group where DDH holds?

• Example 1: ℤ𝑝𝑝∗ where p is a random n-bit prime.
• CDH is believed to be hard
• DDH is *not* hard (Exercise 13.15)

• Theorem: 𝐿𝐿𝐿𝐿𝐿𝐿 p=rq+1 be a random n-bit prime where q is a large 𝜆𝜆-
bit prime then the set of rth residues modulo p is a cyclic subgroup of
order q. Then 𝔾𝔾𝑟𝑟 = [ℎ𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝] ℎ ∈ ℤ𝑝𝑝∗ is a cyclic subgroup of ℤ𝑝𝑝∗ of
order q.

• Remark 1: DDH is believed to hold for such a group
• Remark 2: It is easy to generate uniformly random elements of 𝔾𝔾𝑟𝑟
• Remark 3: Any element (besides 1) is a generator of 𝔾𝔾𝑟𝑟

109

Can we find a cyclic group where DDH holds?

• Theorem: 𝐿𝐿𝐿𝐿𝐿𝐿 p=rq+1 be a random n-bit prime where q is a large 𝜆𝜆-bit
prime then the set of rth residues modulo p is a cyclic subgroup of order q.
Then 𝔾𝔾𝑟𝑟 = [ℎ𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝] ℎ ∈ ℤ𝑝𝑝∗ is a cyclic subgroup of ℤ𝑝𝑝∗ of order q.

• Closure: ℎ𝑟𝑟𝑔𝑔𝑟𝑟 = ℎ𝑔𝑔 𝑟𝑟

• Inverse of ℎ𝑟𝑟 is ℎ−1 𝑟𝑟 ∈ 𝔾𝔾𝑟𝑟
• Size ℎ𝑟𝑟 𝑥𝑥 = ℎ[𝑟𝑟𝑟𝑟 𝑚𝑚𝑚𝑚𝑚𝑚 𝑟𝑟𝑟𝑟] = ℎ𝑟𝑟 𝑥𝑥 = ℎ𝑟𝑟[𝑥𝑥 𝑚𝑚𝑚𝑚𝑚𝑚 𝑞𝑞] = ℎ𝑟𝑟 [𝑥𝑥 𝑚𝑚𝑚𝑚𝑚𝑚 𝑞𝑞]𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝

Remark: Two known attacks on Discrete Log Problem for 𝔾𝔾𝑟𝑟(Section 9.2).
• First runs in time 𝑂𝑂 𝑞𝑞 = 𝑂𝑂 2𝜆𝜆/2

• Second runs in time 2𝑂𝑂
3 𝑛𝑛 log 𝑛𝑛 2/3

110

Can we find a cyclic group where DDH holds?

Remark: Two known attacks (Section 9.2).
• First runs in time 𝑂𝑂 𝑞𝑞 = 𝑂𝑂 2𝜆𝜆/2

• Second runs in time 2𝑂𝑂
3 𝑛𝑛 log 𝑛𝑛 2/3 , where n is bit length of p

Goal: Set 𝜆𝜆 and n to balance attacks
𝜆𝜆 = 𝑂𝑂 3 𝑛𝑛 log𝑛𝑛 2/3

How to sample p=rq+1?
• First sample a random 𝜆𝜆-bit prime q and
• Repeatedly check if rq+1 is prime for a random n- 𝜆𝜆 bit value r

111

Can we find a cyclic group where DDH holds?

Elliptic Curves Example: Let p be a prime (p > 3) and let A, B be
constants. Consider the equation

𝑦𝑦2 = 𝑥𝑥3 + 𝐴𝐴𝐴𝐴 + 𝐵𝐵 𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝
And let

𝐸𝐸 ℤ𝑝𝑝 = 𝑥𝑥,𝑦𝑦 ∈ ℤ𝑝𝑝2 𝑦𝑦2 = 𝑥𝑥3 + 𝐴𝐴𝐴𝐴 + 𝐵𝐵 𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝 ∪ 𝒪𝒪

Note: 𝒪𝒪 is defined to be an additive identity 𝑥𝑥,𝑦𝑦 + 𝒪𝒪 = 𝑥𝑥,𝑦𝑦

What is 𝑥𝑥1,𝑦𝑦1 + 𝑥𝑥2,𝑦𝑦2 ?

112

Elliptic Curve Example

The line passing through
𝒙𝒙𝟏𝟏,𝒚𝒚𝟏𝟏 and 𝒙𝒙𝟐𝟐,𝒚𝒚𝟐𝟐 has the

equation
𝑦𝑦 = 𝑚𝑚 𝑥𝑥 − 𝑥𝑥1 + 𝑦𝑦1 𝑚𝑚𝑚𝑚𝑚𝑚 𝑃𝑃

Where the slope
𝑚𝑚 =

𝑦𝑦1 − 𝑦𝑦2

𝑥𝑥1 − 𝑥𝑥2
𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝

113

𝒙𝒙𝟏𝟏,𝒚𝒚𝟏𝟏

𝒙𝒙𝟐𝟐,𝒚𝒚𝟐𝟐 (x3,y3)

(x3,-y3)= 𝒙𝒙𝟏𝟏,𝒚𝒚𝟏𝟏 + 𝒙𝒙𝟐𝟐,𝒚𝒚𝟐𝟐

Elliptic Curve Example

Formally, let
𝑚𝑚 =

𝑦𝑦1 − 𝑦𝑦2

𝑥𝑥1 − 𝑥𝑥2
𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝

Be the slope. Then the line
passing through 𝒙𝒙𝟏𝟏,𝒚𝒚𝟏𝟏 and
𝒙𝒙𝟐𝟐,𝒚𝒚𝟐𝟐 has the equation
𝑦𝑦 = 𝑚𝑚 𝑥𝑥 − 𝑥𝑥1 + 𝑦𝑦1 𝑚𝑚𝑚𝑚𝑚𝑚 𝑃𝑃

𝑚𝑚 𝑥𝑥 − 𝑥𝑥1 + 𝑦𝑦1
2

= 𝑥𝑥3 + 𝐴𝐴𝐴𝐴 + 𝐵𝐵 𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝 114

𝒙𝒙𝟏𝟏,𝒚𝒚𝟏𝟏

𝒙𝒙𝟐𝟐,𝒚𝒚𝟐𝟐

𝑥𝑥3 = [𝑚𝑚2 − 𝑥𝑥1 − 𝑥𝑥2𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝]
𝑦𝑦3 = [𝑚𝑚 𝑥𝑥3 − 𝑥𝑥1 + 𝑦𝑦1𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝]

(x3,y3)

(x3,-y3)= 𝒙𝒙𝟏𝟏,𝒚𝒚𝟏𝟏 + 𝒙𝒙𝟐𝟐,𝒚𝒚𝟐𝟐

115

Elliptic Curve Example

116

No third point R on the elliptic curve.

P+Q = 0

(Inverse)

Can we find a cyclic group where DDH holds?

Elliptic Curves Example: Let p be a prime (p > 3) and let A, B be constants.
Consider the equation

𝑦𝑦2 = 𝑥𝑥3 + 𝐴𝐴𝐴𝐴 + 𝐵𝐵 𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝
And let

𝐸𝐸 ℤ𝑝𝑝 = 𝑥𝑥,𝑦𝑦 ∈ ℤ𝑝𝑝2 𝑦𝑦2 = 𝑥𝑥3 + 𝐴𝐴𝐴𝐴 + 𝐵𝐵 𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝 ∪ 𝒪𝒪

Fact: 𝐸𝐸 ℤ𝑝𝑝 defines an abelian group
• For appropriate curves the DDH assumption is believed to hold
• If you make up your own curve there is a good chance it is broken…
• NIST has a list of recommendations

117

	Cryptography�CS 555
	Limits of Symmetric Crypto
	Limits of Symmetric Crypto
	Limits of Symmetric Crypto
	Limits of Symmetric Crypto
	Symmetric Key Explosion Problem
	Public Key Encryption: Basic Terminology
	Public Key Encryption Syntax
	CPA-Security (PubK A,Π LR−cpa n)
	Public Key Crypto
	Number Theory
	Polynomial Time Factoring Algorithm?
	Polynomial Time Factoring Algorithm?
	Polynomial Time Operations on Integers
	Polynomial Time Operations on Integers
	More Polynomial Time Operations on Integers
	More Polynomial Time Operations on Integers
	More Polynomial Time Operations on Integers
	More Polynomial Time Operations on Integers
	More Polynomial Time Operations on Integers
	More Polynomial Time Operations on Integers
	More Polynomial Time Operations on Integers
	More Polynomial Time Operations on Integers
	Useful Facts
	More Useful Facts
	More Useful Facts
	Recap
	More Useful Facts
	More Useful Facts
	More Useful Facts
	More Useful Facts
	More Useful Facts
	More Useful Facts
	More Useful Facts
	More Useful Facts
	More Useful Facts
	More Useful Facts
	Groups
	Groups
	Abelian Groups (Examples)
	Abelian Groups (Examples)
	Groups
	Groups
	Group Exponentiation
	Group Exponentiation
	Group Exponentiation
	Group Exponentiation
	Group Exponentiation
	Chinese Remainder Theorem
	Chinese Remainder Theorem
	CS 555: Week 10: Topic 1�Finding Prime Numbers, RSA
	RSA Key-Generation
	Bertrand’s Postulate
	Bertrand’s Postulate
	isPrime(p): Miller-Rabin Test
	The “Almost” Miller-Rabin Test
	The “Almost” Miller-Rabin Test
	Miller-Rabin Primality Test
	Miller-Rabin Primality Test
	Miller-Rabin Primality Test
	Miller-Rabin Primality Test
	Miller-Rabin Primality Test
	Back to RSA Key-Generation
	Be Careful Where You Get Your “Random Bits!”
	(Plain) RSA Encryption
	(Plain) RSA Decryption
	RSA Decryption
	Plain RSA (Summary)
	Factoring Assumption
	Factoring Assumption
	RSA-Assumption
	RSA-Assumption
	Discussion of RSA-Assumption
	Recap
	Mathematica Demo
	(Toy) RSA Implementation in Mathematica
	(Toy) RSA Implementation in Mathematica
	(Toy) RSA Implementation in Mathematica
	(Toy) RSA Implementation in Mathematica
	(Toy) RSA Implementation in Mathematica
	RSA Implementation in Mathematica
	CS 555: Week 10: Topic 2�Attacks on Plain RSA
	(Plain) RSA Discussion
	(Plain) RSA Discussion
	Chosen Ciphertext Attack on Plain RSA
	More Weaknesses: Plain RSA with small e
	More Weaknesses: Plain RSA with small e
	More Weaknesses: Plain RSA with small e
	Slide Number 90
	Fixes for Plain RSA
	Chinese Remainder Theorem
	Chinese Remainder Theorem
	A Side Channel Attack on RSA with CRT
	Recovering Encrypted Message faster than Brute-Force
	Recovering Encrypted Message faster than Brute-Force
	Recovering Encrypted Message faster than Brute-Force
	Recovering Encrypted Message faster than Brute-Force
	CS 555: Week 10: Topic 3�Discrete Log + DDH Assumption
	(Recap) Finite Groups
	Finite Abelian Groups (Examples)
	Cyclic Group
	Finite Abelian Groups (Examples)
	Discrete Log Experiment DLogA,G(n)
	Diffie-Hellman Problems
	Secure key-agreement with DDH
	Can we find a cyclic group where DDH holds?
	Can we find a cyclic group where DDH holds?
	Can we find a cyclic group where DDH holds?
	Can we find a cyclic group where DDH holds?
	Elliptic Curve Example
	Elliptic Curve Example
	Slide Number 115
	Elliptic Curve Example
	Can we find a cyclic group where DDH holds?

