Cryptography CS 555

Week 7:

- AES
- One Way Functions
- Readings: Katz and Lindell Chapter 6.2.5, 6.3, 7.1-7.4

Recap

- Block Ciphers, SPNs, Feistel Networks, DES
- Meet in the Middle, 3DES
- Building Stream Ciphers
- Linear Feedback Shift Registers (+ Attacks)
- RC4 (+ Attacks)
- Trivium

CS 555: Week 7: Topic 1 Block Ciphers (Continued)

Advanced Encryption Standard (AES)

- (1997) US National Institute of Standards and Technology (NIST) announces competition for new block cipher to replace DES
- Fifteen algorithms were submitted from all over the world
- Analyzed by NIST
- Contestants given a chance to break competitors schemes
- October, 2000 NIST announces a winner Rijndael
- Vincent Rijmen and Joan Daemen
- No serious vulnerabilities found in four other finalists
- Rijndael was selected for efficiency, hardware performance, flexibility etc...

Advanced Encryption Standard

- Block Size: 128 bits (viewed as 4×4 byte array)
- Key Size: 128, 192 or 256
- Essentially a Substitution Permutation Network
- AddRoundKey: Generate 128-bit sub-key from master key XOR with current state
- SubBytes: Each byte of state array (16 bytes) is replaced by another byte according a a single S-box (lookup table)
- ShiftRows - shift ith row by i bytes
- MixColumns - permute the bits in each column

Substitution Permutation Networks

- S-box a public "substitution function" (e.g. $S \in$ Perm $_{8}$).
- S is not part of a secret key, but can be used with one

$$
\mathrm{f}(\mathrm{x})=\mathrm{S}(\mathrm{x} \oplus k)
$$

Input to round: x, k (k is subkey for current round)

1. Key Mixing: Set $\mathrm{x}:=\mathrm{x} \oplus k$

Note: there are only n ! possible bit mixing permutations of [n] as opposed to 2^{n} ! Permutations of $\{0,1\}^{n}$
2. Substitution: $x:=S_{1}\left(x_{1}\right)\left\|S_{2}\left(x_{2}\right)\right\| \cdots \| S_{8}\left(x_{8}\right)$
3. Bit Mixing Permutation: permute the bits of x to obtain the round output

Substitution Permutation Networks

- Proposition 6.3: Let F be a keyed function defined by a Substitution Permutation Network. Then for any keys/number of rounds F_{k} is a permutation.
- Why? Composing permutations f,g results in another permutation $h(x)=g(f(x))$.

Advanced Encryption Standard

- Block Size: 128 bits
- Key Size: 128, 192 or 256
- Essentially a Substitution Permutation Network
- AddRoundKey: Generate 128-bit sub-key from master key, XOR with current state array
- SubBytes: Each byte of state array (16 bytes) is replaced by another byte according a single S-box (lookup table)
- ShiftRows
- MixColumns

Bit Mixing Permutation

AddRoundKey:

11110000	\ldots	\ldots	\ldots
01100010	\ldots	\ldots	\ldots
00110000	\ldots	\ldots	\ldots
11111111	\ldots	\ldots	\ldots

State

11111111	\ldots	\ldots	\ldots
11000001	\ldots	\ldots	\ldots
11111100	\ldots	\ldots	\ldots
10000000	\ldots	\ldots	\ldots

SubBytes (Apply S-box)			
S(111111111)	S(..)	$\mathrm{S}(\ldots)$	$\mathrm{S}(\ldots)$
$\mathbf{S}(11000001)$	$\mathrm{S}(\ldots)$	$\mathrm{S}(\ldots)$	$\mathrm{S}(\ldots)$
$\mathbf{S}(11111100)$	$\mathrm{S}(\ldots)$	$\mathrm{S}(\ldots)$	$\mathrm{S}(\ldots)$
$\mathbf{S}(\mathbf{1 0 0 0 0 0 0 0 0})$	$\mathrm{S}(\ldots)$	$\mathrm{S}(\ldots)$	$\mathrm{S}(\ldots)$

State

$S(11111111)$	$S(\ldots)$	$S(\ldots)$	$S(\ldots)$
$\mathbf{S}(\mathbf{1 1 0 0 0 0 0 0 1)}$	$S(\ldots)$	$S(\ldots)$	$S(\ldots)$
$\mathbf{S}(\mathbf{1 1 1 1 1 1 0 0)}$	$S(\ldots)$	$S(\ldots)$	$S(\ldots)$
$\mathbf{S (1 0 0 0 0 0 0 0)}$	$S(\ldots)$	$S(\ldots)$	$S(\ldots)$

Shift Rows

$S(11111111)$	$S(\ldots)$	$S(\ldots)$	$S(\ldots)$
$S(\ldots)$	$S(11000001)$	$S(\ldots)$	$S(\ldots)$
$S(\ldots)$	$S(\ldots)$	$S(11111100)$	$S(\ldots)$
$S(\ldots)$	$S(\ldots)$	$S(\ldots)$	$S(10000000)$

State

$S(11111111)$			
	S(11000001)	$S(\ldots)$	
$S(\ldots)$		$S(11111100)$	
		$S(\ldots)$	$S(10000000)$

Mix Columns

Invertible (linear) transformation.

Key property: if inputs differ in $b>0$ bytes then output differs in 5-b bytes (minimum)

AES

- We just described one round of the SPN
- AES uses
- 10 rounds (with 128 bit key)
- 12 rounds (with 192 bit key)
- 14 rounds (with 256 bit key)

AES-128: Key Schedule

AES Attacks?

- Side channel attacks affect a few specific implementations
- But, this is not a weakness of AES itself
- Timing attack on OpenSSL's implementation AES encryption (2005, Bernstein)
- (2009) Related-Key Attack on 11 round version of AES
- Related Key Attack: Attacker convinces Alice to use two related (but unknown) keys
- recovers 256 -bit key in time 2^{70}
- But AES is 14 round (with 256 bit key) so the attack doesn't apply in practice
- (2009) Related Key Attack on 192-bit and 256 bit version of AES
- recovers 256-bit key in time $2^{99.5}$.
- (2011) Key Recovery attack on AES-128 in time $2^{126.2}$.
- Improved to $2^{126.0}$ for AES-128, $2^{189.9}$ for AES-192 and $2^{254.3}$ for AES-256
- First public cipher approved by NSA for Top Secret information
- SECRET level (AES-128,AES-192 \& AES-256), TOP SECRET level (AES-128,AES-192 \& AES-256)

NIST Recommendations

Ok, as CRHF and in Digital Signatures

Ok, to use for HMAC, Key Derivation and as PRG

AES-GCM

- Note: just because AES is a good block cipher does not mean that all modes of operation that use AES are secure.
- ECB Penguin

- AES-GCM: authenticated encryption with associated data
- Increasing deployment: TLS 1.2, TLS 1.3, QUIC
- Hardware support for AES + AES-GCM in many modern processors

Differential Cryptanalysis

Definition: We say that the differential $\left(\triangle_{x}, \triangle_{y}\right)$ occurs with probability p in the keyed block cipher F if

$$
\operatorname{Pr}\left[F_{K}\left(x_{1}\right) \oplus F_{K}\left(x_{1} \oplus \Delta_{x}\right)=\Delta_{y}\right] \geq p
$$

Can Lead to Efficient (Round) Key Recovery Attacks
Exploiting Weakness Requires: well over $\frac{1}{p}$ chosen plaintext-ciphertext pairs

Differentials in S-box can lead to (weaker) differentials in SPN.

Linear Cryptanalysis

$$
y=F_{K}(x)
$$

Definition: Fixed set of input bits $i_{1}, \ldots, i_{\text {in }}$ and output bits $i_{1}{ }^{\prime}, \ldots, i_{\text {out }}{ }^{\prime}$ are said to have ε-linear bias if the following holds

$$
\left|\operatorname{Pr}\left[x_{i_{1}} \oplus x_{i_{2}} \ldots \oplus x_{i_{i_{n}}} \oplus y_{i_{1}} \oplus y_{i_{2^{\prime}}} \ldots \oplus y_{i_{\text {out }}}\right]\right|=\varepsilon
$$

(randomness taken over the selection of input x and secret key K)

Linear Cryptanalysis

Definition: Fixed set of input bits $i_{1}, \ldots, i_{\text {in }}$ and output bits $i_{1}{ }^{\prime}, \ldots, i_{\text {out }}{ }^{\prime}$ are said to have ε-linear bias if the following holds

$$
\left|\operatorname{Pr}\left[x_{i_{1}} \oplus x_{i_{2}} \ldots \oplus x_{i_{\text {in }}} \oplus y_{i_{1}} \oplus y_{i_{2}, \ldots}, \ldots y_{i_{o u t^{\prime}}}\right]-\frac{1}{2}\right|=\varepsilon
$$

(randomness taken over the selection of input x and secret key $\mathrm{K}, \mathrm{y}=F_{K}(x)$)
Matsui: DES can be broken with just 2^{43} known plaintext/ciphertext pairs.

- Lots of examples needed!
- But the examples do not need to be chosen plaintext/ciphertext pairs...
- One encrypted file can provide a large amounts of known plaintext

Recap

- 2DES, Meet in the Middle Attack
- 3DES
- Stream Ciphers
- Breaking Linear Feedback Shift Registers
- Trivium
- AES

CS 555: Week 8: Topic 1: One Way Functions

What are the minimal assumptions necessary for symmetric keycryptography?

One-Way Functions (OWFs)

$\mathrm{f}(x)=y$

Definition: A function f: $\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ is one way if it is

1. (Easy to compute) There is a polynomial time algorithm (in $|\mathrm{x}|$) for computing $f(x)$.
2. (Hard to Invert) Select $x \leftarrow\{0,1\}^{n}$ uniformly at random and give the attacker input $1^{\mathrm{n}}, \mathrm{f}(\mathrm{x})$. The probability that a PPT attacker outputs x^{\prime} such that $\mathrm{f}\left(x^{\prime}\right)=f(x)$ is negligible in n .

One-Way Functions (OWFs)

$\mathrm{f}(x)=y$

Key Takeaway: One-Way Functions is a necessary and sufficient assumption for most of symmetric key cryptography.

- From OWFs we can construct PRGs, PRFs, Authenticated Encryption
- From eavesdropping secure encryption (weakest) notion we can construct OWFs

One-Way Functions (OWFs)

$\mathrm{f}(x)=y$

Remarks:

- A function that is not one-way is not necessarily always easy to invert (even often)
- Any such function can be inverted in time 2^{n} (brute force)
- Length-preserving OWF: $|f(x)|=|x|$
- One way permutation: Length-preserving + one-to-one

One-Way Functions (OWFs)

$\mathrm{f}(x)=y$

Remarks:

1. $f(x)$ does not necessarily hide all information about x.
2. If $f(x)$ is one way then so is $f^{\prime}(x)=f(x) \| \operatorname{LSB}(x)$.

One-Way Functions (OWFs)

$\mathrm{f}(x)=y$

Remarks:

1. Actually we usually consider a family of one-way functions

$$
f_{I}:\{\mathbf{0}, \mathbf{1}\}^{I} \rightarrow\{\mathbf{0}, \mathbf{1}\}^{I}
$$

Candidate One-Way Functions

$f_{s S}\left(x_{1}, \ldots, x_{n}, J\right)=\left(x_{1}, \ldots, x_{n}, \sum_{i \in J} x_{i} \bmod 2^{n}\right)$
(Subset Sum Problem is NP-Complete)
Note: $J \subset[n]$ and $0 \leq x_{i} \leq 2^{n}-\mathbf{1}$

Candidate One-Way Functions

$$
f_{s S}\left(x_{1}, \ldots, x_{n}, J\right)=\left(x_{1}, \ldots, x_{n}, \sum_{i \in J} x_{i} \bmod 2^{n}\right)
$$

(Subset Sum Problem is NP-Complete)

Question: Does $\mathrm{P} \neq N P$ imply this is a OWF?

Answer: No! $\mathrm{P} \neq N P$ only implies that any polynomial-time algorithm fails to solve "some instance" of subset sum. By contrast, we require that PPT attacker fails to solve "almost all instances" of subset sum.

Candidate One-Way Functions (OWFs)

$f_{p, g}(x)=\left[g^{x} \bmod p\right]$

(Discrete Logarithm Problem)

Note: The existence of OWFs implies $\mathrm{P} \neq N P$ so we cannot be absolutely certain that they do exist.

How to Build a PRG with OneWay Functions?

Hard Core Predicates

- Recall that a one-way function f may potentially reveal lots of information about input
- Example: $f\left(x_{1}, x_{2}\right)=\left(x_{1}, g\left(x_{2}\right)\right)$, where g is a one-way function.
- Claim: f is one-way (even though $f\left(x_{1}, x_{2}\right)$ reveals half of the input bits!)

Hard Core Predicates

Definition: A predicate hc: $\{0,1\}^{*} \rightarrow\{0,1\}$ is called a hard-core predicate of a function f if

1. (Easy to Compute) hc can be computed in polynomial time
2. (Hard to Guess) For all PPT attacker A there is a negligible function negl such that we have

$$
\mathbf{P r}_{x \leftarrow\{0,1\}^{n}}\left[A\left(1^{n}, f(x)\right)=\operatorname{hc}(x)\right] \leq \frac{1}{2}+\operatorname{negl}(n)
$$

Attempt 1: Hard-Core Predicate

Consider the predicate

$$
\mathrm{hc}(\mathrm{x})=\oplus_{i=1}^{n} x_{i}
$$

Hope: hc is hard core predicate for any OWF.

Counter-example:

$$
\mathrm{f}(\mathrm{x})=\left(\mathrm{g}(\mathrm{x}), \oplus_{i=1}^{n} x_{i}\right)
$$

Trivial Hard-Core Predicate

Consider the function

$$
f\left(x_{1}, \ldots, x_{n}\right)=x_{1}, \ldots, x_{n-1}
$$

f has a trivial hard core predicate

$$
\mathrm{hc}(\mathrm{x})=x_{n}
$$

Not useful for crypto applications (e.g., f is not a OWF)

Attempt 3: Hard-Core Predicate

Consider the predicate

$$
\mathrm{hc}(\mathrm{x}, \mathrm{r})=\bigoplus_{i=1}^{n} x_{i} r_{i}
$$

(the bits r_{1}, \ldots, r_{n} will be selected uniformly at random)

Goldreich-Levin Theorem: (Assume OWFs exist) For any OWF f , hc is a hard-core predicate of $g(x, r)=(f(x), r)$.

Question: Why is g a OWF?

Attempt 3: Hard-Core Predicate

Consider the predicate

$$
\operatorname{hc}(\mathrm{x}, \mathrm{r})=\oplus_{i=1}^{n} x_{i} r_{i}
$$

(the bits r_{1}, \ldots, r_{n} will be selected uniformly at random)

Goldreich-Levin Theorem: (Assume OWFs exist) For any OWF f, hc is a hardcore predicate of $g(x, r)=(f(x), r)$.

Intuition: If $\operatorname{Pr}_{x \leftarrow\{0,1\}^{n}}\left[A\left(1^{n}, g(x, r)\right)=\operatorname{hc}(x, r)\right] \geq \frac{1}{2}+\frac{1}{p(n)}$ is nonnegligible then we can recover x by repeatedly running $\left.A^{p\left(1^{n}\right)},\left(f(x), r^{\prime}\right)\right)$ for inputs r^{\prime} of our choosing.

Using Hard-Core Predicates

Theorem: Given a one-way-permutation f and a hard-core predicate hc we can construct a PRG G with expansion factor $\ell(n)=n+1$.

Construction:

$$
G(s)=f(s) \| \operatorname{hc}(s)
$$

Intuition: $f(s)$ is actually uniformly distributed

- s is random
- $f(s)$ is a permutation
- Last bit is hard to predict given $f(s)$ (since hc is hard-core for f)

Arbitrary Expansion

Theorem: Suppose that there is a PRG G with expansion factor $\ell(n)=n+1$. Then for any polynomial $p($.$) there is a$ PRG with expansion factor $p(n)$.

Construction:

- $G^{1}(x)=G(x):=y| | b$.
($\mathrm{n}+1$ bits)
- $G^{2}(x)=G^{1}(y)| | b$
- $G^{i+1}(x)=G^{i}(y)| | b$
where $G^{i}(x)=y| | b$
First n bits of output Last i bits of output

And Beyond...

Theorem: Suppose that there is a PRG G with expansion factor $\ell(n)=n+1$. Then for any polynomial $p($.$) there is a$ PRG with expansion factor $\mathrm{p}(\mathrm{n})$.

Theorem: Suppose that there is a PRG G with expansion factor $\ell(n)=2 n$. Then there is a secure PRF.

Theorem: Suppose that there is a secure PRF then there is a strong pseudorandom permutation.

And Beyond...

Corollary: If one-way functions exist then PRGs, PRFs and strong PRPs all exist.

Corollary: If one-way functions exist then there exist CCAsecure encryption schemes and secure MACs.

Announcements

- Homework 3 due tonight 11:59PM on Gradescope
- Quiz 3 released today
- Due Saturday, March 6 at 11:30PM on Brightspace
- Midterm on March $11^{\text {th }}$ in class
- If you are not able to take the exam in class (e.g., quarantine) let me know and we can arrange an alternative
- Allowed to prepare a 1 page cheat sheet
- Practice Exam released this weekend

Recap

- One Way Functions/One Way Permutations
- Hard Core Predicate
- PRG with from OWP + Hard Core Predicate ($\mathrm{n}+1$)
- PRG with arbitrary expansion from PRG with expansion ($\mathrm{n}+1$)
- $\mathrm{G}^{1}(\mathrm{x})=\mathrm{G}(\mathrm{x})$
($\mathrm{n}+1$ bits)
- $G^{i+1}(x)=G^{i}(y) \| z \quad$ where $G^{i}(x)=y \| z$ $n+i+1$ bits

First n bits of output Last i bits of output

- PRGs \rightarrow PRFs (and PRPs/MACs/authenticated encryption)

PRFs from PRGs

Theorem: Suppose that there is a PRG G with expansion factor $\ell(n)=2 n$. Then there is a secure PRF.

$$
\text { Let } \left.\mathrm{G}(\mathrm{x})=\mathrm{G}_{0}(\mathrm{x}) \| \mathrm{G}_{1}(\mathrm{x}) \quad \text { (first/last } \mathrm{n} \text { bits of output }\right)
$$

$$
F_{K}\left(x_{1}, \ldots, x_{n}\right)=G_{x_{n}}\left(\ldots\left(G_{x_{2}}\left(G_{x_{1}}(K)\right)\right) \ldots\right)
$$

PRFs from PRGs

Theorem: Suppose that there is a PRG G with expansion factor $\ell(n)=2 n$. Then there is a secure PRF.

PRFs from PRGs

Theorem: Suppose that there is a PRG G with expansion factor $\ell(n)=2 n$. Then there is a secure PRF.

Proof:
Claim 1: For any $\mathrm{t}(\mathrm{n})$ and any PPT attacker A we have $\left|\operatorname{Pr}\left[A\left(r_{1}\|\cdots\| r_{t(n)}\right)\right]-\operatorname{Pr}\left[\boldsymbol{A}\left(G\left(s_{1}\right)\|\cdots\| G\left(s_{t(n)}\right)\right)\right]\right|<\operatorname{negl}(n)$

PRFs from PRGs

Claim 1: For any $\mathrm{t}(\mathrm{n})$ and any PPT attacker A we have

$$
\left|\operatorname{Pr}\left[A\left(r_{1}\|\cdots\| r_{t(n)}\right)\right]-\operatorname{Pr}\left[A\left(G\left(s_{1}\right)\|\cdots\| G\left(s_{t(n)}\right)\right)\right]\right|<\operatorname{negl}(n)
$$

Proof by Triangle Inequality: Fix j

$$
\begin{aligned}
& A d v_{j} \\
& =\mid \operatorname{Pr}\left[A\left(r_{1}\|\cdots\| r_{j+1}\left\|G\left(s_{j+2}\right) \ldots\right\| G\left(s_{t(n)}\right)\right)\right]
\end{aligned}
$$

PRFs from PRGs

Claim 1: For any $\mathrm{t}(\mathrm{n})$ and any PPT attacker A we have $\left|\operatorname{Pr}\left[A\left(r_{1}\|\cdots\| r_{t(n)}\right)\right]-\operatorname{Pr}\left[A\left(G\left(s_{1}\right)\|\cdots\| G\left(s_{t(n)}\right)\right)\right]\right|<\operatorname{negl}(n)$
Proof

$$
\begin{aligned}
& \mid \operatorname{Pr}\left[A\left(r_{1}\|\cdots\| r_{t(n)}\right)\right]-\operatorname{Pr}\left[A\left(G\left(s_{1}\right)\|\cdots\| G\left(s_{t(n)}\right)\right)\right] \mid \\
& \leq \sum_{j<t(n)} \operatorname{Ad} v_{j} \\
& \leq t(n) \times \operatorname{negl}(n)=\operatorname{negl}(n)
\end{aligned}
$$

PRFs from PRGs

Claim 1: For any $\mathrm{t}(\mathrm{n})$ and any PPT attacker A we have

$$
\left|\operatorname{Pr}\left[A\left(r_{1}\|\cdots\| r_{t(n)}\right)\right]-\operatorname{Pr}\left[A\left(G\left(s_{1}\right)\|\cdots\| G\left(s_{t(n)}\right)\right)\right]\right|<\operatorname{negl}(n)
$$

Proof

$$
\begin{aligned}
& \mid \operatorname{Pr}\left[A\left(r_{1}\|\cdots\| r_{t(n)}\right)\right]-\operatorname{Pr}\left[A\left(G\left(s_{1}\right)\|\cdots\| G\left(s_{t(n)}\right)\right)\right] \mid \\
& \leq \sum_{j<t(n)} A d v_{j} \\
& \leq t(n) \times \operatorname{negl}(n)=\operatorname{negl}(n)
\end{aligned}
$$

(QED, Claim 1)

Hybrid H_{1} and H_{2}

- Original Construction: Hybrid H_{1}

Hybrid H_{1} and H_{2}

- Modified Construction H_{2} : Pick r_{0} and r_{1} randomly instead of $\mathrm{r}_{\mathrm{i}}=\mathrm{G}_{\mathrm{i}}(\mathrm{K})$

Hybrid H_{3}

- Modified Construction H_{3} : Pick $\mathrm{r}_{00}, r_{01}, r_{10}$ and r_{11} randomly instead of applying PRG

Hybrid H_{n}

- Truly Random Function: All output values r_{x} are picked randomly

Hybrid H_{1} vs H_{2}

Claim 1: For any $\mathrm{t}(\mathrm{n})$ and any PPT attacker A we have
$\left|\operatorname{Pr}\left[A\left(r_{1}\|\cdots\| r_{t(n)}\right)\right]-\operatorname{Pr}\left[A\left(G\left(s_{1}\right)\|\cdots\| G\left(s_{t(n)}\right)\right)\right]\right|<\operatorname{negl}(n)$

Claim 2: Attacker who makes $t(n)$ queries to F_{k} (orf) cannot distinguish H_{2} from the real game (except with negligible probability).

Proof Intuition: Follows by Claim 1

Hybrid H_{i} vs H_{i}

Claim 1: For any $\mathrm{t}(\mathrm{n})$ and any PPT attacker A we have

$$
\left|\operatorname{Pr}\left[A\left(r_{1}\|\cdots\| r_{t(n)}\right)\right]-\operatorname{Pr}\left[A\left(G\left(s_{1}\right)\|\cdots\| G\left(s_{t(n)}\right)\right)\right]\right|<\operatorname{negl}(n)
$$

Claim 3: Attacker who makes $t(n)$ queries to F_{k} (or f) cannot distinguish H_{i} from H_{i-1} the real game (except with negligible probability).

Challenge: Cannot replace 2^{i} pseudorandom values with random strings at level i $2^{i} \operatorname{negl}(n)$ is not necessarily negligible if $i=\frac{n}{2}$
Key Idea: Only need to replace $\mathrm{t}(\mathrm{n})$ values (note: $t(n) \operatorname{negl}(n)$ is negligible).

Hybrid H_{i}

- Red Leaf Nodes: Queried $\mathrm{F}_{\mathrm{k}}(\mathrm{x})$ (at most $\mathrm{t}(\mathrm{n})$ red leaf nodes)
- Red Internal Nodes: On path from red leaf node to root
- Level i: $\leq t(n)$ red nodes

Hybrid H_{i} vs H_{i}

Claim 1: For any $t(n)$ and any PPT attacker A we have

$$
\left|\operatorname{Pr}\left[A\left(r_{1}\|\cdots\| r_{t(n)}\right)\right]-\operatorname{Pr}\left[A\left(G\left(s_{1}\right)\|\cdots\| G\left(s_{t(n)}\right)\right)\right]\right|<\operatorname{negl}(n)
$$

Claim 3: Attacker who makes $t(n)$ queries to F_{k} (or f) cannot distinguish H_{i} from $\mathrm{H}_{\mathrm{i}-1}$ the real game (except with negligible probability).

Triangle Inequality: Attacker who makes $\mathrm{t}(\mathrm{n})$ queries to F_{k} (or f) cannot distinguish H_{1} (real construction) from H_{n} (truly random function) except with negligible probability.

From OWFs (Recap)

Theorem: Suppose that there is a PRG G with expansion factor $\ell(n)=n+1$. Then for any polynomial $p($.$) there is a$ PRG with expansion factor $p(n)$.

Theorem: Suppose that there is a PRG G with expansion factor $\ell(n)=2 n$. Then there is a secure PRF.

Theorem: Suppose that there is a secure PRF then there is a strong pseudorandom permutation.

From OWFs (Recap)

Corollary: If one-way functions exist then PRGs, PRFs and strong PRPs all exist.

Corollary: If one-way functions exist then there exist CCAsecure encryption schemes and secure MACs.

Are OWFs Necessary for Private Key Crypto

- Previous results show that OWFs are sufficient.
- Can we build Private Key Crypto from weaker assumptions?
- Short Answer: No, OWFs are also necessary for most private-key crypto primitives

PRGs \rightarrow OWFs

Proposition 7.28: If PRGs exist then so do OWFs.

Proof: Let G be a secure PRG with expansion factor $\ell(n)=2 n$.
Question: why can we assume that we have an PRG with expansion $2 n$?

Answer: Last class we showed that a PRG with expansion factor $\ell(n)=n+1$. Implies the existence of a PRG with expansion $p(n)$ for any polynomial.

PRGs \rightarrow OWFs

Proposition 7.28: If PRGs exist then so do OWFs.

Proof: Let G be a secure PRG with expansion factor $\ell(n)=2 n$.

Claim: G is also a OWF!
(Easy to Compute?) \checkmark
(Hard to Invert?)
Intuition: If we can invert $\mathrm{G}(\mathrm{x})$ then we can distinguish $\mathrm{G}(\mathrm{x})$ from a random string.

PRGs \rightarrow OWFs

Proposition 7.28: If PRGs exist then so do OWFs.

Proof: Let G be a secure PRG with expansion factor $\ell(n)=2 n$.
Claim 1: Any PPT A, given G(s), cannot find s except with negligible probability.
Reduction: Assume (for contradiction) that A can invert $\mathrm{G}(\mathrm{s})$ with nonnegligible probability $p(n)$.
Distinguisher D(y): Simulate A(y)
Output 1 if and only if $A(y)$ outputs x s.t. $G(x)=y$.

PRGs \rightarrow OWFs

Proposition 7.28: If PRGs exist then so do OWFs.

Proof: Let G be a secure PRG with expansion factor $\ell(n)=2 n$.
Claim 1: Any PPT A, given $G(s)$, cannot find s except with negligible probability.
Intuition for Reduction: If we can find x s.t. $G(x)=y$ then y is not random.
Fact: Select a random 2 n bit string y . Then (whp) there does not exist x such that $G(x)=y$.

Why not?

PRGs \rightarrow OWFs

Proposition 7.28: If PRGs exist then so do OWFs.

Proof: Let G be a secure PRG with expansion factor $\ell(n)=2 n$.
Claim 1: Any PPT A, given $G(s)$, cannot find s except with negligible probability. Intuition: If we can invert $\mathrm{G}(\mathrm{x})$ then we can distinguish $\mathrm{G}(\mathrm{x})$ from a random string. Fact: Select a random $2 n$ bit string y. Then (whp) there does not exist x such that $G(x)=y$.

- Why not? Simple counting argument, $2^{2 n}$ possible y^{\prime} s and $2^{n} x^{\prime}$ s.
- Probability there exists such an x is at most 2^{-n} (for a random y)

What other assumptions imply OWFs?

- PRGs \rightarrow OWFs
- (Easy Extension) PRFs \rightarrow PRGs \rightarrow OWFs
- Does secure crypto scheme imply OWFs?
- CCA-secure? (Strongest)
- CPA-Secure? (Weaker)
- EAV-secure? (Weakest)
- As long as the plaintext is longer than the secret key
- Perfect Secrecy? X (Guarantee is information theoretic)

EAV-Secure Crypto \rightarrow OWFs

Proposition 7.29: If there exists a EAV-secure private-key encryption scheme that encrypts messages twice as long as its key, then a one-way function exists.

Recap: EAV-secure.

- Attacker picks two plaintexts $\mathrm{m}_{0}, \mathrm{~m}_{1}$ and is given $\mathrm{c}=\mathrm{Enc}_{\mathrm{k}}\left(\mathrm{m}_{\mathrm{b}}\right)$ for random bit b.
- Attacker attempts to guess b.
- No ability to request additional encryptions (chosen-plaintext attacks)
- In fact, no ability to observe any additional encryptions

EAV-Secure Crypto \rightarrow OWFs

Proposition 7.29: If there exists a EAV-secure private-key encryption scheme that encrypts messages twice as long as its key, then a one-way function exists.

Reduction: $\boldsymbol{f}(\boldsymbol{m}, \boldsymbol{k}, \boldsymbol{r})=\boldsymbol{E n c}_{\boldsymbol{k}}(\boldsymbol{m} ; \boldsymbol{r}) \| \boldsymbol{m}$.
Input: 4n bits
(For simplicity assume that Enc $_{\mathrm{k}}$ accepts n bits of randomness)

Claim: f is a OWF

EAV-Secure Crypto \rightarrow OWFs

Proposition 7.29: If there exists a EAV-secure private-key encryption scheme that encrypts messages twice as long as its key, then a one-way function exists.

Reduction: $\boldsymbol{f}(\boldsymbol{m}, \boldsymbol{k}, \boldsymbol{r})=\boldsymbol{E n c}_{\boldsymbol{k}}(\boldsymbol{m} ; \boldsymbol{r}) \| \boldsymbol{m}$.
Claim: f is a OWF
Reduction: If attacker A can invert f, then attacker A' can break EAVsecurity as follows. Given $\mathrm{c}=\mathrm{Enc}_{\mathrm{k}}\left(\mathrm{m}_{\mathrm{b}} ; \mathrm{r}\right)$ run $\mathrm{A}\left(\mathrm{c} \| m_{0}\right)$. If A outputs $\left(\mathrm{m}^{\prime}, \mathrm{k}^{\prime}, \mathrm{r}^{\prime}\right)$ such that $\mathrm{f}\left(\mathrm{m}^{\prime}, \mathrm{k}^{\prime}, \mathrm{r}^{\prime}\right)=\mathrm{c} \| m_{0}$ then output 0 ; otherwise 1 ;

MACs \rightarrow OWFs

In particular, given a MAC that satisfies MAC security (Definition 4.2) against an attacker who sees an arbitrary (polynomial) number of message/tag pairs.

Conclusions: OWFs are necessary and sufficient for all (non-trivial) private key cryptography.
\rightarrow OWFs are a minimal assumption for private-key crypto.

Public Key Crypto/Hashing?

- OWFs are known to be necessary
- Not known (or believed) to be sufficient.

Computational Indistinguishability

- Consider two distributions X_{ℓ} and Y_{ℓ} (e.g., over strings of length ℓ).
- Let D be a distinguisher that attempts to guess whether a string s came from distribution X_{ℓ} or Y_{ℓ}.

The advantage of a distinguisher D is

$$
A d v_{D, \ell}=\left|P r_{s \leftarrow X_{\ell}}[D(s)=1]-P r_{s \leftarrow Y_{\ell}}[D(s)=1]\right|
$$

Definition: We say that an ensemble of distributions $\left\{X_{n}\right\}_{n \in \mathbb{N}}$ and $\left\{Y_{n}\right\}_{n \in \mathbb{N}}$ are computationally indistinguishable if for all PPT distinguishers D, there is a negligible function negl(n), such that we have

$$
A d v_{D, n} \leq \operatorname{negl}(n)
$$

