
Cryptography
CS 555

Week 6:
• Commitment Schemes
• Ideal Cipher Model + Hash Functions from Block Ciphers
• Block Ciphers
• Feistel Networks
• DES, 3DES
Readings: Katz and Lindell Chapter 6-6.2.4

1Fall 2021

Recap

• Hash Functions
• Definition
• Merkle-Damgard
• Merkle Trees

• HMAC construction
• Generic Attacks on Hash Function

• Birthday Attack
• Small Space Birthday Attacks (cycle detection)

• Pre-Computation Attacks: Time/Space Tradeoffs
• Random Oracle Model

2

Commitment Schemes
• Alice wants to commit a message m to Bob

• And possibly reveal it later at a time of her choosing

• Properties
• Hiding: commitment reveals nothing about m to Bob
• Binding: it is infeasible for Alice to alter message

Syntax Commitment Scheme with Canonical Verification:
• 𝐜𝐜 ≔ 𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂(m; r) : takes as input a message m and random bits r and outputs a commitment 𝐜𝐜 to the

message m

• 𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐜𝐜𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂 c, m, r ≔ �1 𝑖𝑖𝑖𝑖
0

𝑐𝑐 == 𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂(m; r)
𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖𝑜𝑜𝑜𝑜

• Note: Not all commitment schemes use canonical verification, but this definition suffices for our purposes.
In this case there may be a third algorithm pp:=Setup(1n) which generates public parameters for the
commitment scheme.

3

Commitment Hiding (Hiding𝐴𝐴,𝐶𝐶𝐶𝐶𝐶𝐶(𝑛𝑛))

4

r = Gen(.)
Bit b

m0,m1

commit(r,mb)
b’

∀𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴 ∃𝜇𝜇 (negligible) s. t

Pr Hiding𝐴𝐴,𝐶𝐶𝐶𝐶𝐶𝐶 𝑛𝑛 = 1 ≤
1
2

+ 𝜇𝜇(𝑛𝑛)

Hiding𝐴𝐴,𝐶𝐶𝐶𝐶𝐶𝐶(𝑛𝑛)= �1 if 𝑏𝑏 = 𝑏𝑏′
0 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖𝑜𝑜𝑜𝑜

Commitment Binding (Binding𝐴𝐴,𝐶𝐶𝐶𝐶𝐶𝐶(𝑛𝑛))

5

r0,r1,m0,m1

∀𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴 ∃𝜇𝜇 (negligible) s. t
Pr Binding𝐴𝐴,𝐶𝐶𝐶𝐶𝐶𝐶 𝑛𝑛 = 1 ≤ 𝜇𝜇(𝑛𝑛)

Binding𝐴𝐴,𝐶𝐶𝐶𝐶𝐶𝐶(𝑛𝑛)= �1 if commit(r0,m0)= commit(r1,m1)
0 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖𝑜𝑜𝑜𝑜

Secure Commitment Scheme

• Definition: A secure commitment scheme is hiding and binding
• Hiding

• Binding

6

∀𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴 ∃𝜇𝜇 (negligible) s. t

Pr Hiding𝐴𝐴,𝐶𝐶𝐶𝐶𝐶𝐶 𝑛𝑛 = 1 ≤
1
2

+ 𝜇𝜇(𝑛𝑛)

∀𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴 ∃𝜇𝜇 (negligible) s. t
Pr Binding𝐴𝐴,𝐶𝐶𝐶𝐶𝐶𝐶 𝑛𝑛 = 1 ≤ 𝜇𝜇(𝑛𝑛)

Commitment Scheme in Random Oracle
Model
• 𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂(r, m) ≔ H 𝑜𝑜 ∥ 𝑚𝑚

• 𝐑𝐑𝐂𝐂𝐑𝐑𝐂𝐂𝐂𝐂𝐂𝐂(c) ≔ (r, m)
Theorem: In the random oracle model this is a secure commitment
scheme.

Binding:
commit(r0,m0)= commit(r1,m1) ↔ H(r0 ∥ m0)=H(r1 ∥ m1)

7

Commitment Hiding (Hiding𝐴𝐴,𝐶𝐶𝐶𝐶𝐶𝐶(𝑛𝑛))

8

r = Gen(.)
Bit b

m0,m1

H 𝑜𝑜 ∥ 𝑚𝑚𝑏𝑏
b’

∀𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴 𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖𝑛𝑛𝑚𝑚 𝑞𝑞 𝑛𝑛 𝑞𝑞𝑞𝑞𝑜𝑜𝑜𝑜𝑖𝑖𝑜𝑜𝑜𝑜 s. t

Pr Hiding𝐴𝐴,𝐶𝐶𝐶𝐶𝐶𝐶 𝑛𝑛 = 1 ≤
1
2

+
𝑞𝑞(𝑛𝑛)
2 𝑟𝑟

Hiding𝐴𝐴,𝐶𝐶𝐶𝐶𝐶𝐶(𝑛𝑛)= �1 𝑖𝑖𝑖𝑖𝑏𝑏 = 𝑏𝑏′
0 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖𝑜𝑜𝑜𝑜

Commitment Hiding (Hiding𝐴𝐴,𝐶𝐶𝐶𝐶𝐶𝐶(𝑛𝑛))

9

r = Gen(.)
Bit b

m0,m1

H 𝑜𝑜 ∥ 𝑚𝑚𝑏𝑏
b’

∀𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴 𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖𝑛𝑛𝑚𝑚 𝑞𝑞 𝑛𝑛 𝑞𝑞𝑞𝑞𝑜𝑜𝑜𝑜𝑖𝑖𝑜𝑜𝑜𝑜 s. t

Pr Hiding𝐴𝐴,𝐶𝐶𝐶𝐶𝐶𝐶 𝑛𝑛 = 1 ≤
1
2

+
𝑞𝑞(𝑛𝑛)
2 𝑟𝑟

Hiding𝐴𝐴,𝐶𝐶𝐶𝐶𝐶𝐶(𝑛𝑛)= �1 𝑖𝑖𝑖𝑖𝑏𝑏 = 𝑏𝑏′
0 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖𝑜𝑜𝑜𝑜

If attacker never makes query
of the form H 𝑜𝑜 ∥ 𝑥𝑥 then bit b

is information theoretically
hidden

Ideal Cipher Model

• For each n-bit string K we pick a truly random permutation FK

• Public Oracles
• 𝑂𝑂 𝐾𝐾, 𝑥𝑥 = 𝐹𝐹𝐾𝐾(𝑥𝑥)
• 𝑂𝑂−1 𝐾𝐾,𝑦𝑦 = 𝐹𝐹𝐾𝐾−1 (𝑥𝑥)

• Real World: Instantiate Ideal Cipher with a modern block cipher like AES

• Similar Pros/Cons to Random Oracle Model
• Pro: Powerful evidence of sound design
• Con: No blockcipher is an ideal cipher (even AES)

10

Hash Functions from Ideal Block Ciphers

• Davies-Meyer Construction from block cipher 𝐹𝐹𝐾𝐾

𝐻𝐻 𝐾𝐾, 𝑥𝑥 = 𝐹𝐹𝐾𝐾 𝑥𝑥 ⨁𝑥𝑥

Theorem: If 𝐹𝐹: 0,1 𝜆𝜆 × 0,1 𝜆𝜆 → 0,1 𝜆𝜆 is modeled as an ideal block cipher
then Davies-Meyer construction is a collision-resistant hash function
(Concrete: Need roughly q ≈ 2𝜆𝜆/2 queries to find collision)

• Ideal Cipher Model: For each key K model FK as a truly random
permutation which may only be accessed in black box manner.

• (Equivalent to Random Oracle Model)

11

Hash Functions from Block Ciphers

𝐻𝐻 𝐾𝐾, 𝑥𝑥 = 𝐹𝐹𝐾𝐾 𝑥𝑥 ⨁𝑥𝑥
Analysis: Suppose we have already made queries to the ideal cipher
• 𝐾𝐾1, 𝑥𝑥1 , … , 𝐾𝐾𝑞𝑞, 𝑥𝑥𝑞𝑞 to 𝐹𝐹𝐾𝐾 to get 𝐹𝐹𝐾𝐾1 𝑥𝑥1 , … ,𝐹𝐹𝐾𝐾𝑞𝑞 𝑥𝑥𝑞𝑞 and queries
• 𝐾𝐾𝑞𝑞+1,𝑦𝑦1 , … , 𝐾𝐾2𝑞𝑞,𝑦𝑦𝑞𝑞 to 𝐹𝐹𝐾𝐾−1 . to get 𝑥𝑥𝑞𝑞+1≔𝐹𝐹𝐾𝐾𝑞𝑞+1

−1 𝑦𝑦1 , … , 𝑥𝑥2𝑞𝑞≔𝐹𝐹𝐾𝐾2𝑞𝑞
−1 𝑦𝑦𝑞𝑞 .

𝐻𝐻 𝐾𝐾𝑖𝑖 , 𝑥𝑥𝑖𝑖 is known for all i ≤ 2𝑞𝑞 (but 𝐻𝐻 𝐾𝐾, 𝑥𝑥 is unknown at other points.
Now suppose we make a new query 𝐾𝐾, 𝑥𝑥 ∉ 𝐾𝐾1, 𝑥𝑥1 , … , 𝐾𝐾2𝑞𝑞 , 𝑥𝑥2𝑞𝑞 : 𝐹𝐹𝐾𝐾 𝑥𝑥 sampled uniformly from 2𝜆𝜆 − 2𝑞𝑞
possible choices.
 Collides with H 𝐾𝐾𝑖𝑖 , 𝑥𝑥𝑖𝑖 with probability at most 1

2𝜆𝜆−2𝑞𝑞

 Collides with H 𝐾𝐾𝑞𝑞+𝑖𝑖 , 𝑥𝑥𝑞𝑞+𝑖𝑖 with probability at most 1
2𝜆𝜆−2𝑞𝑞

 H 𝐾𝐾, 𝑥𝑥 Collides with prior query with probability at most 2q
2𝜆𝜆−2𝑞𝑞

12

Hash Functions from Block Ciphers

𝐻𝐻 𝐾𝐾, 𝑥𝑥 = 𝐹𝐹𝐾𝐾 𝑥𝑥 ⨁𝑥𝑥
Analysis:

Fact 1: Query q+1 to ideal cipher yields collision (with prior query) with
probability at most q

2𝜆𝜆−𝑞𝑞

Fact 2: The probability of finding a collision within q queries is at most
∑𝑖𝑖≤𝑞𝑞

i
2𝜆𝜆−𝑖𝑖

≤ q(q−1)/2
2𝜆𝜆−𝑞𝑞

13

A Broken Attempt

𝐻𝐻 𝐾𝐾1,𝐾𝐾2, 𝑥𝑥1, 𝑥𝑥2 = 𝐹𝐹𝐾𝐾1
𝑥𝑥1 ⨁𝐹𝐹𝐾𝐾2

𝑥𝑥2 ⨁𝐾𝐾1⨁𝐾𝐾2
Collision Attack: Pick arbitrary keys 𝐾𝐾0 ≠ 𝐾𝐾1
Step 1: Query x1 ≔ 𝐹𝐹𝐾𝐾0

−1 0𝑛𝑛 and x2 ≔ 𝐹𝐹𝐾𝐾0

−1 1𝑛𝑛
Step 2: Query w1 ≔ 𝐹𝐹𝐾𝐾1

−1 0𝑛𝑛 and w2 ≔ 𝐹𝐹𝐾𝐾1

−1 1𝑛𝑛

𝐻𝐻 𝐾𝐾0,𝐾𝐾0, 𝑥𝑥1, 𝑥𝑥2 = 𝐹𝐹𝐾𝐾0
𝑥𝑥1 ⨁𝐹𝐹𝐾𝐾0

𝑥𝑥2 ⨁𝐾𝐾0⨁𝐾𝐾0 = 0𝑛𝑛⨁1𝑛𝑛

= 𝐹𝐹𝐾𝐾1
𝑜𝑜1 ⨁𝐹𝐹𝐾𝐾1

𝑜𝑜2 = 𝐻𝐻 𝐾𝐾1,𝐾𝐾1, 𝑥𝑥1, 𝑥𝑥2

Exploits the fact that we can query inverse oracle 𝐹𝐹𝐾𝐾−1

14

CS 555: Week 6: Topic 1
Block Ciphers

16

An Existential Crisis?

• We have used primitives like PRGs, PRFs to build secure MACs, CCA-
Secure Encryption, Authenticated Encryption etc…

• Do such primitives exist in practice?

• How do we build them?

17

Recap

• Hash Functions/PRGs/PRFs, CCA-Secure Encryption, MACs

Goals for This Week:
• Practical Constructions of Symmetric Key Primitives

Today’s Goals: Block Ciphers
• Sbox
• Confusion Diffusion Paradigm
• Feistel Networks

18

Pseudorandom Permutation

A keyed function F: 0,1 𝑛𝑛 × 0,1 𝑛𝑛 → 0,1 𝑛𝑛, which is
invertible and “looks random” without the secret key k.

• Similar to a PRF, but
• Computing Fk(x) and 𝐹𝐹𝑘𝑘−1 𝑥𝑥 is efficient (polynomial-time)

Definition 3.28: A keyed function F: 0,1 𝑛𝑛 × 0,1 𝑛𝑛 → 0,1 𝑛𝑛 is a strong
pseudorandom permutation if for all PPT distinguishers D there is a
negligible function 𝜇𝜇 s.t.

𝑃𝑃𝑜𝑜 𝐷𝐷𝐹𝐹𝑘𝑘 . ,𝐹𝐹𝑘𝑘
−1 . 1𝑛𝑛 − 𝑃𝑃𝑜𝑜 𝐷𝐷𝑓𝑓 . ,𝑓𝑓−1 . 1𝑛𝑛 ≤ 𝜇𝜇 𝑛𝑛

19

Pseudorandom Permutation

Definition 3.28: A keyed function F: 0,1 𝑛𝑛 × 0,1 𝑛𝑛 → 0,1 𝑛𝑛 is a strong
pseudorandom permutation if for all PPT distinguishers D there is a
negligible function 𝜇𝜇 s.t.

𝑃𝑃𝑜𝑜 𝐷𝐷𝐹𝐹𝑘𝑘 . ,𝐹𝐹𝑘𝑘
−1 . 1𝑛𝑛 − 𝑃𝑃𝑜𝑜 𝐷𝐷𝑓𝑓 . ,𝑓𝑓−1 . 1𝑛𝑛 ≤ 𝜇𝜇 𝑛𝑛

Notes:
• the first probability is taken over the uniform choice of 𝑚𝑚 ∈ 0,1 𝑛𝑛 as well

as the randomness of D.
• the second probability is taken over uniform choice of f ∈Permnas well as

the randomness of D.
• D is never given the secret k
• However, D is given oracle access to keyed permutation and inverse

20

How many permutations?

• |Permn|=?

• Answer: 2n!

• How many bits to store f ∈Permn?

• Answer:

log 2n! = �
𝑖𝑖=1

2n

log i

≥ �
𝑖𝑖=2𝑛𝑛−1

2𝑛𝑛

𝑛𝑛 − 1 ≥ (𝑛𝑛 − 1) × 2𝑛𝑛−1

21

How many bits to store permutations?

log 2n! = �
𝑖𝑖=1

2n

log i

≥ �
𝑖𝑖=2𝑛𝑛−1

2𝑛𝑛

𝑛𝑛 − 1 ≥ (𝑛𝑛 − 1) × 2𝑛𝑛−1

Example: Storing f ∈Perm50 requires over 6.8 petabytes (1015)
Example 2: Storing f ∈Perm100 requires about 12 yottabytes (1024)
Example 3: Storing f ∈Perm8 requires about 211 bytes

22

Attempt 1: Pseudorandom Permutation

• Select 16 random permutations on 8-bits f1,…,f16 ∈ Perm8.

• Secret key: k = f1,…,f16 (about 3 KB)
• Input: x=x1,…,x16 (16 bytes)

Fk 𝑥𝑥 = f1 x1 ∥ f2 x2 ∥ ⋯ ∥ f16 x16

• Any concerns?

23

Attempt 1: Pseudorandom Permutation

• Select 16 random permutations on 8-bits f1,…,f16 ∈ Perm8.

Fk 𝑥𝑥 = f1 x1 ∥ f2 x2 ∥ ⋯ ∥ f16 x16

• Any concerns?
Fk x1 ∥ x2 ∥ ⋯ ∥ x16 = f1 x1 ∥ f2 x2 ∥ ⋯ ∥ f16 x16

Fk 0 ∥ x2 ∥ ⋯ ∥ x16 = f1 0 ∥ f2 x2 ∥ ⋯ ∥ f16 x16

• Changing a bit of input produces insubstantial changes in the output.
• A truly random permutation F ∈ Perm128 would not behave this way!

24

Pseudorandom Permutation Requirements

• Consider a truly random permutation F ∈ Perm128

• Let inputs x and x’ differ on a single bit

• We expect outputs F(x) and F(x’) to differ on approximately half of
their bits

• F(x) and F(x’) should be (essentially) independent.

• A pseudorandom permutation must exhibit the same behavior!

25

Confusion-Diffusion Paradigm

• Our previous construction was not pseudorandom, but applying the
permutations does accomplish something

• They introduce confusion into F
• Attacker cannot invert (after seeing a few outputs)

• Approach:
• Confuse: Apply random permutations f1,…, to each block of input to obtain
𝑦𝑦1,…,

• Diffuse: Mix the bytes 𝑦𝑦1,…, to obtain byes 𝑧𝑧1,…,
• Confuse: Apply random permutations f1,…, with inputs 𝑧𝑧1,…,
• Repeat as necessary

26

Attempt 1: Pseudorandom Permutation

• Select 16 random permutations on 8-bits f1,…,f16 ∈ Perm8.

Fk 𝑥𝑥 = f1 x1 ∥ f2 x2 ∥ ⋯ ∥ f16 x16

• Any concerns?
Fk x1 ∥ x2 ∥ ⋯ ∥ x16 = f1 x1 ∥ f2 x2 ∥ ⋯ ∥ f16 x16

Fk 0 ∥ x2 ∥ ⋯ ∥ x16 = f1 0 ∥ f2 x2 ∥ ⋯ ∥ f16 x16

• Changing a bit of input produces insubstantial changes in the output.
• A truly random permutation F ∈ Perm128 would not behave this way!

27

Confusion-Diffusion Paradigm

Example:
• Select 8 random permutations on 8-bits f1,…,f16 ∈ Perm8

• Select 8 extra random permutations on 8-bits g1,…,g8 ∈ Perm8

Fk x1 ∥ x2 ∥ ⋯ ∥ x8 =
1. y1 ∥ ⋯ ∥ y8:=f1 x1 ∥ f2 x2 ∥ ⋯ ∥ f8 x8

2. z1 ∥ ⋯ ∥ z8:=Mix y1 ∥ ⋯ ∥ y8

3. Output: f1 z1 ∥ f2 z2 ∥ ⋯ ∥ f8 z8

28

Example Mixing Function

Mix y1 ∥ ⋯ ∥ y8 =
1. For i=1 to 8
2. zi:=y1[i] ∥ ⋯ ∥ y8[i]
3. End For
4. Output: g1 z1 ∥ g2 z2 ∥ ⋯ ∥ g8 z8

29

y1[1] ⋯ y1[8]
⋮ ⋱ ⋮

y8[1] ⋯ y8[8]

y1 =

z1

y8 =

z8

Are We Done?

Fk x1 ∥ x2 ∥ ⋯ ∥ x8 =
1. y1 ∥ ⋯ ∥ y8:=f1 x1 ∥ f2 x2 ∥ ⋯ ∥ f8 x8
2. z1 ∥ ⋯ ∥ z8:=Mix y1 ∥ ⋯ ∥ y8
3. Output: f1 z1 ∥ f2 z2 ∥ ⋯ ∥ f8 z8

Suppose f1 x1 = 00110101 = y1 and f1 xʹ1 = 00110100 = y′1

Fk xʹ1 ∥ x2 ∥ ⋯ ∥ x8 =
1. y′1 ∥ ⋯ ∥ y8:=f1 xʹ1 ∥ f2 x2 ∥ ⋯ ∥ f8 x8
2. z1 ∥ ⋯ ∥ zʹ8:=Mix y′1 ∥ ⋯ ∥ y8
3. Output: f1 z1 ∥ f2 z2 ∥ ⋯ ∥ f8 zʹ8

30

y1[1] ⋯ y1[8]
⋮ ⋱ ⋮

y8[1] ⋯ y8[8]

y1 =

z1

y8 =

z8

Highly unlikely that a truly random
permutation would behave this way!

Substitution Permutation Networks

• S-box a public “substitution function” (e.g.S ∈ Perm8).

• S is not part of a secret key, but can be used with one
f(x) = S x⨁𝑚𝑚

• Input to round: x, k (k is subkey for current round)
• Key Mixing: Set x ≔ x⨁𝑚𝑚
• Substitution: x ≔ S1 x1 ∥ S2 x2 ∥ ⋯ ∥ S8 x8

• Bit Mixing Permutation: permute the bits of x to obtain the round output

31

Note: there are only n!
possible bit mixing
permutations of [n] as
opposed to 2n!
Permutations of {0,1}n

Substitution Permutation Networks

• Proposition 6.3: Let F be a keyed
function defined by a Substitution
Permutation Network. Then for any
keys/number of rounds Fk is a
permutation.

• Why? Composing permutations f,g
results in another permutation
h(x)=g(f(x)).

32

Remarks

• Want to achieve “avalanche effect” (one bit change should “affect”
every output bit)

• Should a S-box be a random byte permutation?

• Better to ensure that S(x) differs from x on at least 2-bits (for all x)
• Helps to maximize “avalanche effect”

• Mixing Permutation should ensure that output bits of any given S-box
are used as input to multiple S-boxes in the next round

33

Remarks

• How many rounds?

• Informal Argument: If we ensure that S(x) differs from x on at least 2-bits
(for all bytes x) then every input bit affects

• 2 bits of round 1 output
• 4 bits of round 2 output
• 8 bits of round 3 output
• ….
• 128 bits of round 4 output

• Need at least 7 rounds (minimum) to ensure that every input bit affects
every output bit

34

Attacking Lower Round SPNs

• Trivial Case: One full round with no final key mixing step
• Key Mixing: Set x ≔ x⨁𝑚𝑚
• Substitution: y ≔ S1 x1 ∥ S2 x2 ∥ ⋯ ∥ S8 x8

• Bit Mixing Permutation: P permute the bits of y to obtain the round
output

• Given input/output (x,Fk(x))
• Permutations P and Si are public and can be run in reverse
• P-1(Fk(x)) = S1 x1⨁𝑚𝑚1 ∥ S2 x2⨁𝑚𝑚2 ∥ ⋯ ∥ S8 x8⨁𝑚𝑚8
• xi ⨂𝑚𝑚i =Si

-1 Si xi⨁𝑚𝑚i
• Attacker knows xi and can thus obtain ki

35

Attacking Lower Round SPNs

• Easy Case: One full round with final key mixing step
• Key Mixing: Set x ≔ x⨂𝑚𝑚1

• Substitution: y ≔ S1 x1 ∥ S2 x2 ∥ ⋯ ∥ S8 x8

• Bit Mixing Permutation: z1 ∥ ⋯ ∥ z8 =P(y)
• Final Key Mixing: Output z⨁𝑚𝑚2

• Given input/output (x,Fk(x))
• Permutations P and Si are public and can be run in reverse once k2 is known
• Immediately yields attack in 264 time (k1,k2 are each 64 bit keys) which

narrows down key-space to 264 but we can do much better!

36

Attacking Lower Round SPNs

• Easy Case: One full round with final key mixing step
• Key Mixing: Set x ≔ x⨁𝑚𝑚1
• Substitution: y ≔ S1 x1 ∥ S2 x2 ∥ ⋯ ∥ S8 x8
• Bit Mixing Permutation: z1 ∥ ⋯ ∥ z8 =P(y)
• Final Key Mixing: Output z⨁𝑚𝑚2

• Given input/output (x,Fk(x))
• Permutations P and Si are public and can be run in reverse once k2 is known
• Guessing 8 specific bits of k2 (which bits depends on P) we can obtain one value yi =

Si xi ⨂𝑚𝑚i
• Attacker knows xi and can thus obtain ki by inverting Si and using XOR
• Narrows down key-space to 264 , but in time 8x28

37

Attacking Lower Round SPNs

• Easy Case: One full round with final key mixing step
• Key Mixing: Set x ≔ x⨁𝑚𝑚1

• Substitution: y ≔ S1 x1 ∥ S2 x2 ∥ ⋯ ∥ S8 x8

• Bit Mixing Permutation: z1 ∥ ⋯ ∥ z8 =P(y)
• Final Key Mixing: Output z⨁𝑚𝑚2

• Given several input/output pairs (xj,Fk(xj))
• Can quickly recover k1 and k2

38

Attacking Lower Round SPNs

• Harder Case: Two round SPN

• Exercise

• Ideal Cipher Model: For each key K model FK as a truly random
permutation which may only be accessed in black box manner.

• Attacker may submit query (K,x,+) and oracle responds with 𝐹𝐹𝐾𝐾 𝑥𝑥 or
• Stronger than assuming that F is a Pseudorandom Permutation
• (Equivalent to Random Oracle Model)

39

Feistel Networks

• Alternative to Substitution Permutation Networks

• Advantage: underlying functions need not be invertible, but the
result is still a permutation

40

• Ri-1 = Li

• Li-1:=Ri⨁𝐹𝐹𝑘𝑘𝑖𝑖(Ri-1)

Proposition: the function is invertible.

Digital Encryption Standard (DES): 16-
round Feistel Network.

41

CS 555: Week 6: Topic 2
DES, 3DES

42

Feistel Networks

•Alternative to Substitution Permutation Networks

•Advantage: underlying functions need not be
invertible, but the result is still a permutation

43

• Li+1 = Ri

• Ri+1≔Li⨁𝐹𝐹𝑘𝑘𝑖𝑖(Ri)

Proposition: the function is invertible.

44

Data Encryption Standard

• Developed in 1970s by IBM (with help from NSA)

• Adopted in 1977 as Federal Information Processing Standard (US)

• Data Encryption Standard (DES): 16-round Feistel Network.

• Key Length: 56 bits
• Vulnerable to brute-force attacks in modern times
• 1.5 hours at 14 trillion DES evals/second e.g., Antminer S9 runs at 14 TH/s

45

DES Round

46

Generating the Round Keys

• Initial Key: 64 bits
• Effective Key Length: 56 bits
• Round Key Length: 48 bits (each)

• 16 round keys derived from initial key

47

DES Mangle Function

• Expand E: 32-bit input 48-bit
output (duplicates 16 bits)

• S-boxes: S1,…,S8
• Input: 6-bits
• Output: 4 bits
• Not a permutation!

• 4-to-1 function
• Exactly four inputs mapped to each

possible output

48

Mangle Function

49

32 bit input

48-bit sub key48 bit output of expand

XOR block before
Applying S-Boxes

Each S-box
outputs 4 bits

S-Box Representation as Table

00 01 10 11
0000
0001
0010
0011
0100
0101
0110 S(x)=1101

…. …. …. …. ….

1111

50
x =101101 S(x) = Table[0110,11]

4 columns (2 bits)

16
 c

ol
um

ns
 (4

 b
its

)

S-Box Representation

00 01 10 11
0000
0001
0010
0011
0100
0101
0110 S(x)=1101

…. …. …. …. ….

1111

51x =101101 S(x) = T[0110,11]

4 columns (2 bits)

16
 c

ol
um

ns
 (4

 b
its

)
Each column is permutation

Pseudorandom Permutation Requirements

• Consider a truly random permutation F ∈ Perm128

• Let inputs x and x’ differ on a single bit

• We expect outputs F(x) and F(x’) to differ on approximately half of
their bits

• F(x) and F(x’) should be (essentially) independent.

• A pseudorandom permutation must exhibit the same behavior!
• Requirement: DES Avalanche Effect!

52

DES Avalanche Effect

• Permutation the end of the mangle function helps to
mix bits

• Special S-box property #1

Let x and x’ differ on one bit then Si(x) differs from Si(x’)
on two bits.

53

Avalanche Effect Example

• Consider two 64 bit inputs
• (Ln,Rn) and (Ln’,R’n=Rn)
• Ln and Ln’ differ on one bit

• This is worst case example
• Ln+1 = Ln+1’=Rn
• But now R’n+1 and Rn+1 differ on one

bit
• Even if we are unlucky E(R’n+1) and

E(Rn+1) differ on 1 bit
• Rn+2 and R’n+2 differ on two bits
• Ln+2 = R’n+1 and Ln+2’ = R’n+1 differ

in one bit

54

Avalanche Effect Example
• Rn+2 and R’n+2 differ on two bits
• Ln+2 = Rn+1 and Ln+2’ = R’n+1 differ in

one bit

Rn+3 and R’n+3 differ on four bits since
we have different inputs to two of the
S-boxes
Ln+3 = R’n+2 and Ln+2’ = R’n+2 now differ

on two bits
• Seven rounds we expect all 32 bits in

right half to be “affected” by input
change

…
DES has sixteen rounds

55

Attack on One-Round DES

• Given input output pair (x,y)
• y=(L1,R1)
• X=(L0,R0)

• Note: R0=L1

• Note: R1=L0 ⨁𝑖𝑖1 R0 where 𝑖𝑖1 is the Mangling Function with key k1

Conclusion:
𝑖𝑖1 R0 =L0⨁R1

56

Attack on One-Round DES

57

R0

L0⨁R1

Four possible inputs

Trivial to Recover

Attack on Two-Round DES

• Output y =(L2,R2)
• Note: R1=L0⨁𝑖𝑖1 R0

• Also,R1= L2
• Thus, 𝑖𝑖1 R0 =L2⨁L0

• So we can still attack the first round key k1 as before as R0 and L2⨁L0
are known

• Note:R2=L1⨁𝑖𝑖2 R1
• Also,L1=R0 and R1= L2

• Thus, 𝑖𝑖2 L2 =R2⨁R0

• So we can attack the second round key k2 as before as L2 and R2⨁R0
are known

58

L0 R0

K1

F⨁

L1 R1

K2

F⨁

R2L2

𝑖𝑖1 R0 =L2⨁L0

𝑖𝑖2 R0 =L2⨁L0

Attack on Three-Round DES

𝑖𝑖1 R0 ⨁𝑖𝑖3 R2 = L0⨁L2 ⨁ L2⨁R3

= L0⨁R3

We know all of the values L0,R0, R3 and L3 = R2.

Leads to attack in time ≈2n/2

(See details in textbook)

Remember that DES is 16 rounds

59

DES Security

• Best Known attack is brute-force 256

• Except under unrealistic conditions (e.g., 243 known plaintexts)
• Brute force is not too difficult on modern hardware

• Attack can be accelerated further after precomputation
• Output is a few terabytes
• Subsequently keys are cracked in 238 DES evaluations (minutes)

• Precomputation costs amortize over number of DES keys cracked

• Even in 1970 there were objections to the short key length for DES
60

Double DES

• Let Fk(x) denote the DES block cipher

• A new block cipher F’ with a key 𝑚𝑚 = 𝑚𝑚1,𝑚𝑚2 of length 2n can be
defined by

𝐹𝐹𝑘𝑘′ 𝑥𝑥 = 𝐹𝐹𝑘𝑘2 𝐹𝐹𝑘𝑘1 𝑥𝑥

• Can you think of an attack better than brute-force?

61

Meet in the Middle Attack

𝐹𝐹𝑘𝑘′ 𝑥𝑥 = 𝐹𝐹𝑘𝑘2 𝐹𝐹𝑘𝑘1 𝑥𝑥

Goal: Given (x, c = 𝐹𝐹𝑘𝑘′ 𝑥𝑥) try to find secret key k in time and space O 𝑛𝑛2𝑛𝑛 .

• Solution?
• Key Observation

𝐹𝐹𝑘𝑘1 𝑥𝑥 = 𝐹𝐹𝑘𝑘2
−1 c

• Compute 𝐹𝐹𝐾𝐾−1 c and 𝐹𝐹𝐾𝐾 𝑥𝑥 for each potential n-bit key K and store 𝑲𝑲, 𝐹𝐹𝐾𝐾−1 c and
𝑲𝑲, 𝐹𝐹𝐾𝐾 x

• Sort each list of pairs (by 𝐹𝐹𝐾𝐾−1 c or 𝐹𝐹𝐾𝐾 x) to find K1 and K2.

62

Triple DES Variant 1

• Let Fk(x) denote the DES block cipher

• A new block cipher F’ with a key 𝑚𝑚 = 𝑚𝑚1,𝑚𝑚2, 𝑚𝑚3 of length 2n can be
defined by

𝐹𝐹𝑘𝑘′ 𝑥𝑥 = 𝐹𝐹𝑘𝑘3 𝐹𝐹𝑘𝑘2
−1 𝐹𝐹𝑘𝑘1 𝑥𝑥

• Meet-in-the-Middle Attack Requires time Ω 22𝑛𝑛 and space Ω 22𝑛𝑛

63

Triple DES Variant 1

• Let Fk(x) denote the DES block cipher

• A new block cipher F’ with a key 𝑚𝑚 = 𝑚𝑚1,𝑚𝑚2, 𝑚𝑚3 of length 2n can be
defined by

𝐹𝐹𝑘𝑘′ 𝑥𝑥 = 𝐹𝐹𝑘𝑘3 𝐹𝐹𝑘𝑘2
−1 𝐹𝐹𝑘𝑘1 𝑥𝑥

• Meet-in-the-Middle Attack Requires time Ω 22𝑛𝑛 and space Ω 22𝑛𝑛

64

Allows backward compatibility
with DES by setting k1=k2=k3

Triple DES Variant 2

• Let Fk(x) denote the DES block cipher

• A new block cipher F’ with a key 𝑚𝑚 = 𝑚𝑚1, 𝑚𝑚2 of length 2n can be defined
by

𝐹𝐹𝑘𝑘′ 𝑥𝑥 = 𝐹𝐹𝑘𝑘1 𝐹𝐹𝑘𝑘2
−1 𝐹𝐹𝑘𝑘1 𝑥𝑥

• Meet-in-the-Middle Attack still requires time Ω 22𝑛𝑛 and space Ω 22𝑛𝑛
• Brute force is more efficient: time is still Ω 22𝑛𝑛 , but space usage is constant

• Key length is still just 112 bits (NIST recommends 128+ bits)

65

Just two keys!

Triple DES Variant 1

𝐹𝐹𝑘𝑘′ 𝑥𝑥 = 𝐹𝐹𝑘𝑘3 𝐹𝐹𝑘𝑘2
−1 𝐹𝐹𝑘𝑘1 𝑥𝑥

• Standardized in 1999

• Still widely used, but it is relatively slow (three block cipher
operations)

• Current gold standard: AES

66

CS 555:Week 6: Topic 2
Stream Ciphers

68

∀ Pr 𝐺𝐺𝑞𝑞𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑏𝑏′ = 𝑏𝑏 ≤
1
2

+ 𝜇𝜇(𝑛𝑛)

PRG Security as a Game

69

Random bit b
If b=1
r ← 0,1 𝑛𝑛

R = G(r)
Else
𝑅𝑅 ← 0,1 ℓ 𝑛𝑛

b’

𝑝𝑝𝑝𝑝𝑜𝑜 𝑚𝑚𝑜𝑜𝑜𝑜𝑚𝑚𝑐𝑐𝑚𝑚𝑜𝑜𝑜𝑜 𝑛𝑛𝑜𝑜𝑚𝑚𝑛𝑛𝑖𝑖𝑚𝑚𝑖𝑖𝑏𝑏𝑛𝑛𝑜𝑜 𝑖𝑖𝑞𝑞𝑛𝑛𝑐𝑐𝑜𝑜𝑖𝑖𝑜𝑜𝑛𝑛

R

Stream Cipher vs PRG

• PRG pseudorandom bits output all at once

• Stream Cipher
• Pseudorandom bits can be output as a stream
• RC4, RC5 (Ron’s Code)

st0 := Init(s)
For i=1 to ℓ:

(yi,sti):=GetBits(sti-1)
Output: y1,…,yℓ

70

Linear Feedback Shift Register

71

Linear Feedback Shift Register

• State at time t: 𝑜𝑜𝑛𝑛−1𝑡𝑡 , … , 𝑜𝑜1𝑡𝑡 , 𝑜𝑜0𝑡𝑡 (n registers)
• Feedback Coefficients: 𝐒𝐒 ⊆ 0, … ,𝑛𝑛

72

Linear Feedback Shift Register

• State at time t: 𝑜𝑜𝑛𝑛−1𝑡𝑡 , … , 𝑜𝑜1𝑡𝑡 , 𝑜𝑜0𝑡𝑡 (n registers)
• Feedback Coefficients: 𝐒𝐒 ⊆ 0, … ,𝑛𝑛 − 1
• State at time t+1:⨁𝑖𝑖∈𝑆𝑆𝑜𝑜𝑖𝑖𝑡𝑡, 𝑜𝑜𝑛𝑛−1𝑡𝑡 , … , 𝑜𝑜1𝑡𝑡 ,

𝑜𝑜𝑛𝑛−1𝑡𝑡+1= ⨁𝑖𝑖∈𝑆𝑆𝑜𝑜𝑖𝑖𝑡𝑡, and 𝑜𝑜𝑖𝑖𝑡𝑡+1 = 𝑜𝑜𝑖𝑖+1𝑡𝑡 for i < n − 1

Output at time t+1: 𝒚𝒚𝒕𝒕+𝟏𝟏 = 𝒔𝒔𝟎𝟎𝒕𝒕

73

Linear Feedback Shift Register

• Observation 1: First n bits of output reveal initial state

𝑦𝑦1, … ,𝑦𝑦𝑛𝑛 = 𝑜𝑜00, 𝑜𝑜10 , … , 𝑜𝑜𝑛𝑛−10

• Observation 2: Next n bits allow us to solve for n unknowns

𝑥𝑥𝑖𝑖 = �1 if 𝑖𝑖 ∈ 𝑆𝑆
0 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖𝑜𝑜𝑜𝑜

𝑦𝑦𝑛𝑛+1 = 𝑦𝑦𝑛𝑛𝑥𝑥𝑛𝑛−1 + ⋯+ 𝑦𝑦1𝑥𝑥0

74

Linear Feedback Shift Register

• Observation 1: First n bits of output reveal initial state

𝑦𝑦1, … ,𝑦𝑦𝑛𝑛 = 𝑜𝑜00, 𝑜𝑜10 , … , 𝑜𝑜𝑛𝑛−10

• Observation 2: Next n bits allow us to solve for n unknowns

𝑥𝑥𝑖𝑖 = �1 if 𝑖𝑖 ∈ 𝑆𝑆
0 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖𝑜𝑜𝑜𝑜

𝑦𝑦𝑛𝑛+1 = 𝑦𝑦𝑛𝑛𝑥𝑥𝑛𝑛−1 + ⋯+ 𝑦𝑦1𝑥𝑥0 mod 2

75

Linear Feedback Shift Register

• Observation 2: Next n bits allow us to solve for n unknowns

𝑥𝑥𝑖𝑖 = �1 if 𝑖𝑖 ∈ 𝑆𝑆
0 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖𝑜𝑜𝑜𝑜

𝑦𝑦𝑛𝑛+1 = 𝑦𝑦𝑛𝑛𝑥𝑥𝑛𝑛−1 + ⋯+ 𝑦𝑦1𝑥𝑥0 mod 2

𝑦𝑦2𝑛𝑛 = 𝑦𝑦2𝑛𝑛−1𝑥𝑥𝑛𝑛−1 + ⋯+ 𝑦𝑦𝑛𝑛𝑥𝑥0 mod 2

76

…

Removing Linearity

• Attacks exploited linear relationship between state and output bits

• Nonlinear Feedback:
𝑜𝑜𝑛𝑛−1𝑡𝑡+1= ⨁𝑖𝑖∈𝑆𝑆𝑜𝑜𝑖𝑖𝑡𝑡,

𝑜𝑜𝑛𝑛−1𝑡𝑡+1= 𝑚𝑚 𝑜𝑜0𝑡𝑡 , 𝑜𝑜1𝑡𝑡 , … , 𝑜𝑜𝑛𝑛−1𝑡𝑡

77

Non linear function

Removing Linearity

• Attacks exploited linear relationship between state and output bits

• Nonlinear Combination:
𝒚𝒚𝒕𝒕+𝟏𝟏 = 𝒔𝒔𝟎𝟎𝒕𝒕

𝑦𝑦𝑡𝑡+1= 𝑖𝑖 𝑜𝑜0𝑡𝑡 , 𝑜𝑜1𝑡𝑡 , … , 𝑜𝑜𝑛𝑛−1𝑡𝑡

• Important: f must be balanced!

Pr 𝑖𝑖 𝑥𝑥 = 1 ≈
1
2

78

Non linear function

Trivium (2008)

• Won the eSTREAM competition
• Currently, no known attacks are better than brute force
• Couples Output from three nonlinear Feedback Shift Registers
• First 4*288 “output bits” are discared

79

Tr
iv

iu
m

(2
00

8)

80

Tr
iv

iu
m

(2
00

8)

81

Tr
iv

iu
m

(2
00

8)

82

Combination Generator

• Attacks exploited linear relationship between state and output bits

• Nonlinear Combination:
𝒚𝒚𝒕𝒕+𝟏𝟏 = 𝒔𝒔𝟎𝟎𝒕𝒕

𝑦𝑦𝑡𝑡+1= 𝑖𝑖 𝑜𝑜0𝑡𝑡 , 𝑜𝑜1𝑡𝑡 , … , 𝑜𝑜𝑛𝑛−1𝑡𝑡

• Important: f must be balanced!

Pr 𝑖𝑖 𝑥𝑥 = 1 ≈
1
2

83

Non linear function

Feedback Shift Registers

• Good performance in hardware

• Performance is less ideal for software

84

CS555 85

Stream Ciphers
• RC4

• A proprietary cipher owned by RSA, designed by Ron Rivest in 1987 (public 1994)
• Widely used (web SSL/TLS, wireless WEP).
• Distinguishable from random stream

• Second byte of output is 0 with probability ≈ 2
256

(vs. 1
256

for a truly random stream)

• Newer Versions: RC5 and RC6
• Salsa20
• Rijndael selected by NIST as AES in 2000

92

RC4 Attacks
• Wired Equivalent Privacy (WEP) encryption used RC4 with an initialization

vector

• Description of RC4 doesn’t involve initialization vector…
• But WEP imposes an initialization vector
• K=IV || K’
• Since IV is transmitted attacker may have first few bytes of the secret key K!
• Giving the attacker partial knowledge of K often allows recovery of the entire key K’

over time!

CS555

Hash Functions from Block Ciphers

• Davies-Meyer Construction from block cipher 𝐹𝐹𝐾𝐾

𝐻𝐻 𝐾𝐾, 𝑥𝑥 = 𝐹𝐹𝐾𝐾 𝑥𝑥 ⨁𝑥𝑥

Theorem: If 𝐹𝐹: 0,1 𝜆𝜆 × 0,1 𝜆𝜆 → 0,1 𝜆𝜆 is modeled as an ideal block cipher
then Davies-Meyer construction is a collision-resistant hash function
(Concrete: Need roughly q ≈ 2𝜆𝜆/2 queries to find collision)

Ideal Cipher Model: For each key K model FK as a truly random permutation
which may only be accessed in black box manner.

• (Equivalent to Random Oracle Model)

93

Advanced Encryption Standard (AES)

• (1997) US National Institute of Standards and Technology (NIST) announces
competition for new block cipher to replace DES

• Fifteen algorithms were submitted from all over the world
• Analyzed by NIST

• Contestants given a chance to break competitors schemes

• October, 2000 NIST announces a winner Rijndael
• Vincent Rijmen and Joan Daemen
• No serious vulnerabilities found in four other finalists
• Rijndael was selected for efficiency, hardware performance, flexibility etc…

94

Advanced Encryption Standard

• Block Size: 128 bits (viewed as 4x4 byte array)
• Key Size: 128, 192 or 256

• Essentially a Substitution Permutation Network
• AddRoundKey: Generate 128-bit sub-key from master key XOR with current

state
• SubBytes: Each byte of state array (16 bytes) is replaced by another byte

according a a single S-box (lookup table)
• ShiftRows – shift ith row by i bytes
• MixColumns – permute the bits in each column

95

Substitution Permutation Networks

• S-box a public “substitution function” (e.g. S ∈ Perm8).

• S is not part of a secret key, but can be used with one
f(x) = S x⨁𝑚𝑚

Input to round: x, k (k is subkey for current round)
1. Key Mixing: Set x ≔ x⨁𝑚𝑚
2. Substitution: x ≔ S1 x1 ∥ S2 x2 ∥ ⋯ ∥ S8 x8

3. Bit Mixing Permutation: permute the bits of x to obtain the round
output

96

Note: there are only n!
possible bit mixing
permutations of [n] as
opposed to 2n!
Permutations of {0,1}n

Substitution Permutation Networks

• Proposition 6.3: Let F be a keyed
function defined by a Substitution
Permutation Network. Then for any
keys/number of rounds Fk is a
permutation.

• Why? Composing permutations f,g
results in another permutation
h(x)=g(f(x)).

97

Advanced Encryption Standard

• Block Size: 128 bits
• Key Size: 128, 192 or 256

• Essentially a Substitution Permutation Network
• AddRoundKey: Generate 128-bit sub-key from master key, XOR

with current state array
• SubBytes: Each byte of state array (16 bytes) is replaced by

another byte according a single S-box (lookup table)
• ShiftRows
• MixColumns

98

Permutation

Key Mixing

Substitution

11110000

01100010 …

00110000 …

11111111 …

99

State

00001111

10100011 …

11001100 …

01111111 …

Round Key (16 Bytes)

AddRoundKey:

⨁

11111111

11000001 …

11111100 …

10000000 …

=

100

State

11111111

11000001 …

11111100 …

10000000 …

S(11111111)

S(11000001) S(…)

S(11111100) S(…)

S(10000000) S(…)

SubBytes (Apply S-box)

101

State

S(11111111)

S(11000001) S(…)

S(11111100) S(…)

S(10000000) S(…)

Shift Rows

S(11111111)

S(11000001) S(…)

S(…) S(11111100)

S(…) S(10000000)

102

State

Mix Columns

Invertible (linear) transformation.

Key property: if inputs differ in b>0 bytes then output differs in 5-b bytes (minimum)

S(11111111)

S(11000001) S(…)

S(…) S(11111100)

S(…) S(10000000)

AES

• We just described one round of the SPN

• AES uses
• 10 rounds (with 128 bit key)
• 12 rounds (with 192 bit key)
• 14 rounds (with 256 bit key)

103

Announcements

• Homework 2 Solutions Posted (See Piazza).
• Please read through carefully and make sure you understand the solutions to

each problem.
• Grading in progress

• No Class on Tuesday (October Break)

• Look for Practice Midterm Next Week

104

Recap

• 2DES, Meet in the Middle Attack
• 3DES
• Stream Ciphers

• Breaking Linear Feedback Shift Registers
• Trivium

• AES

105

AES Attacks?

• Side channel attacks affect a few specific implementations
• But, this is not a weakness of AES itself
• Timing attack on OpenSSL’s implementation AES encryption (2005, Bernstein)

• (2009) Related-Key Attack on 11 round version of AES
• Related Key Attack: Attacker convinces Alice to use two related (but unknown) keys
• recovers 256-bit key in time 270

• But AES is 14 round (with 256 bit key) so the attack doesn’t apply in practice
• (2009) Related Key Attack on 192-bit and 256 bit version of AES

• recovers 256-bit key in time 299.5.
• (2011) Key Recovery attack on AES-128 in time 2126.2.

• Improved to 2126.0 for AES-128, 2189.9 for AES-192 and 2254.3 for AES-256
• First public cipher approved by NSA for Top Secret information

• SECRET level (AES-128,AES-192 & AES-256), TOP SECRET level (AES-128,AES-192 & AES-256)

106

NIST Recommendations

107Recommendations from Other Groups (Including NIST): www.keylength.com

Ok, to use for HMAC, Key
Derivation and as PRG

Ok, as CRHF and in Digital
Signatures

80 bits-security is no
longer acceptable

http://www.keylength.com/

Linear Cryptanalysis

𝑦𝑦 = 𝐹𝐹𝐾𝐾 𝑥𝑥

Definition: Fixed set of input bits 𝑖𝑖1, … , 𝑖𝑖𝑖𝑖𝑛𝑛 and output bits 𝑖𝑖1′, … , 𝑖𝑖𝐶𝐶𝑜𝑜𝑡𝑡′
are said to have 𝜀𝜀-linear bias if the following holds

𝑃𝑃𝑜𝑜 𝑥𝑥𝑖𝑖1⨁𝑥𝑥𝑖𝑖2 …⨁𝑥𝑥𝑖𝑖𝑖𝑖𝑛𝑛⨁𝑦𝑦𝑖𝑖1′⨁𝑦𝑦𝑖𝑖2′ …⨁𝑦𝑦𝑖𝑖𝑜𝑜𝑜𝑜𝑜𝑜′ = 𝜀𝜀

(randomness taken over the selection of input x and secret key K)

108

Linear Cryptanalysis

Definition: Fixed set of input bits 𝑖𝑖1, … , 𝑖𝑖𝑖𝑖𝑛𝑛 and output bits 𝑖𝑖1′, … , 𝑖𝑖𝐶𝐶𝑜𝑜𝑡𝑡′ are said to
have 𝜀𝜀-linear bias if the following holds

Pr 𝑥𝑥𝑖𝑖1⨁𝑥𝑥𝑖𝑖2 …⨁𝑥𝑥𝑖𝑖𝑖𝑖𝑛𝑛⨁𝑦𝑦𝑖𝑖1′⨁𝑦𝑦𝑖𝑖2′ …⨁𝑦𝑦𝑖𝑖𝑜𝑜𝑜𝑜𝑜𝑜′ −
1
2

= 𝜀𝜀

(randomness taken over the selection of input x and secret key K, 𝑦𝑦 = 𝐹𝐹𝐾𝐾 𝑥𝑥)

Matsui: DES can be broken with just 243 known plaintext/ciphertext pairs.
• Lots of examples needed!
• But the examples do not need to be chosen plaintext/ciphertext pairs…
• One encrypted file can provide a large amounts of known plaintext

109

Differential Cryptanalysis

Definition: We say that the differential △𝑥𝑥 ,△𝑦𝑦 occurs with
probability 𝑝𝑝 in the keyed block cipher 𝐹𝐹 if

Pr 𝐹𝐹𝐾𝐾 𝑥𝑥1 ⨁𝐹𝐹𝐾𝐾 𝑥𝑥1⨁△𝑥𝑥 =△𝑦𝑦 ≥ 𝑝𝑝

Can Lead to Efficient (Round) Key Recovery Attacks
Exploiting Weakness Requires: well over 1

𝑝𝑝
chosen plaintext-ciphertext

pairs

Differentials in S-box can lead to (weaker) differentials in SPN.

110

	Cryptography�CS 555
	Recap
	Commitment Schemes
	Commitment Hiding (Hiding 𝐴,𝐶𝑜𝑚 (𝑛))
	Commitment Binding (Binding 𝐴,𝐶𝑜𝑚 (𝑛))
	Secure Commitment Scheme
	Commitment Scheme in Random Oracle Model
	Commitment Hiding (Hiding 𝐴,𝐶𝑜𝑚 (𝑛))
	Commitment Hiding (Hiding 𝐴,𝐶𝑜𝑚 (𝑛))
	Ideal Cipher Model
	Hash Functions from Ideal Block Ciphers
	Hash Functions from Block Ciphers
	Hash Functions from Block Ciphers
	A Broken Attempt
	CS 555: Week 6: Topic 1�Block Ciphers
	An Existential Crisis?
	Recap
	Pseudorandom Permutation
	Pseudorandom Permutation
	How many permutations?
	How many bits to store permutations?
	Attempt 1: Pseudorandom Permutation
	Attempt 1: Pseudorandom Permutation
	Pseudorandom Permutation Requirements
	Confusion-Diffusion Paradigm
	Attempt 1: Pseudorandom Permutation
	Confusion-Diffusion Paradigm
	Example Mixing Function
	Are We Done?
	Substitution Permutation Networks
	Substitution Permutation Networks
	Remarks
	Remarks
	Attacking Lower Round SPNs
	Attacking Lower Round SPNs
	Attacking Lower Round SPNs
	Attacking Lower Round SPNs
	Attacking Lower Round SPNs
	Feistel Networks
	Slide Number 41
	CS 555: Week 6: Topic 2 �DES, 3DES�
	Feistel Networks
	Slide Number 44
	Data Encryption Standard
	DES Round
	Generating the Round Keys
	DES Mangle Function
	Mangle Function
	S-Box Representation as Table
	S-Box Representation
	Pseudorandom Permutation Requirements
	DES Avalanche Effect
	Avalanche Effect Example
	Avalanche Effect Example
	Attack on One-Round DES
	Attack on One-Round DES
	Attack on Two-Round DES
	Attack on Three-Round DES
	DES Security
	Double DES
	Meet in the Middle Attack
	Triple DES Variant 1
	Triple DES Variant 1
	Triple DES Variant 2
	Triple DES Variant 1
	�CS 555:Week 6: Topic 2�Stream Ciphers
	PRG Security as a Game
	Stream Cipher vs PRG
	Linear Feedback Shift Register
	Linear Feedback Shift Register
	Linear Feedback Shift Register
	Linear Feedback Shift Register
	Linear Feedback Shift Register
	Linear Feedback Shift Register
	Removing Linearity
	Removing Linearity
	Trivium (2008)
	Trivium (2008)
	Trivium (2008)
	Trivium (2008)
	Combination Generator
	Feedback Shift Registers
	Stream Ciphers
	RC4 Attacks
	Hash Functions from Block Ciphers
	Advanced Encryption Standard (AES)
	Advanced Encryption Standard
	Substitution Permutation Networks
	Substitution Permutation Networks
	Advanced Encryption Standard
	Slide Number 99
	Slide Number 100
	Slide Number 101
	Slide Number 102
	AES
	Announcements
	Recap
	AES Attacks?
	NIST Recommendations
	Linear Cryptanalysis
	Linear Cryptanalysis
	Differential Cryptanalysis

