Cryptography CS 555

Week 7:

- AES
- One Way Functions
- Readings: Katz and Lindell Chapter 6.2.5, 6.3, 7.1-7.4

Recap

- Block Ciphers, SPNs, Feistel Networks, DES
- Meet in the Middle, 3DES
- Building Stream Ciphers
 - Linear Feedback Shift Registers (+ Attacks)
 - RC4 (+ Attacks)
 - Trivium

CS 555: Week 7: Topic 1 Block Ciphers (Continued)

Advanced Encryption Standard (AES)

- (1997) US National Institute of Standards and Technology (NIST) announces competition for new block cipher to replace DES
- Fifteen algorithms were submitted from all over the world
 - Analyzed by NIST
- Contestants given a chance to break competitors schemes
- October, 2000 NIST announces a winner Rijndael
 - Vincent Rijmen and Joan Daemen
 - No serious vulnerabilities found in four other finalists
 - Rijndael was selected for efficiency, hardware performance, flexibility etc...

Advanced Encryption Standard

- Block Size: 128 bits (viewed as 4x4 byte array)
- Key Size: 128, 192 or 256
- Essentially a Substitution Permutation Network
 - AddRoundKey: Generate 128-bit sub-key from master key XOR with current state
 - **SubBytes:** Each byte of state array (16 bytes) is replaced by another byte according a a single S-box (lookup table)
 - **ShiftRows** shift ith row by i bytes
 - MixColumns permute the bits in each column

Substitution Permutation Networks

- S-box a public "substitution function" (e.g. $S \in Perm_8$).
- S is not part of a secret key, but can be used with one $f(x) = S(x \oplus k)$

Input to round: x, k (k is subkey for current round)

- **1.** Key Mixing: Set $x \coloneqq x \oplus k$
- **2.** Substitution: $x \coloneqq S_1(x_1) \parallel S_2(x_2) \parallel \cdots \parallel S_8(x_8)$
- **3.** Bit Mixing Permutation: permute the bits of x to obtain the round output

Note: there are only n! possible bit mixing permutations of [n] as opposed to 2ⁿ! Permutations of {0,1}ⁿ

Substitution Permutation Networks

- Proposition 6.3: Let F be a keyed function defined by a Substitution Permutation Network. Then for any keys/number of rounds F_k is a permutation.
- Why? Composing permutations f,g results in another permutation h(x)=g(f(x)).

Advanced Encryption Standard

- Block Size: 128 bits
- Key Size: 128, 192 or 256

Key Mixing

- Essentially a Substitution Permutation Network
 - AddRoundKey: Generate 128-bit sub-key from master key, XOR with current state array
 - SubBytes: Each byte of state array (16 bytes) is replaced by another byte according a single S-box (lookup table)
 - ShiftRows
 - MixColumns

Bit Mixing Permutation

Substitution

AddRoundKey: Round Key (16 Bytes) 00001111 10100011 ••• • • • ••• 11001100 • • • • • • ••• 01111111 ••• ••• ••• State 11110000 01100010 ••• ••• ••• 00110000 ••• ••• ••• 11111111 ••• ••• • • •

11111111	 	
11000001	 	
11111100	 	
1000000	 	

AddRoundKey: Round Key (16 Bytes) 10100011 Intervention

State

11111111	 	
11000001	 	
11111100	 	
1000000	 	

SubBytes (Apply S-box)

S(1111111)	S()	S()	S()
S(11000001)	S()	S()	S()
S(11111100)	S()	S()	S()
S(1000000)	S()	S()	S()

AddRo	undKey:								
				Round	Round Key (16 Bytes)				
	State								
S(1111111)	S()	S()	S()						
S(11000001)	S()	S()	S()						
S(11111100)	S()	S()	S()						
S(1000000)	S()	S()	S()						
			66: 6 4 6						

Shift Rows

S(1111111)	S()	S()	S()
S()	S(11000001)	S()	S()
S()	S()	S(11111100)	S()
S()	S()	S()	S(1000000)

Mix Columns

Invertible (linear) transformation.

Key property: if inputs differ in b>0 bytes then output differs in 5-b bytes (minimum)

- We just described one round of the SPN
- AES uses
 - 10 rounds (with 128 bit key)
 - 12 rounds (with 192 bit key)
 - 14 rounds (with 256 bit key)

AES-128: Key Schedule

AES Attacks?

- Side channel attacks affect a few specific implementations
 - But, this is not a weakness of AES itself
 - Timing attack on OpenSSL's implementation AES encryption (2005, Bernstein)
- (2009) Related-Key Attack on 11 round version of AES
 - Related Key Attack: Attacker convinces Alice to use two related (but unknown) keys
 - recovers 256-bit key in time 2⁷⁰
 - But AES is 14 round (with 256 bit key) so the attack doesn't apply in practice
- (2009) Related Key Attack on 192-bit and 256 bit version of AES
 - recovers 256-bit key in time 2^{99.5}.
- (2011) Key Recovery attack on AES-128 in time 2^{126.2}.
 - Improved to 2^{126.0} for AES-128, 2^{189.9} for AES-192 and 2^{254.3} for AES-256
- First public cipher approved by NSA for Top Secret information
 - SECRET level (AES-128,AES-192 & AES-256), TOP SECRET level (AES-128,AES-192 & AES-256)

	NIST	Recon	nmen	datio	ns	Ok, as CRHF and in Digital Signatures			Ok, to use for HMAC, Key Derivation and as PRG	
80 bits-security is no longer acceptable										
	Date	Minimum of Strength	Symmetric Algorithms	Factoring Modulus	Dis Loga Key	crete arithm Group	Elliptic Curve	Hash (A)	Hash (B)	
-	(Legacy)	80	2TDEA*	1024	160	1024	160	SHA-1**		
	2016 - 2030	112	3TDEA	2048	224	2048	224	SHA-224 SHA-512/22 SHA3-224	24	
	2016 - 2030 & beyond	128	AES-128	3072	256	3072	256	SHA-256 SHA-512/25 SHA3-256	6 SHA-1	
	2016 - 2030 & beyond	192	AES-192	7680	384	7680	384	SHA-384 SHA3-384	SHA-224 SHA-512/224	
	2016 - 2030 & beyond	256	AES-256	15360	512	15360	512	SHA-512 SHA3-512	SHA-256 SHA-512/256 SHA-384 SHA-512 SHA3-512	

Recommendations from Other Groups (Including NIST): www.keylength.com

- Note: just because AES is a good block cipher does not mean that all modes of operation that use AES are secure.
 - ECB Penguin

- AES-GCM: authenticated encryption with associated data
 - Increasing deployment: TLS 1.2, TLS 1.3, QUIC
 - Hardware support for AES + AES-GCM in many modern processors

Differential Cryptanalysis

Definition: We say that the differential $(\triangle_x, \triangle_y)$ occurs with probability p in the keyed block cipher F if $\Pr[F_K(x_1) \oplus F_K(x_1 \oplus \triangle_x) = \triangle_y] \ge p$

Can Lead to Efficient (Round) Key Recovery Attacks **Exploiting Weakness Requires:** well over $\frac{1}{p}$ chosen plaintext-ciphertext pairs

Differentials in S-box can lead to (weaker) differentials in SPN.

Linear Cryptanalysis

$$y=F_K(x)$$

Definition: Fixed set of input bits i_1, \ldots, i_{in} and output bits i_1', \ldots, i_{out}' are said to have ε -linear bias if the following holds

$$\left| Pr[x_{i_1} \oplus x_{i_2} \dots \oplus x_{i_{i_n}} \oplus y_{i_1'} \oplus y_{i_2'} \dots \oplus y_{i_{out'}}] \right| = \varepsilon$$

(randomness taken over the selection of input x and secret key K)

Linear Cryptanalysis

Definition: Fixed set of input bits i_1, \ldots, i_{in} and output bits i_1', \ldots, i_{out}' are said to have ε -linear bias if the following holds

$$\left| \Pr[x_{i_1} \bigoplus x_{i_2} \dots \bigoplus x_{i_{i_n}} \bigoplus y_{i_1'} \bigoplus y_{i_2'} \dots \bigoplus y_{i_{out'}}] - \frac{1}{2} \right| = \varepsilon$$

(randomness taken over the selection of input x and secret key K, $y = F_K(x)$)

Matsui: DES can be broken with just 2^{43} known plaintext/ciphertext pairs.

- Lots of examples needed!
- But the examples do not need to be chosen plaintext/ciphertext pairs...
- One encrypted file can provide a large amounts of known plaintext

Recap

- 2DES, Meet in the Middle Attack
- 3DES
- Stream Ciphers
 - Breaking Linear Feedback Shift Registers
 - Trivium
- AES

CS 555: Week 8: Topic 1: One Way Functions

What are the minimal assumptions necessary for symmetric keycryptography?

f(x) = y

Definition: A function $f: \{0,1\}^* \rightarrow \{0,1\}^*$ is one way if it is

- **1.** (Easy to compute) There is a polynomial time algorithm (in |x|) for computing f(x).
- **2.** (Hard to Invert) Select $x \leftarrow \{0,1\}^n$ uniformly at random and give the attacker input 1^n , f(x). The probability that a PPT attacker outputs x' such that f(x') = f(x) is negligible in n.

f(x) = y

Key Takeaway: One-Way Functions is a *necessary* and *sufficient* assumption for most of symmetric key cryptography.

- From OWFs we can construct PRGs, PRFs, Authenticated Encryption
- From eavesdropping secure encryption (weakest) notion we can construct OWFs

f(x) = y

Remarks:

- A function that is not one-way is not necessarily always easy to invert (even often)
- Any such function can be inverted in time 2ⁿ (brute force)
- Length-preserving OWF: |f(x)| = |x|
- One way permutation: Length-preserving + one-to-one

f(x) = y

Remarks:

- 1. f(x) does not necessarily hide all information about x.
- 2. If f(x) is one way then so is $f'(x) = f(x) \parallel LSB(x)$.

f(x) = y

Remarks:

1. Actually we usually consider a family of one-way functions $f_I: \{0, 1\}^I \to \{0, 1\}^I$

Candidate One-Way Functions

$$f_{ss}(x_1, ..., x_n, J) = \left(x_1, ..., x_n, \sum_{i \in J} x_i \mod 2^n\right)$$

(Subset Sum Problem is NP-Complete)

Note: $J \subset [n]$ and $0 \leq x_i \leq 2^n - 1$

Candidate One-Way Functions

$$f_{ss}(x_1, ..., x_n, J) = \left(x_1, ..., x_n, \sum_{i \in J} x_i \mod 2^n\right)$$

(Subset Sum Problem is NP-Complete)

Question: Does $P \neq NP$ imply this is a OWF?

Answer: No! $P \neq NP$ only implies that any polynomial-time algorithm fails to solve "some instance" of subset sum. By contrast, we require that PPT attacker fails to solve "almost all instances" of subset sum.

Candidate One-Way Functions (OWFs)

$f_{p,g}(x) = [g^x \mod p]$

(Discrete Logarithm Problem)

Note: The existence of OWFs implies $P \neq NP$ so we cannot be *absolutely certain* that they do exist.

How to Build a PRG with One-Way Functions?

Hard Core Predicates

- Recall that a one-way function f may potentially reveal lots of information about input
- **Example**: $f(x_1, x_2) = (x_1, g(x_2))$, where g is a one-way function.
- Claim: f is one-way (even though $f(x_1, x_2)$ reveals half of the input bits!)

Hard Core Predicates

Definition: A predicate $hc: \{0,1\}^* \rightarrow \{0,1\}$ is called a hard-core predicate of a function f if

- 1. (Easy to Compute) hc can be computed in polynomial time
- 2. (Hard to Guess) For all PPT attacker A there is a negligible function negl such that we have

$$\mathbf{Pr}_{x \leftarrow \{0,1\}^n}[A(1^n, f(x)) = \operatorname{hc}(x)] \le \frac{1}{2} + \operatorname{negl}(n)$$

Attempt 1: Hard-Core Predicate

Consider the predicate

$$hc(\mathbf{x}) = \bigoplus_{i=1}^n x_i$$

Hope: hc is hard core predicate for any OWF.

Counter-example:

$$f(x) = (g(x), \bigoplus_{i=1}^n x_i)$$

Trivial Hard-Core Predicate

Consider the function

$$f(x_1,...,x_n) = x_1,...,x_{n-1}$$

f has a trivial hard core predicate $hc(x) = x_n$

Not useful for crypto applications (e.g., f is not a OWF)

Attempt 3: Hard-Core Predicate

Consider the predicate

 $hc(\mathbf{x},\mathbf{r}) = \bigoplus_{i=1}^n x_i r_i$

(the bits $r_1, ..., r_n$ will be selected uniformly at random)

Goldreich-Levin Theorem: (Assume OWFs exist) For any OWF f, hc is a hard-core predicate of g(x,r)=(f(x),r).

Question: Why is g a OWF?

Attempt 3: Hard-Core Predicate

Consider the predicate

 $hc(\mathbf{x},\mathbf{r}) = \bigoplus_{i=1}^{n} x_i r_i$

(the bits $r_1, ..., r_n$ will be selected uniformly at random)

Goldreich-Levin Theorem: (Assume OWFs exist) For any OWF f, hc is a hard-core predicate of g(x,r)=(f(x),r).

Intuition: If $\Pr_{x \leftarrow \{0,1\}^n}[A(1^n, g(x, r)) = hc(x, r)] \ge \frac{1}{2} + \frac{1}{p(n)}$ is nonnegligible then we can recover x by repeatedly running $A(1^n, (f(x), r'))$ for inputs r' of our choosing.

Using Hard-Core Predicates

Theorem: Given a one-way-permutation f and a hard-core predicate hc we can construct a PRG G with expansion factor $\ell(n) = n + 1$.

Construction:

$$G(s) = f(s) \parallel hc(s)$$

Intuition: f(s) is actually uniformly distributed

- s is random
- f(s) is a permutation
- Last bit is hard to predict given f(s) (since hc is hard-core for f)

Arbitrary Expansion

Theorem: Suppose that there is a PRG G with expansion factor $\ell(n) = n + 1$. Then for any polynomial p(.) there is a PRG with expansion factor p(n).

Construction:

• $G^{1}(x) = G(x) := y || b.$ (n+1 bits) • $G^{2}(x) = G^{1}(y) || b$ (n+2 bits) • $G^{i+1}(x) = G^{i}(y) || b$ where $G^{i}(x) = y || b$

First n bits of output Last i bits of output

And Beyond...

Theorem: Suppose that there is a PRG G with expansion factor $\ell(n) = n + 1$. Then for any polynomial p(.) there is a PRG with expansion factor p(n).

Theorem: Suppose that there is a PRG G with expansion factor $\ell(n) = 2n$. Then there is a secure PRF.

Theorem: Suppose that there is a secure PRF then there is a strong pseudorandom permutation.

And Beyond...

Corollary: If one-way functions exist then PRGs, PRFs and strong PRPs all exist.

Corollary: If one-way functions exist then there exist CCA-secure encryption schemes and secure MACs.

Announcements

- Homework 3 due tonight 11:59PM on Gradescope
- Quiz 3 released today
 - Due Saturday, March 6 at 11:30PM on Brightspace
- Midterm on March 11th in class
 - If you are not able to take the exam in class (e.g., quarantine) let me know and we can arrange an alternative
 - Allowed to prepare a 1 page cheat sheet
 - Practice Exam released this weekend

Recap

- One Way Functions/One Way Permutations
- Hard Core Predicate
- PRG with from OWP + Hard Core Predicate (n+1)
- PRG with arbitrary expansion from PRG with expansion (n+1)
 - $G^{1}(x) = G(x)$ (n+1 bits) • $G^{i+1}(x) = G^{i}(y) || z$ where $G^{i}(x) = y || z$ n+i+1 bits First n bits of output Last i bits of output
- PRGs PRFs (and PRPs/MACs/authenticated encryption)

Theorem: Suppose that there is a PRG G with expansion factor $\ell(n) = 2n$. Then there is a secure PRF.

Let $G(x) = G_0(x) ||G_1(x)$ (first/last n bits of output)

$$F_{K}(x_{1},\ldots,x_{n})=G_{x_{n}}\left(\ldots\left(G_{x_{2}}\left(G_{x_{1}}(K)\right)\right)\ldots\right)$$

Theorem: Suppose that there is a PRG G with expansion factor $\ell(n) = 2n$. Then there is a secure PRF.

Theorem: Suppose that there is a PRG G with expansion factor $\ell(n) = 2n$. Then there is a secure PRF.

Proof:

Claim 1: For any t(n) and any PPT attacker A we have $\left| Pr[A(r_1 \parallel \cdots \parallel r_{t(n)})] - Pr[A(G(s_1) \parallel \cdots \parallel G(s_{t(n)}))] \right| < negl(n)$

Claim 1: For any t(n) and any PPT attacker A we have $\left| Pr[A(r_1 \parallel \cdots \parallel r_{t(n)})] - Pr[A(G(s_1) \parallel \cdots \parallel G(s_{t(n)}))] \right| < negl(n)$

Proof by Triangle Inequality: Fix j $Adv_{j} = \left| Pr\left[A\left(r_{1} \parallel \cdots \parallel r_{j+1} \parallel G\left(s_{j+2}\right) \ldots \parallel G\left(s_{t(n)}\right) \right) \right]$

Claim 1: For any t(n) and any PPT attacker A we have

$$\left| Pr[A(r_1 \parallel \cdots \parallel r_{t(n)})] - Pr[A(G(s_1) \parallel \cdots \parallel G(s_{t(n)}))] \right| < negl(n)$$

Proof

$$\begin{aligned} \left| \Pr[A(r_1 \parallel \cdots \parallel r_{t(n)})] - \Pr[A(G(s_1) \parallel \cdots \parallel G(s_{t(n)}))] \right| \\ &\leq \sum_{j < t(n)} Adv_j \\ &\leq t(n) \times negl(n) = negl(n) \end{aligned}$$

Claim 1: For any t(n) and any PPT attacker A we have $\left| Pr[A(r_1 \parallel \cdots \parallel r_{t(n)})] - Pr[A(G(s_1) \parallel \cdots \parallel G(s_{t(n)}))] \right| < negl(n)$ Proof

$$\begin{aligned} \left| \Pr[A(r_1 \parallel \cdots \parallel r_{t(n)})] - \Pr[A(G(s_1) \parallel \cdots \parallel G(s_{t(n)}))] \right| \\ & \leq \sum_{j < t(n)} Adv_j \\ & \leq t(n) \times negl(n) = negl(n) \end{aligned}$$

(QED, Claim 1)

Hybrid H₁ and H₂

• Original Construction: Hybrid H₁

Hybrid H₁ and H₂

• Modified Construction H_2 : Pick r_0 and r_1 randomly instead of $r_i = G_i(K)$

Hybrid H₃

 Modified Construction H₃: Pick r₀₀, r₀₁, r₁₀ and r₁₁ randomly instead of applying PRG

Hybrid H_n

• Truly Random Function: All output values r_x are picked randomly

Hybrid H₁ vs H₂

Claim 1: For any t(n) and any PPT attacker A we have $\left| Pr[A(r_1 \parallel \cdots \parallel r_{t(n)})] - Pr[A(G(s_1) \parallel \cdots \parallel G(s_{t(n)}))] \right| < negl(n)$

Claim 2: Attacker who makes t(n) queries to F_k (or f) cannot distinguish H_2 from the real game (except with negligible probability).

Proof Intuition: Follows by Claim 1

Hybrid H_i vs H_i

Claim 1: For any t(n) and any PPT attacker A we have $\left| Pr[A(r_1 \parallel \cdots \parallel r_{t(n)})] - Pr[A(G(s_1) \parallel \cdots \parallel G(s_{t(n)}))] \right| < negl(n)$

Claim 3: Attacker who makes t(n) queries to F_k (or f) cannot distinguish H_i from H_{i-1} the real game (except with negligible probability).

Challenge: Cannot replace 2ⁱ pseudorandom values with random strings at level i $2^i \operatorname{negl}(n)$ is not necessarily negligible if $i = \frac{n}{2}$ Key Idea: Only need to replace t(n) values (note: $t(n)\operatorname{negl}(n)$ is negligible).

Hybrid H_i

- Red Leaf Nodes: Queried $F_k(x)$ (at most t(n) red leaf nodes)
- Red Internal Nodes: On path from red leaf node to root

Hybrid H_i vs H_i

Claim 1: For any t(n) and any PPT attacker A we have $\left| Pr[A(r_1 \parallel \cdots \parallel r_{t(n)})] - Pr[A(G(s_1) \parallel \cdots \parallel G(s_{t(n)}))] \right| < negl(n)$

Claim 3: Attacker who makes t(n) queries to F_k (or f) cannot distinguish H_i from H_{i-1} the real game (except with negligible probability).

Triangle Inequality: Attacker who makes t(n) queries to F_k (or f) *cannot* distinguish H_1 (real construction) from H_n (truly random function) except with negligible probability.

From OWFs (Recap)

Theorem: Suppose that there is a PRG G with expansion factor $\ell(n) = n + 1$. Then for any polynomial p(.) there is a PRG with expansion factor p(n).

Theorem: Suppose that there is a PRG G with expansion factor $\ell(n) = 2n$. Then there is a secure PRF.

Theorem: Suppose that there is a secure PRF then there is a strong pseudorandom permutation.

From OWFs (Recap)

Corollary: If one-way functions exist then PRGs, PRFs and strong PRPs all exist.

Corollary: If one-way functions exist then there exist CCA-secure encryption schemes and secure MACs.

Are OWFs Necessary for Private Key Crypto

- Previous results show that OWFs are <u>sufficient</u>.
- Can we build Private Key Crypto from weaker assumptions?

 Short Answer: No, OWFs are also <u>necessary</u> for most private-key crypto primitives

Proposition 7.28: If PRGs exist then so do OWFs.

Proof: Let G be a secure PRG with expansion factor $\ell(n) = 2n$. **Question:** why can we assume that we have an PRG with expansion

2n?

Answer: Last class we showed that a PRG with expansion factor $\ell(n) = n + 1$. Implies the existence of a PRG with expansion p(n) for any polynomial.

Proposition 7.28: If PRGs exist then so do OWFs.

Proof: Let G be a secure PRG with expansion factor $\ell(n) = 2n$.

Claim: G is also a OWF!

- (Easy to Compute?) \checkmark
- (Hard to Invert?)

Intuition: If we can invert G(x) then we can distinguish G(x) from a random string.

Proposition 7.28: If PRGs exist then so do OWFs.

Proof: Let G be a secure PRG with expansion factor $\ell(n) = 2n$.

Claim 1: Any PPT A, given G(s), cannot find s except with negligible probability.

Reduction: Assume (for contradiction) that A can invert G(s) with non-negligible probability p(n).

Distinguisher D(y): Simulate A(y)

Output 1 if and only if A(y) outputs x s.t. G(x)=y.

Proposition 7.28: If PRGs exist then so do OWFs.

Proof: Let G be a secure PRG with expansion factor $\ell(n) = 2n$.

Claim 1: Any PPT A, given G(s), cannot find s except with negligible probability.

Intuition for Reduction: If we can find x s.t. G(x)=y then y is not random.

Fact: Select a random 2n bit string y. Then (whp) there does not exist x such that G(x)=y.

Why not?

Proposition 7.28: If PRGs exist then so do OWFs.

Proof: Let G be a secure PRG with expansion factor $\ell(n) = 2n$. **Claim 1:** Any PPT A, given G(s), cannot find s except with negligible probability. **Intuition:** If we can invert G(x) then we can distinguish G(x) from a random string. **Fact:** Select a random 2n bit string y. Then (whp) there does not exist x such that G(x)=y.

- Why not? Simple counting argument, 2²ⁿ possible y's and 2ⁿ x's.
- Probability there exists such an x is at most 2⁻ⁿ (for a random y)

What other assumptions imply OWFs?

- PRGs \rightarrow OWFs
- (Easy Extension) PRFs \rightarrow PRGs \rightarrow OWFs
- Does secure crypto scheme imply OWFs?
 - CCA-secure? (Strongest)
 - CPA-Secure? (Weaker)
 - EAV-secure? (Weakest)
 - As long as the plaintext is longer than the secret key
 - Perfect Secrecy? X (Guarantee is information theoretic)

EAV-Secure Crypto \rightarrow OWFs

Proposition 7.29: If there exists a EAV-secure private-key encryption scheme that encrypts messages twice as long as its key, then a one-way function exists.

Recap: EAV-secure.

- Attacker picks two plaintexts m₀,m₁ and is given c=Enc_K(m_b) for random bit b.
- Attacker attempts to guess b.
- No ability to request additional encryptions (chosen-plaintext attacks)
- In fact, no ability to observe any additional encryptions

EAV-Secure Crypto \rightarrow OWFs

Proposition 7.29: If there exists a EAV-secure private-key encryption scheme that encrypts messages twice as long as its key, then a one-way function exists.

Reduction: $f(m, k, r) = Enc_k(m; r) || m$.

Input: 4n bits

(For simplicity assume that **Enc**_k accepts n bits of randomness)

Claim: f is a OWF

EAV-Secure Crypto \rightarrow OWFs

Proposition 7.29: If there exists a EAV-secure private-key encryption scheme that encrypts messages twice as long as its key, then a one-way function exists.

Reduction: $f(m, k, r) = Enc_k(m; r) || m$.

Claim: f is a OWF

Reduction: If attacker A can invert f, then attacker A' can break EAVsecurity as follows. Given $c=Enc_k(m_b;r)$ run $A(c||m_0)$. If A outputs (m',k',r') such that $f(m',k',r') = c||m_0$ then output 0; otherwise 1;

$MACs \rightarrow OWFs$

In particular, given a MAC that satisfies MAC security (Definition 4.2) against an attacker who sees an arbitrary (polynomial) number of message/tag pairs.

Conclusions: OWFs are necessary and sufficient for all (non-trivial) private key cryptography.

 \rightarrow OWFs are a minimal assumption for private-key crypto.

Public Key Crypto/Hashing?

- OWFs are known to be necessary
- Not known (or believed) to be sufficient.

Computational Indistinguishability

- Consider two distributions X_{ℓ} and Y_{ℓ} (e.g., over strings of length ℓ).
- Let D be a distinguisher that attempts to guess whether a string s came from distribution X_ℓ or $Y_\ell.$

The advantage of a distinguisher D is

$$Adv_{D,\ell} = \left| Pr_{s \leftarrow \mathsf{X}_{\ell}}[D(s) = 1] - Pr_{s \leftarrow \mathsf{Y}_{\ell}}[D(s) = 1] \right|$$

Definition: We say that an ensemble of distributions $\{X_n\}_{n \in \mathbb{N}}$ and $\{Y_n\}_{n \in \mathbb{N}}$ are <u>computationally indistinguishable</u> if for all PPT distinguishers D, there is a negligible function negl(n), such that we have

 $Adv_{D,n} \leq negl(n)$