Cryptography CS 555

Week 9:
- Number Theory + Public Key Crypto
Readings: Katz and Lindell Chapter 8, B.1, B. 2

Limits of Symmetric Crypto

- Key-Exchange Problem:

- Obi-Wan and Yoda want to communicate securely
- Suppose that
- Obi-Wan and Yoda don't have time to meet privately and generate a shared secret key
- Use AES-GCM-(requires shared secret key!)
- Trusted Intermediary: If Obi-Wan and Yoda both have secret keys with Anakin they can exchange a secret key via the trusted party.

Limits of Symmetric Crypto

- Key-Exchange Problem:

- Obi-Wan and Yoda want to communicate securely
- Suppose that
- Obi-Wan and Yoda don't have time to meet privately and generate a shared secret key
- Use AES-GCM (requires shared secret key!)
- Trusted Intermediary: If Obi-Wan and Yoda both have secret keys with Anakin ($\mathrm{K}_{\mathrm{Y}, \mathrm{A}}$ and $\mathrm{K}_{\mathrm{O}, \mathrm{A}}$) they can exchange a secret key via the trusted party.
- Obi-Wan picks a key K, computes $c=\operatorname{Enc}_{K_{O, A}}(K)$ and sends c to Anakin with instructions to re-encrypt and forward to Yoda.
- Anakin computes $\mathrm{K}=\operatorname{Dec}_{K_{O, A}}(c)$ and $c^{\prime}=\operatorname{Enc}_{K_{Y, A}}(K)$ and forwards to Yoda.
- Yoda recovers $K=\operatorname{Dec}_{K_{Y, A}}\left(c^{\prime}\right)$
- Anakin also learns the secret key
- Remark: Obi-Wan and Yoda both trust Anakin, but would prefer to keep the key private just in case.

Limits of Symmetric Crypto

- Key-Exchange Problem:
- Obi-Wan and Yoda want to communicate securely
- Trusted Intermediary: If Obi-Wan and Yoda both have secret keys with Anakin ($K_{Y, A}$ and $K_{0, A}$) they can exchange a secret key via the trusted party.
- Remark: Obi-Wan and Yoda both trust Anakin, but would prefer to keep the key private just in case.

Limits of Symmetric Crypto

- Key-Exchange Problem:
- Obi-Wan and Yoda want to communicate securely
- Suppose that
- Obi-Wan and Yoda don't have time to meet privately and generate one
- Obi-Wan and Yoda share an asymmetric key with Anakin
- Can they use Anakin to exchange a secret key?
- Remark: Obi-Wan and Yoda both trust Anakin, but would prefer to keep the key private just in case.
- Need for Public-Key Crypto
- We can solve the key-exchange problem using public-key cryptography.
- No solution is known using symmetric key cryptography alone

Symmetric Key Explosion Problem

- Suppose we have n people and each pair of people want to be able to maintain a secure communication channel.
- How many private keys per person?
- Answer: n-1
- Key Explosion Problem

- n can get very big if you are Google or Amazon!

Public Key Encryption: Basic Terminology

- Plaintext/Plaintext Space
- A message $m \in \mathcal{M}$
- Ciphertext c $\in \mathcal{C}$
- Public/Private Key Pair $(\boldsymbol{p k}, \boldsymbol{s k}) \in \mathcal{K}$

Public Key Encryption Syntax

- Three Algorithms
- Gen $\left(1^{n}, R\right)$ (Key-generation algorithm)
- Input: Random Bits R
- Output: $(\boldsymbol{p} \boldsymbol{k}, \boldsymbol{s k}) \in \mathcal{K}$

Alice must run key generation
algorithm in advance an publishes the public key: pk

- $\mathrm{Enc}_{\mathrm{pk}}(m) \in \mathcal{C}$ (Encryption algoritrim)
- $\operatorname{Dec}_{\text {sk }}(c)$ (Decryption algorithm)
- Input: Secret key sk and a ciphertex c
- Output: a plaintext message $m \in \mathcal{M}$

Assumption: Adversary only gets to see pk (not sk)

- Invariant: $\operatorname{Dec}_{\text {sk }}\left(\operatorname{Enc}_{\mathrm{pk}}(\mathrm{m})\right)=\mathrm{m}$

CPA-Security $\left(\right.$ PubK $\left._{A, \Pi}^{\mathrm{LR}-\mathrm{cpa}}(\mathrm{n})\right)$

$\forall P P T A \exists \mu$ (negligible) s.t

Random bit b (pk,sk) = Gen(.)
$\operatorname{Pr}\left[\operatorname{PubK}_{\mathrm{A}, \Pi}^{\mathrm{LR}-\mathrm{cpa}}(\mathrm{n})=1\right] \leq \frac{1}{2}+\mu(n)$

Public Key Crypto

- Fact 1: CPA Security and Eavesdropping Security are Equivalent
- Key Insight: The attacker has the public key so he doesn't gain anything from being able to query the encryption oracle!
- Fact 2: Any deterministic encryption scheme is not CPA-Secure
- Historically overlooked in many real world public key crypto systems
- Fact 3: No Public Key Cryptosystem can achieve Perfect Secrecy!
- Exercise 11.1
- Hint: Unbounded attacker can keep encrypting the message m using the public key to recover all possible encryptions of m.
- Key Question: How do we achieve CPA/CCA-Secure Public Key Encryption?

Number Theory

- Key tool behind (most) public key-crypto
- RSA, El-Gamal, Diffie-Hellman Key Exchange
- Aside: don't worry we will still use symmetric key crypto
- It is more efficient in practice
- First step in many public key-crypto protocols is to generate symmetric key
- Then communicate using authenticated encryption e.g., AES-GCM

Polynomial Time Factoring Algorithm?

FindPrimeFactor
Input: N
For $\mathrm{i}=1, \ldots, \mathrm{~N}$
if N / i is an integer then Output i

Running time: $\mathrm{O}(\mathrm{N})$ steps
Correctness: Always returns a factor

Did we just break RSA?

Polynomial Time Factoring Algorithm?

FindPrimeFactor

Input: N
For $\mathrm{i}=1, \ldots, \mathrm{~N}$
if N / i is an integer then Output i

We measure running time of an arithmetic algorithm (multiply, divide, GCD, remainder) in terms of the number of bits necessary to encode the inputs.

How many bits ||N\| to encode N? Answer: $\|N\|=\log _{2}(\mathrm{~N})$

Running time: $\mathrm{O}(\mathrm{N})$ steps
Correctness: Always returns a factor

Polynomial Time Operations on Integers

- Addition
- Multiplication

Polynomial time in $\|a\|$ and $\|b\|$

- Division with Remainder
- Input: a and divisor b
- Output: quotient q and remainder $r<b$ such that

$$
\boldsymbol{a}=q \boldsymbol{b}+r
$$

Convenient Notation: $\mathbf{r}=\mathbf{a} \bmod \mathbf{b}$
Note 1: We require that quotient q and remainder r are both integers
Note 2: If remainder is $r=0$ (i.e., $\boldsymbol{a}=q \boldsymbol{b}+0$) we say that \mathbf{b} divides \mathbf{a} (Notation: $\mathrm{b} \mid \mathrm{a}$)

- Greatest Common Divisor
- Example: $\operatorname{gcd}(9,15)=3$
- Extended GCD(a,b)
- Output integers X, Y such that

$$
X \boldsymbol{a}+Y \boldsymbol{b}=\operatorname{gcd}(\boldsymbol{a}, \boldsymbol{b})
$$

Polynomial Time Operations on Integers

- Division with Remainder
- Input: a and b
- Output: quotient q and remainder $r<b$ such that

$$
\boldsymbol{a}=q \boldsymbol{b}+r
$$

- Greatest Common Divisor
- Key Observation: if $\boldsymbol{a}=q \boldsymbol{b}+r$

Then $\operatorname{gcd}(\mathbf{a}, \mathbf{b})=\operatorname{gcd}(\mathbf{r}, \mathbf{b})=\operatorname{gcd}(\mathbf{a} \bmod \mathbf{b}, \mathbf{b})$

Proof:

- Let $\mathrm{d}=\operatorname{gcd}(\mathrm{a}, \mathrm{b})$. Then d divides both a and b . Thus, d also divides $\mathrm{r}=\mathrm{a}-\mathrm{qb}$.

$$
\rightarrow \mathrm{d}=\operatorname{gcd}(\mathbf{a}, \mathbf{b}) \leq \operatorname{gcd}(\mathrm{r}, \mathbf{b})
$$

- Let $d^{\prime}=\operatorname{gcd}(r, b)$. Then d^{\prime} divides both b and r. Thus, d^{\prime} also divides $a=q b+r$. $\rightarrow \operatorname{gcd}(\mathbf{a}, \mathbf{b}) \geq \operatorname{gcd}(\mathrm{r}, \mathbf{b})=\mathrm{d}^{\prime}$
- Conclusion: $\mathrm{d}=\mathrm{d}^{\prime}$.

More Polynomial Time Operations on Integers

- (Modular Arithmetic) The following operations are polynomial time in $\|a\|$ and $\|b\|$ and $\|N\|$.

1. Compute $[\mathbf{a} \bmod \mathbf{N}]$
2. Compute sum $[(\mathbf{a}+\mathbf{b}) \bmod \mathbf{N}]$, difference $[(\mathbf{a}-\mathbf{b}) \bmod \mathbf{N}]$ or product [ab mod N]
3. Determine whether a has an inverse \mathbf{a}^{-1} such that $1=\left[\mathbf{a a}^{-1} \bmod \mathbf{N}\right]$
4. Find \mathbf{a}^{-1} if it exists
5. Compute the exponentiation $\left[\mathbf{a}^{\mathbf{b}} \bmod \mathbf{N}\right]$

More Polynomial Time Operations on Integers

- (Modular Arithmetic) The

1. Compute $[\mathbf{a} \bmod \mathrm{N}]$

Remark: Part 3 and 4 use extended GCD algorithm

2. Compute sum [ab mod ${ }^{1}$
3. Det ormine whether a has an inverse \mathbf{a}^{-1} such that $1=\left[\mathbf{a a}^{-1} \bmod \mathbf{N}\right]$
4. Find a^{-1} if it exists
5. Compute the exponentiation $\left[\mathbf{a}^{\mathbf{b}} \bmod \mathbf{N}\right]$

More Polynomial Time Operations on Integers

- (Modular Arithmetic) The following operations are polynomial time in in $\|a\|$ and $\|b\|$ and $\|N\|$.

1. Compute $[\mathbf{a} \bmod \mathbf{N}]$
2. Compute sum $[(\mathbf{a}+\mathbf{b}) \bmod \mathbf{N}]$, difference $[(\mathbf{a}-\mathbf{b}) \bmod \mathbf{N}]$ or product $[\mathbf{a b}$ $\bmod \mathbf{N}]$
3. Determine whether \mathbf{a} has an inverse \mathbf{a}^{-1} such that $1=\left[\mathbf{a a}^{-1} \bmod \mathbf{N}\right]$
4. Find \mathbf{a}^{-1} if it exists

- Note: $\mathbf{a}^{\mathbf{- 1}}$ exists if and only if GCD $(\mathrm{a}, \mathrm{N})=1$.
- Extended Euclidean Algorithm: Finds integers x, y s.t. $a x+N y=G C D(a, N)=1$.
- Define: $\mathrm{a}^{-1}=[\mathrm{x} \bmod \mathbf{N}]$ and observe $\left[\mathrm{aa}^{-1} \bmod \mathbf{N}\right]=[a x-N y \bmod \mathbf{N}]=\operatorname{GCD}(a, N)=1$.

5. Compute the exponentiation $\left[\mathbf{a}^{\mathrm{b}} \bmod \mathbf{N}\right]$

More Polynomial Time Operations on Integers

- (Modular Arithmetic) The following operations are polynomial time in in $\|a\|$ and $\|b\|$ and $\|N\|$.

1. Compute the exponentiation $\left[\mathbf{a}^{\mathbf{b}} \bmod \mathbf{N}\right]$

Attempt 1:

$$
X=1
$$

$$
\text { For } \mathrm{i}=1, \ldots, \mathrm{~b}
$$

For $\mathrm{i}=1, \ldots, \mathrm{~b}$

$$
X=X * a
$$

More Polynomial Time Operations on Integers

(Modular Arithmetic) The following operations are polynomial time in $\|a\|,\|b\|$ and $\|N\|$.

1. Compute the exponentiation $\left[\mathbf{a}^{\mathbf{b}} \bmod \mathbf{N}\right]$

Attempt 2:

If $(b=0)$ return 1
$X[0]=a$;
For $i=1, \ldots, \log _{2}(b)+1$

More Polynomial Time Operations on Integers

(Modular Arithmetic) The following operations are polynomial time in $\|a\|,\|b\|$ and $\|N\|$. 1. Compute the exponentiation $\left[\mathbf{a}^{\mathbf{b}} \bmod \mathbf{N}\right]$

Fixed Algorithm:

```
If (b=0) return 1
X[0]=a;
For i=1,\ldots,log}2(b)+
```



```
    [\mp@subsup{\mathbf{a}}{}{\mathbf{b}}\operatorname{mod}\mathbf{N}]=\mp@subsup{\boldsymbol{a}}{}{\mp@subsup{\sum}{i}{}\boldsymbol{b}[i]2}\mp@subsup{2}{}{i}}\operatorname{mod}\mathbf{N
    = \
```


More Polynomial Time Operations on Integers

(Sampling) Let

$$
\begin{gathered}
\mathbb{Z}_{N}=\{1, \ldots, N\} \\
\mathbb{Z}_{N}^{*}=\left\{x \in \mathbb{Z}_{N} \mid \operatorname{gcd}(N, x)=1\right\}
\end{gathered}
$$

Examples:

$$
\begin{gathered}
\mathbb{Z}_{6}^{*}=\{1,5\} \\
\mathbb{Z}_{7}^{*}=\{1,2,3,4,5,6\}
\end{gathered}
$$

More Polynomial Time Operations on Integers

(Sampling) Let

$$
\begin{gathered}
\mathbb{Z}_{N}=\{1, \ldots, N\} \\
\mathbb{Z}_{N}^{*}=\left\{x \in \mathbb{Z}_{N} \mid \operatorname{gcd}(N, x)=1\right\}
\end{gathered}
$$

- There is a probabilistic polynomial time algorithm (in $|\mathrm{N}|$) to sample from \mathbb{Z}_{N}^{*} and \mathbb{Z}_{N}
- Algorithm to sample from \mathbb{Z}_{N}^{*} is allowed to output "fail" with negligible probability in $\|N\|$.
- Conditioned on not failing sample must be uniform.

Useful Facts

Fact: $x, y \in \mathbb{Z}_{\mathrm{N}}^{*} \rightarrow[x y \bmod \mathrm{~N}] \in \mathbb{Z}_{\mathrm{N}}^{*}$
where $\mathbb{Z}_{N}^{*}=\left\{x \in \mathbb{Z}_{N} \mid \operatorname{gcd}(N, x)=1\right\}$
Example 1: $\mathbb{Z}_{8}^{*}=\{1,3,5,7\}$

$$
[3 \times 7 \bmod 8]=[21 \bmod 8]=[5 \bmod 8] \in \mathbb{Z}_{\mathrm{N}}^{*}
$$

Proof (by contradiction): Let d:=gcd(xy,N)

Suppose $d>1$ then for some prime p and integer q we have $d=p q$.
Now p must divide N and xy (by definition) and hence p must divide either x or y . (WLOG) say p divides x . In this case $\operatorname{gcd}(\mathrm{x}, \mathrm{N})=\mathrm{p}>1$, which means $x \notin \mathbb{Z}_{\mathrm{N}}^{*}$

More Useful Facts

$$
x, y \in \mathbb{Z}_{\mathrm{N}}^{*} \rightarrow[x y \bmod \mathrm{~N}] \in \mathbb{Z}_{\mathrm{N}}^{*}
$$

Fact 1: Let $\boldsymbol{\phi}(\boldsymbol{N})=\left|\mathbb{Z}_{\mathrm{N}}^{*}\right|$ then for any $x \in \mathbb{Z}_{N}^{*}$ we have

$$
\left[x^{\phi(N)} \bmod \mathrm{N}\right]=1
$$

Example: $\mathbb{Z}_{8}^{*}=\{1,3,5,7\}, \phi(8)=4$

$$
\begin{gathered}
{\left[3^{4} \bmod 8\right]=[9 \times 9 \bmod 8]=1} \\
{\left[5^{4} \bmod 8\right]=[25 \times 25 \bmod 8]=1} \\
{\left[7^{4} \bmod 8\right]=[49 \times 49 \bmod 8]=1}
\end{gathered}
$$

More Useful Facts

$$
x, y \in \mathbb{Z}_{\mathrm{N}}^{*} \rightarrow[x y \bmod \mathrm{~N}] \in \mathbb{Z}_{\mathrm{N}}^{*}
$$

Fact 1: Let $\boldsymbol{\phi}(\boldsymbol{N})=\left|\mathbb{Z}_{\mathrm{N}}^{*}\right|$ then for any $x \in \mathbb{Z}_{\mathrm{N}}^{*}$ we have $\left[x^{\boldsymbol{\phi}(\boldsymbol{N})} \bmod \mathrm{N}\right]=1$

Fact 2: Let $\boldsymbol{\phi}(\boldsymbol{N})=\left|\mathbb{Z}_{\mathrm{N}}^{*}\right|$ and let $N=\prod_{i=1}^{m} p_{i}^{e_{i}}$, where each p_{i} is a distinct prime number and $e_{i}>0$ then

$$
\boldsymbol{\phi}(\boldsymbol{N})=\prod_{i=1}^{m}\left(p_{i}-1\right) p_{i}^{e_{i}-1}=n \prod_{i=1}^{m}\left(1-\frac{1}{p_{i}}\right)
$$

Recap

- Polynomial time algorithms (in bit lengths $\|\boldsymbol{a}\|,\|\boldsymbol{b}\|$ and $\|\mathbf{N}\|$) to do important stuff
- GCD(a,b)
- Find inverse \mathbf{a}^{-1} of a such that $1=\left[a^{-1} \bmod \mathbf{N}\right]$ (if it exists)
- PowerMod: [ab $\bmod \mathbf{N}]$
- Draw uniform sample from $\mathbb{Z}_{N}^{*}=\left\{x \in \mathbb{Z}_{N} \mid \operatorname{gcd}(N, x)=1\right\}$
- Randomized PPT algorithm

More Useful Facts

$$
x, y \in \mathbb{Z}_{\mathrm{N}}^{*} \rightarrow[x y \bmod \mathrm{~N}] \in \mathbb{Z}_{\mathrm{N}}^{*}
$$

Fact 1: Let $\boldsymbol{\phi}(\boldsymbol{N})=\left|\mathbb{Z}_{\mathrm{N}}^{*}\right|$ then for any $x \in \mathbb{Z}_{N}^{*}$ we have

$$
\left[x^{\phi(N)} \bmod \mathrm{N}\right]=1
$$

Example: $\mathbb{Z}_{8}^{*}=\{1,3,5,7\}, \phi(8)=4$

$$
\begin{gathered}
{\left[3^{4} \bmod 8\right]=[9 \times 9 \bmod 8]=1} \\
{\left[5^{4} \bmod 8\right]=[25 \times 25 \bmod 8]=1} \\
{\left[7^{4} \bmod 8\right]=[49 \times 49 \bmod 8]=1}
\end{gathered}
$$

More Useful Facts

$$
x, y \in \mathbb{Z}_{\mathrm{N}}^{*} \rightarrow[x y \bmod \mathrm{~N}] \in \mathbb{Z}_{\mathrm{N}}^{*}
$$

Fact 1: Let $\boldsymbol{\phi}(\boldsymbol{N})=\left|\mathbb{Z}_{\mathrm{N}}^{*}\right|$ then for any $x \in \mathbb{Z}_{\mathrm{N}}^{*}$ we have $\left[x^{\boldsymbol{\phi}(\boldsymbol{N})} \bmod \mathrm{N}\right]=1$

Fact 2: Let $\boldsymbol{\phi}(\boldsymbol{N})=\left|\mathbb{Z}_{\mathrm{N}}^{*}\right|$ and let $N=\prod_{i=1}^{m} p_{i}^{e_{i}}$, where each p_{i} is a distinct prime number and $e_{i}>0$ then

$$
\boldsymbol{\phi}(\boldsymbol{N})=\prod_{i=1}^{m}\left(p_{i}-1\right) p_{i}^{e_{i}-1}=n \prod_{i=1}^{m}\left(1-\frac{1}{p_{i}}\right)
$$

More Useful Facts

Fact 2: Let $\boldsymbol{\phi}(\boldsymbol{N})=\left|\mathbb{Z}_{N}^{*}\right|$ and let $N=\prod_{i=1}^{m} p_{i}^{e_{i}}$, where each p_{i} is a distinct prime number and $\mathrm{e}_{\mathrm{i}}>0$ then

$$
\boldsymbol{\phi}(\boldsymbol{N})=\prod_{i=1}^{m}\left(p_{i}-1\right) p_{i}^{e_{i}-1}=n \prod_{i=1}^{m}\left(1-\frac{1}{p_{i}}\right)
$$

Example 0: Let p be a prime so that $\mathbb{Z}^{*}=\{1, \ldots, p-1\}$

$$
\boldsymbol{\phi}(\boldsymbol{p})=p\left(1-\frac{1}{p}\right)=p-1
$$

More Useful Facts

Fact 2: Let $\boldsymbol{\phi}(N)=\left|\mathbb{Z}_{N}^{*}\right|$ and let $N=\prod_{i=1}^{m} p_{i}^{e_{i}}$, where each p_{i} is a distinct prime number and $\mathrm{e}_{\mathrm{i}}>0$ then

$$
\boldsymbol{\phi}(\boldsymbol{N})=\prod_{i=1}^{m}\left(p_{i}-1\right) p_{i}^{e_{i}-1}=n \prod_{i=1}^{m}\left(1-\frac{1}{p_{i}}\right)
$$

Example 1: $N=9=3^{2} \quad\left(m=1, e_{1}=2\right)$

$$
\boldsymbol{\phi}(\mathbf{9})=\prod_{i=1}^{1}\left(p_{i}-1\right) p_{i}^{2-1}=2 \times 3
$$

More Useful Facts

Example 1: $N=9=3^{2} \quad\left(m=1, e_{1}=2\right)$

$$
\boldsymbol{\phi}(\mathbf{9})=\prod_{i=1}^{1}\left(p_{i}-1\right) p_{i}^{2-1}=2 \times 3
$$

Double Check: $\mathbb{Z}_{9}^{*}=\{1,2,4,5,7,8\}$

More Useful Facts

Fact 2: Let $\boldsymbol{\phi}(N)=\left|\mathbb{Z}_{N}^{*}\right|$ and let $N=\prod_{i=1}^{m} p_{i}^{e_{i}}$, where each p_{i} is a distinct prime number and $\mathrm{e}_{\mathrm{i}}>0$ then

$$
\boldsymbol{\phi}(\boldsymbol{N})=\prod_{i=1}^{m}\left(p_{i}-1\right) p_{i}^{e_{i}-1}=n \prod_{i=1}^{m}\left(1-\frac{1}{p_{i}}\right)
$$

Example 2: $\mathrm{N}=15=5 \times \frac{3}{2} \quad\left(\mathrm{~m}=2, \mathrm{e}_{1}=\mathrm{e}_{2}=1\right)$

$$
\boldsymbol{\phi}(\mathbf{1 5})=\prod_{i=1}^{2}\left(p_{i}-1\right) p_{i}^{1-1}=(5-1)(3-1)=8
$$

More Useful Facts

Example 2: $\mathrm{N}=15=5 \underset{2}{5} \times 3 \quad\left(\mathrm{~m}=2, \mathrm{e}_{1}=\mathrm{e}_{2}=1\right)$

$$
\boldsymbol{\phi}(\mathbf{1 5})=\prod_{i=1}\left(p_{i}-1\right) p_{i}^{1-1}=(5-1)(3-1)=8
$$

Double Check: $\mathbb{Z}_{15}^{*}=\{1,2,4,7,8,11,13,14\}$
I count 8 elements in \mathbb{Z}_{15}^{*}

More Useful Facts

Fact 2: Let $\boldsymbol{\phi}(\boldsymbol{N})=\left|\mathbb{Z}_{N}^{*}\right|$ and let $N=\prod_{i=1}^{m} p_{i}^{e_{i}}$, where each p_{i} is a distinct prime number and $\mathrm{e}_{\mathrm{i}}>0$ then

$$
\boldsymbol{\phi}(\boldsymbol{N})=\prod_{i=1}^{m}\left(p_{i}-1\right) p_{i}^{e_{i}-1}=n \prod_{i=1}^{m}\left(1-\frac{1}{p_{i}}\right)
$$

Special Case: $\mathrm{N}=\mathrm{pq} \quad(\mathrm{p}$ and q are distinct primes)

$$
\boldsymbol{\phi}(\boldsymbol{N})=(p-1)(q-1)
$$

More Useful Facts

Special Case: $\mathrm{N}=\mathrm{pq} \quad$ (p and q are distinct primes)

$$
\boldsymbol{\phi}(\boldsymbol{N})=(p-1)(q-1)
$$

Proof Sketch: If $x \in \mathbb{Z}_{\mathrm{N}}$ is not divisible by p or q then $x \in \mathbb{Z}_{\mathrm{N}}^{*}$. How many elements are not in $\mathbb{Z}_{\mathrm{N}}^{*}$?

- Multiples of $p: p, 2 p, 3 p, \ldots, p q$ (q multiples of p)
- Multiples of $q: q, 2 q, \ldots, p q \quad$ (p multiples of q)
- Double Counting? $\mathrm{N}=\mathrm{pq}$ is in both lists. Any other duplicates?
- No! $\mathrm{cq}=\mathrm{dp} \rightarrow \mathrm{q}$ divides d (since, $\operatorname{gcd}(\mathrm{p}, \mathrm{q})=1$) and consequently $\mathrm{d} \geq q$
- Hence, $\mathrm{dp} \geq p q=N$

More Useful Facts

Special Case: $\mathrm{N}=\mathrm{pq} \quad$ (p and q are distinct primes)

$$
\boldsymbol{\phi}(\boldsymbol{N})=(p-1)(q-1)
$$

Proof Sketch: If $x \in \mathbb{Z}$ is not divisible by p or q then $x \in \mathbb{Z}_{N}^{*}$. How many elements are not in \mathbb{Z}_{N}^{*} ?

- Multiples of $p: p, 2 p, 3 p, \ldots, p q$ (q multiples of p)
- Multiples of $q: q, 2 q, \ldots, p q \quad$ (p multiples of q)
- Answer: $p+q-1$ elements are not in \mathbb{Z}^{*}

$$
\begin{gathered}
\phi(N)=N-\left(p^{N}+q-1\right) \\
=\mathbf{p q}-\mathbf{p}-\mathbf{q}+\mathbf{1}=(p-\mathbf{1})(\mathbf{q}-\mathbf{1})
\end{gathered}
$$

Groups

Definition: A (finite) group is a (finite) set \mathbb{G} with a binary operation o (over G) for which we have

- (Closure:) For all $\mathrm{g}, \mathrm{h} \in \mathbb{G}$ we have $\mathrm{g} \circ \mathrm{h} \in \mathbb{G}$
- (Identity:) There is an element $\mathrm{e} \in \mathbb{G}$ such that for all $g \in \mathbb{G}$ we have

$$
\mathrm{g} \circ \mathrm{e}=\mathrm{g}=\mathrm{e} \circ \mathrm{~g}
$$

- (Inverses:) For each element $g \in \mathbb{G}$ we can find $h \in \mathbb{G}$ such that $g \circ h=$ $\mathrm{e}=\mathrm{h} \circ \mathrm{g}$. We say that h is the inverse of g .
- (Associativity:) For all $g_{1}, g_{2}, g_{3} \in \mathbb{G}$ we have

$$
\left(g_{1} \circ g_{2}\right) \circ g_{3}=g_{1} \circ\left(g_{2} \circ g_{3}\right)
$$

We say that the group is abelian if

- (Commutativity:) For all $\mathrm{g}, \mathrm{h} \in \mathbb{G}$ we have $\mathrm{g} \circ \mathrm{h}=\mathrm{h} \circ \mathrm{g}$

Groups

Definition: A (finite) group is a (finite) set \mathbb{G} with a binary operation \circ (over G) for which we have

- (Closure:) For all $\mathrm{g}, \mathrm{h} \in \mathbb{G}$ we have $\mathrm{g} \circ \mathrm{h} \in \mathbb{G}$
- (Identity:) There is an element $\mathrm{e} \in \mathbb{G}$ such that for all $g \in \mathbb{G}$ we have

$$
\mathrm{g} \circ \mathrm{e}=\mathrm{g}=\mathrm{e} \circ \mathrm{~g}
$$

- (Inverses:) For each element $g \in \mathbb{G}$ we can find $h \in \mathbb{G}$ such that $g \circ h=e=h \circ$ g . We say that h is the inverse of g .
- (Associativity:) For all $\mathrm{g}_{1}, \mathrm{~g}_{2}, \mathrm{~g}_{3} \in \mathbb{G}$ we have

$$
\left(g_{1} \circ g_{2}\right) \circ g_{3}=g_{1} \circ\left(g_{2} \circ g_{3}\right)
$$

Fact: The identity is unique + inverses must be unique
Proof: If e and e^{\prime} are both identity then $\mathrm{e}=\mathrm{e} \circ \mathrm{e}^{\prime}=\mathrm{e}^{\prime}$
If h and h^{\prime} are both inverses of g then $\mathrm{h}=\mathrm{h} \circ \mathrm{e}=\mathrm{h} \circ\left(\mathrm{g} \circ \mathrm{h}^{\prime}\right)=(\mathrm{g} \circ \mathrm{h}) \circ \mathrm{h}^{\prime}=h^{\prime}$.

Abelian Groups (Examples)

- Example 1: \mathbb{Z}_{N} when o denotes addition modulo N
- Identity: 0 , since $0 \circ x=[0+x \bmod N]=[x \bmod N]$.
- Inverse of x ? Set $x^{-1}=N-x$ so that $\left[x^{-1}+x \bmod N\right]=[N-x+x \bmod N]=0$.
- Example 2: \mathbb{Z}_{N}^{*} when \circ denotes multiplication modulo N
- Identity: 1 , since $10 x=[1(x) \bmod N]=[x \bmod N]$.
- Inverse of x ? Run extended GCD to obtain integers a and b such that

$$
a x+b N=\operatorname{gcd}(x, N)=1
$$

Observe that: $x^{-1}=a$. Why?

Abelian Groups (Examples)

- Example 1: \mathbb{Z}_{N} when o denotes addition modulo N
- Identity: 0 , since $0 \circ x=[0+x \bmod N]=[x \bmod N]$.
- Inverse of x ? Set $x^{-1}=N-x$ so that $\left[x^{-1}+x \bmod N\right]=[N-x+x \bmod N]=0$.
- Example 2: \mathbb{Z}_{N}^{*} when \circ denotes multiplication modulo N
- Identity: 1 , since $10 x=[1(x) \bmod N]=[x \bmod N]$.
- Inverse of x ? Run extended GCD to obtain integers a and b such that

$$
a x+b N=\operatorname{gcd}(x, N)=1
$$

Observe that: $\mathrm{x}^{-1}=\mathrm{a}$, since $[\mathrm{ax} \bmod \mathrm{N}]=[1-\mathrm{bN} \bmod \mathrm{N}]=1$

Groups

Lemma 8.13: Let \mathbb{G} be a group with a binary operation \circ (over G) and let $a, b, c \in \mathbb{G}$. If $a \circ c=b \circ c$ then $a=b$.

Proof Sketch: Apply the unique inverse to c^{-1} both sides.

$$
\begin{aligned}
\mathrm{a} \circ \mathrm{c}=\mathrm{b} \circ \mathrm{c} & \rightarrow(\mathrm{a} \circ \mathrm{c}) \circ c^{-1}=(\mathrm{b} \circ \mathrm{c}) \circ c^{-1} \\
& \rightarrow \mathrm{a} \circ\left(\mathrm{c} \circ c^{-1}\right)=\mathrm{b} \circ\left(\mathrm{c} \circ c^{-1}\right) \\
& \rightarrow \mathrm{a} \circ(e)=\mathrm{b} \circ(e) \\
& \rightarrow \mathrm{a}=\mathrm{b}
\end{aligned}
$$

(Remark: it is not to difficult to show that a group has a unique identity and that inverses are unique).

Groups

Lemma 8.13: Let \mathbb{G} be a group with a binary operation \circ (over G) and let $a, b, c \in \mathbb{G}$. If $a \circ c=b \circ c$ then $a=b$.

Proof Sketch: Apply the unique inverse to c^{-1} both sides.

$$
\begin{aligned}
\mathrm{a} \circ \mathrm{c}=\mathrm{b} \circ \mathrm{c} & \rightarrow(\mathrm{a} \circ \mathrm{c}) \circ c^{-1}=(\mathrm{b} \circ \mathrm{c}) \circ c^{-1} \\
& \rightarrow \mathrm{a} \circ\left(\mathrm{c} \circ c^{-1}\right)=\mathrm{b} \circ\left(\mathrm{c} \circ c^{-1}\right) \\
& \rightarrow \mathrm{a} \circ(e)=\mathrm{b} \circ(e) \\
& \rightarrow \mathrm{a}=\mathrm{b}
\end{aligned}
$$

(Remark: it is not to difficult to show that a group has a unique identity and that inverses are unique).

Group Exponentiation

Definition: Let \mathbb{G} be a group with a binary operation o (over G) let m be a positive integer and let $g \in \mathbb{G}$ be a group element then we define

$$
g^{m}:=\mathrm{g} \circ \cdots \circ \mathrm{~g}
$$

m times
Theorem: Let \mathbb{G} be finite group with size $m=|\mathbb{G}|$ and let $g \in$ \mathbb{G} be a group element then $g^{m}=1$ (where 1 denotes the unique identity of \mathbb{G}).

Group Exponentiation

Theorem 8.14: Let \mathbb{G} be finite group with size $\mathrm{m}=|\mathbb{G}|$ and let $\mathrm{g} \in \mathbb{G}$ be a group element then $g^{m}=1$ (where 1 denotes the unique identity of \mathbb{G}).

Proof: (for abelian group) Let $\mathbb{G}=\left\{g_{1}, \ldots, g_{m}\right\}$ then we claim

$$
g_{1} \circ \cdots \circ g_{m}=\left(g \circ g_{1}\right) \circ \cdots \circ\left(g \circ g_{m}\right)
$$

Why? If $\left(g_{i} \circ g\right)=\left(g_{j} \circ g\right)$ then $g_{j}=g_{i}$ (by Lemma 8.13)

Group Exponentiation

Theorem 8.14: Let \mathbb{G} be finite group with size $\mathrm{m}=|\mathbb{G}|$ and let $g \in \mathbb{G}$ be a group element then $g^{m}=1$ (where 1 denotes the unique identity of \mathbb{G}).

Proof: (for abelian group) Let $\mathbb{G}=\left\{g_{1}, \ldots, g_{m}\right\}$ then we claim

$$
g_{1} \circ \cdots \circ g_{m}=\left(g \circ g_{1}\right) \circ \cdots \circ\left(g \circ g_{m}\right)
$$

Because \mathbb{G} is abelian we can re-arrange terms

$$
1 \circ\left(g_{1} \circ \cdots \circ g_{m}\right)=\left(g^{m}\right) \circ\left(g_{1} \circ \cdots \circ g_{m}\right)
$$

By Lemma 8.13 we have $1=g^{m}$.

Group Exponentiation

Theorem 8.14: Let \mathbb{G} be finite group with size $m=|\mathbb{G}|$ and let $g \in \mathbb{G}$ be a group element then $g^{m}=1$ (where 1 denotes the unique identity of \mathbb{G}).

Corollary 8.15: Let \mathbb{G} be finite group with size $m=|\mathbb{G}|>1$ and let $g \in \mathbb{G}$ be a group element then for any integer x we have $g^{x}=g^{[x \bmod m]}$.
Proof: $g^{x}=g^{q m+[x \bmod m]}=1 \times g^{[x \bmod m]}$, where q is unique integer such that $\mathrm{x}=\mathrm{qm}+[x \bmod m]$

Group Exponentiation

Special Case: \mathbb{Z}_{N}^{*} is a group of size $\boldsymbol{\phi}(\boldsymbol{N})$ so we have now proved

Corollary 8.22: For any $g \in \mathbb{Z}_{\mathrm{N}}^{*}$ and integer x we have

$$
\left[g^{x} \bmod \mathrm{~N}\right]=\left[g^{[x \bmod \phi(N)]} \bmod \mathrm{N}\right]
$$

Chinese Remainder Theorem

Theorem: Let $\mathrm{N}=\mathrm{pq}(\boldsymbol{w h e r e} \operatorname{gcd}(\mathrm{p}, \mathrm{q})=1)$ be given and let $f: \mathbb{Z}_{\mathrm{N}} \rightarrow \mathbb{Z}_{p} \times$ \mathbb{Z}_{q} be defined as follows

$$
f(x)=([x \bmod p],[x \bmod q])
$$

then

- f is a bijective mapping (invertible)
- f and its inverse $f^{-1}: \mathbb{Z}_{p} \times \mathbb{Z}_{q} \rightarrow \mathbb{Z}_{\mathrm{N}}$ can be computed efficiently
- $f(x+y)=f(x)+f(y)=([x+y \bmod p],[x+y \bmod q])$
- The restriction of f to \mathbb{Z}_{N}^{*} yields a bijective mapping to $\mathbb{Z}_{p}^{*} \times \mathbb{Z}_{q}^{*}$
- For inputs $x, y \in \mathbb{Z}_{N}^{*}$ we have $f(x) f(y)=f(x y)$

Chinese Remainder Theorem

Application of CRT: Faster computation modulo $N=p q$.

Example: Compute [$11^{53} \bmod 15$]
$\mathrm{f}(11)=([-1 \bmod 3],[1 \bmod 5])$
$f\left(11^{53}\right)=\left(\left[(-1)^{53} \bmod 3\right],\left[1^{53} \bmod 5\right]\right)=(-1,1)$
$f^{-1}(-1,1)=11$

Thus, $11=\left[11^{53} \bmod 15\right]$

CS 555: Week 10: Topic 1 Finding Prime Numbers, RSA

RSA Key-Generation

KeyGeneration(1 ${ }^{\text {n }}$)

Step 1: Pick two random n -bit primes p and q
Step 2: Let $\mathrm{N}=\mathrm{pq}, \phi(N)=(p-1)(q-1)$
Step 3: ...

Question: How do we accomplish step one?

Bertrand's Postulate

Theorem 8.32. For any $\mathrm{n}>1$ the fraction of n -bit integers that are prime is at least $1 / 3 n$.

```
GenerateRandomPrime(1')
For i=1 to 3n2
    p
    p< 1|p'
    if isPrime(p) then
        return p
return fail
```


Can we do this in polynomial time?

```
if isPrime(p) then return \(p\)
return fail
```


Bertrand's Postulate

Theorem 8.32. For any $n>1$ the fraction of n-bit integers that are prime is at least $1 / 3 n$.
Assume for now that we can run isPrime(p). What are the

GenerateRandomPrime(1 ${ }^{n}$)
For $\mathrm{i}=1$ to $3 \mathrm{n}^{2}$:
$p^{\prime} \leftarrow\{0,1\}^{n-1}$
$p \leftarrow 1 \| p^{\prime}$
if isPrime (p) then return p
return fail
odds that the algorithm fails?

On each iteration the probability that p is not a prime is $\left(1-\frac{1}{3 n}\right)$

We fail if we pick a non-prime in all $3 n^{2}$ iterations. The probability of failure is at most

$$
\left(1-\frac{1}{3 n}\right)^{3 n^{2}}=\left(\left(1-\frac{1}{3 n}\right)^{3 n}\right)^{n} \leq e^{-n}
$$

isPrime(p): Miller-Rabin Test

- We can check for primality of p in polynomial time in $\|p\|$.

Theory: Deterministic algorithm to test for primality.

- See breakthrough paper "Primes is in P "

Practice: Miller-Rabin Test (randomized algorithm)

- Guarantee 1: If p is prime then the test outputs YES
- Guarantee 2: If p is not prime then the test outputs NO except with negligible probability.

The "Almost" Miller-Rabin Test

Input: Integer N and parameter 1^{t}
Output: "prime" or "composite"
for $\mathrm{i}=1$ to t :
$a \leftarrow\{1, \ldots, N-1\}$
if $a^{N-1} \neq 1 \bmod \mathrm{~N}$ then return "composite"
Return "prime"
Claim: If N is prime then algorithm always outputs "prime"
Proof: For any a $\in\{1, \ldots, \mathrm{~N}-1\}$ we have $a^{N-1}=a^{\phi(N)}=1 \bmod N$

The "Almost" Miller-Rabin Test

Input: Integer N and parameter 1^{t} Output: "prime" or "composite" for $\mathrm{i}=1$ to t :
$a \leftarrow\{1, \ldots, N-1\}$
if $a^{N-1} \neq 1 \bmod \mathrm{~N}$ then return "composi+
Return "prime"

Fact: If N is composite and not a Carmichael number then the algorithm outputs "composite" with probability

$$
1-2^{-t}
$$

Miller-Rabin Primality Test

Input: Integer N and parameter 1^{t}
Output: "prime" or "composite"
If Even(\mathbf{N}) or PerfectPower(\mathbf{N}) return "composite"
Else find u (odd) and $r \geq 1$ s.t. $\mathrm{N}-1=2^{r} u$
for $\mathrm{j}=1$ to t :
if $a^{u} \neq \pm 1 \bmod \mathrm{~N}$ and $a^{2^{i} u} \neq-1 \bmod \mathrm{~N}$ for all $1 \leq i \leq r-1$ return "composite"
Return "prime"

Miller-Rabin Primality Test

Input: Integer N and parameter 1^{t}
Output: "prime" or "composite"
Lemma: If p is prime and $x^{2}=1 \bmod \mathrm{p}$ then

$$
x= \pm 1 \bmod p
$$

If Even(\mathbf{N}) or PerfectPower(\mathbf{N}) return "compo'
Else find u (odd) and $r \geq 1$ s.t. $\mathrm{N}-1=$
for $\mathrm{j}=1$ to t :
if $a^{u} \neq \pm 1 \bmod \mathrm{~N}$ and $a^{2^{i} u} \neq-1 \bmod \mathrm{~N}$ for all $1 \leq i \leq r-1$ return "composite"
Return "prime"

Miller-Rabin Primality Test

Input: Integer N and parameter 1^{t}
Observe:

$$
\begin{aligned}
\left(a^{2^{r-1} u}\right)^{2} & =a^{N-1} \bmod \mathrm{~N} \\
& =1 \quad \bmod \mathrm{~N}
\end{aligned}
$$

Output: "prime" or "composite"
If Even(\mathbf{N}) or PerfectPower(\mathbf{N}) return "comp site"
Else find u (odd) and $r \geq 1$ s.t. $\mathrm{N}-1=2^{r} u$
for $\mathrm{j}=1$ to t :
if $a^{u} \neq \pm 1 \bmod \mathrm{~N}$ and $a^{2^{i} u} \neq-1 \bmod \mathrm{~N}$ for all $1 \leq i \leq r-1$
return "composite"
Return "prime"

$$
\begin{aligned}
& \left(a^{2^{i} u}\right)^{2}-1 \\
& =\left(a^{2^{i-1} u}-1\right)\left(a^{2^{i-1} u}+1\right)+1
\end{aligned}
$$

Miller-Rabin Primality Test

Input: Integer N and parameter 1^{t}
Observe:

$$
\begin{aligned}
\left(a^{2^{r-1} u}\right)^{2} & =a^{N-1} \bmod \mathrm{~N} \\
& =1 \quad \bmod \mathrm{~N}
\end{aligned}
$$

Output: "prime" or "composite"
If Even(\mathbf{N}) or PerfectPower(\mathbf{N}) return "comp site"
Else find u (odd) and $r \geq 1$ s.t. $\mathrm{N}-1=2^{r} u$
for $\mathrm{j}=1$ to t :
if $a^{u} \neq \pm 1 \bmod \mathrm{~N}$ and $a^{2^{i} u} \neq-1 \bmod \mathrm{~N}$ for all $1 \leq i \leq r-1$
return "composite"
Return "prime"

If N is prime we won't return composite

$$
\begin{gathered}
\left(a^{2^{r} u}\right)-1=\left(a^{2^{r-1} u}-1\right)\left(a^{2^{r-1} u}+1\right) \\
=\cdots=\left(a^{2^{r-2} u}-1\right)\left(a^{2^{r-2} u}+1\right)\left(a^{2^{r-1} u}+1\right)
\end{gathered}
$$

Miller-Rabin Primality Test
Input: Integer N and parameter 1^{t}
Observe:
$\begin{aligned}\left(a^{2^{r-1} u}\right)^{2} & =a^{N-1} \bmod N \\ & =1 \quad \bmod N\end{aligned}$
Output: "prime" or "composite"
If Even(\mathbf{N}) or PerfectPower(\mathbf{N}) return "cor
Else find $u($ odd $)$ and $r \geq 1$ s.t. $\mathrm{N}-1=2(\bmod \mathrm{~N})$
for $\mathrm{j}=1$ to t : if $a^{u} \neq \pm 1 \bmod \mathrm{~N}$ and $a^{2^{i} u} \neq-1 \bmod \mathrm{~N}$ for all $\mathrm{I}-\quad \leq r-1$
return "composite" If N is prime we won't return composite
Return "prime"

$$
0=\left(a^{2^{r} u}\right)-1=\cdots=\left(a^{u}-1\right) \prod_{i=0}^{r-1}\left(a^{2^{i} u}+1\right)
$$

Back to RSA Key-Generation

KeyGeneration(1 ${ }^{\text {n }}$)

Step 1: Pick two random n -bit primes p and q
Step 2: Let $\mathrm{N}=\mathrm{pq}, \phi(N)=(p-1)(q-1)$
Step 3: Pick e > 1 such that $\operatorname{gcd}(\mathrm{e}, \phi(N))=1$
Step 4: Set $\mathrm{d}=\left[\mathrm{e}^{-1} \bmod \phi(N)\right] \quad$ (secret key)
Return: $\mathrm{N}, \mathrm{e}, \mathrm{d}$

- How do we find d?
- Answer: Use extended gcd algorithm to find $\mathrm{e}^{-1} \bmod \phi(N)$.

Be Careful Where You Get Your "Random Bits!"

```
int getRandomNumber()
{
    return 4; // chosen by fair dice roll.
        // guaranteed to be random.
}
```

- RSA Keys Generated with weak PRG
- Implementation Flaw
- Unfortunately Commonplace
- Resulting Keys are Vulnerable
- Sophisticated Attack
- Coppersmith's Method

```
(ars TECHNICA a mizgil tech sclence policy chrs gammggculure forums 三
```


Millions of high-security crypto keys crippled by newly discovered flaw

Factorization weakness lets attackers impersonate key holders and decrypt their data. DAN GOODIN - 10/16/2017, 7:00 AM

(Plain) RSA Encryption

- Public Key: $\mathrm{PK}=(\mathrm{N}, \mathrm{e})$
- Message $m \in \mathbb{Z}_{N}$

$$
\mathrm{Enc}_{\mathrm{PK}}(\mathrm{~m})=\left[m^{e} \bmod \mathrm{~N}\right]
$$

- Remark: Encryption is efficient if we use the power mod algorithm.

(Plain) RSA Decryption

- Secret Key: SK=(N,d)
- Ciphertext $c \in \mathbb{Z}_{\mathrm{N}}$

$$
\operatorname{Dec}_{\mathrm{SK}}(\mathrm{c})=\left[c^{d} \bmod \mathrm{~N}\right]
$$

- Remark 1: Decryption is efficient if we use the power mod algorithm.
- Remark 2: Suppose that $m \in \mathbb{Z}_{\mathrm{N}}^{*}$ and let $\mathrm{c}=\mathrm{Enc}_{\mathrm{PK}}(\mathrm{m})=\left[m^{e} \bmod \mathrm{~N}\right]$

$$
\begin{aligned}
\operatorname{Dec}_{\mathrm{SK}}(\mathrm{c}) & =\left[\left(m^{e}\right)^{d} \bmod \mathrm{~N}\right]=\left[m^{e d} \bmod \mathrm{~N}\right] \\
= & {\left.\left[m^{[e d} \bmod \phi(N)\right] \bmod \mathrm{N}\right] } \\
& =\left[m^{1} \bmod \mathrm{~N}\right]=m
\end{aligned}
$$

RSA Decryption

- Secret Key: SK=(N,d)
- Ciphertext $\mathrm{c} \in \mathbb{Z}_{\mathrm{N}}$

$$
\operatorname{Dec}_{\mathrm{sk}}(\mathrm{c})=\left[c^{d} \bmod \mathrm{~N}\right]
$$

- Remark 1: Decryption is efficient if we use the power mod algorithm.
- Remark 2: Suppose that $m \in \mathbb{Z}_{N}^{*}$ and let $\mathrm{c}=\operatorname{Enc}_{\mathrm{PK}}(\mathrm{m})=\left[m^{e} \bmod \mathrm{~N}\right]$ then

$$
\operatorname{Dec}_{\mathrm{sk}}(\mathrm{c})=m
$$

- Remark 3: Even if $m \in \mathbb{Z}_{N}-\mathbb{Z}_{N}^{*}$ and let $c=E n c_{\text {PK }}(m)=\left[m^{e} \bmod N\right]$ then

$$
\operatorname{Dec}_{\mathrm{SK}}(\mathrm{c})=m
$$

- Use Chinese Remainder Theorem to show this

$$
\begin{aligned}
e d= & 1+k(p-1)(q-1) \\
& \rightarrow \mathrm{f}\left(c^{d}\right)=\left(\left[m^{e d} \bmod \mathrm{p}\right],\left[m^{e d} \bmod \mathrm{q}\right]\right)=\left(\left[m^{1} \bmod \mathrm{p}\right],\left[m^{1} \bmod \mathrm{q}\right]\right) \\
& \rightarrow f^{-1}\left(\mathrm{f}\left(c^{d}\right)\right)=f^{-1}\left(\left[m^{1} \bmod \mathrm{p}\right],\left[m^{1} \bmod \mathrm{q}\right]\right)=m
\end{aligned}
$$

Plain RSA (Summary)

- Public Key (pk): $\mathrm{N}=\mathrm{pq}$, e such that $\operatorname{GCD}(\mathrm{e}, \phi(N))=1$
- $\phi(N)=(p-1)(q-1)$ for distinct primes p and q
- Secret $\operatorname{Key}(\mathrm{sk}): \mathrm{N}, \mathrm{d}$ such that $\mathrm{ed}=1 \bmod \phi(N)$
- Encrypt(pk=(N,e),m) $=m^{e} \bmod N$
- $\operatorname{Decrypt}(\mathrm{sk}=(\mathrm{N}, \mathrm{d}), \mathrm{c})=c^{d} \bmod N$
- Decryption Works because $\left[c^{d} \bmod \mathrm{~N}\right]=\left[m^{e d} \bmod \mathrm{~N}\right]=\left[m^{[e d \bmod \boldsymbol{\phi}(N)]} \bmod \mathrm{N}\right]=[m \bmod \mathrm{~N}]$

Factoring Assumption

Let GenModulus $\left(1^{n}\right)$ be a randomized algorithm that outputs ($N=p q, p, q$) where p and q are n-bit primes (except with negligible probability negl(n)).

Experiment FACTOR $_{\mathrm{A}, \mathrm{n}}$

1. ($N=p q, p, q$) \leftarrow GenModulus $\left(1^{n}\right)$
2. Attacker A is given N as input
3. Attacker A outputs $\mathrm{p}^{\prime}>1$ and $\mathrm{q}^{\prime}>1$
4. Attacker A wins if $\mathrm{N}=\mathrm{p}^{\prime} \mathrm{q}^{\prime}$.

Factoring Assumption

Experiment FACTOR ${ }_{\text {A,n }}$

- Necessary for security of RSA.
- Not known to be sufficient.

1. ($N=p q, p, q$) $\leftarrow G e n M o d u l u s\left(1^{n}\right)$
2. Attacker A is given N as input
3. Attacker A outputs $\mathrm{p}^{\prime}>1$ and $\mathrm{q}^{\prime}>1$
4. Attacker A wins $\left(F_{A C T O R}^{A, n} 1=1\right)$ if and only if $N=p^{\prime} q^{\prime}$.

$$
\forall P P T A \exists \mu \text { (negligible) s.t } \operatorname{Pr}\left[\mathrm{FACTOR}_{\mathrm{A}, \mathrm{n}}=1\right] \leq \mu(n)
$$

RSA-Assumption

RSA-Experiment: RSA-INV $\mathrm{V}_{\mathrm{A}, \mathrm{n}}$

1. Run KeyGeneration(1 ${ }^{\text {n }}$) to obtain ($\mathbf{N}, \mathbf{e}, \mathrm{d}$)
2. Pick uniform $y \in \mathbb{Z}_{N}^{*}$
3. Attacker A is given $\mathrm{N}, \mathrm{e}, \mathrm{y}$ and outputs $\mathrm{x} \in \mathbb{Z}_{\mathrm{N}}^{*}$
4. Attacker wins $\left(R S A-I N V_{\mathrm{A}, \mathrm{n}}=1\right)$ if $x^{e}=y \bmod \mathrm{~N}$

$$
\forall P P T A \exists \mu \text { (negligible) s.t } \operatorname{Pr}\left[\mathrm{RSA}^{-I N V A}, \mathrm{n}, 1\right] \leq \mu(n)
$$

RSA-Assumption

RSA-Experiment: RSA-INV $V_{A, n}$

1. Run KeyGeneration(1 ${ }^{\text {n }}$) to obtain ($\mathbf{N}, \mathbf{e}, \mathrm{d}$)
2. Pick uniform $y \in \mathbb{Z}_{N}^{*}$
3. Attacker A is given $\mathrm{N}, \mathrm{e}, \mathrm{y}$ and outputs $\mathrm{x} \in \mathbb{Z}_{\mathrm{N}}^{*}$
4. Attacker wins $\left(R S A-I N V_{\mathrm{A}, \mathrm{n}}=1\right)$ if $x^{e}=y \bmod \mathrm{~N}$

$$
\forall P P T A \exists \mu \text { (negligible) s.t } \operatorname{Pr}\left[\mathrm{RSA}_{\left.-1 \mathrm{NVA}_{, \mathrm{n}}=1\right] \leq \mu(n)}\right.
$$

- Plain RSA Encryption behaves like a one-way function
- Attacker cannot invert encryption of random message

Discussion of RSA-Assumption

- Plain RSA Encryption behaves like a one-way-function
- Decryption key is a "trapdoor" which allows us to invert the OWF
- RSA-Assumption \rightarrow OWFs exist

Recap

- Plain RSA
- Public Key (pk): $\mathrm{N}=\mathrm{pq}$, e such that $\operatorname{GCD}(\mathrm{e}, \phi(N))=1$
- $\phi(N)=(p-1)(q-1)$ for distinct primes p and q
- Secret $\operatorname{Key}(\mathrm{sk}): \mathrm{N}, \mathrm{d}$ such that $\mathrm{ed}=1 \bmod \phi(N)$
- Encrypt(pk=(N,e),m) = $m^{e} \bmod N$
- $\operatorname{Decrypt}(\mathrm{sk}=(\mathrm{N}, \mathrm{d}), \mathrm{c})=c^{\boldsymbol{d}} \bmod N$
- Decryption Works because $\left[c^{d} \bmod \mathrm{~N}\right]=\left[m^{e d} \bmod \mathrm{~N}\right]=\left[m^{[e d \bmod \boldsymbol{\phi}(N)]} \bmod \mathrm{N}\right]=[\operatorname{m\operatorname {mod}\mathrm {N}]}$

Mathematica Demo

https://www.cs.purdue.edu/homes/jblocki/courses/555 Spring17/slid es/Lecture24Demo.nb

http://develop.wolframcloud.com/app/

Note: Online version of mathematica available at https://sandbox.open.wolframcloud.com (reduced functionality, but can be used to solve homework bonus problems)

(Toy) RSA Implementation in Mathematica

(* Random Seed 123456 is not secure, but it allows us to repeat the experiment *) SeedRandom[123456]
(* Step 1: Generate primes for an RSA key *)
$p=$ RandomPrime[\{10^1000, 10^1050\}];
$\mathrm{q}=$ RandomPrime[\{10^1000, 10^1050\}];
NN = p q; (*Symbol N is protected in mathematica *) phi $=(p-1)(q-1)$;

(Toy) RSA Implementation in Mathematica

(* Step 1.A: Find e *)

GCD[phi,7]

Output: 7
(* GCD[phi,7] is not 1 , so he have to try a different value of e *)

GCD[phi,3]

Output: 1
(* We can set e=3 *)
e=3;

(Toy) RSA Implementation in Mathematica

(* Step 1.B find d s.t. ed = 1 mod N by using the extended GCD algorithm *)
(* Mathematica is clever enough to do this automatically *)
Solve[e $x==1$, Modulus->phi]
Output:
\{\{x->36469680590663028301700626132883867272718728905205088...
$394069421778610209425624440980084481398131\}\}$
(* We can now set $d=x$ *) $\mathrm{d}=364696805$... 8131;

(Toy) RSA Implementation in Mathematica

(* Double Check $\left.1=[\operatorname{ed} \bmod \phi(N)]^{*}\right)$
Mod [ed, (p-1)(q-1)]
Output: 1
(* Encrypt the message 200, c= $\mathrm{m}^{\wedge} \mathrm{e} \bmod \mathrm{N} *$)
m = 200;

PowerMod[m,e,NN]
Output: 8000000

(Toy) RSA Implementation in Mathematica

(* Encrypt the message 200, c= m^e mod N *)
m = 200;

PowerMod[m,e,NN]
Output: 8000000
(* Hm...That doesn't seem too secure *)
CubeRoot[PowerMod[m,e,NN]]
Output: 200
(* Moral: if $m^{e}<N$ then Plain RSA does not hide the message $\mathrm{m} .{ }^{*}$)

RSA Implementation in Mathematica

(* Encrypt a larger message, $c=m^{\wedge} e \bmod N *$)
SeedRandom[1234567];
m2= RandomInteger[\{10^1500,10^1501\}];
c=PowerMod[m2,e,NN]
Output: 405215834903772786......... 388068292685976133
(* Does it Decrypt Properly? *) PowerMod[c,d, NN]-m2
Output: 0
(* Yes! *)

CS 555: Week 10: Topic 2 Attacks on Plain RSA

(Plain) RSA Discussion

- We have not introduced security models like CPA-Security or CCAsecurity for Public Key Cryptosystems
- However, notice that (Plain) RSA Encryption is stateless and deterministic.
\rightarrow Plain RSA is not secure against chosen-plaintext attacks
- As we will see Plain RSA is also highly vulnerable to chosen-ciphertext attacks

(Plain) RSA Discussion

- However, notice that (Plain) RSA Encryption is stateless and deterministic.
\rightarrow Plain RSA is not secure against chosen-plaintext attacks
- Remark: In a public key setting the attacker who knows the public key always has access to an encryption oracle
- Encrypted messages with low entropy are particularly vulnerable to bruteforce attacks
- Example: If $m<B$ then attacker can recover m from $\mathrm{c}=\operatorname{Enc}_{\mathrm{pk}}(m)$ after at most B queries to encryption oracle (using public key)

Chosen Ciphertext Attack on Plain RSA

1. Attacker intercepts ciphertext $c=\left[m^{e} \bmod \mathrm{~N}\right]$
2. Attacker generates ciphertext c^{\prime} for secret message 2 m as follows
3. $\mathrm{c}^{\prime}=\left[\left(c 2^{e}\right) \bmod \mathrm{N}\right]$
4. $=\left[\left(m^{e} 2^{e}\right) \bmod \mathrm{N}\right]$
5. $\quad=\left[(2 m)^{e} \bmod \mathrm{~N}\right]$
6. Attacker asks for decryption of $\left[c 2^{e} \bmod \mathrm{~N}\right]$ and receives 2 m .
7. Divide by two to recover message

Above Example: Shows plain RSA is highly vulnerable to ciphertexttampering attacks

More Weaknesses: Plain RSA with small e

-(Small Messages) If $\mathrm{m}^{\mathrm{e}}<\mathrm{N}$ then we can decrypt $\mathrm{c}=\mathrm{m}^{\mathrm{e}} \bmod \mathrm{N}$ directly e.g., $m=c^{(1 / e)}$

- (Partially Known Messages) If an attacker knows first 1-(1/e) bits of secret message $m=m_{1} \|$? ? then he can recover m given $\operatorname{Encrypt}(p k, m)=m^{e} \bmod N$

Theorem[Coppersmith]: If $p(x)$ is a polynomial of degree e then in polynomial time (in $\log (N), 2^{e}$) we can find all m such that $p(m)=0 \bmod$ N and $|m|<N^{(1 / e)}$

More Weaknesses: Plain RSA with small e

Theorem[Coppersmith]: If $p(x)$ is a polynomial of degree e then in polynomial time (in $\log (N)$, e) we can find all m such that $p(m)=0 \bmod$ N and $|\mathrm{m}|<\mathrm{N}^{(1 / \mathrm{e})}$

Example: $\mathrm{e}=3, m=m_{1} \| m_{2}$ and attacker knows $m_{1}(2 k$ bits $)$ and $\boldsymbol{c}=$ $\left(m_{1} \| m_{2}\right)^{e} \bmod \mathrm{~N}$, but not $m_{2}(k$ bits $)$

$$
p(x)=\left(2^{k} m_{1}+x\right)^{3}-c
$$

Polynomial has a small root mod N at $\mathrm{x}=m_{2}$ and coppersmith's method will find it!

More Weaknesses: Plain RSA with small e

Theorem[Coppersmith]: Can also find small roots of bivariate polynomial p($\boldsymbol{x}_{1}, \boldsymbol{x}_{2}$)

- Similar Approach used to factor weak RSA secret keys $N=q_{1} q_{2}$
- Weak PRG \rightarrow Can guess many of the bits of prime factors
- Obtain $\widetilde{q_{1}} \approx q_{1}$ and $\widetilde{q_{2}} \approx q_{2}$
- Coppersmith Attack: Define polynomial $p(.,$.$) as follows$

$$
\mathrm{p}\left(x_{1}, x_{2}\right)=\left(x_{1}+\widetilde{q_{1}}\right)\left(x_{2}+\widetilde{q_{2}}\right)-N
$$

- Small Roots of $\mathrm{p}\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right): x_{1}=q_{1}-\widetilde{q_{1}}$ and $x_{2}=q_{2}-\widetilde{q_{2}}$

COMPLETELY BROKEN

Millions of high-security crypto keys crippled by newly discovered flaw

Factorization weakness lets attackers impersonate key holders and decrypt their data. DAN GOODIN - 10/16/2017, 7:00 AM

Enlarge / 750,000 Estonian cards that look like this use a 2048 -bit RSA key that can be factored in a matter of days.

Fixes for Plain RSA

- Approach 1: RSA-OAEP
- Incorporates random nonce r
- CCA-Secure (in random oracle model)
- Approach 2: Use RSA to exchange symmetric key for Authenticated Encryption scheme (e.g., AES)
- Key Encapsulation Mechanism (KEM)
- More details in future lectures...stay tuned!
- For now we will focus on attacks on Plain RSA

Chinese Remainder Theorem

Theorem: Let $\mathrm{N}=\mathrm{pq}(\boldsymbol{w h e r e} \operatorname{gcd}(\mathrm{p}, \mathrm{q})=1)$ be given and let $f: \mathbb{Z}_{\mathrm{N}} \rightarrow \mathbb{Z}_{p} \times$ \mathbb{Z}_{q} be defined as follows

$$
f(x)=([x \bmod p],[x \bmod q])
$$

then

- f is a bijective mapping (invertible)
- f and its inverse $f^{-1}: \mathbb{Z}_{p} \times \mathbb{Z}_{q} \rightarrow \mathbb{Z}_{\mathrm{N}}$ can be computed efficiently
- $f(x+y)=f(x)+f(y)$
- The restriction of f to \mathbb{Z}_{N}^{*} yields a bijective mapping to $\mathbb{Z}_{p}^{*} \times \mathbb{Z}_{q}^{*}$
- For inputs $x, y \in \mathbb{Z}_{N}^{*}$ we have $f(x) f(y)=f(x y)$

Chinese Remainder Theorem

Application of CRT: Faster computation

Example: Compute [1153 mod 15]
$\mathrm{f}(11)=([-1 \bmod 3],[1 \bmod 5])$
$f\left(11^{53}\right)=\left(\left[(-1)^{53} \bmod 3\right],\left[1^{53} \bmod 5\right]\right)=(-1,1)$
$f^{-1}(-1,1)=11$

Thus, $11=\left[11^{53} \bmod 15\right]$

A Side Channel Attack on RSA with CRT

- Suppose that decryption is done via Chinese Remainder Theorem for speed.

$$
\operatorname{Dec}_{s k}(c)=c^{d} \bmod N \leftrightarrow\left(c^{d} \bmod p, c^{d} \bmod q\right)
$$

- Attacker has physical access to smartcard
- Can mess up computation of $\boldsymbol{c}^{\boldsymbol{d}} \boldsymbol{\operatorname { m o d } \boldsymbol { p }}$
- Response is $\mathrm{R} \leftrightarrow\left(\boldsymbol{r}, \boldsymbol{c}^{\boldsymbol{d}} \boldsymbol{\operatorname { m o d }} \boldsymbol{q}\right)$
- $\mathrm{R}-\mathrm{m} \leftrightarrow(\boldsymbol{r}-\boldsymbol{m} \bmod \boldsymbol{p}, 0 \bmod \boldsymbol{q})$
- $\operatorname{GCD}(\mathrm{R}-\mathrm{m}, \mathrm{N})=\mathrm{q}$

Recovering Encrypted Message faster than Brute-Force

Claim: Let $\mathrm{m}<2^{\mathrm{n}}$ be a secret message. For some constant $\alpha=\frac{1}{2}+\varepsilon$. We can recover m in in time $T=2^{\alpha n}$ with high probability.

For $r=1, \ldots, T$

$$
\text { let } \mathrm{x}_{\mathrm{r}}=\left[c r^{-e} \bmod N\right], \text { where } r^{-e}=\left(r^{-1}\right)^{e} \bmod N
$$

Sort $L=\left\{\left(r, x_{r}\right)\right\}_{r=1}^{T}$ (by the \mathbf{x}_{r} values)
For $\mathrm{s}=1, . . ., \mathrm{T}$
if $\left[s^{e} \bmod N\right]=\boldsymbol{x}_{\boldsymbol{r}}$ for some r then
return $[\operatorname{rs} \bmod N]$

Recovering Encrypted Message faster than Brute-Force

For $r=1, \ldots, T$
let $\mathrm{x}_{\mathrm{r}}=\left[c r^{-e} \bmod N\right]$, where $r^{-e}=\left(r^{-1}\right)^{e} \bmod N$
Sort $L=\left\{\left(r, x_{r}\right)\right\}_{r=1}^{\boldsymbol{T}}$ (by the \mathbf{x}_{r} values)
For $s=1, \ldots, T$
if $\left[s^{e} \bmod N\right]=x_{r}$ for some r then return $[\operatorname{rs} \bmod N]$

Analysis: $[\operatorname{rs} \bmod N]=\left[r\left(s^{e}\right)^{d} \bmod N\right]=\left[r\left(x_{r}\right)^{d} \bmod N\right]$

$$
\begin{gathered}
=\left[r\left(c r^{-e}\right)^{d} \bmod N\right]=\left[r r^{-e d}(c)^{d} \bmod N\right] \\
=\left[r r^{-1} \bmod N\right]=\mathrm{m}
\end{gathered}
$$

Recovering Encrypted Message faster than Brute-Force

For $r=1, \ldots, T$
let $\mathrm{x}_{\mathrm{r}}=\left[c r^{-e} \bmod N\right]$, where $r^{-e}=\left(r^{-1}\right)^{e} \bmod N$
Sort $\mathbf{L}=\left\{\left(r, x_{r}\right)\right\}_{r=1}^{T}$ (by the \mathbf{x}_{r} values)
For $\mathrm{s}=1, \ldots, \mathrm{~T}$
if $\left[s^{e} \bmod N\right]=x_{r}$ for some r then
return $[\operatorname{rs} \bmod N]$
Fact: some constant $\alpha=\frac{1}{2}+\varepsilon$ setting $T=2^{\alpha n}$ with high probability we will find a pair \mathbf{s} and \mathbf{x}_{r} with $\left[s^{e} \bmod N\right]=x r$.

Recovering Encrypted Message faster than Brute-Force

Claim: Let $\mathrm{m}<2^{\mathrm{n}}$ be a secret message. For some constant $\alpha=\frac{1}{2}+\varepsilon$. We can recover m in in time $T=2^{\alpha n}$ with high probability.

Roughly \sqrt{B} steps to find a secret message $\mathbf{m}<\boldsymbol{B}$

CS 555: Week 10: Topic 3
Discrete Log + DDH Assumption

(Recap) Finite Groups

Definition: A (finite) group is a (finite) set \mathbb{G} with a binary operation o (over G) for which we have

- (Closure:) For all $g, h \in \mathbb{G}$ we have $g \circ h \in \mathbb{G}$
- (Identity:) There is an element $e \in \mathbb{G}$ such that for all $g \in \mathbb{G}$ we have

$$
\mathrm{g} \circ \mathrm{e}=\mathrm{g}=\mathrm{e} \circ \mathrm{~g}
$$

- (Inverses:) For each element $g \in \mathbb{G}$ we can find $h \in \mathbb{G}$ such that $g \circ h=e$. We say that h is the inverse of g.
- (Associativity:) For all $g_{1}, g_{2}, g_{3} \in \mathbb{G}$ we have

$$
\left(g_{1} \circ g_{2}\right) \circ g_{3}=g_{1} \circ\left(g_{2} \circ g_{3}\right)
$$

We say that the group is abelian if

- (Commutativity:) For all $\mathrm{g}, \mathrm{h} \in \mathbb{G}$ we have $\mathrm{g} \circ \mathrm{h}=\mathrm{h} \circ \mathrm{g}$

Finite Abelian Groups (Examples)

- Example 1: \mathbb{Z}_{N} when o denotes addition modulo N
- Identity: 0 , since $0 \circ x=[0+x \bmod N]=[x \bmod N]$.
- Inverse of x ? Set $x^{-1}=N-x$ so that $\left[x^{-1}+x \bmod N\right]=[N-x+x \bmod N]=0$.
- Example 2: \mathbb{Z}_{N}^{*} when \circ denotes multiplication modulo N
- Identity: 1 , since $10 x=[1(x) \bmod N]=[x \bmod N]$.
- Inverse of x ? Run extended GCD to obtain integers a and b such that

$$
a x+b N=\operatorname{gcd}(x, N)=1
$$

Observe that: $x^{-1}=a$. Why?

Cyclic Group

- Let \mathbb{G} be a group with order $m=|\mathbb{G}|$ with a binary operation $\circ($ over $G)$ and let $\mathrm{g} \in \mathbb{G}$ be given consider the set

$$
\langle g\rangle=\left\{g^{0}, g^{1}, g^{2}, \ldots\right\}
$$

Fact: $\langle g\rangle$ defines a subgroup of \mathbb{G}.

- Identity: g^{0}
- Closure: $g^{i} \circ g^{j}=g^{i+j} \in\langle g\rangle$
- g is called a "generator" of the subgroup.

Fact: Let $\mathrm{r}=|\langle g\rangle|$ then $g^{i}=g^{j}$ if and only if $i=j$ mod r. Also m is divisible by r .

Finite Abelian Groups (Examples)

Fact: Let p be a prime then \mathbb{Z}_{p}^{*} is a cyclic group of order $\mathrm{p}-1$.

- Note: Number of generators g s.t. of $\langle g\rangle=\mathbb{Z}_{p}^{*}$ is $\phi(p-1)$

Example (non-generator): $p=7, \mathrm{~g}=2$

$$
<2>=\{1,2,4\}
$$

Example (generator): $\mathrm{p}=7, \mathrm{~g}=5$

$$
<2>=\{1,5,4,6,2,3\}
$$

Discrete Log Experiment $\operatorname{DLog}_{A, G}(n)$

1. Run $G\left(1^{n}\right)$ to obtain a cyclic group \mathbb{G} of order q (with $\|q\|=n$) and a generator g such that $<\mathrm{g}>=\mathbb{G}$.
2. Select $h \in \mathbb{G}$ uniformly at random.
3. Attacker A is given \mathbb{G}, q, g, h and outputs integer x.
4. Attacker wins $\left(\operatorname{DLog}_{A, G}(n)=1\right)$ if and only if $g^{x}=h$.

We say that the discrete log problem is hard relative to generator G if

$$
\forall P P T A \exists \mu \text { (negligible) s.t } \operatorname{Pr}\left[\operatorname{DLog}_{\mathrm{A}, \mathrm{n}}=1\right] \leq \mu(n)
$$

Diffie-Hellman Problems

Computational Diffie-Hellman Problem (CDH)

- Attacker is given $\mathrm{h}_{1}=g^{x_{1}} \in \mathbb{G}$ and $\mathrm{h}_{2}=g^{x_{2}} \in \mathbb{G}$.
- Attackers goal is to find $g^{x_{1} x_{2}}=\left(\mathrm{h}_{1}\right)^{x_{2}}=\left(\mathrm{h}_{2}\right)^{x_{1}}$
- CDH Assumption: For all PPT A there is a negligible function negl upper bounding the probability that A succeeds with probability at most negl(n).
Decisional Diffie-Hellman Problem (DDH)
- Let $\mathrm{z}_{0}=g^{x_{1} x_{2}}$ and let $\mathrm{z}_{1}=g^{r}$, where $\mathrm{x}_{1}, \mathrm{x}_{2}$ and r are random
- Attacker is given $g^{x_{1}}, g^{x_{2}}$ and z_{b} (for a random bit b)
- Attackers goal is to guess b
- DDH Assumption: For all PPT A there is a negligible function negl such that A succeeds with probability at most $1 / 2+$ negl(n).

Secure key-agreement with DDH

1. Alice publishes $g^{x_{A}}$ and Bob publishes $g^{x_{B}}$
2. Alice and Bob can both compute $K_{A, B}=g^{x_{B} x_{A}}$ but to Eve this key is indistinguishable from a random group element (by DDH)

Remark: Protocol is vulnerable to Man-In-The-Middle Attacks if Bob cannot validate $g^{x_{A}}$.

Can we find a cyclic group where DDH holds?

- Example 1: \mathbb{Z}_{p}^{*} where p is a random n -bit prime.
- CDH is believed to be hard
- DDH is *not* hard (Exercise 13.15)
- Theorem: Let $\mathrm{p}=\mathrm{rq}+1$ be a random n -bit prime where q is a large λ bit prime then the set of $\mathrm{r}^{\text {th }}$ residues modulo p is a cyclic subgroup of order q . Then $\mathbb{G}_{r}=\left\{\left[h^{r} \bmod p\right] \mid h \in \mathbb{Z}_{p}^{*}\right\}$ is a cyclic subgroup of \mathbb{Z}_{p}^{*} of order q.
- Remark 1: DDH is believed to hold for such a group
- Remark 2: It is easy to generate uniformly random elements of \mathbb{G}_{r}
- Remark 3: Any element (besides 1) is a generator of \mathbb{G}_{r}

Can we find a cyclic group where DDH holds?

- Theorem: Let $\mathrm{p}=\mathrm{rq}+1$ be a random n -bit prime where q is a large λ-bit prime then the set of rth residues modulo p is a cyclic subgroup of order q . Then $\mathbb{G}_{r}=\left\{\left[h^{r} \bmod p\right] \mid h \in \mathbb{Z}_{p}^{*}\right\}$ is a cyclic subgroup of \mathbb{Z}_{p}^{*} of order q .
- Closure: $h^{r} g^{r}=(h g)^{r}$
- Inverse of h^{r} is $\left(h^{-1}\right)^{r} \in \mathbb{G}_{r}$
- Size $\left(h^{r}\right)^{x}=h^{[r x \bmod r q]}=\left(h^{r}\right)^{x}=h^{r[x \bmod q]}=\left(h^{r}\right)^{[x \bmod q]} \bmod p$

Remark: Two known attacks on Discrete Log Problem for \mathbb{G}_{r} (Section 9.2).

- First runs in time $O(\sqrt{q})=O\left(2^{\lambda / 2}\right)$
- Second runs in time $2^{O\left(\sqrt[3]{n}(\log n)^{2 / 3}\right)}$

Can we find a cyclic group where DDH holds?

Remark: Two known attacks (Section 9.2).

- First runs in time $O(\sqrt{q})=O\left(2^{\lambda / 2}\right)$
- Second runs in time $2^{O\left(\sqrt[3]{n}(\log n)^{2 / 3}\right)}$, where n is bit length of p

Goal: Set λ and n to balance attacks

$$
\lambda=O\left(\sqrt[3]{n}(\log n)^{2 / 3}\right)
$$

How to sample $p=r q+1$?

- First sample a random λ-bit prime q and
- Repeatedly check if $r q+1$ is prime for a random $n-\lambda$ bit value r

Can we find a cyclic group where DDH holds?

Elliptic Curves Example: Let p be a prime ($p>3$) and let A, B be constants. Consider the equation

$$
y^{2}=x^{3}+A x+B \bmod p
$$

And let

$$
E\left(\mathbb{Z}_{p}\right)=\left\{(x, y) \in \mathbb{Z}_{p}^{2} \mid y^{2}=x^{3}+A x+B \bmod p\right\} \cup\{\mathcal{O}\}
$$

Note: \mathcal{O} is defined to be an additive identity $(x, y)+\mathcal{O}=(x, y)$

What is $\left(x_{1}, y_{1}\right)+\left(x_{2}, y_{2}\right)$?

Elliptic Curve Example

The line passing through $\left(\boldsymbol{x}_{1}, \boldsymbol{y}_{1}\right)$ and $\left(\boldsymbol{x}_{2}, \boldsymbol{y}_{2}\right)$ has the equation

$$
y=m\left(x-x_{1}\right)+y_{1} \bmod P
$$

Where the slope

$$
m=\left[\frac{y_{1}-y_{2}}{x_{1}-x_{2}} \bmod p\right]
$$

Elliptic Curve Example

Formally, let

$$
m=\left[\frac{y_{1}-y_{2}}{x_{1}-x_{2}} \bmod p\right]
$$

Be the slope. Then the line passing through ($\boldsymbol{x}_{1}, \boldsymbol{y}_{1}$) and $\left(x_{2}, y_{2}\right)$ has the equation

$$
y=m\left(x-x_{1}\right)+y_{1} \bmod P
$$

$$
\begin{aligned}
& x_{3}=\left[m^{2}-x_{1}-x_{2} \bmod p\right] \\
& y_{3}=\left[m\left(x_{3}-x_{1}\right)+y_{1} \bmod p\right]
\end{aligned}
$$

$$
\begin{aligned}
& \left(m\left(x-x_{1}\right)+y_{1}\right)^{2} \\
& =x^{3}+A x+B \bmod p
\end{aligned}
$$

Elliptic Curve Example

No third point R on the elliptic curve.
$P+Q=0$
(Inverse)

$$
P+Q+0=0
$$

Can we find a cyclic group where DDH holds?

Elliptic Curves Example: Let p be a prime ($p>3$) and let A, B be constants. Consider the equation

$$
y^{2}=x^{3}+A x+B \bmod p
$$

And let

$$
E\left(\mathbb{Z}_{p}\right)=\left\{(x, y) \in \mathbb{Z}_{p}^{2} \mid y^{2}=x^{3}+A x+B \bmod p\right\} \cup\{\mathcal{O}\}
$$

Fact: $E\left(\mathbb{Z}_{p}\right)$ defines an abelian group

- For appropriate curves the DDH assumption is believed to hold
- If you make up your own curve there is a good chance it is broken...
- NIST has a list of recommendations

