Cryptography CS 555

Week 6:

- Commitment Schemes
- Ideal Cipher Model + Hash Functions from Block Ciphers
- Block Ciphers
- Feistel Networks
- DES, 3DES

Readings: Katz and Lindell Chapter 6-6.2.4

Recap

- Hash Functions
 - Definition
 - Merkle-Damgard
 - Merkle Trees
- HMAC construction
- Generic Attacks on Hash Function
 - Birthday Attack
 - Small Space Birthday Attacks (cycle detection)
- Pre-Computation Attacks: Time/Space Tradeoffs
- Random Oracle Model

Commitment Schemes

- Alice wants to commit a message m to Bob
 - And possibly reveal it later at a time of her choosing
- Properties
 - Hiding: commitment reveals nothing about m to Bob
 - Binding: it is infeasible for Alice to alter message

Syntax Commitment Scheme with Canonical Verification:

c := Commit(m; r) : takes as input a message m and random bits r and outputs a commitment c to the message m

• **CannonicalVerify**(c, m, r)
$$\coloneqq \begin{cases} 1 & ifc == \text{Commit}(m; r) \\ 0 & otherwise \end{cases}$$

 Note: Not all commitment schemes use canonical verification, but this definition suffices for our purposes. In this case there may be a third algorithm pp:=Setup(1ⁿ) which generates public parameters for the commitment scheme.

Commitment Hiding $(\text{Hiding}_{A,Com}(n))$

r = Gen(.) Bit b

 $\forall PPT \ A \ \exists \mu \text{ (negligible) s.t}$ $\Pr[\text{Hiding}_{A,Com}(n) = 1] \le \frac{1}{2} + \mu(n)$

Commitment Binding (Binding_{A.Com}(n))

r₀,r₁,m₀,m₁

Binding_{A,Com}(n) = $\begin{cases} 1 & \text{if commit}(\mathbf{r_0}, \mathbf{m_0}) = \text{commit}(\mathbf{r_1}, \mathbf{m_1}) \\ 0 & otherwise \end{cases}$

 $\forall PPT \ A \exists \mu \text{ (negligible) s.t}$ $\Pr[\text{Binding}_{A.Com}(n) = 1] \le \mu(n)$

Secure Commitment Scheme

- Definition: A secure commitment scheme is hiding and binding
- Hiding

$$\forall PPT \ A \ \exists \mu \ (negligible) \ s.t$$

 $\Pr[\text{Hiding}_{A,Com}(n) = 1] \le \frac{1}{2} + \mu(n)$

• Binding

 $\forall PPT \ A \ \exists \mu \text{ (negligible) s.t}$ $\Pr[\text{Binding}_{A,Com}(n) = 1] \le \mu(n)$

Commitment Scheme in Random Oracle Model

- **Commit**(r, m) := $H(r \parallel m)$
- **Reveal**(c) := (r, m)

Theorem: In the random oracle model this is a secure commitment scheme.

Binding: commit(r_0, m_0) = commit(r_1, m_1) $\leftrightarrow H(r_0 \parallel m_0) = H(r_1 \parallel m_1)$

Commitment Hiding $(\text{Hiding}_{A,Com}(n))$

r = Gen(.) Bit b

 $\forall PPT \ A \ making \ q(n) \ queries \ s.t$ $\Pr[\text{Hiding}_{A,Com}(n) = 1] \leq \frac{1}{2} + \frac{q(n)}{2^{|r|}}$

Commitment Hiding $(\text{Hiding}_{A,Com}(n))$

Ideal Cipher Model

- For each n-bit string K we pick a truly random permutation F_{κ}
- Public Oracles
 - $O(K, x) = F_K(x)$
 - $O^{-1}(K, y) = F_K^{-1}(x)$
- Real World: Instantiate Ideal Cipher with a modern block cipher like AES
- Similar Pros/Cons to Random Oracle Model
 - Pro: Powerful evidence of sound design
 - Con: No blockcipher is an ideal cipher (even AES)

Hash Functions from Ideal Block Ciphers

• Davies-Meyer Construction from block cipher F_K

 $H(K, x) = F_K(x) \oplus x$

Theorem: If $F: \{0,1\}^{\lambda} \times \{0,1\}^{\lambda} \to \{0,1\}^{\lambda}$ is modeled as an ideal block cipher then Davies-Meyer construction is a collision-resistant hash function (**Concrete:** Need roughly $q \approx 2^{\lambda/2}$ queries to find collision)

- Ideal Cipher Model: For each key K model F_{κ} as a truly random permutation which may only be accessed in black box manner.
 - (Equivalent to Random Oracle Model)

Hash Functions from Block Ciphers

 $H(K, x) = F_K(x) \oplus x$

Analysis: Suppose we have already made queries to the ideal cipher

- $(K_1, x_1), \dots, (K_q, x_q)$ to F_K to get $F_{K_1}(x_1), \dots, F_{K_q}(x_q)$ and queries
- $(K_{q+1}, y_1), \dots, (K_{2q}, y_q)$ to $F_K^{-1}(.)$ to get $x_{q+1:=}F_{K_{q+1}}^{-1}(y_1), \dots, x_{2q:=}F_{K_{2q}}^{-1}(y_q)$.

 $H(K_i, x_i)$ is known for all $i \leq 2q$ (but H(K, x) is unknown at other points.

Now suppose we make a new query $(K, x) \notin \{(K_1, x_1), \dots, (K_{2q}, x_{2q})\}$: $F_K(x)$ sampled uniformly from $2^{\lambda} - 2q$ possible choices.

→ Collides with $H(K_i, x_i)$ with probability at most $\frac{1}{2^{\lambda} - 2q}$

→ Collides with $H(K_{q+i}, x_{q+i})$ with probability at most $\frac{1}{2^{\lambda}-2q}$

→ H(K, x) Collides with prior query with probability at most $\frac{2q}{2^{\lambda}-2a}$

Hash Functions from Block Ciphers

$$H(K, x) = F_K(x) \oplus x$$

Analysis:

Fact 1: Query q+1 to ideal cipher yields collision (with prior query) with probability at most $\frac{q}{2^{\lambda}-q}$

Fact 2: The probability of finding a collision within q queries is at most $\sum_{i \leq q} \frac{i}{2^{\lambda} - i} \leq \frac{q(q-1)/2}{2^{\lambda} - q}$

A Broken Attempt

 $H(K_1, K_2, x_1, x_2) = F_{K_1}(x_1) \oplus F_{K_2}(x_2) \oplus K_1 \oplus K_2$ Collision Attack: Pick arbitrary keys $K_0 \neq K_1$ Step 1: Query $x_1 \coloneqq F_{K_0}^{-1}(0^n)$ and $x_2 \coloneqq F_{K_0}^{-1}(1^n)$ Step 2: Query $w_1 \coloneqq F_{K_1}^{-1}(0^n)$ and $w_2 \coloneqq F_{K_1}^{-1}(1^n)$

$$H(K_0, K_0, x_1, x_2) = F_{K_0}(x_1) \oplus F_{K_0}(x_2) \oplus K_0 \oplus K_0 = 0^n \oplus 1^n$$
$$= F_{K_1}(w_1) \oplus F_{K_1}(w_2) = H(K_1, K_1, x_1, x_2)$$

Exploits the fact that we can query inverse oracle F_K^{-1}

CS 555: Week 6: Topic 1 Block Ciphers

An Existential Crisis?

- We have used primitives like PRGs, PRFs to build secure MACs, CCA-Secure Encryption, Authenticated Encryption etc...
- Do such primitives exist in practice?
- How do we build them?

Recap

• Hash Functions/PRGs/PRFs, CCA-Secure Encryption, MACs

Goals for This Week:

• Practical Constructions of Symmetric Key Primitives

Today's Goals: Block Ciphers

- Sbox
- Confusion Diffusion Paradigm
- Feistel Networks

Pseudorandom Permutation

A keyed function F: $\{0,1\}^n \times \{0,1\}^n \rightarrow \{0,1\}^n$, which is invertible and "looks random" without the secret key k.

- Similar to a PRF, but
- Computing $F_k(x)$ and $F_k^{-1}(x)$ is efficient (polynomial-time)

Definition 3.28: A keyed function F: $\{0,1\}^n \times \{0,1\}^n \to \{0,1\}^n$ is a **strong pseudorandom permutation** if for all PPT distinguishers D there is a negligible function μ s.t. $\left| Pr\left[D^{F_k(.),F_k^{-1}(.)}(1^n) \right] - Pr\left[D^{f(.),f^{-1}(.)}(1^n) \right] \right| \le \mu(n)$

Pseudorandom Permutation

Definition 3.28: A keyed function F: $\{0,1\}^n \times \{0,1\}^n \rightarrow \{0,1\}^n$ is a **strong pseudorandom permutation** if for all PPT distinguishers D there is a negligible function μ s.t.

$$\left| Pr\left[D^{F_k(.),F_k^{-1}(.)}(1^n) \right] - Pr\left[D^{f(.),f^{-1}(.)}(1^n) \right] \right| \le \mu(n)$$

Notes:

- the first probability is taken over the uniform choice of $k \in \{0,1\}^n$ as well as the randomness of D.
- the second probability is taken over uniform choice of f ∈ Perm_nas well as the randomness of D.
- D is *never* given the secret k
- However, D is given oracle access to keyed permutation and inverse

How many permutations?

- |Perm_n|=?
- Answer: 2ⁿ!
- How many bits to store f ∈**Perm**_n?
- Answer:

$$\log(2^{n}!) = \sum_{i=1}^{2^{n}} \log(i)$$
$$\geq \sum_{i=2^{n-1}}^{2^{n}} n-1 \ge (n-1) \times 2^{n-1}$$

How many bits to store permutations?

$$\log(2^{n}!) = \sum_{i=1}^{2^{n}} \log(i)$$
$$\geq \sum_{i=2^{n-1}}^{2^{n}} n-1 \ge (n-1) \times 2^{n-1}$$

Example: Storing $f \in \operatorname{Perm}_{50}$ requires over 6.8 petabytes (10¹⁵) **Example 2:** Storing $f \in \operatorname{Perm}_{100}$ requires about 12 yottabytes (10²⁴) **Example 3:** Storing $f \in \operatorname{Perm}_8$ requires about 211 bytes

Attempt 1: Pseudorandom Permutation

- Select 16 random permutations on 8-bits $f_1, ..., f_{16} \in \mathbf{Perm}_8$.
- Secret key: $k = f_1, ..., f_{16}$ (about 3 KB)
- Input: x=x₁,...,x₁₆ (16 bytes)

$$F_{k}(x) = f_{1}(x_{1}) \parallel f_{2}(x_{2}) \parallel \cdots \parallel f_{16}(x_{16})$$

• Any concerns?

Attempt 1: Pseudorandom Permutation

• Select 16 random permutations on 8-bits $f_1, ..., f_{16} \in \mathbf{Perm}_8$.

$$F_{k}(x) = f_{1}(x_{1}) \parallel f_{2}(x_{2}) \parallel \cdots \parallel f_{16}(x_{16})$$

- Any concerns? $F_{k}(x_{1} \parallel x_{2} \parallel \cdots \parallel x_{16}) = f_{1}(x_{1}) \parallel f_{2}(x_{2}) \parallel \cdots \parallel f_{16}(x_{16})$ $F_{k}(\mathbf{0} \parallel x_{2} \parallel \cdots \parallel x_{16}) = \mathbf{f_{1}(0)} \parallel f_{2}(x_{2}) \parallel \cdots \parallel f_{16}(x_{16})$
- Changing a bit of input produces insubstantial changes in the output.
- A truly random permutation $F \in \mathbf{Perm}_{128}$ would not behave this way!

Pseudorandom Permutation Requirements

- Consider a truly random permutation $F \in Perm_{128}$
- Let inputs x and x' differ on a single bit
- We expect outputs F(x) and F(x') to differ on approximately half of their bits
 - F(x) and F(x') should be (essentially) independent.
- A pseudorandom permutation must exhibit the same behavior!

Confusion-Diffusion Paradigm

- Our previous construction was not pseudorandom, but applying the permutations does accomplish something
 - They introduce confusion into F
 - Attacker cannot invert (after seeing a few outputs)
- Approach:
 - **Confuse**: Apply random permutations $f_1, ..., to each block of input to obtain <math>y_1, ..., y_1, ..., y_n$
 - **Diffuse**: Mix the bytes $y_1, ..., to obtain byes <math>z_1, ..., t_n$
 - **Confuse**: Apply random permutations $f_1, ..., with inputs <math>z_1, ..., z_n$
 - Repeat as necessary

Attempt 1: Pseudorandom Permutation

• Select 16 random permutations on 8-bits $f_1, ..., f_{16} \in \mathbf{Perm}_8$.

$$F_{k}(x) = f_{1}(x_{1}) \parallel f_{2}(x_{2}) \parallel \cdots \parallel f_{16}(x_{16})$$

- Any concerns? $F_{k}(x_{1} \parallel x_{2} \parallel \cdots \parallel x_{16}) = f_{1}(x_{1}) \parallel f_{2}(x_{2}) \parallel \cdots \parallel f_{16}(x_{16})$ $F_{k}(\mathbf{0} \parallel x_{2} \parallel \cdots \parallel x_{16}) = \mathbf{f_{1}(0)} \parallel f_{2}(x_{2}) \parallel \cdots \parallel f_{16}(x_{16})$
- Changing a bit of input produces insubstantial changes in the output.
- A truly random permutation $F \in \mathbf{Perm}_{128}$ would not behave this way!

Confusion-Diffusion Paradigm

Example:

- Select 8 random permutations on 8-bits $f_1, ..., f_{16} \in \mathbf{Perm}_8$
- Select 8 extra random permutations on 8-bits $g_1, \dots, g_8 \in \mathbf{Perm}_8$

$$F_{k}(x_{1} || x_{2} || \cdots || x_{8}) =$$
1. $y_{1} || \cdots || y_{8} := f_{1}(x_{1}) || f_{2}(x_{2}) || \cdots || f_{8}(x_{8})$
2. $z_{1} || \cdots || z_{8} := Mix(y_{1} || \cdots || y_{8})$
3. Output: $f_{1}(z_{1}) || f_{2}(z_{2}) || \cdots || f_{8}(z_{8})$

Example Mixing Function

- $\mathbf{Mix}(\mathbf{y}_1 \parallel \cdots \parallel \mathbf{y}_8) =$
- 1. For i=1 to 8
- 2. $z_i := y_1[i] \parallel \cdots \parallel y_8[i]$
- 3. End For
- **4.** Output: $g_1(z_1) \parallel g_2(z_2) \parallel \cdots \parallel g_8(z_8)$

Are We Done?

$$F_{k}(x_{1} \parallel x_{2} \parallel \cdots \parallel x_{8}) =$$
1. $y_{1} \parallel \cdots \parallel y_{8} := f_{1}(x_{1}) \parallel f_{2}(x_{2}) \parallel \cdots \parallel f_{8}(x_{8})$
2. $z_{1} \parallel \cdots \parallel z_{8} := Mix(y_{1} \parallel \cdots \parallel y_{8})$
3. Output: $f_{1}(z_{1}) \parallel f_{2}(z_{2}) \parallel \cdots \parallel f_{8}(z_{8})$

$$\begin{array}{ccc} z_{1} & z_{8} \\ y_{1} = \begin{bmatrix} y_{1}[1] & \cdots & y_{1}[8] \\ \vdots & \ddots & \vdots \\ y_{8} = \begin{bmatrix} y_{8}[1] & \cdots & y_{8}[8] \end{bmatrix} \end{array}$$

Suppose $f_1(x_1) = 00110101 = y_1$ and $f_1(x'_1) = 00110100 = y'_1$

$$F_{k}(\mathbf{x'_{1}} \parallel \mathbf{x_{2}} \parallel \cdots \parallel \mathbf{x_{8}}) = 1. \quad \mathbf{y'_{1}} \parallel \cdots \parallel \mathbf{y_{8}} := f_{1}(\mathbf{x'_{1}}) \parallel f_{2}(\mathbf{x_{2}}) \parallel \cdots \parallel f_{8}(\mathbf{x_{8}})$$

2. $z_{1} \parallel \cdots \parallel \mathbf{z'_{8}} := \mathbf{Mix}(\mathbf{y'_{1}} \parallel \cdots \parallel \mathbf{y_{8}})$
3. **Output:** $f_{1}(z_{1}) \parallel f_{2}(z_{2}) \parallel \cdots \parallel f_{8}(\mathbf{z'_{8}})$

Highly unlikely that a truly random permutation would behave this way!

Substitution Permutation Networks

- S-box a public "substitution function" (e.g. $S \in \mathbf{Perm}_8$).
- S is not part of a secret key, but can be used with one $f(x) = S(x \oplus k)$
- Input to round: x, k (k is subkey for current round)
- Key Mixing: Set $x \coloneqq x \oplus k$
- Substitution: $\mathbf{x} \coloneqq S_1(\mathbf{x}_1) \parallel S_2(\mathbf{x}_2) \parallel \cdots \parallel S_8(\mathbf{x}_8)$
- **Bit Mixing Permutation**: permute the bits of x to obtain the round output

Note: there are only n! possible bit mixing permutations of [n] as opposed to 2ⁿ! Permutations of {0,1}ⁿ

Substitution Permutation Networks

- Proposition 6.3: Let F be a keyed function defined by a Substitution Permutation Network. Then for any keys/number of rounds F_k is a permutation.
- Why? Composing permutations f,g results in another permutation h(x)=g(f(x)).

Remarks

- Want to achieve "avalanche effect" (one bit change should "affect" every output bit)
- Should a S-box be a random byte permutation?
- Better to ensure that S(x) differs from x on at least 2-bits (for all x)
 - Helps to maximize "avalanche effect"
- Mixing Permutation should ensure that output bits of any given S-box are used as input to multiple S-boxes in the next round

Remarks

- How many rounds?
- Informal Argument: If we ensure that S(x) differs from x on at least 2-bits (for all bytes x) then every input bit affects
 - 2 bits of round 1 output
 - 4 bits of round 2 output
 - 8 bits of round 3 output
 -
 - 128 bits of round 4 output
- Need at least 7 rounds (minimum) to ensure that every input bit affects every output bit

Attacking Lower Round SPNs

- Trivial Case: One full round with no final key mixing step
- Key Mixing: Set $x \coloneqq x \oplus k$
- Substitution: $y \coloneqq S_1(x_1) \parallel S_2(x_2) \parallel \cdots \parallel S_8(x_8)$
- **Bit Mixing Permutation**: P permute the bits of y to obtain the round output
- Given input/output (x,F_k(x))
 - Permutations P and S_i are public and can be run in reverse
 - $P^{-1}(F_k(\mathbf{x})) = S_1(\mathbf{x}_1 \oplus k_1) \parallel S_2(\mathbf{x}_2 \oplus k_2) \parallel \cdots \parallel S_8(\mathbf{x}_8 \oplus k_8)$
 - $\mathbf{x}_{i} \otimes k_{i} = \mathbf{S}_{i}^{-1} (\mathbf{S}_{i} (\mathbf{x}_{i} \oplus k_{i}))$
 - Attacker knows x_i and can thus obtain k_i

Attacking Lower Round SPNs

- Easy Case: One full round with final key mixing step
- Key Mixing: Set $\mathbf{x} \coloneqq \mathbf{x} \otimes k_1$
- Substitution: $y \coloneqq S_1(x_1) \parallel S_2(x_2) \parallel \cdots \parallel S_8(x_8)$
- Bit Mixing Permutation: $z_1 \parallel \cdots \parallel z_8 = P(y)$
- Final Key Mixing: Output $z \oplus k_2$
- Given input/output (x,F_k(x))
 - Permutations P and S_i are public and can be run in reverse once k₂ is known
 - Immediately yields attack in 2⁶⁴ time (k₁,k₂ are each 64 bit keys) which narrows down key-space to 2⁶⁴ but we can do much better!

Attacking Lower Round SPNs

- Easy Case: One full round with final key mixing step
- Key Mixing: Set $\mathbf{x} \coloneqq \mathbf{x} \oplus k_1$
- Substitution: $y \coloneqq S_1(x_1) \parallel S_2(x_2) \parallel \cdots \parallel S_8(x_8)$
- Bit Mixing Permutation: $z_1 \parallel \cdots \parallel z_8 = P(y)$
- Final Key Mixing: Output $z \oplus k_2$
- Given input/output (x,F_k(x))
 - Permutations P and S_i are public and can be run in reverse once k_2 is known
 - Guessing 8 specific bits of k_2 (which bits depends on P) we can obtain one value $y_i = S_i(x_i \otimes k_i)$
 - Attacker knows x_i and can thus obtain k_i by inverting S_i and using XOR
 - Narrows down key-space to 2⁶⁴, but in time 8x2⁸

Attacking Lower Round SPNs

- Easy Case: One full round with final key mixing step
- Key Mixing: Set $\mathbf{x} \coloneqq \mathbf{x} \oplus k_1$
- Substitution: $y \coloneqq S_1(x_1) \parallel S_2(x_2) \parallel \cdots \parallel S_8(x_8)$
- Bit Mixing Permutation: $z_1 \parallel \cdots \parallel z_8 = P(y)$
- Final Key Mixing: Output $z \oplus k_2$
- Given several input/output pairs (x_i, F_k(x_i))
 - Can quickly recover k₁ and k₂

Attacking Lower Round SPNs

- Harder Case: Two round SPN
- Exercise 😳

- Ideal Cipher Model: For each key K model F_K as a truly random permutation which may only be accessed in black box manner.
 - Attacker may submit query (K,x,+) and oracle responds with $F_K(x)$ or
 - Stronger than assuming that F is a Pseudorandom Permutation
 - (Equivalent to Random Oracle Model)

Feistel Networks

- Alternative to Substitution Permutation Networks
- Advantage: underlying functions need not be invertible, but the result is still a permutation

•
$$R_{i-1} = L_i$$

• $L_{i-1} := R_i \bigoplus F_{k_i}(R_{i-1})$

Proposition: the function is invertible.

Digital Encryption Standard (DES): 16round Feistel Network.

CS 555: Week 6: Topic 2 DES, 3DES

Feistel Networks

Alternative to Substitution Permutation Networks

• Advantage: underlying functions need not be invertible, but the result is still a permutation

•
$$L_{i+1} = R_i$$

• $R_{i+1} \coloneqq L_i \bigoplus F_{k_i}(R_i)$

Proposition: the function is invertible.

Data Encryption Standard

- Developed in 1970s by IBM (with help from NSA)
- Adopted in 1977 as Federal Information Processing Standard (US)
- Data Encryption Standard (DES): 16-round Feistel Network.
- Key Length: 56 bits
 - Vulnerable to brute-force attacks in modern times
 - 1.5 hours at 14 trillion DES evals/second e.g., Antminer S9 runs at 14 TH/s

DES Round

Figure 3-6. DES Round

Generating the Round Keys

- Initial Key: 64 bits
- Effective Key Length: 56 bits
- Round Key Length: 48 bits (each)

• **16 round keys** derived from initial key

Others

DES Mangle Function

- Expand E: 32-bit input → 48-bit output (duplicates 16 bits)
- S-boxes: S₁,...,S₈
 - Input: 6-bits
 - Output: 4 bits
 - Not a permutation!
- 4-to-1 function
 - Exactly four inputs mapped to each possible output

Mangle Function

S-Box Representation as Table 4 columns (2 bits)

		00	01	10	11
sumr	0000				
	0010				
	0011				
	0100				
	0101				
	0110				S(x)=1101
	1111				

x = 101101 S(x) = Table[0110,11]

S-Box Representation

Each column is permutation

4 columns (2 bits)

		00	01	10	11
sumr	0000				
	0010				
	0011				
	0100				
	0101				
	0110				S(x)=1101
	1111				

x = 101101 S(x) = T[0110, 11]

Pseudorandom Permutation Requirements

- Consider a truly random permutation $F \in Perm_{128}$
- Let inputs x and x' differ on a single bit
- We expect outputs F(x) and F(x') to differ on approximately half of their bits
 - F(x) and F(x') should be (essentially) independent.
- A pseudorandom permutation must exhibit the same behavior!
- **Requirement**: DES Avalanche Effect!

DES Avalanche Effect

 Permutation the end of the mangle function helps to mix bits

Special S-box property #1

Let x and x' differ on one bit then $S_i(x)$ differs from $S_i(x')$ on two bits.

Avalanche Effect Example

- Consider two 64 bit inputs
 - (L_n, R_n) and $(L_n', R'_n = R_n)$
 - L_n and L_n' differ on one bit
- This is worst case example
 - $L_{n+1} = L_{n+1}' = R_n$
 - But now R'_{n+1} and R_{n+1} differ on one bit
- Even if we are unlucky E(R'_{n+1}) and E(R_{n+1}) differ on 1 bit
- \rightarrow R_{n+2} and R'_{n+2} differ on two bits
- $\rightarrow L_{n+2} = R'_{n+1}$ and $L_{n+2}' = R'_{n+1}$ differ in one bit

A DES Round

Avalanche Effect Example

- R_{n+2} and R'_{n+2} differ on two bits
- $L_{n+2} = R_{n+1}$ and $L_{n+2}' = R'_{n+1}$ differ in one bit
- \rightarrow R_{n+3} and R'_{n+3} differ on four bits since we have different inputs to two of the S-boxes
- $\rightarrow L_{n+3} = R'_{n+2}$ and $L_{n+2}' = R'_{n+2}$ now differ oh two bits
- Seven rounds we expect all 32 bits in right half to be "affected" by input change

...

A DES Round

Attack on One-Round DES

- Given input output pair (x,y)
 - y=(L₁,R₁)
 - X=(L₀,R₀)
- Note: $R_0 = L_1$
- Note: $R_1 = L_0 \bigoplus f_1(R_0)$ where f_1 is the Mangling Function with key k_1

Conclusion:

 $f_1(R_0)=L_0\oplus R_1$

Attack on One-Round DES

Attack on Three-Round DES

 $f_1(\mathbf{R_0}) \oplus f_3(\mathbf{R_2}) = (\mathsf{L_0} \oplus \mathsf{L_2}) \oplus (\mathsf{L_2} \oplus \mathsf{R_3})$ $= \mathsf{L_0} \oplus \mathsf{R_3}$ We know all of the values $\mathsf{L_0}, \mathsf{R_0}, \mathsf{R_3}$ and $\mathsf{L_3} = \mathsf{R_2}$.

Leads to attack in time $\approx 2^{n/2}$

(See details in textbook)

Remember that DES is 16 rounds

DES Security

- Best Known attack is brute-force 2⁵⁶
 - Except under unrealistic conditions (e.g., 2⁴³ known plaintexts)
- Brute force is not too difficult on modern hardware
- Attack can be accelerated further after precomputation
 - Output is a few terabytes
 - Subsequently keys are cracked in 2³⁸ DES evaluations (minutes)
- Precomputation costs amortize over number of DES keys cracked

• Even in 1970 there were objections to the short key length for DES

Double DES

- Let $F_k(x)$ denote the DES block cipher
- A new block cipher F' with a key $k = (k_1, k_2)$ of length 2n can be defined by

$$F_k'(x) = F_{k_2}\left(F_{k_1}(x)\right)$$

• Can you think of an attack better than brute-force?

Meet in the Middle Attack

$$F_k'(x) = F_{k_2}\left(F_{k_1}(x)\right)$$

Goal: Given (x, $c = F'_k(x)$) try to find secret key k in time and space $O(n2^n)$.

- Solution?
 - Key Observation

$$F_{k_1}(x) = F_{k_2}^{-1}(c)$$

- Compute $F_K^{-1}(c)$ and $F_K(x)$ for each potential n-bit key K and store $(K, F_K^{-1}(c))$ and $(K, F_K(x))$
- Sort each list of pairs (by $F_K^{-1}(c)$ or $F_K(x)$) to find K_1 and K_2 .

- Let $F_k(x)$ denote the DES block cipher
- A new block cipher F' with a key $k = (k_1, k_2, k_3)$ of length 2n can be defined by

$$F'_{k}(x) = F_{k_{3}}\left(F_{k_{2}}^{-1}\left(F_{k_{1}}(x)\right)\right)$$

• Meet-in-the-Middle Attack Requires time $\Omega(2^{2n})$ and space $\Omega(2^{2n})$

Allows backward compatibility with DES by setting $k_1 = k_2 = k_3$

- Let $F_k(x)$ denote the DES block cipher
- A new block cipher F' with a key $k = (k_1, k_2, k_3)$ of length 2n can be defined by $F'_{1}(x) F_{2}(x) F_{2}(x)$

$$F_{k}(x) = F_{k_{3}}(F_{k_{2}}(F_{k_{1}}(x)))$$

• Meet-in-the-Middle Attack Requires time $\Omega(2^{2n})$ and space $\Omega(2^{2n})$

Just two keys!

- Let $F_k(x)$ denote the DES block cipher
- A new block cipher F' with a key $k = (k_1, k_2)$ of length 2n can be defined by $F'_k(x) = F_{k_1}\left(F_{k_2}^{-1}\left(F_{k_1}(x)\right)\right)$
- Meet-in-the-Middle Attack still requires time $\Omega(2^{2n})$ and space $\Omega(2^{2n})$
 - Brute force is more efficient: time is still $\Omega(2^{2n})$, but space usage is constant
- Key length is still just 112 bits (NIST recommends 128+ bits)

$$F'_{k}(x) = F_{k_{3}}\left(F_{k_{2}}^{-1}\left(F_{k_{1}}(x)\right)\right)$$

• Standardized in 1999

- Still widely used, but it is relatively slow (three block cipher operations)
- Current gold standard: AES

CS 555:Week 6: Topic 2 Stream Ciphers

PRG Security as a Game

Stream Cipher vs PRG

- PRG pseudorandom bits output all at once
- Stream Cipher
 - Pseudorandom bits can be output as a stream
 - RC4, RC5 (Ron's Code)

```
st<sub>0</sub> := Init(s)

For i=1 to \ell:

(y_i, st_i):=GetBits(st<sub>i-1</sub>)

Output: y_1, ..., y_\ell
```


- State at time t: s_{n-1}^t , ..., s_1^t , s_0^t (n registers)
- Feedback Coefficients: $S \subseteq \{0, ..., n\}$

- State at time t: s_{n-1}^t , ..., s_1^t , s_0^t (n registers)
- Feedback Coefficients: $S \subseteq \{0, ..., n-1\}$
- State at time t+1: $\bigoplus_{i \in S} s_i^t$, s_{n-1}^t , ..., s_1^t ,

$$s_{n-1}^{t+1} = \bigoplus_{i \in S} s_i^t, \quad \text{and} \quad s_i^{t+1} = s_{i+1}^t \text{ for } i < n-1$$

Output at time t+1: $y_{t+1} = s_0^t$

• Observation 1: First n bits of output reveal initial state

$$y_1, \dots, y_n = s_0^0, s_1^0, \dots, s_{n-1}^0$$

• **Observation 2**: Next n bits allow us to solve for n unknowns $x_i = \begin{cases} 1 & \text{if } i \in S \\ 0 & otherwise \end{cases}$

$$y_{n+1} = y_n x_{n-1} + \dots + y_1 x_0$$

Linear Feedback Shift Register

• Observation 1: First n bits of output reveal initial state

$$y_1, \dots, y_n = s_0^0, s_1^0, \dots, s_{n-1}^0$$

• **Observation 2**: Next n bits allow us to solve for n unknowns $x_i = \begin{cases} 1 & \text{if } i \in S \\ 0 & otherwise \end{cases}$

$$y_{n+1} = y_n x_{n-1} + \dots + y_1 x_0 \mod 2$$

Linear Feedback Shift Register

• Observation 2: Next n bits allow us to solve for n unknowns

$$x_{i} = \begin{cases} 1 & \text{if } i \in S \\ 0 & otherwise \end{cases}$$

$$y_{n+1} = y_{n}x_{n-1} + \dots + y_{1}x_{0} \mod 2$$

$$\vdots$$

$$y_{2n} = y_{2n-1}x_{n-1} + \dots + y_{n}x_{0} \mod 2$$

Removing Linearity

Attacks exploited linear relationship between state and output bits

Removing Linearity

- Attacks exploited linear relationship between state and output bits
- Nonlinear Combination: $y_{t+1} = s_0^t$ Non linear function $y_{t+1} = f(s_0^t, s_1^t, \dots, s_{n-1}^t)$
- **Important**: f must be balanced!

$$\Pr[f(x) = 1] \approx \frac{1}{2}$$

Trivium (2008)

- Won the eSTREAM competition
- Currently, no known attacks are better than brute force
- Couples Output from three nonlinear Feedback Shift Registers
- First 4*288 "output bits" are discared

Combination Generator

- Attacks exploited linear relationship between state and output bits
- Nonlinear Combination: $y_{t+1} = s_0^t$ Non linear function $y_{t+1} = f(s_0^t, s_1^t, \dots, s_{n-1}^t)$
- **Important**: f must be balanced!

$$\Pr[f(x) = 1] \approx \frac{1}{2}$$

Feedback Shift Registers

- Good performance in hardware
- Performance is less ideal for software

Stream Ciphers

- RC4
 - A proprietary cipher owned by RSA, designed by Ron Rivest in 1987 (public 1994)
 - Widely used (web SSL/TLS, wireless WEP).
 - Distinguishable from random stream
 - Second byte of output is 0 with probability $\approx \frac{2}{256}$ (vs. $\frac{1}{256}$ for a truly random stream)
- Newer Versions: RC5 and RC6
- Salsa20
- Rijndael selected by NIST as AES in 2000

RC4 Attacks

- Wired Equivalent Privacy (WEP) encryption used RC4 with an initialization vector
- Description of RC4 doesn't involve initialization vector...
 - But WEP imposes an initialization vector
 - K=IV || K'
 - Since IV is transmitted attacker may have first few bytes of the secret key K!
 - Giving the attacker partial knowledge of K often allows recovery of the entire key K' over time!

Hash Functions from Block Ciphers

• Davies-Meyer Construction from block cipher F_K

 $H(K, x) = F_K(x) \oplus x$

Theorem: If $F: \{0,1\}^{\lambda} \times \{0,1\}^{\lambda} \to \{0,1\}^{\lambda}$ is modeled as an ideal block cipher then Davies-Meyer construction is a collision-resistant hash function (**Concrete:** Need roughly $q \approx 2^{\lambda/2}$ queries to find collision)

Ideal Cipher Model: For each key K model F_{K} as a truly random permutation which may only be accessed in black box manner.

• (Equivalent to Random Oracle Model)

Advanced Encryption Standard (AES)

- (1997) US National Institute of Standards and Technology (NIST) announces competition for new block cipher to replace DES
- Fifteen algorithms were submitted from all over the world
 - Analyzed by NIST
- Contestants given a chance to break competitors schemes
- October, 2000 NIST announces a winner Rijndael
 - Vincent Rijmen and Joan Daemen
 - No serious vulnerabilities found in four other finalists
 - Rijndael was selected for efficiency, hardware performance, flexibility etc...

Advanced Encryption Standard

- Block Size: 128 bits (viewed as 4x4 byte array)
- Key Size: 128, 192 or 256
- Essentially a Substitution Permutation Network
 - AddRoundKey: Generate 128-bit sub-key from master key XOR with current state
 - **SubBytes:** Each byte of state array (16 bytes) is replaced by another byte according a a single S-box (lookup table)
 - **ShiftRows** shift ith row by i bytes
 - MixColumns permute the bits in each column

Substitution Permutation Networks

- S-box a public "substitution function" (e.g. $S \in Perm_8$).
- S is not part of a secret key, but can be used with one $f(x) = S(x \oplus k)$

Input to round: x, k (k is subkey for current round)

- **1.** Key Mixing: Set $x \coloneqq x \oplus k$
- **2.** Substitution: $\mathbf{x} \coloneqq S_1(\mathbf{x}_1) \parallel S_2(\mathbf{x}_2) \parallel \cdots \parallel S_8(\mathbf{x}_8)$
- **3.** Bit Mixing Permutation: permute the bits of x to obtain the round output

Note: there are only n! possible bit mixing permutations of [n] as opposed to 2ⁿ! Permutations of {0,1}ⁿ

Substitution Permutation Networks

- Proposition 6.3: Let F be a keyed function defined by a Substitution Permutation Network. Then for any keys/number of rounds F_k is a permutation.
- Why? Composing permutations f,g results in another permutation h(x)=g(f(x)).

Advanced Encryption Standard

- Block Size: 128 bits
- Key Size: 128, 192 or 256

Key Mixing

- Essentially a Substitution Permutation Network
 - AddRoundKey: Generate 128-bit sub-key from master key, XOR with current state array
 - SubBytes: Each byte of state array (16 bytes) is replaced by another byte according a single S-box (lookup table)
 - ShiftRows
 - MixColumns

Permutation

AddR	oundKey:							
	•			Round Key (16 Bytes)				
			00001111					
			10100011					
			11001100					
	State	\oplus	01111111					
	JIALE	$\mathbf{\nabla}$						
11110000								
01100010								
00110000								
11111111								
			_					
		11111111						
		11000001						
		11111100						
		1000000						

SubBytes (Apply S-box)

S(11111111)			
S(11000001)	S()		
S(11111100)		S()	
S(1000000)			S()

AddRoundKey:											
		Round Key (16 Bytes)									
	State										
C/11111111											
S(1111111)											
S(11000001)	S()										
S(11111100)		S()									
S(1000000)				S()							
Shift Rows											
			S(111	11111)							
					S(110	00001)	S()				
			S()				S(111	11100)			

S(...)

S(1000000)

Mix Columns

Invertible (linear) transformation.

Key property: if inputs differ in b>0 bytes then output differs in 5-b bytes (minimum)

- We just described one round of the SPN
- AES uses
 - 10 rounds (with 128 bit key)
 - 12 rounds (with 192 bit key)
 - 14 rounds (with 256 bit key)

Announcements

- Homework 2 Solutions Posted (See Piazza).
 - Please read through carefully and make sure you understand the solutions to each problem.
 - Grading in progress
- No Class on Tuesday (October Break)
- Look for Practice Midterm Next Week

Recap

- 2DES, Meet in the Middle Attack
- 3DES
- Stream Ciphers
 - Breaking Linear Feedback Shift Registers
 - Trivium
- AES

AES Attacks?

- Side channel attacks affect a few specific implementations
 - But, this is not a weakness of AES itself
 - Timing attack on OpenSSL's implementation AES encryption (2005, Bernstein)
- (2009) Related-Key Attack on 11 round version of AES
 - Related Key Attack: Attacker convinces Alice to use two related (but unknown) keys
 - recovers 256-bit key in time 2⁷⁰
 - But AES is 14 round (with 256 bit key) so the attack doesn't apply in practice
- (2009) Related Key Attack on 192-bit and 256 bit version of AES
 - recovers 256-bit key in time 2^{99.5}.
- (2011) Key Recovery attack on AES-128 in time 2^{126.2}.
 - Improved to 2^{126.0} for AES-128, 2^{189.9} for AES-192 and 2^{254.3} for AES-256
- First public cipher approved by NSA for Top Secret information
 - SECRET level (AES-128,AES-192 & AES-256), TOP SECRET level (AES-128,AES-192 & AES-256)

NIST	Recor	nmeno	datio		HF and in I gnatures	Digital	Ok, to use for HMAC, Key Derivation and as PRG		
bits-security is onger acceptabl					SCIENCE INVELIENCE INVELIENCE INVELIENCE				
Date	Minimum of Strength	Symmetric Algorithms	Factoring Modulus	States and a second state	screte Jarithm Group	Elliptic Curve	Hash (A	A) Hash (B)	
(Legacy)	80	2TDEA*	1024	160	1024	160	SHA-1	**	
2016 - 2030	112	3TDEA	2048	224	2048	224	SHA-22 SHA-512/ SHA3-22	224	
2016 - 2030 & beyond	128	AES-128	3072	256	3072	256	SHA-25 SHA-512/ SHA3-2	256 SHA-1	
2016 - 2030 & beyond	192	AES-192	7680	384	7680	384	SHA-38 SHA3-3		
2016 - 2030 & beyond	256	AES-256	15360	512	15360	512	SHA-51 SHA3-5	SHΔ_384	

Recommendations from Other Groups (Including NIST): www.keylength.com

Linear Cryptanalysis

$$y=F_K(x)$$

Definition: Fixed set of input bits i_1, \ldots, i_{in} and output bits i_1', \ldots, i_{out}' are said to have ε -linear bias if the following holds

$$\left| Pr[x_{i_1} \oplus x_{i_2} \dots \oplus x_{i_{i_n}} \oplus y_{i_1'} \oplus y_{i_2'} \dots \oplus y_{i_{out'}}] \right| = \varepsilon$$

(randomness taken over the selection of input x and secret key K)

Linear Cryptanalysis

Definition: Fixed set of input bits i_1, \ldots, i_{in} and output bits i_1', \ldots, i_{out}' are said to have ε -linear bias if the following holds

$$\left| \Pr[x_{i_1} \bigoplus x_{i_2} \dots \bigoplus x_{i_{i_n}} \bigoplus y_{i_1'} \bigoplus y_{i_2'} \dots \bigoplus y_{i_{out'}}] - \frac{1}{2} \right| = \varepsilon$$

(randomness taken over the selection of input x and secret key K, $y = F_K(x)$)

Matsui: DES can be broken with just 2^{43} known plaintext/ciphertext pairs.

- Lots of examples needed!
- But the examples do not need to be chosen plaintext/ciphertext pairs...
- One encrypted file can provide a large amounts of known plaintext

Differential Cryptanalysis

Definition: We say that the differential $(\triangle_x, \triangle_y)$ occurs with probability p in the keyed block cipher F if $\Pr[F_K(x_1) \oplus F_K(x_1 \oplus \triangle_x) = \triangle_y] \ge p$

Can Lead to Efficient (Round) Key Recovery Attacks **Exploiting Weakness Requires:** well over $\frac{1}{p}$ chosen plaintext-ciphertext pairs

Differentials in S-box can lead to (weaker) differentials in SPN.