
Cryptography
CS 555

Week 7: 
• AES
• One Way Functions
• Readings: Katz and Lindell Chapter 6.2.5, 6.3, 7.1-7.4
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Recap

• Block Ciphers, SPNs, Feistel Networks, DES
• Meet in the Middle, 3DES
• Building Stream Ciphers

• Linear Feedback Shift Registers (+ Attacks)
• RC4 (+ Attacks)
• Trivium
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CS 555: Week 7: Topic 1
Block Ciphers (Continued)
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Advanced Encryption Standard (AES)

• (1997) US National Institute of Standards and Technology (NIST) announces 
competition for new block cipher to replace DES

• Fifteen algorithms were submitted from all over the world
• Analyzed by NIST

• Contestants given a chance to break competitors schemes

• October, 2000 NIST announces a winner Rijndael
• Vincent Rijmen and Joan Daemen
• No serious vulnerabilities found in four other finalists
• Rijndael was selected for efficiency, hardware performance, flexibility etc… 
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Advanced Encryption Standard

• Block Size: 128 bits (viewed as 4x4 byte array)
• Key Size: 128, 192 or 256

• Essentially a Substitution Permutation Network
• AddRoundKey: Generate 128-bit sub-key from master key XOR with current 

state
• SubBytes: Each byte of state array (16 bytes) is replaced by another byte 

according a a single S-box (lookup table)
• ShiftRows – shift ith row by i bytes
• MixColumns – permute the bits in each column
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Substitution Permutation Networks

• S-box a public “substitution function” (e.g. S ∈ Perm8).

• S is not part of a secret key, but can be used with one 
f(x) = S x⨁𝑘𝑘

Input to round: x, k (k  is subkey for current round)
1. Key Mixing: Set x ≔ x⨁𝑘𝑘
2. Substitution: x ≔ S1 x1 ∥ S2 x2 ∥ ⋯ ∥ S8 x8

3. Bit Mixing Permutation: permute the bits of x to obtain the round 
output
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Note: there are only n! 
possible bit mixing 
permutations of [n] as 
opposed to 2n! 
Permutations of {0,1}n



Substitution Permutation Networks

• Proposition 6.3: Let F be a keyed 
function defined by a Substitution 
Permutation Network. Then for any 
keys/number of rounds Fk is a 
permutation.

• Why? Composing permutations f,g
results in another permutation 
h(x)=g(f(x)).
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Advanced Encryption Standard

• Block Size: 128 bits
• Key Size: 128, 192 or 256

• Essentially a Substitution Permutation Network
• AddRoundKey: Generate 128-bit sub-key from master key, XOR 

with current state array
• SubBytes: Each byte of state array (16 bytes) is replaced by 

another byte according a single S-box (lookup table)
• ShiftRows
• MixColumns
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Bit Mixing Permutation

Key Mixing

Substitution



11110000 … … …

01100010 … … …

00110000 … … …

11111111 … … …
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State

00001111 … … …

10100011 … … …

11001100 … … …

01111111 … … …

Round Key (16 Bytes)

AddRoundKey:

⨁

11111111 … … …

11000001 … … …

11111100 … … …

10000000 … … …

=
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State

… … …

… … …

… … …

… … …

11111111 … … …

11000001 … … …

11111100 … … …

10000000 … … …

S(11111111) S(…) S(…) S(…)

S(11000001) S(…) S(…) S(…)

S(11111100) S(…) S(…) S(…)

S(10000000) S(…) S(…) S(…)

SubBytes (Apply S-box)
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State

S(11111111) S(…) S(…) S(…)

S(11000001) S(…) S(…) S(…)

S(11111100) S(…) S(…) S(…)

S(10000000) S(…) S(…) S(…)

Shift Rows

S(11111111) S(…) S(…) S(…)

S(…) S(11000001) S(…) S(…)

S(…) S(…) S(11111100) S(…)

S(…) S(…) S(…) S(10000000)
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State

Mix Columns

Invertible (linear) transformation. 

Key property: if inputs differ in b>0 bytes then output differs in 5-b bytes (minimum)

S(11111111)

S(11000001) S(…)

S(…) S(11111100)

S(…) S(10000000)



AES

• We just described one round of the SPN

• AES uses 
• 10 rounds (with 128 bit key)
• 12 rounds (with 192 bit key)
• 14 rounds (with 256 bit key)
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AES-128: Key Schedule
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AES Attacks?

• Side channel attacks affect a few specific implementations
• But, this is not a weakness of AES itself
• Timing attack on OpenSSL’s implementation AES encryption (2005, Bernstein)

• (2009) Related-Key Attack on 11 round version of AES 
• Related Key Attack: Attacker convinces Alice to use two related (but unknown) keys
• recovers 256-bit key in time 270

• But AES is 14 round (with 256 bit key) so the attack doesn’t apply in practice
• (2009) Related Key Attack on 192-bit and 256 bit version of AES

• recovers 256-bit key in time 299.5.
• (2011) Key Recovery attack on AES-128 in time 2126.2.

• Improved to 2126.0 for AES-128, 2189.9 for AES-192 and 2254.3 for AES-256
• First public cipher approved by NSA for Top Secret information

• SECRET level (AES-128,AES-192 & AES-256), TOP SECRET level (AES-128,AES-192 & AES-256)
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NIST Recommendations

17Recommendations from Other Groups (Including NIST): www.keylength.com

Ok, to use for HMAC, Key 
Derivation and as PRG

Ok, as CRHF and in Digital 
Signatures

80 bits-security is no 
longer acceptable

http://www.keylength.com/


AES-GCM

• Note: just because AES is a good block cipher does not mean that all 
modes of operation that use AES are secure.

• ECB Penguin

• AES-GCM: authenticated encryption with associated data
• Increasing deployment: TLS 1.2, TLS 1.3, QUIC
• Hardware support for AES + AES-GCM in many modern processors
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Differential Cryptanalysis

Definition: We say that the differential △𝑥𝑥 ,△𝑦𝑦 occurs with 
probability 𝑝𝑝 in the keyed block cipher 𝐹𝐹 if

Pr 𝐹𝐹𝐾𝐾 𝑥𝑥1 ⨁𝐹𝐹𝐾𝐾 𝑥𝑥1⨁△𝑥𝑥 =△𝑦𝑦 ≥ 𝑝𝑝

Can Lead to Efficient (Round) Key Recovery Attacks
Exploiting Weakness Requires:  well over 1

𝑝𝑝
chosen plaintext-ciphertext 

pairs

Differentials in S-box can lead to (weaker) differentials in SPN.
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Linear Cryptanalysis

𝑦𝑦 = 𝐹𝐹𝐾𝐾 𝑥𝑥

Definition: Fixed set of input bits 𝑖𝑖1, … , 𝑖𝑖𝑖𝑖𝑖𝑖 and output bits 𝑖𝑖1′, … , 𝑖𝑖𝑜𝑜𝑜𝑜𝑜𝑜′
are said to have 𝜀𝜀-linear bias if the following holds

𝑃𝑃𝑃𝑃 𝑥𝑥𝑖𝑖1⨁𝑥𝑥𝑖𝑖2 …⨁𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖⨁𝑦𝑦𝑖𝑖1′⨁𝑦𝑦𝑖𝑖2′ …⨁𝑦𝑦𝑖𝑖𝑜𝑜𝑜𝑜𝑜𝑜′ = 𝜀𝜀

(randomness taken over the selection of input x and secret key K)
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Linear Cryptanalysis

Definition: Fixed set of input bits 𝑖𝑖1, … , 𝑖𝑖𝑖𝑖𝑖𝑖 and output bits 𝑖𝑖1′, … , 𝑖𝑖𝑜𝑜𝑜𝑜𝑜𝑜′ are said to 
have 𝜀𝜀-linear bias if the following holds

Pr 𝑥𝑥𝑖𝑖1⨁𝑥𝑥𝑖𝑖2 …⨁𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖⨁𝑦𝑦𝑖𝑖1′⨁𝑦𝑦𝑖𝑖2′ …⨁𝑦𝑦𝑖𝑖𝑜𝑜𝑜𝑜𝑜𝑜′ −
1
2

= 𝜀𝜀

(randomness taken over the selection of input x and secret key K, 𝑦𝑦 = 𝐹𝐹𝐾𝐾 𝑥𝑥 )

Matsui: DES can be broken with just 243 known plaintext/ciphertext pairs.
• Lots of examples needed! 
• But the examples do not need to be chosen plaintext/ciphertext pairs…
• One encrypted file can provide a large amounts of known plaintext
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Recap

• 2DES, Meet in the Middle Attack
• 3DES
• Stream Ciphers

• Breaking Linear Feedback Shift Registers
• Trivium

• AES
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CS 555: Week 8: Topic 1:
One Way Functions

23

What are the minimal assumptions necessary for symmetric key-
cryptography?



One-Way Functions (OWFs)

f 𝑥𝑥 = 𝑦𝑦
Definition: A function f: 0,1 ∗ → 0,1 ∗ is one way if it is 
1. (Easy to compute) There is a polynomial time algorithm (in |x|) for 

computing f(x).
2. (Hard to Invert) Select x ← 0,1 𝑖𝑖 uniformly at random and give the 

attacker input 1n, f(x). The probability that a PPT attacker outputs x’ such 
that f 𝑥𝑥′ = 𝑓𝑓(𝑥𝑥) is negligible in n.
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One-Way Functions (OWFs)

f 𝑥𝑥 = 𝑦𝑦
Key Takeaway: One-Way Functions is a necessary and sufficient
assumption for most of symmetric key cryptography.
• From OWFs we can construct PRGs, PRFs, Authenticated Encryption
• From eavesdropping secure encryption (weakest) notion we can 

construct OWFs
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One-Way Functions (OWFs)

f 𝑥𝑥 = 𝑦𝑦
Remarks:
• A function that is not one-way is not necessarily always easy to invert 

(even often)
• Any such function can be inverted in time 2n (brute force)
• Length-preserving OWF: |f(x)| = |x|
• One way permutation: Length-preserving + one-to-one
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One-Way Functions (OWFs)

f 𝑥𝑥 = 𝑦𝑦
Remarks:
1. f(x) does not necessarily hide all information about x.
2. If f(x) is one way then so is 𝐟𝐟′ 𝐱𝐱 = 𝐟𝐟 𝐱𝐱 ∥ 𝑳𝑳𝑳𝑳𝑳𝑳 𝒙𝒙 .
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One-Way Functions (OWFs)

f 𝑥𝑥 = 𝑦𝑦
Remarks:
1. Actually we usually consider a family of one-way functions

𝒇𝒇𝑰𝑰: 𝟎𝟎,𝟏𝟏 𝑰𝑰 → 𝟎𝟎,𝟏𝟏 𝑰𝑰
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Candidate One-Way Functions 

𝑓𝑓𝑠𝑠𝑠𝑠 𝑥𝑥1, … , 𝑥𝑥𝑖𝑖, 𝐽𝐽 = 𝑥𝑥1, … , 𝑥𝑥𝑖𝑖,�
𝑖𝑖∈𝐽𝐽

𝑥𝑥𝑖𝑖 mo𝑑𝑑 2𝑖𝑖

(Subset Sum Problem is NP-Complete)

Note: 𝐽𝐽 ⊂ [𝑛𝑛] and 𝟎𝟎 ≤ 𝒙𝒙𝒊𝒊≤ 𝟐𝟐𝒏𝒏 − 𝟏𝟏
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Candidate One-Way Functions 

𝑓𝑓𝑠𝑠𝑠𝑠 𝑥𝑥1, … , 𝑥𝑥𝑖𝑖, 𝐽𝐽 = 𝑥𝑥1, … , 𝑥𝑥𝑖𝑖,�
𝑖𝑖∈𝐽𝐽

𝑥𝑥𝑖𝑖 mo𝑑𝑑 2𝑖𝑖

(Subset Sum Problem is NP-Complete)

Question: Does P ≠ 𝑁𝑁𝑃𝑃 imply this is a OWF?

Answer: No! P ≠ 𝑁𝑁𝑃𝑃 only implies that any polynomial-time algorithm fails to solve “some 
instance” of subset sum. By contrast, we require that PPT attacker fails to solve “almost all 
instances” of subset sum. 

30



Candidate One-Way Functions (OWFs)

𝑓𝑓𝑝𝑝,𝑔𝑔 𝑥𝑥 = [𝑔𝑔𝑥𝑥 mo𝑑𝑑 𝑝𝑝]
(Discrete Logarithm Problem)

Note: The existence of OWFs implies P ≠ 𝑁𝑁𝑃𝑃 so we cannot be absolutely
certain that they do exist.
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How to Build a PRG with One-
Way Functions?

32



Hard Core Predicates

• Recall that a one-way function f may potentially reveal lots of 
information about input

• Example: f(x1,x2)=(x1,g(x2)), where g is a one-way function.
• Claim: f is one-way (even though f(x1,x2) reveals half of the input bits!)
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Hard Core Predicates

Definition: A predicate hc: 0,1 ∗ → 0,1 is called a hard-core 
predicate of a function f if 
1. (Easy to Compute) hc can be computed in polynomial time
2. (Hard to Guess) For all PPT attacker A there is a negligible function 

negl such that we have 

𝐏𝐏𝐏𝐏𝑥𝑥← 0,1 𝑖𝑖 𝐴𝐴 1𝑖𝑖, 𝑓𝑓(𝑥𝑥) = hc(𝑥𝑥) ≤
1
2

+ 𝑛𝑛𝑛𝑛𝑔𝑔𝑛𝑛(𝑛𝑛)
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Attempt 1: Hard-Core Predicate

Consider the predicate
hc x = ⨁𝑖𝑖=1

𝑖𝑖 𝑥𝑥𝑖𝑖

Hope: hc is hard core predicate for any OWF.

Counter-example:

f(x) = (g(x), ⨁𝑖𝑖=1
𝑖𝑖 𝑥𝑥𝑖𝑖)
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Trivial Hard-Core Predicate

Consider the function
f(x1,…,xn) = x1,…,xn-1

f has a trivial hard core predicate
hc x = 𝑥𝑥𝑖𝑖

Not useful for crypto applications (e.g., f is not a OWF)
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Attempt 3: Hard-Core Predicate

Consider the predicate
hc x, r = ⨁𝑖𝑖=1

𝑖𝑖 𝑥𝑥𝑖𝑖𝑃𝑃𝑖𝑖
(the bits 𝑃𝑃1,…, 𝑃𝑃𝑖𝑖 will be selected uniformly at random)

Goldreich-Levin Theorem: (Assume OWFs exist) For any OWF f, hc is a 
hard-core predicate of g(x,r)=(f(x),r).

Question: Why is g a OWF?
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Attempt 3: Hard-Core Predicate

Consider the predicate
hc x, r = ⨁𝑖𝑖=1

𝑖𝑖 𝑥𝑥𝑖𝑖𝑃𝑃𝑖𝑖
(the bits 𝑃𝑃1,…, 𝑃𝑃𝑖𝑖 will be selected uniformly at random)

Goldreich-Levin Theorem: (Assume OWFs exist) For any OWF f, hc is a hard-
core predicate of g(x,r)=(f(x),r).

Intuition: If 𝐏𝐏𝐏𝐏𝑥𝑥← 0,1 𝑖𝑖 𝐴𝐴 1𝑖𝑖,𝑔𝑔(𝑥𝑥, 𝑃𝑃) = hc(𝑥𝑥, 𝑃𝑃) ≥ 1
2

+ 1
𝑝𝑝 𝑖𝑖

is non-
negligible then we can recover 𝑥𝑥 by repeatedly running 𝐴𝐴 1𝑖𝑖, (f(x),rʹ) for 
inputs 𝑃𝑃′ of our choosing. 
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Using Hard-Core Predicates

Theorem: Given a one-way-permutation f and a hard-core predicate hc we 
can construct a PRG G with expansion factor ℓ 𝑛𝑛 = 𝑛𝑛 + 1.

Construction: 
𝐺𝐺 𝑠𝑠 = 𝑓𝑓(𝑠𝑠) ∥ hc(𝑠𝑠)

Intuition: f(s) is actually uniformly distributed 
• s is random
• f(s) is a permutation
• Last bit is hard to predict given f(s) (since hc is hard-core for f)
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Arbitrary Expansion

Theorem: Suppose that there is a PRG G with expansion 
factor ℓ 𝑛𝑛 = 𝑛𝑛 + 1. Then for any polynomial p(.) there is a 
PRG with expansion factor p(n).

Construction: 
• G1(x) = G(x):= y || b.       (n+1 bits)
• G2(x) = G1 (y)||b                   (n+2 bits)
• Gi+1(x) = Gi(y) || b      where Gi (x) = y||b

40

First n bits of output Last i bits of output
n+i+1 bits



And Beyond…

Theorem: Suppose that there is a PRG G with expansion 
factor ℓ 𝑛𝑛 = 𝑛𝑛 + 1. Then for any polynomial p(.) there is a 
PRG with expansion factor p(n).

Theorem: Suppose that there is a PRG G with expansion 
factor ℓ 𝑛𝑛 = 2𝑛𝑛. Then there is a secure PRF.

Theorem: Suppose that there is a secure PRF then there is a 
strong pseudorandom permutation.
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And Beyond…

Corollary: If one-way functions exist then PRGs, PRFs 
and strong PRPs all exist. 

Corollary: If one-way functions exist then there exist CCA-
secure encryption schemes and secure MACs. 
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Announcements

• Homework 3 due tonight 11:59PM on Gradescope
• Quiz 3 released today

• Due Saturday, March 6 at 11:30PM on Brightspace

• Midterm on March 11th in class
• If you are not able to take the exam in class (e.g., quarantine) let me know 

and we can arrange an alternative
• Allowed to prepare a 1 page cheat sheet
• Practice Exam released this weekend
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Recap

• One Way Functions/One Way Permutations
• Hard Core Predicate
• PRG with from OWP + Hard Core Predicate (n+1)
• PRG with arbitrary expansion from PRG with expansion (n+1)

• G1(x) = G(x)                 (n+1 bits)
• Gi+1(x) = Gi(y) || z      where Gi (x) = y || z

• PRGs  PRFs (and PRPs/MACs/authenticated encryption)

44

First n bits of output Last i bits of output
n+i+1 bits



PRFs from PRGs

Theorem: Suppose that there is a PRG G with 
expansion factor ℓ 𝑛𝑛 = 2𝑛𝑛. Then there is a secure PRF.

Let G(x) = G0(x)||G1(x)     (first/last n bits of output)

𝑭𝑭𝑲𝑲 𝒙𝒙𝟏𝟏, … ,𝒙𝒙𝒏𝒏 = 𝑮𝑮𝒙𝒙𝒏𝒏 … 𝑮𝑮𝒙𝒙𝟐𝟐 𝑮𝑮𝒙𝒙𝟏𝟏 𝑲𝑲 …
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PRFs from PRGs

Theorem: Suppose that there is a PRG G with 
expansion factor ℓ 𝑛𝑛 = 2𝑛𝑛. Then there is a secure PRF.

46

k

G0(k) G1(k)

G0(G0(k)) G1(G0(k))

……

G0(G1(k)) G1(G1(k))

……

0

0

0

0

… … … …

0 00

1

1

1

1

1

1

1

Fk(011)=G1(G1(G0(k)))



PRFs from PRGs

Theorem: Suppose that there is a PRG G with 
expansion factor ℓ 𝑛𝑛 = 2𝑛𝑛. Then there is a secure PRF.

Proof:
Claim 1: For any t(n) and any PPT attacker A we have
𝑷𝑷𝑷𝑷 𝑨𝑨 𝑷𝑷𝟏𝟏 ∥ ⋯ ∥ 𝑷𝑷𝒕𝒕(𝒏𝒏) − 𝑷𝑷𝑷𝑷 𝑨𝑨 𝑮𝑮 𝒔𝒔𝟏𝟏 ∥ ⋯ ∥ 𝑮𝑮 𝒔𝒔𝒕𝒕(𝒏𝒏) < 𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏(𝒏𝒏)
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PRFs from PRGs

Claim 1: For any t(n) and any PPT attacker A we have
𝑷𝑷𝑷𝑷 𝑨𝑨 𝑷𝑷𝟏𝟏 ∥ ⋯ ∥ 𝑷𝑷𝒕𝒕(𝒏𝒏) − 𝑷𝑷𝑷𝑷 𝑨𝑨 𝑮𝑮 𝒔𝒔𝟏𝟏 ∥ ⋯ ∥ 𝑮𝑮 𝒔𝒔𝒕𝒕(𝒏𝒏) < 𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏 𝒏𝒏

Proof by Triangle Inequality: Fix j
𝑨𝑨𝑨𝑨𝑨𝑨𝒋𝒋
= �𝑷𝑷𝑷𝑷 𝑨𝑨 𝑷𝑷𝟏𝟏 ∥ ⋯ ∥ 𝑷𝑷𝒋𝒋+𝟏𝟏 ∥ 𝑮𝑮 𝒔𝒔𝒋𝒋+𝟐𝟐 … ∥ 𝑮𝑮 𝒔𝒔𝒕𝒕(𝒏𝒏)
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PRFs from PRGs

Claim 1: For any t(n) and any PPT attacker A we have
𝑷𝑷𝑷𝑷 𝑨𝑨 𝑷𝑷𝟏𝟏 ∥ ⋯ ∥ 𝑷𝑷𝒕𝒕(𝒏𝒏) − 𝑷𝑷𝑷𝑷 𝑨𝑨 𝑮𝑮 𝒔𝒔𝟏𝟏 ∥ ⋯ ∥ 𝑮𝑮 𝒔𝒔𝒕𝒕(𝒏𝒏) < 𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏 𝒏𝒏

Proof
𝑷𝑷𝑷𝑷 𝑨𝑨 𝑷𝑷𝟏𝟏 ∥ ⋯ ∥ 𝑷𝑷𝒕𝒕(𝒏𝒏) − 𝑷𝑷𝑷𝑷 𝑨𝑨 𝑮𝑮 𝒔𝒔𝟏𝟏 ∥ ⋯ ∥ 𝑮𝑮 𝒔𝒔𝒕𝒕(𝒏𝒏)

≤ �
𝒋𝒋<𝒕𝒕(𝒏𝒏)

𝑨𝑨𝑨𝑨𝑨𝑨𝒋𝒋

≤ 𝒕𝒕 𝒏𝒏 × 𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏 𝒏𝒏 = 𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏(𝒏𝒏)
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PRFs from PRGs

Claim 1: For any t(n) and any PPT attacker A we have
𝑷𝑷𝑷𝑷 𝑨𝑨 𝑷𝑷𝟏𝟏 ∥ ⋯ ∥ 𝑷𝑷𝒕𝒕(𝒏𝒏) − 𝑷𝑷𝑷𝑷 𝑨𝑨 𝑮𝑮 𝒔𝒔𝟏𝟏 ∥ ⋯ ∥ 𝑮𝑮 𝒔𝒔𝒕𝒕(𝒏𝒏) < 𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏 𝒏𝒏

Proof
𝑷𝑷𝑷𝑷 𝑨𝑨 𝑷𝑷𝟏𝟏 ∥ ⋯ ∥ 𝑷𝑷𝒕𝒕(𝒏𝒏) − 𝑷𝑷𝑷𝑷 𝑨𝑨 𝑮𝑮 𝒔𝒔𝟏𝟏 ∥ ⋯ ∥ 𝑮𝑮 𝒔𝒔𝒕𝒕(𝒏𝒏)

≤ �
𝒋𝒋<𝒕𝒕(𝒏𝒏)

𝑨𝑨𝑨𝑨𝑨𝑨𝒋𝒋

≤ 𝒕𝒕 𝒏𝒏 × 𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏 𝒏𝒏 = 𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏(𝒏𝒏)

(QED, Claim 1)
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Hybrid H1 and H2

• Original Construction: Hybrid H1
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Hybrid H1 and H2

• Modified Construction H2: Pick r0 and r1 randomly instead of ri = Gi(K)
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Hybrid H3

• Modified Construction H3: Pick r00 , r01 , r10 and r11 randomly instead 
of applying PRG
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Hybrid Hn

• Truly Random Function: All output values rx are picked randomly
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Hybrid H1 vs H2
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Claim 1: For any t(n) and any PPT attacker A we have
𝑷𝑷𝑷𝑷 𝑨𝑨 𝑷𝑷𝟏𝟏 ∥ ⋯ ∥ 𝑷𝑷𝒕𝒕(𝒏𝒏) − 𝑷𝑷𝑷𝑷 𝑨𝑨 𝑮𝑮 𝒔𝒔𝟏𝟏 ∥ ⋯ ∥ 𝑮𝑮 𝒔𝒔𝒕𝒕(𝒏𝒏) < 𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏 𝒏𝒏

Claim 2: Attacker who makes t(n) queries to Fk (or f) cannot 
distinguish H2 from the real game (except with negligible 
probability).

Proof Intuition: Follows by Claim 1



Hybrid Hi vs Hi
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Claim 1: For any t(n) and any PPT attacker A we have
𝑷𝑷𝑷𝑷 𝑨𝑨 𝑷𝑷𝟏𝟏 ∥ ⋯ ∥ 𝑷𝑷𝒕𝒕(𝒏𝒏) − 𝑷𝑷𝑷𝑷 𝑨𝑨 𝑮𝑮 𝒔𝒔𝟏𝟏 ∥ ⋯ ∥ 𝑮𝑮 𝒔𝒔𝒕𝒕(𝒏𝒏) < 𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏 𝒏𝒏

Claim 3: Attacker who makes t(n) queries to Fk (or f) cannot distinguish Hi from Hi -1 
the real game (except with negligible probability).

Challenge: Cannot replace 2i pseudorandom values with random strings at level i
2𝑖𝑖 negl 𝑛𝑛 is not necessarily negligible if 𝑖𝑖 = 𝑖𝑖

2
Key Idea: Only need to replace t(n) values (note:  𝑡𝑡 𝑛𝑛 negl 𝑛𝑛 is negligible).



Hybrid Hi
• Red Leaf Nodes: Queried Fk(x)   (at most t(n) red leaf nodes)
• Red Internal Nodes: On path from red leaf node to root
• Level i: ≤ 𝑡𝑡(𝑛𝑛) red nodes
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Hybrid Hi vs Hi
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Claim 1: For any t(n) and any PPT attacker A we have
𝑷𝑷𝑷𝑷 𝑨𝑨 𝑷𝑷𝟏𝟏 ∥ ⋯ ∥ 𝑷𝑷𝒕𝒕(𝒏𝒏) − 𝑷𝑷𝑷𝑷 𝑨𝑨 𝑮𝑮 𝒔𝒔𝟏𝟏 ∥ ⋯ ∥ 𝑮𝑮 𝒔𝒔𝒕𝒕(𝒏𝒏) < 𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏 𝒏𝒏

Claim 3: Attacker who makes t(n) queries to Fk (or f) cannot distinguish 
Hi from Hi -1 the real game (except with negligible probability).

Triangle Inequality: Attacker who makes t(n) queries to Fk (or f) cannot 
distinguish H1 (real construction) from Hn (truly random function) 
except with negligible probability.  



From OWFs (Recap)

Theorem: Suppose that there is a PRG G with expansion 
factor ℓ 𝑛𝑛 = 𝑛𝑛 + 1. Then for any polynomial p(.) there is a 
PRG with expansion factor p(n).

Theorem: Suppose that there is a PRG G with expansion 
factor ℓ 𝑛𝑛 = 2𝑛𝑛. Then there is a secure PRF.

Theorem: Suppose that there is a secure PRF then there is a 
strong pseudorandom permutation.
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From OWFs (Recap)

Corollary: If one-way functions exist then PRGs, PRFs 
and strong PRPs all exist. 

Corollary: If one-way functions exist then there exist CCA-
secure encryption schemes and secure MACs. 
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Are OWFs Necessary for Private Key Crypto

• Previous results show that OWFs are sufficient.

• Can we build Private Key Crypto from weaker assumptions?

• Short Answer: No, OWFs are also necessary for most private-key 
crypto primitives
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PRGs  OWFs

Proposition 7.28: If PRGs exist then so do OWFs.

Proof: Let G be a secure PRG with expansion factor ℓ 𝑛𝑛 = 2𝑛𝑛.
Question: why can we assume that we have an PRG with expansion 
2n?
Answer: Last class we showed that a PRG with expansion factor 
ℓ 𝑛𝑛 = 𝑛𝑛 + 1. Implies the existence of a PRG with expansion p(n) for 
any polynomial.
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PRGs  OWFs

Proposition 7.28: If PRGs exist then so do OWFs.

Proof: Let G be a secure PRG with expansion factor ℓ 𝑛𝑛 = 2𝑛𝑛.

Claim: G is also a OWF!
(Easy to Compute?) ✓
(Hard to Invert?) 

Intuition: If we can invert G(x) then we can distinguish G(x) from a 
random string. 
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PRGs  OWFs

Proposition 7.28: If PRGs exist then so do OWFs.

Proof: Let G be a secure PRG with expansion factor ℓ 𝑛𝑛 = 2𝑛𝑛.
Claim 1: Any PPT A, given G(s), cannot find s except with negligible 
probability.
Reduction: Assume (for contradiction) that A can invert G(s) with non-
negligible probability p(n).  
Distinguisher D(y): Simulate A(y) 
Output 1 if and only if A(y) outputs x s.t. G(x)=y. 
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PRGs  OWFs

Proposition 7.28: If PRGs exist then so do OWFs.

Proof: Let G be a secure PRG with expansion factor ℓ 𝑛𝑛 = 2𝑛𝑛.
Claim 1: Any PPT A, given G(s), cannot find s except with negligible 
probability.
Intuition for Reduction: If we can find x s.t. G(x)=y then y is not random. 
Fact: Select a random 2n bit string y. Then (whp) there does not exist x such 
that G(x)=y.

Why not?

66



PRGs  OWFs

Proposition 7.28: If PRGs exist then so do OWFs.

Proof: Let G be a secure PRG with expansion factor ℓ 𝑛𝑛 = 2𝑛𝑛.
Claim 1: Any PPT A, given G(s), cannot find s except with negligible probability.
Intuition: If we can invert G(x) then we can distinguish G(x) from a random string. 
Fact: Select a random 2n bit string y. Then (whp) there does not exist x such that 
G(x)=y.

• Why not? Simple counting argument, 22n possible y’s and 2n x’s. 
• Probability there exists such an x is at most 2-n (for a random y)
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What other assumptions imply OWFs?

• PRGs  OWFs
• (Easy Extension) PRFs  PRGs  OWFs

• Does secure crypto scheme imply OWFs?
• CCA-secure? (Strongest)
• CPA-Secure?  (Weaker)
• EAV-secure?  (Weakest)

• As long as the plaintext is longer than the secret key
• Perfect Secrecy?  X (Guarantee is information theoretic)
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EAV-Secure Crypto  OWFs

Proposition 7.29: If there exists a EAV-secure private-key encryption 
scheme that encrypts messages twice as long as its key, then a one-way 
function exists.

Recap: EAV-secure. 
• Attacker picks two plaintexts m0,m1 and is given c=EncK(mb) for 

random bit b.
• Attacker attempts to guess b.
• No ability to request additional encryptions (chosen-plaintext attacks) 
• In fact, no ability to observe any additional encryptions
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EAV-Secure Crypto  OWFs

Proposition 7.29: If there exists a EAV-secure private-key encryption 
scheme that encrypts messages twice as long as its key, then a one-way 
function exists.

Reduction: 𝒇𝒇 𝒎𝒎,𝒌𝒌, 𝑷𝑷 = 𝑬𝑬𝒏𝒏𝑬𝑬𝒌𝒌 𝒎𝒎; 𝑷𝑷 ‖𝒎𝒎. 
Input: 4n bits
(For simplicity assume that Enck accepts n bits of randomness)

Claim: f is a OWF

70



EAV-Secure Crypto  OWFs

Proposition 7.29: If there exists a EAV-secure private-key encryption 
scheme that encrypts messages twice as long as its key, then a one-way 
function exists.

Reduction: 𝒇𝒇 𝒎𝒎,𝒌𝒌, 𝑷𝑷 = 𝑬𝑬𝒏𝒏𝑬𝑬𝒌𝒌 𝒎𝒎; 𝑷𝑷 ‖𝒎𝒎. 
Claim: f is a OWF
Reduction: If attacker A can invert f, then attacker A’ can break EAV-
security as follows. Given c=Enck(mb;r) run A(c‖𝑚𝑚0). If A outputs 
(m’,k’,r’) such that f(m′, k′, r′) = c‖𝑚𝑚0 then output 0; otherwise 1;
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MACs OWFs

In particular, given a MAC that satisfies MAC security (Definition 4.2) against 
an attacker who sees an arbitrary (polynomial) number of message/tag pairs.

Conclusions: OWFs are necessary and sufficient for all (non-trivial) private 
key cryptography.

OWFs are a minimal assumption for private-key crypto.

Public Key Crypto/Hashing? 
• OWFs are known to be necessary
• Not known (or believed) to be sufficient.
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Computational Indistinguishability

• Consider two distributions Xℓ and Yℓ (e.g., over strings of length ℓ).
• Let D be a distinguisher that attempts to guess whether a string s came from 

distribution Xℓ or Yℓ.

The advantage of a distinguisher D is 

𝐴𝐴𝑑𝑑𝐴𝐴𝐷𝐷,ℓ = 𝑃𝑃𝑃𝑃𝑠𝑠←Xℓ
𝐷𝐷 𝑠𝑠 = 1 − 𝑃𝑃𝑃𝑃𝑠𝑠←Yℓ 𝐷𝐷 𝑠𝑠 = 1

Definition: We say that an ensemble of distributions 𝑋𝑋𝑛𝑛 𝑖𝑖∈ℕ and 𝑌𝑌𝑛𝑛 𝑖𝑖∈ℕ are 
computationally indistinguishable if for all PPT distinguishers D, there is a negligible 
function negl(n), such that we have 

𝐴𝐴𝑑𝑑𝐴𝐴𝐷𝐷,𝑖𝑖 ≤ 𝑛𝑛𝑛𝑛𝑔𝑔𝑛𝑛(𝑛𝑛)
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