
Cryptography
CS 555

Week 6: 
• Commitment Schemes
• Ideal Cipher Model + Hash Functions from Block Ciphers
• Block Ciphers
• Feistel Networks
• DES, 3DES
Readings: Katz and Lindell Chapter 6-6.2.4
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Recap

• Hash Functions
• Definition
• Merkle-Damgard
• Merkle Trees

• HMAC construction
• Generic Attacks on Hash Function

• Birthday Attack
• Small Space Birthday Attacks (cycle detection)

• Pre-Computation Attacks: Time/Space Tradeoffs
• Random Oracle Model
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Commitment Schemes
• Alice wants to commit a message m to Bob

• And possibly reveal it later at a time of her choosing

• Properties
• Hiding: commitment reveals nothing about m to Bob
• Binding: it is infeasible for Alice to alter message

Syntax Commitment Scheme with Canonical Verification:
• 𝐜𝐜 ≔ 𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂(m; r) : takes as input a message m and random bits r and outputs a commitment 𝐜𝐜 to the 

message m

• 𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂 c, m, r ≔ �1 𝑖𝑖𝑖𝑖
0

𝑐𝑐 == 𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂(m; r)
𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

• Note: Not all commitment schemes use canonical verification, but this definition suffices for our purposes. 
In this case there may be a third algorithm pp:=Setup(1n) which generates public parameters for the 
commitment scheme.   
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Commitment Hiding  (Hiding𝐴𝐴,𝐶𝐶𝐶𝐶𝐶𝐶(𝑛𝑛)) 
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r = Gen(.)
Bit b

m0,m1

commit(r,mb)
b’

∀𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴 ∃𝜇𝜇 (negligible) s. t

Pr Hiding𝐴𝐴,𝐶𝐶𝐶𝐶𝐶𝐶 𝑛𝑛 = 1 ≤
1
2

+ 𝜇𝜇(𝑛𝑛)

Hiding𝐴𝐴,𝐶𝐶𝐶𝐶𝐶𝐶(𝑛𝑛)= �1 if 𝑏𝑏 = 𝑏𝑏′
0 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜



Commitment Binding (Binding𝐴𝐴,𝐶𝐶𝐶𝐶𝐶𝐶(𝑛𝑛)) 
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r0,r1,m0,m1

∀𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴 ∃𝜇𝜇 (negligible) s. t
Pr Binding𝐴𝐴,𝐶𝐶𝐶𝐶𝐶𝐶 𝑛𝑛 = 1 ≤ 𝜇𝜇(𝑛𝑛)

Binding𝐴𝐴,𝐶𝐶𝐶𝐶𝐶𝐶(𝑛𝑛)= �1 if commit(r0,m0)= commit(r1,m1)
0 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜



Secure Commitment Scheme

• Definition: A secure commitment scheme is hiding and binding
• Hiding

• Binding
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∀𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴 ∃𝜇𝜇 (negligible) s. t

Pr Hiding𝐴𝐴,𝐶𝐶𝐶𝐶𝐶𝐶 𝑛𝑛 = 1 ≤
1
2

+ 𝜇𝜇(𝑛𝑛)

∀𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴 ∃𝜇𝜇 (negligible) s. t
Pr Binding𝐴𝐴,𝐶𝐶𝐶𝐶𝐶𝐶 𝑛𝑛 = 1 ≤ 𝜇𝜇(𝑛𝑛)



Commitment Scheme in Random Oracle 
Model
• 𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂(r, m) ≔ H 𝑟𝑟 ∥ 𝑚𝑚

• 𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑(c) ≔ (r, m)
Theorem: In the random oracle model this is a secure  commitment 
scheme. 

Binding: 
commit(r0,m0)= commit(r1,m1) ↔ H(r0 ∥ m0)=H(r1 ∥ m1)
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Commitment Hiding  (Hiding𝐴𝐴,𝐶𝐶𝐶𝐶𝐶𝐶(𝑛𝑛)) 
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r = Gen(.)
Bit b

m0,m1

H 𝑟𝑟 ∥ 𝑚𝑚𝑏𝑏
b’

∀𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑞𝑞 𝑛𝑛 𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞 s. t

Pr Hiding𝐴𝐴,𝐶𝐶𝐶𝐶𝐶𝐶 𝑛𝑛 = 1 ≤
1
2

+
𝑞𝑞(𝑛𝑛)
2 𝑟𝑟

Hiding𝐴𝐴,𝐶𝐶𝐶𝐶𝐶𝐶(𝑛𝑛)= �1 𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑏𝑏′
0 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜



Commitment Hiding  (Hiding𝐴𝐴,𝐶𝐶𝐶𝐶𝐶𝐶(𝑛𝑛)) 

9

r = Gen(.)
Bit b

m0,m1

H 𝑟𝑟 ∥ 𝑚𝑚𝑏𝑏
b’

∀𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑞𝑞 𝑛𝑛 𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞 s. t

Pr Hiding𝐴𝐴,𝐶𝐶𝐶𝐶𝐶𝐶 𝑛𝑛 = 1 ≤
1
2

+
𝑞𝑞(𝑛𝑛)
2 𝑟𝑟

Hiding𝐴𝐴,𝐶𝐶𝐶𝐶𝐶𝐶(𝑛𝑛)= �1 𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑏𝑏′
0 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

If attacker never makes query 
of the form H 𝑟𝑟 ∥ 𝑥𝑥 then bit b 

is information theoretically 
hidden



Ideal Cipher Model

• For each n-bit string K we pick a truly random permutation FK

• Public Oracles
• 𝑂𝑂 𝐾𝐾, 𝑥𝑥 = 𝐹𝐹𝐾𝐾(𝑥𝑥)
• 𝑂𝑂−1 𝐾𝐾,𝑦𝑦 = 𝐹𝐹𝐾𝐾−1 (𝑥𝑥)

• Real World: Instantiate Ideal Cipher with a modern block cipher like AES

• Similar Pros/Cons to Random Oracle Model
• Pro: Powerful evidence of sound design
• Con: No blockcipher is an ideal cipher (even AES)
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Hash Functions from Ideal Block Ciphers

• Davies-Meyer Construction from block cipher 𝐹𝐹𝐾𝐾

𝐻𝐻 𝐾𝐾, 𝑥𝑥 = 𝐹𝐹𝐾𝐾 𝑥𝑥 ⨁𝑥𝑥

Theorem: If 𝐹𝐹: 0,1 𝜆𝜆 × 0,1 𝜆𝜆 → 0,1 𝜆𝜆 is modeled as an ideal block cipher 
then Davies-Meyer construction is a collision-resistant hash function 
(Concrete: Need roughly q ≈ 2𝜆𝜆/2 queries to find collision)

• Ideal Cipher Model: For each key K model FK as a truly random 
permutation which may only be accessed in black box manner.

• (Equivalent to Random Oracle Model)
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Hash Functions from Block Ciphers

𝐻𝐻 𝐾𝐾, 𝑥𝑥 = 𝐹𝐹𝐾𝐾 𝑥𝑥 ⨁𝑥𝑥
Analysis: Suppose we have already made queries to the ideal cipher
• 𝐾𝐾1, 𝑥𝑥1 , … , 𝐾𝐾𝑞𝑞, 𝑥𝑥𝑞𝑞 to 𝐹𝐹𝐾𝐾 to get 𝐹𝐹𝐾𝐾1 𝑥𝑥1 , … ,𝐹𝐹𝐾𝐾𝑞𝑞 𝑥𝑥𝑞𝑞 and queries 
• 𝐾𝐾𝑞𝑞+1,𝑦𝑦1 , … , 𝐾𝐾2𝑞𝑞,𝑦𝑦𝑞𝑞 to 𝐹𝐹𝐾𝐾−1 . to get 𝑥𝑥𝑞𝑞+1≔𝐹𝐹𝐾𝐾𝑞𝑞+1

−1 𝑦𝑦1 , … , 𝑥𝑥2𝑞𝑞≔𝐹𝐹𝐾𝐾2𝑞𝑞
−1 𝑦𝑦𝑞𝑞 . 

𝐻𝐻 𝐾𝐾𝑖𝑖 , 𝑥𝑥𝑖𝑖 is known for all i ≤ 2𝑞𝑞 (but 𝐻𝐻 𝐾𝐾, 𝑥𝑥 is unknown at other points.  
Now suppose we make a new query 𝐾𝐾, 𝑥𝑥 ∉ 𝐾𝐾1, 𝑥𝑥1 , … , 𝐾𝐾2𝑞𝑞 , 𝑥𝑥2𝑞𝑞 :  𝐹𝐹𝐾𝐾 𝑥𝑥 sampled uniformly from 2𝜆𝜆 − 2𝑞𝑞
possible choices. 
 Collides with H 𝐾𝐾𝑖𝑖 , 𝑥𝑥𝑖𝑖 with probability at most 1

2𝜆𝜆−2𝑞𝑞

 Collides with H 𝐾𝐾𝑞𝑞+𝑖𝑖 , 𝑥𝑥𝑞𝑞+𝑖𝑖 with probability at most 1
2𝜆𝜆−2𝑞𝑞

 H 𝐾𝐾, 𝑥𝑥 Collides with prior query with probability at most  2q
2𝜆𝜆−2𝑞𝑞
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Hash Functions from Block Ciphers

𝐻𝐻 𝐾𝐾, 𝑥𝑥 = 𝐹𝐹𝐾𝐾 𝑥𝑥 ⨁𝑥𝑥
Analysis: 

Fact 1: Query q+1 to ideal cipher yields collision (with prior query) with 
probability at most  q

2𝜆𝜆−𝑞𝑞

Fact 2: The probability of finding a collision within q queries is at most  
∑𝑖𝑖≤𝑞𝑞

i
2𝜆𝜆−𝑖𝑖

≤ q(q−1)/2
2𝜆𝜆−𝑞𝑞
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A Broken Attempt

𝐻𝐻 𝐾𝐾1,𝐾𝐾2, 𝑥𝑥1, 𝑥𝑥2 = 𝐹𝐹𝐾𝐾1
𝑥𝑥1 ⨁𝐹𝐹𝐾𝐾2

𝑥𝑥2 ⨁𝐾𝐾1⨁𝐾𝐾2
Collision Attack: Pick arbitrary keys 𝐾𝐾0 ≠ 𝐾𝐾1
Step 1: Query x1 ≔ 𝐹𝐹𝐾𝐾0

−1 0𝑛𝑛 and x2 ≔ 𝐹𝐹𝐾𝐾0

−1 1𝑛𝑛
Step 2: Query w1 ≔ 𝐹𝐹𝐾𝐾1

−1 0𝑛𝑛 and w2 ≔ 𝐹𝐹𝐾𝐾1

−1 1𝑛𝑛

𝐻𝐻 𝐾𝐾0,𝐾𝐾0, 𝑥𝑥1, 𝑥𝑥2 = 𝐹𝐹𝐾𝐾0
𝑥𝑥1 ⨁𝐹𝐹𝐾𝐾0

𝑥𝑥2 ⨁𝐾𝐾0⨁𝐾𝐾0 = 0𝑛𝑛⨁1𝑛𝑛

= 𝐹𝐹𝐾𝐾1
𝑤𝑤1 ⨁𝐹𝐹𝐾𝐾1

𝑤𝑤2 = 𝐻𝐻 𝐾𝐾1,𝐾𝐾1, 𝑥𝑥1, 𝑥𝑥2

Exploits the fact that we can query inverse oracle 𝐹𝐹𝐾𝐾−1
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CS 555: Week 6: Topic 1
Block Ciphers
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An Existential Crisis?

• We have used primitives like PRGs, PRFs to build secure MACs, CCA-
Secure Encryption, Authenticated Encryption etc…

• Do such primitives exist in practice?

• How do we build them?
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Recap

• Hash Functions/PRGs/PRFs, CCA-Secure Encryption, MACs

Goals for This Week:
• Practical Constructions of Symmetric Key Primitives

Today’s Goals: Block Ciphers
• Sbox
• Confusion Diffusion Paradigm
• Feistel Networks
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Pseudorandom Permutation

A keyed function F: 0,1 𝑛𝑛 × 0,1 𝑛𝑛 → 0,1 𝑛𝑛, which is 
invertible and “looks random” without the secret key k. 

• Similar to a PRF, but 
• Computing Fk(x) and 𝐹𝐹𝑘𝑘−1 𝑥𝑥 is efficient (polynomial-time)

Definition 3.28: A keyed function F: 0,1 𝑛𝑛 × 0,1 𝑛𝑛 → 0,1 𝑛𝑛 is a strong 
pseudorandom permutation if for all PPT distinguishers D there is a 
negligible function 𝜇𝜇 s.t. 

𝑃𝑃𝑃𝑃 𝐷𝐷𝐹𝐹𝑘𝑘 . ,𝐹𝐹𝑘𝑘
−1 . 1𝑛𝑛 − 𝑃𝑃𝑃𝑃 𝐷𝐷𝑓𝑓 . ,𝑓𝑓−1 . 1𝑛𝑛 ≤ 𝜇𝜇 𝑛𝑛
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Pseudorandom Permutation

Definition 3.28: A keyed function F: 0,1 𝑛𝑛 × 0,1 𝑛𝑛 → 0,1 𝑛𝑛 is a strong 
pseudorandom permutation if for all PPT distinguishers D there is a 
negligible function 𝜇𝜇 s.t. 

𝑃𝑃𝑃𝑃 𝐷𝐷𝐹𝐹𝑘𝑘 . ,𝐹𝐹𝑘𝑘
−1 . 1𝑛𝑛 − 𝑃𝑃𝑃𝑃 𝐷𝐷𝑓𝑓 . ,𝑓𝑓−1 . 1𝑛𝑛 ≤ 𝜇𝜇 𝑛𝑛

Notes: 
• the first probability is taken over the uniform choice of 𝑘𝑘 ∈ 0,1 𝑛𝑛 as well 

as the randomness of D. 
• the second probability is taken over uniform choice of f ∈Permnas well as 

the randomness of D. 
• D is never given the secret k
• However, D is given oracle access to keyed permutation and inverse
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How many permutations? 

• |Permn|=?

• Answer: 2n!

• How many bits to store f ∈Permn?

• Answer:

log 2n! = �
𝑖𝑖=1

2n

log i

≥ �
𝑖𝑖=2𝑛𝑛−1

2𝑛𝑛

𝑛𝑛 − 1 ≥ (𝑛𝑛 − 1) × 2𝑛𝑛−1
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How many bits to store permutations? 

log 2n! = �
𝑖𝑖=1

2n

log i

≥ �
𝑖𝑖=2𝑛𝑛−1

2𝑛𝑛

𝑛𝑛 − 1 ≥ (𝑛𝑛 − 1) × 2𝑛𝑛−1

Example: Storing f ∈Perm50 requires over 6.8 petabytes (1015)
Example 2: Storing f ∈Perm100 requires about 12 yottabytes (1024)
Example 3: Storing f ∈Perm8 requires about 211 bytes
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Attempt 1: Pseudorandom Permutation

• Select 16 random permutations on 8-bits f1,…,f16 ∈ Perm8.

• Secret key: k = f1,…,f16 (about 3 KB)
• Input: x=x1,…,x16 (16 bytes)

Fk 𝑥𝑥 = f1 x1 ∥ f2 x2 ∥ ⋯ ∥ f16 x16

• Any concerns?
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Attempt 1: Pseudorandom Permutation

• Select 16 random permutations on 8-bits f1,…,f16 ∈ Perm8.

Fk 𝑥𝑥 = f1 x1 ∥ f2 x2 ∥ ⋯ ∥ f16 x16

• Any concerns?
Fk x1 ∥ x2 ∥ ⋯ ∥ x16 = f1 x1 ∥ f2 x2 ∥ ⋯ ∥ f16 x16

Fk 0 ∥ x2 ∥ ⋯ ∥ x16 = f1 0 ∥ f2 x2 ∥ ⋯ ∥ f16 x16

• Changing a bit of input produces insubstantial changes in the output.
• A truly random permutation F ∈ Perm128 would not behave this way!
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Pseudorandom Permutation Requirements

• Consider a truly random permutation F ∈ Perm128

• Let inputs x and x’ differ on a single bit

• We expect outputs F(x) and F(x’) to differ on approximately half of 
their bits 

• F(x) and F(x’) should be (essentially) independent.

• A pseudorandom permutation must exhibit the same behavior!
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Confusion-Diffusion Paradigm

• Our previous construction was not pseudorandom, but applying the 
permutations does accomplish something 

• They introduce confusion into F
• Attacker cannot invert (after seeing a few outputs)

• Approach: 
• Confuse: Apply random permutations f1,…, to each block of input to obtain 
𝑦𝑦1,…,

• Diffuse: Mix the bytes 𝑦𝑦1,…, to obtain byes 𝑧𝑧1,…,
• Confuse: Apply random permutations f1,…, with inputs 𝑧𝑧1,…,
• Repeat as necessary
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Attempt 1: Pseudorandom Permutation

• Select 16 random permutations on 8-bits f1,…,f16 ∈ Perm8.

Fk 𝑥𝑥 = f1 x1 ∥ f2 x2 ∥ ⋯ ∥ f16 x16

• Any concerns?
Fk x1 ∥ x2 ∥ ⋯ ∥ x16 = f1 x1 ∥ f2 x2 ∥ ⋯ ∥ f16 x16

Fk 0 ∥ x2 ∥ ⋯ ∥ x16 = f1 0 ∥ f2 x2 ∥ ⋯ ∥ f16 x16

• Changing a bit of input produces insubstantial changes in the output.
• A truly random permutation F ∈ Perm128 would not behave this way!
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Confusion-Diffusion Paradigm

Example: 
• Select 8 random permutations on 8-bits f1,…,f16 ∈ Perm8

• Select 8 extra random permutations on 8-bits g1,…,g8 ∈ Perm8

Fk x1 ∥ x2 ∥ ⋯ ∥ x8 =
1. y1 ∥ ⋯ ∥ y8:=f1 x1 ∥ f2 x2 ∥ ⋯ ∥ f8 x8

2. z1 ∥ ⋯ ∥ z8:=Mix y1 ∥ ⋯ ∥ y8

3. Output: f1 z1 ∥ f2 z2 ∥ ⋯ ∥ f8 z8
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Example Mixing Function

Mix y1 ∥ ⋯ ∥ y8 =
1. For i=1 to 8
2. zi:=y1[i] ∥ ⋯ ∥ y8[i]
3. End For
4. Output: g1 z1 ∥ g2 z2 ∥ ⋯ ∥ g8 z8

29

y1[1] ⋯ y1[8]
⋮ ⋱ ⋮

y8[1] ⋯ y8[8]

y1 =

z1

y8 =

z8



Are We Done?

Fk x1 ∥ x2 ∥ ⋯ ∥ x8 =
1. y1 ∥ ⋯ ∥ y8:=f1 x1 ∥ f2 x2 ∥ ⋯ ∥ f8 x8
2. z1 ∥ ⋯ ∥ z8:=Mix y1 ∥ ⋯ ∥ y8
3. Output: f1 z1 ∥ f2 z2 ∥ ⋯ ∥ f8 z8

Suppose f1 x1 = 00110101 = y1 and f1 xʹ1 = 00110100 = y′1

Fk xʹ1 ∥ x2 ∥ ⋯ ∥ x8 =
1. y′1 ∥ ⋯ ∥ y8:=f1 xʹ1 ∥ f2 x2 ∥ ⋯ ∥ f8 x8
2. z1 ∥ ⋯ ∥ zʹ8:=Mix y′1 ∥ ⋯ ∥ y8
3. Output: f1 z1 ∥ f2 z2 ∥ ⋯ ∥ f8 zʹ8
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y1[1] ⋯ y1[8]
⋮ ⋱ ⋮

y8[1] ⋯ y8[8]

y1 =

z1

y8 =

z8

Highly unlikely that a truly random 
permutation would behave this way!



Substitution Permutation Networks

• S-box a public “substitution function” (e.g.S ∈ Perm8).

• S is not part of a secret key, but can be used with one 
f(x) = S x⨁𝑘𝑘

• Input to round: x, k (k  is subkey for current round)
• Key Mixing: Set x ≔ x⨁𝑘𝑘
• Substitution: x ≔ S1 x1 ∥ S2 x2 ∥ ⋯ ∥ S8 x8

• Bit Mixing Permutation: permute the bits of x to obtain the round output

31

Note: there are only n! 
possible bit mixing 
permutations of [n] as 
opposed to 2n! 
Permutations of {0,1}n



Substitution Permutation Networks

• Proposition 6.3: Let F be a keyed 
function defined by a Substitution 
Permutation Network. Then for any 
keys/number of rounds Fk is a 
permutation.

• Why? Composing permutations f,g
results in another permutation 
h(x)=g(f(x)).
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Remarks

• Want to achieve “avalanche effect” (one bit change should “affect” 
every output bit)

• Should a S-box be a random byte permutation?

• Better to ensure that S(x) differs from x on at least 2-bits (for all x)
• Helps to maximize “avalanche effect”

• Mixing Permutation should ensure that output bits of any given S-box 
are used as input to multiple S-boxes in the next round
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Remarks

• How many rounds?

• Informal Argument: If we ensure that S(x) differs from x on at least 2-bits 
(for all bytes x) then every input bit affects

• 2 bits of round 1 output
• 4 bits of round 2 output
• 8 bits of round 3 output
• ….
• 128 bits of round 4 output

• Need at least 7 rounds (minimum) to ensure that every input bit affects 
every output bit
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Attacking Lower Round SPNs

• Trivial Case: One full round with no final key mixing step
• Key Mixing: Set x ≔ x⨁𝑘𝑘
• Substitution: y ≔ S1 x1 ∥ S2 x2 ∥ ⋯ ∥ S8 x8

• Bit Mixing Permutation: P permute the bits of y to obtain the round 
output

• Given input/output (x,Fk(x))
• Permutations P and Si are public and can be run in reverse 
• P-1(Fk(x))  = S1 x1⨁𝑘𝑘1 ∥ S2 x2⨁𝑘𝑘2 ∥ ⋯ ∥ S8 x8⨁𝑘𝑘8
• xi ⨂𝑘𝑘i =Si

-1 Si xi⨁𝑘𝑘i
• Attacker knows xi and can thus obtain ki
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Attacking Lower Round SPNs

• Easy Case: One full round with final key mixing step
• Key Mixing: Set x ≔ x⨂𝑘𝑘1

• Substitution: y ≔ S1 x1 ∥ S2 x2 ∥ ⋯ ∥ S8 x8

• Bit Mixing Permutation: z1 ∥ ⋯ ∥ z8 =P(y)
• Final Key Mixing: Output z⨁𝑘𝑘2

• Given input/output (x,Fk(x))
• Permutations P and Si are public and can be run in reverse once k2 is known
• Immediately yields attack in 264 time (k1,k2 are each 64 bit keys) which 

narrows down key-space to 264 but we can do much better!
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Attacking Lower Round SPNs

• Easy Case: One full round with final key mixing step
• Key Mixing: Set x ≔ x⨁𝑘𝑘1
• Substitution: y ≔ S1 x1 ∥ S2 x2 ∥ ⋯ ∥ S8 x8
• Bit Mixing Permutation: z1 ∥ ⋯ ∥ z8 =P(y)
• Final Key Mixing: Output z⨁𝑘𝑘2

• Given input/output (x,Fk(x))
• Permutations P and Si are public and can be run in reverse once k2 is known
• Guessing 8 specific bits of k2 (which bits depends on P) we can obtain one value yi =

Si xi ⨂𝑘𝑘i
• Attacker knows xi and can thus obtain ki by inverting Si and using XOR
• Narrows down key-space to 264 , but in time 8x28
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Attacking Lower Round SPNs

• Easy Case: One full round with final key mixing step
• Key Mixing: Set x ≔ x⨁𝑘𝑘1

• Substitution: y ≔ S1 x1 ∥ S2 x2 ∥ ⋯ ∥ S8 x8

• Bit Mixing Permutation: z1 ∥ ⋯ ∥ z8 =P(y)
• Final Key Mixing: Output z⨁𝑘𝑘2

• Given several input/output pairs (xj,Fk(xj))
• Can quickly recover k1 and k2
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Attacking Lower Round SPNs

• Harder Case: Two round SPN

• Exercise 

• Ideal Cipher Model: For each key K model FK as a truly random 
permutation which may only be accessed in black box manner.

• Attacker may submit query (K,x,+) and oracle responds with 𝐹𝐹𝐾𝐾 𝑥𝑥 or 
• Stronger than assuming that F is a Pseudorandom Permutation
• (Equivalent to Random Oracle Model)

39



Feistel Networks

• Alternative to Substitution Permutation Networks

• Advantage: underlying functions need not be invertible, but the 
result is still a permutation

40



• Ri-1 = Li

• Li-1:=Ri⨁𝐹𝐹𝑘𝑘𝑖𝑖(Ri-1)

Proposition: the function is invertible.

Digital Encryption Standard (DES): 16-
round Feistel Network. 
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DES, 3DES
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Feistel Networks

•Alternative to Substitution Permutation Networks

•Advantage: underlying functions need not be 
invertible, but the result is still a permutation
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• Li+1 = Ri

• Ri+1≔Li⨁𝐹𝐹𝑘𝑘𝑖𝑖(Ri)

Proposition: the function is invertible.
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Data Encryption Standard

• Developed in 1970s by IBM (with help from NSA)

• Adopted in 1977 as Federal Information Processing Standard (US)

• Data Encryption Standard (DES): 16-round Feistel Network. 

• Key Length: 56 bits
• Vulnerable to brute-force attacks in modern times
• 1.5 hours at 14 trillion DES evals/second e.g., Antminer S9 runs at 14 TH/s

45



DES Round
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Generating the Round Keys

• Initial Key: 64 bits
• Effective Key Length: 56 bits
• Round Key Length: 48 bits (each)

• 16 round keys derived from initial key
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DES Mangle Function

• Expand E: 32-bit input  48-bit 
output (duplicates 16 bits)

• S-boxes: S1,…,S8
• Input: 6-bits
• Output: 4 bits
• Not a permutation!

• 4-to-1 function
• Exactly four inputs mapped to each 

possible output
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Mangle Function

49

32 bit input

48-bit sub key48 bit output of expand

XOR block before
Applying S-Boxes

Each S-box 
outputs 4 bits



S-Box Representation as Table

00 01 10 11
0000
0001
0010
0011
0100
0101
0110 S(x)=1101

…. …. …. …. ….

1111

50
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S-Box Representation

00 01 10 11
0000
0001
0010
0011
0100
0101
0110 S(x)=1101

…. …. …. …. ….

1111

51x =101101 S(x) = T[0110,11]

4 columns (2 bits)

16
 c

ol
um

ns
 (4
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its

)
Each column is permutation



Pseudorandom Permutation Requirements

• Consider a truly random permutation F ∈ Perm128

• Let inputs x and x’ differ on a single bit

• We expect outputs F(x) and F(x’) to differ on approximately half of 
their bits 

• F(x) and F(x’) should be (essentially) independent.

• A pseudorandom permutation must exhibit the same behavior!
• Requirement: DES Avalanche Effect!

52



DES Avalanche Effect

• Permutation the end of the mangle function helps to 
mix bits

• Special S-box property #1

Let x and x’ differ on one bit then Si(x) differs from Si(x’) 
on two bits.
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Avalanche Effect Example

• Consider two 64 bit inputs
• (Ln,Rn) and (Ln’,R’n=Rn)
• Ln and Ln’ differ on one bit

• This is worst case example
• Ln+1 = Ln+1’=Rn
• But now R’n+1 and Rn+1 differ on one 

bit 
• Even if we are unlucky E(R’n+1) and 

E(Rn+1) differ on 1 bit
•  Rn+2 and R’n+2 differ on two bits
•  Ln+2 = R’n+1 and Ln+2’ = R’n+1 differ 

in one bit
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Avalanche Effect Example
• Rn+2 and R’n+2 differ on two bits
• Ln+2 = Rn+1 and Ln+2’ = R’n+1 differ in 

one bit

Rn+3 and R’n+3 differ on four bits since 
we have different inputs to two of the 
S-boxes
Ln+3 = R’n+2 and Ln+2’ = R’n+2 now differ 

on two bits
• Seven rounds we expect all 32 bits in 

right half to be “affected” by input 
change

…
DES has sixteen rounds
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Attack on One-Round DES

• Given input output pair (x,y)
• y=(L1,R1)
• X=(L0,R0)

• Note: R0=L1

• Note: R1=L0 ⨁𝑓𝑓1 R0 where 𝑓𝑓1 is the Mangling Function with key k1

Conclusion:
𝑓𝑓1 R0 =L0⨁R1
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Attack on One-Round DES

57

R0

L0⨁R1

Four possible inputs

Trivial to Recover



Attack on Two-Round DES

• Output y =(L2,R2)
• Note: R1=L0⨁𝑓𝑓1 R0

• Also,R1= L2
• Thus, 𝑓𝑓1 R0 =L2⨁L0

• So we can still attack the first round key k1 as before as R0 and L2⨁L0
are known

• Note:R2=L1⨁𝑓𝑓2 R1
• Also,L1=R0 and R1= L2

• Thus, 𝑓𝑓2 L2 =R2⨁R0

• So we can attack the second round key k2 as before as L2 and R2⨁R0
are known
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L0 R0

K1

F⨁

L1 R1

K2

F⨁

R2L2

𝑓𝑓1 R0 =L2⨁L0

𝑓𝑓2 R0 =L2⨁L0



Attack on Three-Round DES

𝑓𝑓1 R0 ⨁𝑓𝑓3 R2 = L0⨁L2 ⨁ L2⨁R3

= L0⨁R3

We know all of the values L0,R0, R3 and L3 = R2.

Leads to attack in time ≈2n/2

(See details in textbook)

Remember that DES is 16 rounds
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DES Security

• Best Known attack is brute-force 256

• Except under unrealistic conditions (e.g., 243 known plaintexts)
• Brute force is not too difficult on modern hardware

• Attack can be accelerated further after precomputation
• Output is a few terabytes
• Subsequently keys are cracked in 238 DES evaluations (minutes) 

• Precomputation costs amortize over number of DES keys cracked

• Even in 1970 there were objections to the short key length for DES
60



Double DES

• Let Fk(x) denote the DES block cipher

• A new block cipher F’ with a key 𝑘𝑘 = 𝑘𝑘1,𝑘𝑘2 of length 2n can be 
defined by 

𝐹𝐹𝑘𝑘′ 𝑥𝑥 = 𝐹𝐹𝑘𝑘2 𝐹𝐹𝑘𝑘1 𝑥𝑥

• Can you think of an attack better than brute-force?
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Meet in the Middle Attack

𝐹𝐹𝑘𝑘′ 𝑥𝑥 = 𝐹𝐹𝑘𝑘2 𝐹𝐹𝑘𝑘1 𝑥𝑥

Goal: Given (x, c = 𝐹𝐹𝑘𝑘′ 𝑥𝑥 ) try to find secret key k in time and space O 𝑛𝑛2𝑛𝑛 .

• Solution? 
• Key Observation

𝐹𝐹𝑘𝑘1 𝑥𝑥 = 𝐹𝐹𝑘𝑘2
−1 c

• Compute 𝐹𝐹𝐾𝐾−1 c and 𝐹𝐹𝐾𝐾 𝑥𝑥 for each potential n-bit key K and store 𝑲𝑲, 𝐹𝐹𝐾𝐾−1 c and 
𝑲𝑲, 𝐹𝐹𝐾𝐾 x

• Sort each list of pairs (by 𝐹𝐹𝐾𝐾−1 c or 𝐹𝐹𝐾𝐾 x ) to find K1 and K2.
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Triple DES Variant 1

• Let Fk(x) denote the DES block cipher

• A new block cipher F’ with a key 𝑘𝑘 = 𝑘𝑘1,𝑘𝑘2, 𝑘𝑘3 of length 2n can be 
defined by 

𝐹𝐹𝑘𝑘′ 𝑥𝑥 = 𝐹𝐹𝑘𝑘3 𝐹𝐹𝑘𝑘2
−1 𝐹𝐹𝑘𝑘1 𝑥𝑥

• Meet-in-the-Middle Attack Requires time Ω 22𝑛𝑛 and space Ω 22𝑛𝑛
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Triple DES Variant 1

• Let Fk(x) denote the DES block cipher

• A new block cipher F’ with a key 𝑘𝑘 = 𝑘𝑘1,𝑘𝑘2, 𝑘𝑘3 of length 2n can be 
defined by 

𝐹𝐹𝑘𝑘′ 𝑥𝑥 = 𝐹𝐹𝑘𝑘3 𝐹𝐹𝑘𝑘2
−1 𝐹𝐹𝑘𝑘1 𝑥𝑥

• Meet-in-the-Middle Attack Requires time Ω 22𝑛𝑛 and space Ω 22𝑛𝑛
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Allows backward compatibility 
with DES by setting k1=k2=k3



Triple DES Variant 2

• Let Fk(x) denote the DES block cipher

• A new block cipher F’ with a key 𝑘𝑘 = 𝑘𝑘1, 𝑘𝑘2 of length 2n can be defined 
by 

𝐹𝐹𝑘𝑘′ 𝑥𝑥 = 𝐹𝐹𝑘𝑘1 𝐹𝐹𝑘𝑘2
−1 𝐹𝐹𝑘𝑘1 𝑥𝑥

• Meet-in-the-Middle Attack still requires time Ω 22𝑛𝑛 and space Ω 22𝑛𝑛
• Brute force is more efficient: time is still Ω 22𝑛𝑛 , but space usage is constant

• Key length is still just 112 bits (NIST recommends 128+ bits)
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Triple DES Variant 1

𝐹𝐹𝑘𝑘′ 𝑥𝑥 = 𝐹𝐹𝑘𝑘3 𝐹𝐹𝑘𝑘2
−1 𝐹𝐹𝑘𝑘1 𝑥𝑥

• Standardized in 1999

• Still widely used, but it is relatively slow (three block cipher 
operations)

• Current gold standard: AES
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∀ Pr 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝑏𝑏′ = 𝑏𝑏 ≤
1
2

+ 𝜇𝜇(𝑛𝑛)

PRG Security as a Game

69

Random bit b
If b=1
r ← 0,1 𝑛𝑛

R = G(r)
Else 
𝑅𝑅 ← 0,1 ℓ 𝑛𝑛

b’

𝑝𝑝𝑝𝑝𝑝𝑝 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
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Stream Cipher vs PRG

• PRG pseudorandom bits output all at once

• Stream Cipher
• Pseudorandom bits can be output as a stream
• RC4, RC5 (Ron’s Code)

st0 := Init(s)
For i=1 to ℓ:  

(yi,sti):=GetBits(sti-1)
Output: y1,…,yℓ
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Linear Feedback Shift Register
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Linear Feedback Shift Register

• State at time t: 𝑠𝑠𝑛𝑛−1𝑡𝑡 , … , 𝑠𝑠1𝑡𝑡 , 𝑠𝑠0𝑡𝑡 (n registers) 
• Feedback Coefficients: 𝐒𝐒 ⊆ 0, … ,𝑛𝑛
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Linear Feedback Shift Register

• State at time t: 𝑠𝑠𝑛𝑛−1𝑡𝑡 , … , 𝑠𝑠1𝑡𝑡 , 𝑠𝑠0𝑡𝑡 (n registers) 
• Feedback Coefficients: 𝐒𝐒 ⊆ 0, … ,𝑛𝑛 − 1
• State at time t+1:⨁𝑖𝑖∈𝑆𝑆𝑠𝑠𝑖𝑖𝑡𝑡, 𝑠𝑠𝑛𝑛−1𝑡𝑡 , … , 𝑠𝑠1𝑡𝑡 ,

𝑠𝑠𝑛𝑛−1𝑡𝑡+1= ⨁𝑖𝑖∈𝑆𝑆𝑠𝑠𝑖𝑖𝑡𝑡, and 𝑠𝑠𝑖𝑖𝑡𝑡+1 = 𝑠𝑠𝑖𝑖+1𝑡𝑡 for i < n − 1

Output at time t+1: 𝒚𝒚𝒕𝒕+𝟏𝟏 = 𝒔𝒔𝟎𝟎𝒕𝒕
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Linear Feedback Shift Register

• Observation 1: First n bits of output reveal initial state

𝑦𝑦1, … ,𝑦𝑦𝑛𝑛 = 𝑠𝑠00, 𝑠𝑠10 , … , 𝑠𝑠𝑛𝑛−10

• Observation 2: Next n bits allow us to solve for n unknowns 

𝑥𝑥𝑖𝑖 = �1 if 𝑖𝑖 ∈ 𝑆𝑆
0 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

𝑦𝑦𝑛𝑛+1 = 𝑦𝑦𝑛𝑛𝑥𝑥𝑛𝑛−1 + ⋯+ 𝑦𝑦1𝑥𝑥0
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Linear Feedback Shift Register

• Observation 1: First n bits of output reveal initial state

𝑦𝑦1, … ,𝑦𝑦𝑛𝑛 = 𝑠𝑠00, 𝑠𝑠10 , … , 𝑠𝑠𝑛𝑛−10

• Observation 2: Next n bits allow us to solve for n unknowns 

𝑥𝑥𝑖𝑖 = �1 if 𝑖𝑖 ∈ 𝑆𝑆
0 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

𝑦𝑦𝑛𝑛+1 = 𝑦𝑦𝑛𝑛𝑥𝑥𝑛𝑛−1 + ⋯+ 𝑦𝑦1𝑥𝑥0 mod 2
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Linear Feedback Shift Register

• Observation 2: Next n bits allow us to solve for n unknowns 

𝑥𝑥𝑖𝑖 = �1 if 𝑖𝑖 ∈ 𝑆𝑆
0 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

𝑦𝑦𝑛𝑛+1 = 𝑦𝑦𝑛𝑛𝑥𝑥𝑛𝑛−1 + ⋯+ 𝑦𝑦1𝑥𝑥0 mod 2

𝑦𝑦2𝑛𝑛 = 𝑦𝑦2𝑛𝑛−1𝑥𝑥𝑛𝑛−1 + ⋯+ 𝑦𝑦𝑛𝑛𝑥𝑥0 mod 2
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Removing Linearity

• Attacks exploited linear relationship between state and output bits

• Nonlinear Feedback:
𝑠𝑠𝑛𝑛−1𝑡𝑡+1= ⨁𝑖𝑖∈𝑆𝑆𝑠𝑠𝑖𝑖𝑡𝑡,

𝑠𝑠𝑛𝑛−1𝑡𝑡+1= 𝑔𝑔 𝑠𝑠0𝑡𝑡 , 𝑠𝑠1𝑡𝑡 , … , 𝑠𝑠𝑛𝑛−1𝑡𝑡
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Removing Linearity

• Attacks exploited linear relationship between state and output bits

• Nonlinear Combination:
𝒚𝒚𝒕𝒕+𝟏𝟏 = 𝒔𝒔𝟎𝟎𝒕𝒕

𝑦𝑦𝑡𝑡+1= 𝑓𝑓 𝑠𝑠0𝑡𝑡 , 𝑠𝑠1𝑡𝑡 , … , 𝑠𝑠𝑛𝑛−1𝑡𝑡

• Important: f must be balanced!

Pr 𝑓𝑓 𝑥𝑥 = 1 ≈
1
2
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Trivium (2008)

• Won the eSTREAM competition
• Currently, no known attacks are better than brute force
• Couples Output from three nonlinear Feedback Shift Registers
• First 4*288 “output bits” are discared
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Combination Generator

• Attacks exploited linear relationship between state and output bits

• Nonlinear Combination:
𝒚𝒚𝒕𝒕+𝟏𝟏 = 𝒔𝒔𝟎𝟎𝒕𝒕

𝑦𝑦𝑡𝑡+1= 𝑓𝑓 𝑠𝑠0𝑡𝑡 , 𝑠𝑠1𝑡𝑡 , … , 𝑠𝑠𝑛𝑛−1𝑡𝑡

• Important: f must be balanced!

Pr 𝑓𝑓 𝑥𝑥 = 1 ≈
1
2
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Feedback Shift Registers

• Good performance in hardware

• Performance is less ideal for software
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Stream Ciphers
• RC4

• A proprietary cipher owned by RSA, designed by Ron Rivest in 1987 (public 1994)
• Widely used (web SSL/TLS, wireless WEP). 
• Distinguishable from random stream 

• Second byte of output is 0 with probability ≈ 2
256

(vs. 1
256

for a truly random stream)

• Newer Versions: RC5 and RC6
• Salsa20
• Rijndael selected by NIST as AES in 2000



92

RC4 Attacks
• Wired Equivalent Privacy (WEP) encryption used RC4 with an initialization 

vector

• Description of RC4 doesn’t involve initialization vector…
• But WEP imposes an initialization vector
• K=IV || K’
• Since IV is transmitted attacker may have first few bytes of the secret key K!
• Giving the attacker partial knowledge of K often allows recovery of the entire key K’ 

over time!

CS555



Hash Functions from Block Ciphers

• Davies-Meyer Construction from block cipher 𝐹𝐹𝐾𝐾

𝐻𝐻 𝐾𝐾, 𝑥𝑥 = 𝐹𝐹𝐾𝐾 𝑥𝑥 ⨁𝑥𝑥

Theorem: If 𝐹𝐹: 0,1 𝜆𝜆 × 0,1 𝜆𝜆 → 0,1 𝜆𝜆 is modeled as an ideal block cipher 
then Davies-Meyer construction is a collision-resistant hash function 
(Concrete: Need roughly q ≈ 2𝜆𝜆/2 queries to find collision)

Ideal Cipher Model: For each key K model FK as a truly random permutation 
which may only be accessed in black box manner.

• (Equivalent to Random Oracle Model)
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Advanced Encryption Standard (AES)

• (1997) US National Institute of Standards and Technology (NIST) announces 
competition for new block cipher to replace DES

• Fifteen algorithms were submitted from all over the world
• Analyzed by NIST

• Contestants given a chance to break competitors schemes

• October, 2000 NIST announces a winner Rijndael
• Vincent Rijmen and Joan Daemen
• No serious vulnerabilities found in four other finalists
• Rijndael was selected for efficiency, hardware performance, flexibility etc… 
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Advanced Encryption Standard

• Block Size: 128 bits (viewed as 4x4 byte array)
• Key Size: 128, 192 or 256

• Essentially a Substitution Permutation Network
• AddRoundKey: Generate 128-bit sub-key from master key XOR with current 

state
• SubBytes: Each byte of state array (16 bytes) is replaced by another byte 

according a a single S-box (lookup table)
• ShiftRows – shift ith row by i bytes
• MixColumns – permute the bits in each column
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Substitution Permutation Networks

• S-box a public “substitution function” (e.g. S ∈ Perm8).

• S is not part of a secret key, but can be used with one 
f(x) = S x⨁𝑘𝑘

Input to round: x, k (k  is subkey for current round)
1. Key Mixing: Set x ≔ x⨁𝑘𝑘
2. Substitution: x ≔ S1 x1 ∥ S2 x2 ∥ ⋯ ∥ S8 x8

3. Bit Mixing Permutation: permute the bits of x to obtain the round 
output
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Note: there are only n! 
possible bit mixing 
permutations of [n] as 
opposed to 2n! 
Permutations of {0,1}n



Substitution Permutation Networks

• Proposition 6.3: Let F be a keyed 
function defined by a Substitution 
Permutation Network. Then for any 
keys/number of rounds Fk is a 
permutation.

• Why? Composing permutations f,g
results in another permutation 
h(x)=g(f(x)).

97



Advanced Encryption Standard

• Block Size: 128 bits
• Key Size: 128, 192 or 256

• Essentially a Substitution Permutation Network
• AddRoundKey: Generate 128-bit sub-key from master key, XOR 

with current state array
• SubBytes: Each byte of state array (16 bytes) is replaced by 

another byte according a single S-box (lookup table)
• ShiftRows
• MixColumns
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Permutation

Key Mixing

Substitution



11110000

01100010 …

00110000 …

11111111 …

99

State

00001111

10100011 …

11001100 …

01111111 …

Round Key (16 Bytes)

AddRoundKey:

⨁

11111111

11000001 …

11111100 …

10000000 …

=



100

State

11111111

11000001 …

11111100 …

10000000 …

S(11111111)

S(11000001) S(…)

S(11111100) S(…)

S(10000000) S(…)

SubBytes (Apply S-box)
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State

S(11111111)

S(11000001) S(…)

S(11111100) S(…)

S(10000000) S(…)

Shift Rows

S(11111111)

S(11000001) S(…)

S(…) S(11111100)

S(…) S(10000000)
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State

Mix Columns

Invertible (linear) transformation. 

Key property: if inputs differ in b>0 bytes then output differs in 5-b bytes (minimum)

S(11111111)

S(11000001) S(…)

S(…) S(11111100)

S(…) S(10000000)



AES

• We just described one round of the SPN

• AES uses 
• 10 rounds (with 128 bit key)
• 12 rounds (with 192 bit key)
• 14 rounds (with 256 bit key)
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Announcements

• Homework 2 Solutions Posted (See Piazza).
• Please read through carefully and make sure you understand the solutions to 

each problem.
• Grading in progress

• No Class on Tuesday (October Break)

• Look for Practice Midterm Next Week
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Recap

• 2DES, Meet in the Middle Attack
• 3DES
• Stream Ciphers

• Breaking Linear Feedback Shift Registers
• Trivium

• AES
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AES Attacks?

• Side channel attacks affect a few specific implementations
• But, this is not a weakness of AES itself
• Timing attack on OpenSSL’s implementation AES encryption (2005, Bernstein)

• (2009) Related-Key Attack on 11 round version of AES 
• Related Key Attack: Attacker convinces Alice to use two related (but unknown) keys
• recovers 256-bit key in time 270

• But AES is 14 round (with 256 bit key) so the attack doesn’t apply in practice
• (2009) Related Key Attack on 192-bit and 256 bit version of AES

• recovers 256-bit key in time 299.5.
• (2011) Key Recovery attack on AES-128 in time 2126.2.

• Improved to 2126.0 for AES-128, 2189.9 for AES-192 and 2254.3 for AES-256
• First public cipher approved by NSA for Top Secret information

• SECRET level (AES-128,AES-192 & AES-256), TOP SECRET level (AES-128,AES-192 & AES-256)
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NIST Recommendations

107Recommendations from Other Groups (Including NIST): www.keylength.com

Ok, to use for HMAC, Key 
Derivation and as PRG

Ok, as CRHF and in Digital 
Signatures

80 bits-security is no 
longer acceptable

http://www.keylength.com/


Linear Cryptanalysis

𝑦𝑦 = 𝐹𝐹𝐾𝐾 𝑥𝑥

Definition: Fixed set of input bits 𝑖𝑖1, … , 𝑖𝑖𝑖𝑖𝑖𝑖 and output bits 𝑖𝑖1′, … , 𝑖𝑖𝑜𝑜𝑜𝑜𝑜𝑜′
are said to have 𝜀𝜀-linear bias if the following holds

𝑃𝑃𝑃𝑃 𝑥𝑥𝑖𝑖1⨁𝑥𝑥𝑖𝑖2 …⨁𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖⨁𝑦𝑦𝑖𝑖1′⨁𝑦𝑦𝑖𝑖2′ …⨁𝑦𝑦𝑖𝑖𝑜𝑜𝑜𝑜𝑜𝑜′ = 𝜀𝜀

(randomness taken over the selection of input x and secret key K)
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Linear Cryptanalysis

Definition: Fixed set of input bits 𝑖𝑖1, … , 𝑖𝑖𝑖𝑖𝑖𝑖 and output bits 𝑖𝑖1′, … , 𝑖𝑖𝑜𝑜𝑜𝑜𝑜𝑜′ are said to 
have 𝜀𝜀-linear bias if the following holds

Pr 𝑥𝑥𝑖𝑖1⨁𝑥𝑥𝑖𝑖2 …⨁𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖⨁𝑦𝑦𝑖𝑖1′⨁𝑦𝑦𝑖𝑖2′ …⨁𝑦𝑦𝑖𝑖𝑜𝑜𝑜𝑜𝑜𝑜′ −
1
2

= 𝜀𝜀

(randomness taken over the selection of input x and secret key K, 𝑦𝑦 = 𝐹𝐹𝐾𝐾 𝑥𝑥 )

Matsui: DES can be broken with just 243 known plaintext/ciphertext pairs.
• Lots of examples needed! 
• But the examples do not need to be chosen plaintext/ciphertext pairs…
• One encrypted file can provide a large amounts of known plaintext
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Differential Cryptanalysis

Definition: We say that the differential △𝑥𝑥 ,△𝑦𝑦 occurs with 
probability 𝑝𝑝 in the keyed block cipher 𝐹𝐹 if

Pr 𝐹𝐹𝐾𝐾 𝑥𝑥1 ⨁𝐹𝐹𝐾𝐾 𝑥𝑥1⨁△𝑥𝑥 =△𝑦𝑦 ≥ 𝑝𝑝

Can Lead to Efficient (Round) Key Recovery Attacks
Exploiting Weakness Requires:  well over 1

𝑝𝑝
chosen plaintext-ciphertext 

pairs

Differentials in S-box can lead to (weaker) differentials in SPN.
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