Cryptography CS 555

Week 9:

• Number Theory + Public Key Crypto

Readings: Katz and Lindell Chapter 8, B.1, B.2

• Key-Exchange Problem:

- Obi-Wan and Yoda want to communicate securely
- Suppose that
 - Obi-Wan and Yoda don't have time to meet privately and generate a shared secret key
 - Use AES-GCM (requires shared secret key!)
 - Trusted Intermediary: If Obi-Wan and Yoda both have secret keys with Anakin they can exchange a secret key via the trusted party.

- Key-Exchange Problem:
 - Obi-Wan and Yoda want to communicate securely
 - Suppose that
 - Obi-Wan and Yoda don't have time to meet privately and generate a shared secret key
 - Use AES-GCM (requires shared secret key!)
 - **Trusted Intermediary:** If Obi-Wan and Yoda both have secret keys with Anakin (K_{Y,A} and K_{O,A}) they can exchange a secret key via the trusted party.
 - Obi-Wan picks a key K, computes $c = \text{Enc}_{K_{O,A}}(K)$ and sends c to Anakin with instructions to re-encrypt and forward to Yoda.
 - Anakin computes $K = Dec_{K_{O,A}}(c)$ and $c' = Enc_{K_{Y,A}}(K)$ and forwards to Yoda.
 - Yoda recovers $K = \text{Dec}_{K_{Y,A}}(c')$
 - Anakin also learns the secret key
 - **Remark**: Obi-Wan and Yoda both trust Anakin, but would prefer to keep the key private just in case.

- Key-Exchange Problem:
 - Obi-Wan and Yoda want to communicate securely
 - Trusted Intermediary: If Obi-Wan and Yoda both have secret keys with Anakin (K_{Y,A} and K_{O,A}) they can exchange a secret key via the trusted party.
 - **Remark**: Obi-Wan and Yoda both trust Anakin, but would prefer to keep the key private just in case.

- Key-Exchange Problem:
 - Obi-Wan and Yoda want to communicate securely
 - Suppose that
 - Obi-Wan and Yoda don't have time to meet privately and generate one
 - Obi-Wan and Yoda share an asymmetric key with Anakin
 - Can they use Anakin to exchange a secret key?
 - **Remark**: Obi-Wan and Yoda both trust Anakin, but would prefer to keep the key private just in case.
- Need for Public-Key Crypto
 - We can solve the key-exchange problem using public-key cryptography.
 - No solution is known using symmetric key cryptography alone

Symmetric Key Explosion Problem

- Suppose we have n people and each pair of people want to be able to maintain a secure communication channel.
 - How many private keys per person?
 - Answer: n-1
- Key Explosion Problem
 - n can get very big if you are Google or Amazon!

Public Key Encryption: Basic Terminology

- Plaintext/Plaintext Space
 - A message $m \in \mathcal{M}$
- Ciphertext $c \in C$
- Public/Private Key Pair $(pk, sk) \in \mathcal{K}$

Public Key Encryption Syntax

• Three Algorithms

- Gen(1ⁿ, R) (Key-generation algorithm)
 - Input: Random Bits R
 - Output: $(pk, sk) \in \mathcal{K}$
- $\operatorname{Enc}_{pk}(m) \in \mathcal{C}$ (Encryption algorithm)
- Dec_{sk}(c) (Decryption algorithm)
 - Input: Secret key sk and a ciphertex c
 - Output: a plaintext message $m \in \mathcal{M}$

Alice must run key generation algorithm in advance an publishes the public key: pk

Assumption: Adversary only gets to see pk (not sk)

• Invariant: Dec_{sk}(Enc_{pk}(m))=m

CPA-Security (PubK^{LR-cpa}_{A, Π}(n))

Random bit b (pk,sk) = Gen(.)

 $\forall PPT \ A \ \exists \mu \text{ (negligible) s.t}$ $\Pr[\text{PubK}_{A,\Pi}^{\text{LR-cpa}}(n) = 1] \leq \frac{1}{2} + \mu(n)$

Public Key Crypto

- Fact 1: CPA Security and Eavesdropping Security are Equivalent
 - **Key Insight:** The attacker has the public key so he doesn't gain anything from being able to query the encryption oracle!
- Fact 2: Any deterministic encryption scheme is not CPA-Secure
 - Historically overlooked in many real world public key crypto systems
- Fact 3: No Public Key Cryptosystem can achieve Perfect Secrecy!
 - Exercise 11.1
 - Hint: Unbounded attacker can keep encrypting the message m using the public key to recover all possible encryptions of m.
- **Key Question:** How do we achieve CPA/CCA-Secure Public Key Encryption?

Number Theory

- Key tool behind (most) public key-crypto
 - RSA, El-Gamal, Diffie-Hellman Key Exchange
- Aside: don't worry we will still use symmetric key crypto
 - It is more efficient in practice
 - First step in many public key-crypto protocols is to generate symmetric key
 - Then communicate using authenticated encryption e.g., AES-GCM

Polynomial Time Factoring Algorithm?

FindPrimeFactor

Input: N

For i=1,...,N

if N/i is an integer then

Output i

Did we just break RSA?

Running time: O(N) steps

Correctness: Always returns a factor

Polynomial Time Factoring Algorithm?

FindPrimeFactor

Input: N

For i=1,...,N

if N/i is an integer then

Output i

We measure running time of an arithmetic algorithm (multiply, divide, GCD, remainder) in terms of the number of bits necessary to encode the inputs.

> How many bits ||N|| to encode N? Answer: $||N|| = \log_2(N)$

Running time: O(N) steps

Correctness: Always returns a factor

- Addition
- Multiplication

Polynomial time in ||a|| and ||b||

- Division with Remainder
 - Input: a and divisor b
 - **Output**: quotient q and remainder r < **b** such that

$$\boldsymbol{u} = q\boldsymbol{b} + r$$

Convenient Notation: r = a mod b

Note 1: We require that quotient q and remainder r are both integers

Note 2: If remainder is r = 0 (i.e., a = qb + 0) we say that **b** divides **a** (Notation: b|a)

- Greatest Common Divisor
 - **Example:** gcd(9,15) = 3
- Extended GCD(a,b)
 - Output integers X,Y such that

 $X\boldsymbol{a} + Y\boldsymbol{b} = \gcd(\boldsymbol{a}, \boldsymbol{b})$

- Division with Remainder
 - Input: a and b
 - **Output**: quotient q and remainder r < b such that

 $\boldsymbol{a} = q\boldsymbol{b} + r$

- Greatest Common Divisor
 - Key Observation: if a = qb + rThen gcd(a,b) = gcd(r, b)=gcd(a mod b, b)

Proof:

- Let d = gcd(a,b). Then d divides both a and b. Thus, d also divides r=a-qb.
 →d=gcd(a,b) ≤ gcd(r, b)
- Let d' = gcd(r, b). Then d' divides both b and r. Thus, d' also divides a = qb+r. \rightarrow gcd(a,b) \ge gcd(r, b)=d'
- Conclusion: d=d'.

- (Modular Arithmetic) The following operations are polynomial time in ||a|| and ||b|| and ||N||.
- 1. Compute [**a** mod **N**]
- Compute sum [(a+b) mod N], difference [(a-b) mod N] or product [ab mod N]
- 3. Determine whether **a** has an inverse **a**⁻¹ such that 1=[**aa**⁻¹ mod **N**]
- 4. Find **a**⁻¹ if it exists
- 5. Compute the exponentiation [**a**^b mod **N**]

- (Modular Arithmetic) The
- 1. Compute [**a** mod **N**]
- Compute sum [[]/ [ab mod №²

Remark: Part 3 and 4 use extended GCD algorithm

- 3. Determine whether **a** has an inverse **a**⁻¹ such that 1=[**aa**⁻¹ mod **N**]
- 4. Find **a**⁻¹ if it exists
- 5. Compute the exponentiation [**a**^b mod **N**]

in

- (Modular Arithmetic) The following operations are polynomial time in in ||a|| and ||b|| and ||N||.
- 1. Compute [**a** mod **N**]
- Compute sum [(a+b) mod N], difference [(a-b) mod N] or product [ab mod N]
- 3. Determine whether **a** has an inverse **a**⁻¹ such that 1=[**aa**⁻¹ mod **N**]
- 4. Find **a**⁻¹ if it exists
 - Note: a⁻¹ exists if and only if GCD(a,N) = 1.
 - Extended Euclidean Algorithm: Finds integers x,y s.t. ax+Ny =GCD(a,N)=1.
 - Define: a⁻¹ = [x mod N] and observe [aa⁻¹ mod N] = [ax-Ny mod N] = GCD(a,N)=1.
- 5. Compute the exponentiation [**a**^b mod **N**]

- (Modular Arithmetic) The following operations are polynomial time in in ||a|| and ||b|| and ||N||.
- 1. Compute the exponentiation [**a**^b mod **N**]

(Modular Arithmetic) The following operations are polynomial time in ||a||, ||b|| and ||N||.

1. Compute the exponentiation [**a**^b mod **N**]

(Modular Arithmetic) The following operations are polynomial time in ||a||, ||b|| and ||N||.

1. Compute the exponentiation [**a**^b mod **N**]

Fixed Algorithm: If (b=0) return 1 X[0]=a; For i=1,...,log₂(b)+1 X[i] = X[i-1]*X[i-1] mod N / [a

// Invariant: X[i] =
$$a^{2^{i}} \mod N$$

[$a^{b} \mod N$]= $a^{\sum_{i} b[i]2^{i}} \mod N$
= $\prod_{i} X[i]^{b[i]} \mod N$

(Sampling) Let

$$\mathbb{Z}_N = \{1, \dots, N\}$$
$$\mathbb{Z}_N^* = \{x \in \mathbb{Z}_N | \operatorname{gcd}(N, x) = 1\}$$

Examples:

$$\mathbb{Z}_{6}^{*} = \{1,5\}$$

$$\mathbb{Z}_7^* = \{1, 2, 3, 4, 5, 6\}$$

(Sampling) Let

$$\mathbb{Z}_N = \{1, \dots, N\}$$
$$\mathbb{Z}_N^* = \{x \in \mathbb{Z}_N | \operatorname{gcd}(N, x) = 1\}$$

- There is a probabilistic polynomial time algorithm (in |N|) to sample from \mathbb{Z}_N^* and \mathbb{Z}_N
- Algorithm to sample from \mathbb{Z}_{N}^{*} is allowed to output "fail" with negligible probability in ||N||.
- Conditioned on not failing sample must be uniform.

Useful Facts

Fact:
$$x, y \in \mathbb{Z}_{N}^{*} \rightarrow [xy \mod N] \in \mathbb{Z}_{N}^{*}$$
 where $\mathbb{Z}_{N}^{*} = \{x \in \mathbb{Z}_{N} | gcd(N, x) = 1\}$

Example 1: $\mathbb{Z}_8^* = \{1,3,5,7\}$

$$[3 \times 7 \mod 8] = [21 \mod 8] = [5 \mod 8] \in \mathbb{Z}_{N}^{*}$$

Proof (by contradiction): Let d:=gcd(xy,N)

Suppose d>1 then for some prime p and integer q we have d=pq. Now p must divide N and xy (by definition) and hence p must divide either x or y. (WLOG) say p divides x. In this case gcd(x,N)=p > 1, which means $x \notin \mathbb{Z}_{N}^{*}$

$$x, y \in \mathbb{Z}_{N}^{*} \rightarrow [xy \mod N] \in \mathbb{Z}_{N}^{*}$$

Fact 1: Let
$$\boldsymbol{\phi}(N) = |\mathbb{Z}_{N}^{*}|$$
 then for any $x \in \mathbb{Z}_{N}^{*}$ we have $\left[x^{\boldsymbol{\phi}(N)} \mod N\right] = 1$

Example:
$$\mathbb{Z}_8^* = \{1,3,5,7\}, \phi(8) = 4$$

 $\begin{bmatrix} 3^4 \mod 8 \end{bmatrix} = \begin{bmatrix} 9 \times 9 \mod 8 \end{bmatrix} = 1$
 $\begin{bmatrix} 5^4 \mod 8 \end{bmatrix} = \begin{bmatrix} 25 \times 25 \mod 8 \end{bmatrix} = 1$
 $\begin{bmatrix} 7^4 \mod 8 \end{bmatrix} = \begin{bmatrix} 49 \times 49 \mod 8 \end{bmatrix} = 1$

$$x, y \in \mathbb{Z}_{N}^{*} \to [xy \mod N] \in \mathbb{Z}_{N}^{*}$$

Fact 1: Let $\phi(N) = |\mathbb{Z}_N^*|$ then for any $x \in \mathbb{Z}_N^*$ we have $[x^{\phi(N)} \mod N] = 1$

Fact 2: Let $\phi(N) = |\mathbb{Z}_{N}^{*}|$ and let $N = \prod_{i=1}^{m} p_{i}^{e_{i}}$, where each p_{i} is a distinct prime number and $e_{i} > 0$ then

$$\boldsymbol{\phi}(\boldsymbol{N}) = \prod_{i=1}^{m} (p_i - 1) p_i^{e_i - 1} = n \prod_{i=1}^{m} \left(1 - \frac{1}{p_i} \right)$$

Recap

- Polynomial time algorithms (in bit lengths ||*a*||, ||*b*|| and ||N||) to do important stuff
 - GCD(a,b)
 - Find inverse a⁻¹ of a such that 1=[aa⁻¹ mod N] (if it exists)
 - PowerMod: [**a**^b mod **N**]
 - Draw uniform sample from $\mathbb{Z}_{N}^{*} = \{x \in \mathbb{Z}_{N} | \gcd(N, x) = 1\}$
 - Randomized PPT algorithm

$$x, y \in \mathbb{Z}_{N}^{*} \rightarrow [xy \mod N] \in \mathbb{Z}_{N}^{*}$$

Fact 1: Let
$$\phi(N) = |\mathbb{Z}_{N}^{*}|$$
 then for any $x \in \mathbb{Z}_{N}^{*}$ we have $[x^{\phi(N)} \mod N] = 1$

Example:
$$\mathbb{Z}_8^* = \{1,3,5,7\}, \phi(8) = 4$$

 $\begin{bmatrix} 3^4 \mod 8 \end{bmatrix} = \begin{bmatrix} 9 \times 9 \mod 8 \end{bmatrix} = 1$
 $\begin{bmatrix} 5^4 \mod 8 \end{bmatrix} = \begin{bmatrix} 25 \times 25 \mod 8 \end{bmatrix} = 1$
 $\begin{bmatrix} 7^4 \mod 8 \end{bmatrix} = \begin{bmatrix} 49 \times 49 \mod 8 \end{bmatrix} = 1$

$$x, y \in \mathbb{Z}_{N}^{*} \to [xy \mod N] \in \mathbb{Z}_{N}^{*}$$

Fact 1: Let $\phi(N) = |\mathbb{Z}_N^*|$ then for any $x \in \mathbb{Z}_N^*$ we have $[x^{\phi(N)} \mod N] = 1$

Fact 2: Let $\phi(N) = |\mathbb{Z}_{N}^{*}|$ and let $N = \prod_{i=1}^{m} p_{i}^{e_{i}}$, where each p_{i} is a distinct prime number and $e_{i} > 0$ then

$$\boldsymbol{\phi}(\boldsymbol{N}) = \prod_{i=1}^{m} (p_i - 1) p_i^{e_i - 1} = n \prod_{i=1}^{m} \left(1 - \frac{1}{p_i} \right)$$

Fact 2: Let $\phi(N) = |\mathbb{Z}_{\mathbb{N}}^*|$ and let $N = \prod_{i=1}^m p_i^{e_i}$, where each p_i is a distinct prime number and $e_i > 0$ then

$$\boldsymbol{\phi}(\boldsymbol{N}) = \prod_{i=1}^{m} (p_i - 1) p_i^{e_i - 1} = n \prod_{i=1}^{m} \left(1 - \frac{1}{p_i} \right)$$

Example 0: Let p be a prime so that $\mathbb{Z}^* = \{1, ..., p-1\}$ $\boldsymbol{\phi}(\boldsymbol{p}) = p\left(1 - \frac{{}^{\mathrm{p}}1}{p}\right) = p-1$

Fact 2: Let $\phi(N) = |\mathbb{Z}_{N}^{*}|$ and let $N = \prod_{i=1}^{m} p_{i}^{e_{i}}$, where each p_{i} is a distinct prime number and $e_{i} > 0$ then

$$\boldsymbol{\phi}(\boldsymbol{N}) = \prod_{i=1}^{m} (p_i - 1) p_i^{e_i - 1} = n \prod_{i=1}^{m} \left(1 - \frac{1}{p_i} \right)$$

Example 1: N = 9 = 3² (m=1, e₁=2)
$$\phi(9) = \prod_{i=1}^{n} (p_i - 1)p_i^{2-1} = 2 \times 3$$

Example 1: N = 9 = 3² (m=1, e₁=2)
$$\boldsymbol{\phi}(\mathbf{9}) = \prod_{i=1}^{1} (p_i - 1) p_i^{2-1} = 2 \times 3$$

Double Check: $\mathbb{Z}_{9}^{*} = \{1, 2, 4, 5, 7, 8\}$

Fact 2: Let $\phi(N) = |\mathbb{Z}_{N}^{*}|$ and let $N = \prod_{i=1}^{m} p_{i}^{e_{i}}$, where each p_{i} is a distinct prime number and $e_{i} > 0$ then

$$\boldsymbol{\phi}(\boldsymbol{N}) = \prod_{i=1}^{m} (p_i - 1) p_i^{e_i - 1} = n \prod_{i=1}^{m} \left(1 - \frac{1}{p_i} \right)$$

Example 2: N = 15 = 5 × 3/2 (m=2, e₁=e₂=1)
$$\boldsymbol{\phi}(\mathbf{15}) = \prod_{i=1}^{\infty} (p_i - 1)p_i^{1-1} = (5-1)(3-1) = 8$$

Example 2: N = 15 =
$$5 \times 3$$
 (m=2, e₁=e₂=1)
 $\phi(15) = \prod_{i=1}^{2} (p_i - 1)p_i^{1-1} = (5-1)(3-1) = 8$

Double Check: $\mathbb{Z}_{15}^* = \{1, 2, 4, 7, 8, 11, 13, 14\}$

I count 8 elements in $\mathbb{Z}^*_{_{15}}$

Fact 2: Let $\phi(N) = |\mathbb{Z}_{N}^{*}|$ and let $N = \prod_{i=1}^{m} p_{i}^{e_{i}}$, where each p_{i} is a distinct prime number and $e_{i} > 0$ then

$$\boldsymbol{\phi}(\boldsymbol{N}) = \prod_{i=1}^{m} (p_i - 1) p_i^{e_i - 1} = n \prod_{i=1}^{m} \left(1 - \frac{1}{p_i} \right)$$

Special Case: N = pq (p and q are distinct primes) $\phi(N) = (p-1)(q-1)$

Special Case: N = pq (p and q are distinct primes) $\phi(N) = (p-1)(q-1)$

Proof Sketch: If $x \in \mathbb{Z}_{N}$ is not divisible by p or q then $x \in \mathbb{Z}_{N}^{*}$. How many elements are not in \mathbb{Z}_{N}^{*} ?

- Multiples of p: p, 2p, 3p,...,pq (q multiples of p)
- Multiples of q: q, 2q,...,pq (p multiples of q)
- **Double Counting?** N=pq is in both lists. Any other duplicates?
- No! cq = dp \rightarrow q divides d (since, gcd(p,q)=1) and consequently d $\geq q$
 - Hence, $dp \ge pq = N$

More Useful Facts

Special Case: N = pq (p and q are distinct primes)

$$\phi(N) = (p-1)(q-1)$$

Proof Sketch: If $x \in \mathbb{Z}$ is not divisible by p or q then $x \in \mathbb{Z}_{N}^{*}$. How many elements are not in \mathbb{Z}_{N}^{*} ?

- Multiples of p: p, 2p, 3p,...,pq (q multiples of p)
- Multiples of q: q, 2q,...,pq (p multiples of q)

• Answer: p+q-1 elements are not in
$$\mathbb{Z}^*$$

 $\phi(N) = N - (p^N + q - 1)$
 $= pq - p - q + 1 = (p - 1)(q - 1)$

Groups

Definition: A (finite) group is a (finite) set \mathbb{G} with a binary operation \circ (over G) for which we have

- (Closure:) For all $g, h \in \mathbb{G}$ we have $g \circ h \in \mathbb{G}$
- (Identity:) There is an element $e \in \mathbb{G}$ such that for all $g \in \mathbb{G}$ we have

$$g \circ e = g = e \circ g$$

- (Inverses:) For each element $g \in \mathbb{G}$ we can find $h \in \mathbb{G}$ such that $g \circ h = e = h \circ g$. We say that h is the inverse of g.
- (Associativity:) For all $g_1, g_2, g_3 \in \mathbb{G}$ we have $(g_1 \circ g_2) \circ g_3 = g_1 \circ (g_2 \circ g_3)$

We say that the group is **abelian** if

• (Commutativity:) For all g, $h \in \mathbb{G}$ we have $g \circ h = h \circ g$

Groups

Definition: A (finite) group is a (finite) set \mathbb{G} with a binary operation \circ (over G) for which we have

- (Closure:) For all $g,h\in \mathbb{G}$ we have $g\circ h\in \mathbb{G}$
- (Identity:) There is an element $e \in \mathbb{G}$ such that for all $g \in \mathbb{G}$ we have

$$g \circ e = g = e \circ g$$

- (Inverses:) For each element $g \in \mathbb{G}$ we can find $h \in \mathbb{G}$ such that $g \circ h = e = h \circ g$. g. We say that h is the inverse of g.
- (Associativity:) For all $g_1, g_2, g_3 \in \mathbb{G}$ we have $(g_1 \circ g_2) \circ g_3 = g_1 \circ (g_2 \circ g_3)$

Fact: The identity is unique + inverses must be unique **Proof:** If e and e' are both identity then $e = e \circ e' = e'$ If h and h' are both inverses of g then $h = h \circ e = h \circ (g \circ h') = (g \circ h) \circ h' = h'$.

39

Associativity

Abelian Groups (Examples)

- Example 1: \mathbb{Z}_{N} when \circ denotes addition modulo N
- Identity: 0, since $0 \circ x = [0+x \mod N] = [x \mod N]$.
- Inverse of x? Set $x^{-1}=N-x$ so that $[x^{-1}+x \mod N] = [N-x+x \mod N] = 0$.
- Example 2: \mathbb{Z}_{N}^{*} when \circ denotes multiplication modulo N
- Identity: 1, since $1 \circ x = [1(x) \mod N] = [x \mod N]$.
- Inverse of x? Run extended GCD to obtain integers a and b such that $ax + bN = \gcd(x, N) = 1$

Observe that: $x^{-1} = a$. Why?

Abelian Groups (Examples)

- Example 1: \mathbb{Z}_{N} when \circ denotes addition modulo N
- Identity: 0, since $0 \circ x = [0+x \mod N] = [x \mod N]$.
- Inverse of x? Set $x^{-1}=N-x$ so that $[x^{-1}+x \mod N] = [N-x+x \mod N] = 0$.
- Example 2: $\mathbb{Z}^*_{\mathcal{N}}$ when \circ denotes multiplication modulo N
- Identity: 1, since $1 \circ x = [1(x) \mod N] = [x \mod N]$.
- Inverse of x? Run extended GCD to obtain integers a and b such that $ax + bN = \gcd(x, N) = 1$

Observe that: $x^{-1} = a$, since $[ax \mod N] = [1-bN \mod N] = 1$

Groups

Lemma 8.13: Let \mathbb{G} be a group with a binary operation \circ (over G) and let a, b, c $\in \mathbb{G}$. If a \circ c = b \circ c then a = b.

Proof Sketch: Apply the unique inverse to
$$c^{-1}$$
 both sides.
 $a \circ c = b \circ c \rightarrow (a \circ c) \circ c^{-1} = (b \circ c) \circ c^{-1}$
 $\rightarrow a \circ (c \circ c^{-1}) = b \circ (c \circ c^{-1})$
 $\rightarrow a \circ (e) = b \circ (e)$
 $\rightarrow a = b$

(**Remark**: it is not to difficult to show that a group has a *unique* identity and that inverses are *unique*).

Groups

Lemma 8.13: Let \mathbb{G} be a group with a binary operation \circ (over G) and let a, b, c $\in \mathbb{G}$. If a \circ c = b \circ c then a = b.

Proof Sketch: Apply the unique inverse to
$$c^{-1}$$
 both sides.
 $a \circ c = b \circ c \rightarrow (a \circ c) \circ c^{-1} = (b \circ c) \circ c^{-1}$
 $\rightarrow a \circ (c \circ c^{-1}) = b \circ (c \circ c^{-1})$
 $\rightarrow a \circ (e) = b \circ (e)$
 $\rightarrow a = b$

(**Remark**: it is not to difficult to show that a group has a *unique* identity and that inverses are *unique*).

Definition: Let \mathbb{G} be a group with a binary operation \circ (over G) let m be a positive integer and let $g \in \mathbb{G}$ be a group element then we define

$$g^m \coloneqq g \circ \cdots \circ g$$

m times

Theorem: Let \mathbb{G} be finite group with size $m = |\mathbb{G}|$ and let $g \in \mathbb{G}$ be a group element then $g^m = 1$ (where 1 denotes the unique identity of \mathbb{G}).

Theorem 8.14: Let \mathbb{G} be finite group with size $m = |\mathbb{G}|$ and let $g \in \mathbb{G}$ be a group element then $g^m = 1$ (where 1 denotes the unique identity of \mathbb{G}).

Proof: (for abelian group) Let $\mathbb{G} = \{g_1, \dots, g_m\}$ then we claim $g_1 \circ \dots \circ g_m = (g \circ g_1) \circ \dots \circ (g \circ g_m)$ Why? If $(g_i \circ g) = (g_j \circ g)$ then $g_j = g_i$ (by Lemma 8.13)

Theorem 8.14: Let \mathbb{G} be finite group with size $m = |\mathbb{G}|$ and let $g \in \mathbb{G}$ be a group element then $g^m=1$ (where 1 denotes the unique identity of \mathbb{G}).

Proof: (for abelian group) Let $\mathbb{G} = \{g_1, \dots, g_m\}$ then we claim $g_1 \circ \dots \circ g_m = (g \circ g_1) \circ \dots \circ (g \circ g_m)$ Because \mathbb{G} is abelian we can re-arrange terms $1 \circ (g_1 \circ \dots \circ g_m) = (g^m) \circ (g_1 \circ \dots \circ g_m)$ By Lemma 8.13 we have $1 = g^m$. QED

Theorem 8.14: Let \mathbb{G} be finite group with size $m = |\mathbb{G}|$ and let $g \in \mathbb{G}$ be a group element then $g^m=1$ (where 1 denotes the unique identity of \mathbb{G}).

Corollary 8.15: Let \mathbb{G} be finite group with size $m = |\mathbb{G}| > 1$ and let $g \in \mathbb{G}$ be a group element then for any integer x we have $g^x = g^{[x \mod m]}$. **Proof:** $g^x = g^{qm + [x \mod m]} = 1 \times g^{[x \mod m]}$, where q is unique integer such that x=qm+ [x mod m]

Special Case: \mathbb{Z}_{N}^{*} is a group of size $\boldsymbol{\phi}(N)$ so we have now proved

Corollary 8.22: For any $g \in \mathbb{Z}_{N}^{*}$ and integer x we have

$$[g^{x} \mod \mathbf{N}] = \left[g^{[x \mod \phi(\mathbf{N})]} \mod \mathbf{N}\right]$$

Chinese Remainder Theorem

Theorem: Let N = pq (where gcd(p,q)=1) be given and let $f: \mathbb{Z}_{N} \to \mathbb{Z}_{p} \times \mathbb{Z}_{q}$ be defined as follows $f(x) = ([x \mod p], [x \mod q])$

then

- f is a bijective mapping (invertible)
- f and its inverse $f^{-1}: \mathbb{Z}_p \times \mathbb{Z}_q \to \mathbb{Z}_{N}$ can be computed efficiently
- $f(x + y) = f(x) + f(y) = ([x + y \mod p], [x + y \mod q])$
- The restriction of f to \mathbb{Z}_{N}^{*} yields a bijective mapping to $\mathbb{Z}_{N}^{*} \times \mathbb{Z}_{N}^{*}$
- For inputs $x, y \in \mathbb{Z}_{N}^{*}$ we have f(x)f(y) = f(xy)

Chinese Remainder Theorem

Application of CRT: Faster computation modulo N=pq.

Example: Compute $[11^{53} \mod 15]$ f(11)=([-1 mod 3],[1 mod 5]) f(11⁵³)=([(-1)⁵³ mod 3],[1⁵³ mod 5])= (-1,1)

 $f^{-1}(-1,1)=11$

Thus, 11=[11⁵³ mod 15]

CS 555: Week 10: Topic 1 Finding Prime Numbers, RSA

RSA Key-Generation

KeyGeneration(1ⁿ)

Step 1: Pick two random n-bit primes p and q Step 2: Let N=pq, $\phi(N) = (p-1)(q-1)$ Step 3: ...

Question: How do we accomplish step one?

Bertrand's Postulate

Theorem 8.32. For any n > 1 the fraction of n-bit integers that are prime is at least $1/_{3n}$.

Bertrand's Postulate

Theorem 8.32. For any n > 1 the fraction of n-bit integers that are prime is at least $1/_{3n}$.

GenerateRandomPrime(1ⁿ)

For i=1 to $3n^2$: $p' \leftarrow \{0,1\}^{n-1}$ $p \leftarrow 1 || p'$ if isPrime(p) then return p return fail Assume for now that we can run isPrime(p). What are the odds that the algorithm fails?

On each iteration the probability that p is not a prime is $\left(1-\frac{1}{3n}\right)$

We fail if we pick a non-prime in all 3n² iterations. The probability of failure is at most

$$\left(1-\frac{1}{3n}\right)^{3n^2} = \left(\left(1-\frac{1}{3n}\right)^{3n}\right)^n \le e^{-n}$$

isPrime(p): Miller-Rabin Test

• We can check for primality of p in polynomial time in ||p||.

Theory: Deterministic algorithm to test for primality.

• See breakthrough paper "Primes is in P"

Practice: Miller-Rabin Test (randomized algorithm)

- Guarantee 1: If p is prime then the test outputs YES
- Guarantee 2: If p is not prime then the test outputs NO except with negligible probability.

The "Almost" Miller-Rabin Test

```
Input: Integer N and parameter 1<sup>t</sup>

Output: "prime" or "composite"

for i=1 to t:

a \leftarrow \{1,...,N-1\}

if a^{N-1} \neq 1 \mod N then return "composite"

Return "prime"
```

Claim: If N is prime then algorithm always outputs "prime" **Proof:** For any $a \in \{1, ..., N-1\}$ we have $a^{N-1} = a^{\phi(N)} = 1 \mod N$

The "Almost" Miller-Rabin Test

Input: Integer N and parameter 1^t
Output: "prime" or "composite"
for i=1 to t:

a $\leftarrow \{1,...,N-1\}$ if $a^{N-1} \neq 1 \mod N$ then return "composition **Return** "prime"

Need a bit of extra work to handle Carmichael numbers (see textbook).

Fact: If N is composite and not a Carmichael number then the algorithm outputs "composite" with probability $1 - 2^{-t}$

Input: Integer N and parameter 1^t

Output: "prime" or "composite"

If Even(N) or PerfectPower(N) return "composite"

Else find u (odd) and $r \ge 1$ s.t. N $-1 = 2^r u$

for j=1 to t:

if $a^u \neq \pm 1 \mod N$ and $a^{2^i u} \neq -1 \mod N$ for all $1 \le i \le r - 1$ **return** "composite"

Return "prime"

Input: Integer N and parameter 1^t

Output: "prime" or "composite"

If Even(N) or PerfectPower(N) return "compo-

Else find u (odd) and $r \ge 1$ s.t. N – 1 = 2

for j=1 to t:

if $a^u \neq \pm 1 \mod N$ and $a^{2^i u} \neq -1 \mod N$ for all $1 \le i \le r - 1$ **return** "composite"

Return "prime"

Lemma: If p is prime and $x^2 = 1 \mod p$ then $x = \pm 1 \mod p$

Input: Integer N and parameter 1^t

Output: "prime" or "composite"

If Even(N) or PerfectPower(N) return "composite"

Else find u (odd) and $r \ge 1$ s.t. $N - 1 = 2^r u$

for j=1 to t:

if $a^{u} \neq \pm 1 \mod N$ and $a^{2^{i}u} \neq -1 \mod N$ for all $1 \le i \le r-1$ return "composite" $\begin{pmatrix} a^{2^{i}u} \end{pmatrix}^{2} - 1$ $= (a^{2^{i-1}u} - 1)(a^{2^{i-1}u} + 1) + 1$

Observe:
$$(a^{2^{r-1}u})^2 = a^{N-1} \mod N$$

 $= 1 \mod N$

Input: Integer N and parameter 1^t

Output: "prime" or "composite"

If Even(N) or PerfectPower(N) return "composite"

Else find u (odd) and $r \ge 1$ s.t. $N - 1 = 2^r u$

for j=1 to t:

if $a^{u} \neq \pm 1 \mod N$ and $a^{2^{i}u} \neq -1 \mod N$ for all $1 \le i \le r-1$ return "composite" Return "prime" $(a^{2^{r}u}) - 1 = (a^{2^{r-1}u} - 1)(a^{2^{r-1}u} + 1)$ $= \cdots = (a^{2^{r-2}u} - 1)(a^{2^{r-2}u} + 1)(a^{2^{r-1}u} + 1)$

Observe:

$$(a^{2^{r-1}u})^2 = a^{N-1} \mod N$$

 $= 1 \mod N$

Input: Integer N and parameter 1^t

Output: "prime" or "composite"

If Even(N) or PerfectPower(N) return "cor One of the factors must be 0 Else find u (odd) and $r \ge 1$ s.t. $N - 1 = 2 \pmod{N}$ **for** j=1 to t:

Observe:

 $\left(a^{2^{r-1}u}\right)^2 = a^{N-1} \mod N$

 $= 1 \mod N$

if $a^u \neq \pm 1 \mod N$ and $a^{2^i u} \neq -1 \mod N$ for all $1 \leq i \leq r-1$ return "composite" If N is prime we won't return composite Return "prime" $\mathbf{0} = \left(a^{2^{r_u}}\right) - \mathbf{1} = \dots = \left(a^u - \mathbf{1}\right) \left[\left(a^{2^{i_u}} + \mathbf{1}\right)\right]$

Back to RSA Key-Generation

KeyGeneration(1ⁿ)

Step 1: Pick two random n-bit primes p and q Step 2: Let N=pq, $\phi(N) = (p-1)(q-1)$ Step 3: Pick e > 1 such that gcd(e, $\phi(N)$)=1 Step 4: Set d=[e⁻¹ mod $\phi(N)$] (secret key) **Return:** N, e, d

- How do we find d?
- Answer: Use extended gcd algorithm to find e^{-1} mod $\phi(N)$.

Be Careful Where You Get Your "Random Bits!"

int getRandomNumber() return 4; // chosen by fair dice roll. // guaranteed to be random.

- RSA Keys Generated with weak PRG
 - Implementation Flaw
 - Unfortunately Commonplace
- Resulting Keys are Vulnerable
 - Sophisticated Attack
 - Coppersmith's Method

Q BIZ & IT TECH SCIENCE POLICY CARS GAMING & CULTURE FORUMS

COMPLETELY BROKEN -

Millions of high-security crypto keys crippled by newly discovered flaw

Factorization weakness lets attackers impersonate key holders and decrypt their data. DAN GOODIN - 10/16/2017, 7:00 AM

(Plain) RSA Encryption

- Public Key: PK=(N,e)
- Message $m \in \mathbb{Z}_{N}$ Fnc...

$\mathbf{Enc}_{\mathbf{PK}}(\mathbf{m}) = \ [m^e \bmod \mathbf{N}]$

• **Remark:** Encryption is efficient if we use the power mod algorithm.

(Plain) RSA Decryption

- Secret Key: SK=(N,d)
- Ciphertext $c \in \mathbb{Z}_{N}$

 $Dec_{sk}(c) = [c^d \mod N]$

- Remark 1: Decryption is efficient if we use the power mod algorithm.
- **Remark 2:** Suppose that $m \in \mathbb{Z}_{N}^{*}$ and let $c=Enc_{PK}(m) = [m^{e} \mod N]$

$$\begin{aligned} \mathsf{Dec}_{\mathsf{SK}}(\mathsf{c}) &= \left[(m^e)^d \mod \mathsf{N} \right] = \left[m^{ed} \mod \mathsf{N} \right] \\ &= \left[m^{\left[ed \ mod \ \phi(\mathsf{N}) \right]} \mod \mathsf{N} \right] \\ &= \left[m^1 \mod \mathsf{N} \right] = m \end{aligned}$$

RSA Decryption

- Secret Key: SK=(N,d)
- Ciphertext $c \in \mathbb{Z}_{N}$

$$Dec_{s\kappa}(c) = [c^d \mod N]$$

- **Remark 1:** Decryption is efficient if we use the power mod algorithm.
- Remark 2: Suppose that $m \in \mathbb{Z}_{N}^{*}$ and let $c=Enc_{PK}(m) = [m^{e} \mod N]$ then $Dec_{SK}(c) = m$
- Remark 3: Even if $m \in \mathbb{Z}_{N}^{} \mathbb{Z}_{N}^{*}$ and let $c = Enc_{PK}(m) = [m^{e} \mod N]$ then $Dec_{SK}(c) = m$
 - Use Chinese Remainder Theorem to show this

$$ed = 1 + k(p-1)(q-1)$$

 $\rightarrow f(c^d) = ([m^{ed} \mod p], [m^{ed} \mod q]) = ([m^1 \mod p], [m^1 \mod q])$
 $\rightarrow f^{-1}(f(c^d)) = f^{-1}([m^1 \mod p], [m^1 \mod q]) = m$

Plain RSA (Summary)

- Public Key (pk): N = pq, e such that $GCD(e, \phi(N)) = 1$
 - $\phi(N) = (p-1)(q-1)$ for distinct primes p and q
- Secret Key (sk): N, d such that ed=1 mod $\phi(N)$
- Encrypt(pk=(N,e),m) = m^e mod N
- Decrypt(sk=(N,d),c) = $c^d \mod N$
- Decryption Works because $[c^d \mod N] = [m^{ed} \mod N] = [m^{[ed \mod \phi(N)]} \mod N] = [m \mod N]$

Factoring Assumption

Let **GenModulus**(1ⁿ) be a randomized algorithm that outputs (N=pq,p,q) where p and q are n-bit primes (except with negligible probability **negl**(n)).

Experiment FACTOR_{A,n}

- 1. $(N=pq,p,q) \leftarrow GenModulus(1^n)$
- 2. Attacker A is given N as input
- 3. Attacker A outputs p' > 1 and q' > 1
- 4. Attacker A wins if N=p'q'.

Factoring Assumption

Experiment FACTOR_{A,n}

- 1. $(N=pq,p,q) \leftarrow GenModulus(1^n)$
- 2. Attacker A is given N as input
- 3. Attacker A outputs p' > 1 and q' > 1
- 4. Attacker A wins (FACTOR_{A,n} = 1) if and only if N=p'q'.

 $\forall PPT \ A \ \exists \mu \text{ (negligible) s.t } \Pr[FACTOR_{A,n} = 1] \leq \mu(n)$

Necessary for security of RSA.Not known to be sufficient.

RSA-Assumption

RSA-Experiment: RSA-INV_{A,n}

- **1.** Run KeyGeneration(1ⁿ) to obtain (N,e,d)
- **2.** Pick uniform $y \in \mathbb{Z}_{N}^{*}$
- 3. Attacker A is given N, e, y and outputs $x \in \mathbb{Z}_{M}^{*}$
- 4. Attacker wins (RSA-INV_{A,n}=1) if $x^e = y \mod N$

 $\forall PPT \ A \ \exists \mu \text{ (negligible) s.t } \Pr[\text{RSA-INVA}_n = 1] \leq \mu(n)$

RSA-Assumption

RSA-Experiment: RSA-INV_{A,n}

- **1.** Run KeyGeneration(1ⁿ) to obtain (N,e,d)
- **2.** Pick uniform $y \in \mathbb{Z}_{N}^{*}$
- 3. Attacker A is given N, e, y and outputs $x \in \mathbb{Z}_{M}^{*}$
- 4. Attacker wins (RSA-INV_{A,n}=1) if $x^e = y \mod N$

 $\forall PPT \ A \exists \mu \text{ (negligible) s.t } \Pr[\text{RSA-INVA}_n = 1] \leq \mu(n)$

Plain RSA Encryption behaves like a one-way function
Attacker cannot invert encryption of random message

Discussion of RSA-Assumption

- Plain RSA Encryption behaves like a one-way-function
- Decryption key is a "trapdoor" which allows us to invert the OWF
- RSA-Assumption → OWFs exist

Recap

- Plain RSA
- Public Key (pk): N = pq, e such that $GCD(e, \phi(N)) = 1$
 - $\phi(N) = (p-1)(q-1)$ for distinct primes p and q
- Secret Key (sk): N, d such that ed=1 mod $\phi(N)$
- Encrypt(pk=(N,e),m) = m^e mod N
- Decrypt(sk=(N,d),c) = $c^d \mod N$
- Decryption Works because $[c^d \mod N] = [m^{ed} \mod N] = [m^{[ed \mod \phi(N)]} \mod N] = [m \mod N]$

Mathematica Demo

https://www.cs.purdue.edu/homes/jblocki/courses/555 Spring17/slid es/Lecture24Demo.nb

http://develop.wolframcloud.com/app/

Note: Online version of mathematica available at https://sandbox.open.wolframcloud.com (reduced functionality, but can be used to solve homework bonus problems)

(* Random Seed 123456 is not secure, but it allows us to repeat the experiment *) SeedRandom[123456]

(* Step 1: Generate primes for an RSA key *)

- p = RandomPrime[{10^1000, 10^1050}];
- q = RandomPrime[{10^1000, 10^1050}];

NN = p q; (*Symbol N is protected in mathematica *)
phi = (p - 1) (q - 1);

```
(* Step 1.A: Find e *)
GCD[phi,7]
```

Output: 7

(* GCD[phi,7] is not 1, so he have to try a different value of e *) GCD[phi,3]

Output: 1

```
(* We can set e=3 *)
```

e=3;

(* Step 1.B find d s.t. ed = 1 mod N by using the extended GCD algorithm *)

(* Mathematica is clever enough to do this automatically *)

Solve[e x == 1, Modulus->phi]

Output:

 $\{\{x->36469680590663028301700626132883867272718728905205088...$

 $394069421778610209425624440980084481398131\}\}$

```
(* We can now set d = x *)
```

d=364696805.... 8131;

```
(* Double Check 1 = [ed mod \phi(N)] *)
Mod [e d, (p-1)(q-1)]
```

Output: 1

(* Encrypt the message 200, c= m^e mod N *)

m = 200;

PowerMod[m,e,NN]

Output: 8 000 000

(* Encrypt the message 200, c= m^e mod N *)
 m = 200;
 PowerMod[m,e,NN]
Output: 8 000 000
(* Hm...That doesn't seem too secure *)
 CubeRoot[PowerMod[m,e,NN]]
Output: 200

(* Moral: if $m^e < N$ then Plain RSA does not hide the message m. *)

```
(* Does it Decrypt Properly? *)

PowerMod[c,d, NN]-m2

Output: 0

(* Yes! *)
```

CS 555: Week 10: Topic 2 Attacks on Plain RSA

(Plain) RSA Discussion

- We have not introduced security models like CPA-Security or CCAsecurity for Public Key Cryptosystems
- However, notice that (Plain) RSA Encryption is stateless and deterministic.
- \rightarrow Plain RSA is not secure against chosen-plaintext attacks
- As we will see Plain RSA is also highly vulnerable to chosen-ciphertext attacks

(Plain) RSA Discussion

- However, notice that (Plain) RSA Encryption is stateless and deterministic.
- \rightarrow Plain RSA is not secure against chosen-plaintext attacks
- **Remark:** In a public key setting the attacker who knows the public key *always* has access to an encryption oracle
- Encrypted messages with low entropy are particularly vulnerable to bruteforce attacks
 - **Example:** If m < B then attacker can recover m from $c = Enc_{pk}(m)$ after at most B queries to encryption oracle (using public key)

Chosen Ciphertext Attack on Plain RSA

- 1. Attacker intercepts ciphertext $c = [m^e \mod N]$
- 2. Attacker generates ciphertext c' for secret message 2m as follows
- 3. $c' = [(c2^e) \mod N]$
- $4. \qquad = [(m^e 2^e) \mod N]$

5.
$$= [(2m)^e \mod N]$$

- 6. Attacker asks for decryption of $[c2^e \mod N]$ and receives 2m.
- 7. Divide by two to recover message

Above Example: Shows plain RSA is highly vulnerable to ciphertext-tampering attacks

More Weaknesses: Plain RSA with small e

- (Small Messages) If m^e < N then we can decrypt c = m^e mod N directly e.g., m=c^(1/e)
- (Partially Known Messages) If an attacker knows first 1-(1/e) bits of secret message m = m₁||?? then he can recover m given
 Encrypt(pk, m) = m^e mod N

Theorem[Coppersmith]: If p(x) is a polynomial of degree e then in polynomial time (in log(N), 2^e) we can find all m such that $p(m) = 0 \mod N$ and $|m| < N^{(1/e)}$

More Weaknesses: Plain RSA with small e

Theorem[Coppersmith]: If p(x) is a polynomial of degree e then in polynomial time (in log(N), e) we can find all m such that $p(m) = 0 \mod N$ and $|m| < N^{(1/e)}$

Example: e = 3, $m = m_1 || m_2$ and attacker knows $m_1(2k \text{ bits})$ and $c = (m_1 || m_2)^e \mod N$, but not $m_2(k \text{ bits})$ $p(x) = (2^k m_1 + x)^3 - c$

Polynomial has a small root mod N at x= m_2 and coppersmith's method will find it!

D. Coppersmith (1996). "Finding a Small Root of a Univariate Modular Equation".

More Weaknesses: Plain RSA with small e

Theorem[Coppersmith]: Can also find small roots of bivariate polynomial $p(x_1, x_2)$

- Similar Approach used to factor weak RSA secret keys N=q₁q₂
- Weak PRG \rightarrow Can guess many of the bits of prime factors
 - Obtain $\widetilde{q_1} \approx q_1$ and $\widetilde{q_2} \approx q_2$
- Coppersmith Attack: Define polynomial p(.,.) as follows $p(x_1, x_2) = (x_1 + \widetilde{q_1})(x_2 + \widetilde{q_2}) N$
- Small Roots of $p(x_1, x_2)$: $x_1 = q_1 \widetilde{q_1}$ and $x_2 = q_2 \widetilde{q_2}$

ars technica < biz & it tech science policy cars gaming & culture forums ≡

COMPLETELY BROKEN -

Millions of high-security crypto keys crippled by newly discovered flaw

Factorization weakness lets attackers impersonate key holders and decrypt their data.

DAN GOODIN - 10/16/2017, 7:00 AM

The Return of **Coppersmith's Attack**: Practical Factorization of Widely Used RSA Moduli (CCS 2017)

Fixes for Plain RSA

- Approach 1: RSA-OAEP
 - Incorporates random nonce r
 - CCA-Secure (in random oracle model)
- Approach 2: Use RSA to exchange symmetric key for Authenticated Encryption scheme (e.g., AES)
 - Key Encapsulation Mechanism (KEM)
- More details in future lectures...stay tuned!
 - For now we will focus on attacks on Plain RSA

Chinese Remainder Theorem

Theorem: Let N = pq (where gcd(p,q)=1) be given and let $f: \mathbb{Z}_{N} \to \mathbb{Z}_{p} \times \mathbb{Z}_{q}$ be defined as follows $f(x) = ([x \mod p], [x \mod q])$

then

- f is a bijective mapping (invertible)
- f and its inverse f^{-1} : $\mathbb{Z}_p \times \mathbb{Z}_q \to \mathbb{Z}_{\mathbb{N}}$ can be computed efficiently
- f(x + y) = f(x) + f(y)
- The restriction of f to \mathbb{Z}_{N}^{*} yields a bijective mapping to $\mathbb{Z}_{n}^{*} \times \mathbb{Z}_{n}^{*}$
- For inputs $x, y \in \mathbb{Z}_{N}^{*}$ we have f(x)f(y) = f(xy)

Chinese Remainder Theorem

Application of CRT: Faster computation

Example: Compute $[11^{53} \mod 15]$ f(11)=([-1 mod 3],[1 mod 5]) f(11⁵³)=([(-1)⁵³ mod 3],[1⁵³ mod 5])= (-1,1)

 $f^{-1}(-1,1)=11$

Thus, 11=[11⁵³ mod 15]

A Side Channel Attack on RSA with CRT

 Suppose that decryption is done via Chinese Remainder Theorem for speed.

$$\operatorname{Dec}_{sk}(c) = c^d \mod N \leftrightarrow (c^d \mod p, c^d \mod q)$$

- Attacker has physical access to smartcard
 - Can mess up computation of $c^d \mod p$
 - Response is $\mathbb{R} \leftrightarrow (r, c^d \mod q)$
 - $R m \leftrightarrow (r m \mod p, 0 \mod q)$
 - GCD(R-m,N)=q

Claim: Let $m < 2^n$ be a secret message. For some constant $\alpha = \frac{1}{2} + \varepsilon$. We can recover m in in time $T = 2^{\alpha n}$ with high probability.

For r=1,...,T
let
$$x_r = [cr^{-e}mod N]$$
, where $r^{-e} = (r^{-1})^e mod N$
Sort $\mathbf{L} = \{(r, x_r)\}_{r=1}^T$ (by the x_r values)
For s=1,...,T
if $[s^e mod N] = x_r$ for some r then
return $[rs mod N]$

For r=1,...,T let $x_r = [cr^{-e}mod N]$, where $r^{-e} = (r^{-1})^e mod N$ Sort $\mathbf{L} = \{(r, x_r)\}_{r=1}^T$ (by the x_r values) For s=1,...,T if $[s^e mod N] = x_r$ for some r then return [rs mod N]

Analysis:
$$[rs \mod N] = [r(s^e)^d \mod N] = [r(x_r)^d \mod N]$$

= $[r(cr^{-e})^d \mod N] = [rr^{-ed}(c)^d \mod N]$
= $[rr^{-1}m \mod N] = m$

For r=1,...,T let $x_r = [cr^{-e}mod N]$, where $r^{-e} = (r^{-1})^e mod N$ Sort $\mathbf{L} = \{(r, x_r)\}_{r=1}^T$ (by the x_r values) For s=1,...,T if $[s^e mod N] = x_r$ for some r then return [rs mod N]

Fact: some constant $\alpha = \frac{1}{2} + \varepsilon$ setting $T = 2^{\alpha n}$ with high probability we will find a pair **s** and **x**_r with $[s^e \mod N] = xr$.

Claim: Let $m < 2^n$ be a secret message. For some constant $\alpha = \frac{1}{2} + \varepsilon$. We can recover m in in time $T = 2^{\alpha n}$ with high probability.

Roughly \sqrt{B} steps to find a secret message m < B

CS 555: Week 10: Topic 3 Discrete Log + DDH Assumption

(Recap) Finite Groups

Definition: A (finite) group is a (finite) set \mathbb{G} with a binary operation \circ (over G) for which we have

- (Closure:) For all $g, h \in \mathbb{G}$ we have $g \circ h \in \mathbb{G}$
- (Identity:) There is an element $e \in \mathbb{G}$ such that for all $g \in \mathbb{G}$ we have

$$g \circ e = g = e \circ g$$

- (Inverses:) For each element $g \in \mathbb{G}$ we can find $h \in \mathbb{G}$ such that $g \circ h = e$. We say that h is the inverse of g.
- (Associativity:) For all $g_1, g_2, g_3 \in \mathbb{G}$ we have $(g_1 \circ g_2) \circ g_3 = g_1 \circ (g_2 \circ g_3)$

We say that the group is **abelian** if

• (Commutativity:) For all g, $h \in \mathbb{G}$ we have $g \circ h = h \circ g$

Finite Abelian Groups (Examples)

- Example 1: \mathbb{Z}_{N} when \circ denotes addition modulo N
- Identity: 0, since $0 \circ x = [0+x \mod N] = [x \mod N]$.
- Inverse of x? Set $x^{-1}=N-x$ so that $[x^{-1}+x \mod N] = [N-x+x \mod N] = 0$.
- Example 2: \mathbb{Z}_{M}^{*} when \circ denotes multiplication modulo N
- Identity: 1, since $1 \circ x = [1(x) \mod N] = [x \mod N]$.
- Inverse of x? Run extended GCD to obtain integers a and b such that $ax + bN = \gcd(x, N) = 1$

Observe that: $x^{-1} = a$. Why?

Cyclic Group

• Let \mathbb{G} be a group with order $m = |\mathbb{G}|$ with a binary operation \circ (over G) and let $g \in \mathbb{G}$ be given consider the set $\langle g \rangle = \{g^0, g^1, g^2, \dots\}$

Fact: $\langle g \rangle$ defines a subgroup of \mathbb{G} .

- Identity: g^0
- Closure: $g^i \circ g^j = g^{i+j} \in \langle g \rangle$
- g is called a "generator" of the subgroup.

Fact: Let $r = |\langle g \rangle|$ then $g^i = g^j$ if and only if $i = j \mod r$. Also m is divisible by r.

Finite Abelian Groups (Examples)

Fact: Let p be a prime then \mathbb{Z}_p^* is a cyclic group of order p-1.

• Note: Number of generators g s.t. of $\langle g \rangle = \mathbb{Z}_p^*$ is $\phi(p-1)$

Example (generator): p=7, g=5
<2>={1,5,4,6,2,3}

Discrete Log Experiment DLog_{A,G}(n)

- 1. Run G(1ⁿ) to obtain a cyclic group \mathbb{G} of order q (with ||q|| = n) and a generator g such that $\langle g \rangle = \mathbb{G}$.
- 2. Select $h \in \mathbb{G}$ uniformly at random.
- 3. Attacker A is given \mathbb{G} , q, g, h and outputs integer x.
- 4. Attacker wins $(DLog_{A,G}(n)=1)$ if and only if $g^x=h$.

We say that the discrete log problem is hard relative to generator G if $\forall PPT \ A \exists \mu \text{ (negligible) s.t } \Pr[DLog_{A,n} = 1] \leq \mu(n)$

Diffie-Hellman Problems

Computational Diffie-Hellman Problem (CDH)

- Attacker is given $h_1 = g^{\chi_1} \in \mathbb{G}$ and $h_2 = g^{\chi_2} \in \mathbb{G}$.
- Attackers goal is to find $g^{x_1x_2} = (h_1)^{x_2} = (h_2)^{x_1}$
- CDH Assumption: For all PPT A there is a negligible function negl upper bounding the probability that A succeeds with probability at most negl(n).
 Decisional Diffie-Hellman Problem (DDH)
- Let $z_0 = g^{x_1x_2}$ and let $z_1 = g^r$, where x_1, x_2 and r are random
- Attacker is given g^{x_1} , g^{x_2} and z_b (for a random bit b)
- Attackers goal is to guess b
- **DDH Assumption**: For all PPT A there is a negligible function negl such that A succeeds with probability at most ½ + negl(n).

Secure key-agreement with DDH

- 1. Alice publishes g^{x_A} and Bob publishes g^{x_B}
- 2. Alice and Bob can both compute $K_{A,B} = g^{x_B x_A}$ but to Eve this key is indistinguishable from a random group element (by DDH)

Remark: Protocol is vulnerable to Man-In-The-Middle Attacks if Bob cannot validate g^{x_A} .

- **Example 1:** \mathbb{Z}_p^* where p is a random n-bit prime.
 - CDH is believed to be hard
 - DDH is *not* hard (Exercise 13.15)
- Theorem: Let p=rq+1 be a random n-bit prime where q is a large λ bit prime then the set of rth residues modulo p is a cyclic subgroup of order q. Then $\mathbb{G}_r = \{ [h^r \mod p] | h \in \mathbb{Z}_p^* \}$ is a cyclic subgroup of \mathbb{Z}_p^* of order q.
 - Remark 1: DDH is believed to hold for such a group
 - **Remark 2:** It is easy to generate uniformly random elements of \mathbb{G}_r
 - Remark 3: Any element (besides 1) is a generator of \mathbb{G}_r

- Theorem: Let p=rq+1 be a random n-bit prime where q is a large λ -bit prime then the set of rth residues modulo p is a cyclic subgroup of order q. Then $\mathbb{G}_r = \{ [h^r \mod p] | h \in \mathbb{Z}_p^* \}$ is a cyclic subgroup of \mathbb{Z}_p^* of order q.
 - Closure: $h^r g^r = (hg)^r$
 - Inverse of h^r is $(h^{-1})^r \in \mathbb{G}_r$
 - Size $(h^r)^x = h^{[rx \mod rq]} = (h^r)^x = h^{r[x \mod q]} = (h^r)^{[x \mod q]} \mod p$

Remark: Two known attacks on Discrete Log Problem for \mathbb{G}_r (Section 9.2).

- First runs in time $O(\sqrt{q}) = O(2^{\lambda/2})$
- Second runs in time $2^{O(\sqrt[3]{n}(\log n)^{2/3})}$

Remark: Two known attacks (Section 9.2).

- First runs in time $O(\sqrt{q}) = O(2^{\lambda/2})$ Second runs in time $2^{O(\sqrt[3]{n}(\log n)^{2/3})}$, where n is bit length of p

Goal: Set λ and n to balance attacks $\lambda = O\left(\sqrt[3]{n}(\log n)^{2/3}\right)$

How to sample p=rq+1?

- First sample a random λ -bit prime q and
- Repeatedly check if rq+1 is prime for a random n- λ bit value r

Elliptic Curves Example: Let p be a prime (p > 3) and let A, B be constants. Consider the equation

$$y^2 = x^3 + Ax + B \mod p$$

And let

$$E\left(\mathbb{Z}_p\right) = \left\{ (x, y) \in \mathbb{Z}_p^2 \middle| y^2 = x^3 + Ax + B \bmod p \right\} \cup \{\mathcal{O}\}$$

Note: \mathcal{O} is defined to be an additive identity $(x, y) + \mathcal{O} = (x, y)$

What is $(x_1, y_1) + (x_2, y_2)$?

The line passing through (x_1, y_1) and (x_2, y_2) has the equation $y = m(x - x_1) + y_1 \mod P$

Where the slope $m = \left[\frac{y_1 - y_2}{x_1 - x_2} \mod p\right]$

Elliptic Curve Example

No third point R on the elliptic curve.

P+Q = 0

(Inverse)

Elliptic Curves Example: Let p be a prime (p > 3) and let A, B be constants. Consider the equation

$$y^2 = x^3 + Ax + B \mod p$$

And let

$$E\left(\mathbb{Z}_p\right) = \left\{ (x, y) \in \mathbb{Z}_p^2 \middle| y^2 = x^3 + Ax + B \bmod p \right\} \cup \{\mathcal{O}\}$$

Fact: $E(\mathbb{Z}_p)$ defines an abelian group

- For *appropriate curves* the DDH assumption is believed to hold
- If you make up your own curve there is a good chance it is broken...
- NIST has a list of recommendations