Cryptography CS 555

Week 6:

- Commitment Schemes
- Ideal Cipher Model + Hash Functions from Block Ciphers
- Block Ciphers
- Feistel Networks
- DES, 3DES

Readings: Katz and Lindell Chapter 6-6.2.4

Recap

- Hash Functions
- Definition
- Merkle-Damgard
- Merkle Trees
- HMAC construction
- Generic Attacks on Hash Function
- Birthday Attack
- Small Space Birthday Attacks (cycle detection)
- Pre-Computation Attacks: Time/Space Tradeoffs
- Random Oracle Model

Commitment Schemes

- Alice wants to commit a message m to Bob
- And possibly reveal it later at a time of her choosing
- Properties
- Hiding: commitment reveals nothing about m to Bob
- Binding: it is infeasible for Alice to alter message

Syntax Commitment Scheme with Canonical Verification:

- $\mathbf{c}:=$ Commit $(m ; r):$ takes as input a message m and random bits r and outputs a commitment \mathbf{c} to the message m
- CannonicalVerify $(c, m, r):=\left\{\begin{array}{cc}1 & \text { ifc }==\operatorname{Commit}(m ; r) \\ 0 & \text { otherwise }\end{array}\right.$
- Note: Not all commitment schemes use canonical verification, but this definition suffices for our purposes. In this case there may be a third algorithm $\mathrm{pp}:=\operatorname{Setup}\left(1^{n}\right)$ which generates public parameters for the commitment scheme.

Commitment Hiding ($\left.\operatorname{Hiding}_{A, C o m}(n)\right)$

$\operatorname{Pr}\left[\operatorname{Hiding}_{A, C o m}(n)=1\right] \leq \frac{1}{2}+\mu(n)$

Commitment Binding $\left(\operatorname{Binding}_{A, C o m}(n)\right)$

Binding $_{A, \text { Com }}(n)= \begin{cases}1 & \text { if } \operatorname{commit}\left(r_{0}, \mathbf{m}_{0}\right)=\operatorname{commit}\left(r_{1}, \mathbf{m}_{1}\right) \\ 0 & \text { otherwise }\end{cases}$

$$
\forall P P T A \exists \mu \text { (negligible) s.t }
$$

$\operatorname{Pr}\left[\operatorname{Binding}_{A, C o m}(n)=1\right] \leq \mu(n)$

Secure Commitment Scheme

- Definition: A secure commitment scheme is hiding and binding
- Hiding

$$
\begin{gathered}
\forall P P T A \exists \mu \text { (negligible) s.t } \\
\operatorname{Pr}\left[\operatorname{Hiding}_{A, C o m}(n)=1\right] \leq \frac{1}{2}+\mu(n)
\end{gathered}
$$

- Binding

$$
\begin{gathered}
\forall P P T A \exists \mu \text { (negligible) s.t } \\
\operatorname{Pr}\left[\operatorname{Binding}_{A, C o m}(n)=1\right] \leq \mu(n)
\end{gathered}
$$

Commitment Scheme in Random Oracle Model

- Commit(r, m) $:=\mathrm{H}(r \| m)$
- Reveal(c) := (r, m)

Theorem: In the random oracle model this is a secure commitment scheme.

Binding:
$\operatorname{commit}\left(r_{0}, m_{0}\right)=\operatorname{commit}\left(r_{1}, m_{1}\right) \leftrightarrow H\left(r_{0} \| m_{0}\right)=H\left(r_{1} \| m_{1}\right)$

Commitment Hiding ($\left.\operatorname{Hiding}_{A, C o m}(n)\right)$

$r=\operatorname{Gen}($.
Bit b
$\forall P P T$ A making $q(n)$ queries s.t
$\operatorname{Pr}\left[\operatorname{Hiding}_{A, \operatorname{Com}}(n)=1\right] \leq \frac{1}{2}+\frac{q(n)}{2^{|r|}}$

Commitment Hiding ($\left.\operatorname{Hiding}_{A, C o m}(n)\right)$

Ideal Cipher Model

- For each n-bit string K we pick a truly random permutation F_{K}
- Public Oracles
- $O(K, x)=F_{K}(x)$
- $O^{-1}(K, y)=F_{K}^{-1}(x)$
- Real World: Instantiate Ideal Cipher with a modern block cipher like AES
- Similar Pros/Cons to Random Oracle Model
- Pro: Powerful evidence of sound design
- Con: No blockcipher is an ideal cipher (even AES)

Hash Functions from Ideal Block Ciphers

- Davies-Meyer Construction from block cipher F_{K}

$$
H(K, x)=F_{K}(x) \oplus x
$$

Theorem: If $F:\{0,1\}^{\lambda} \times\{0,1\}^{\lambda} \rightarrow\{0,1\}^{\lambda}$ is modeled as an ideal block cipher then Davies-Meyer construction is a collision-resistant hash function (Concrete: Need roughly $q \approx 2^{\lambda / 2}$ queries to find collision)

- Ideal Cipher Model: For each key K model F_{K} as a truly random permutation which may only be accessed in black box manner.
- (Equivalent to Random Oracle Model)

Hash Functions from Block Ciphers

$$
H(K, x)=F_{K}(x) \oplus x
$$

Analysis: Suppose we have already made queries to the ideal cipher

- $\left(K_{1}, x_{1}\right), \ldots,\left(K_{q}, x_{q}\right)$ to F_{K} to get $F_{K_{1}}\left(x_{1}\right), \ldots, F_{K_{q}}\left(x_{q}\right)$ and queries
- $\left(K_{q+1}, y_{1}\right), \ldots,\left(K_{2 q}, y_{q}\right)$ to $F_{K}^{-1}($.$) to get x_{q+1}:=F_{K_{q+1}}^{-1}\left(y_{1}\right), \ldots, x_{2 q:=} F_{K_{2 q}}^{-1}\left(y_{q}\right)$.
$H\left(K_{i}, x_{i}\right)$ is known for all $\mathrm{i} \leq 2 q$ (but $H(K, x)$ is unknown at other points.
Now suppose we make a new query $(K, x) \notin\left\{\left(K_{1}, x_{1}\right), \ldots,\left(K_{2 q}, x_{2 q}\right)\right\}: F_{K}(x)$ sampled uniformly from $2^{\lambda}-2 q$ possible choices.
\rightarrow Collides with $\mathrm{H}\left(K_{i}, x_{i}\right)$ with probability at most $\frac{1}{2^{\lambda}-2 q}$
\rightarrow Collides with $\mathrm{H}\left(K_{q+i}, x_{q+i}\right)$ with probability at most $\frac{1}{2^{\lambda}-2 q}$
$\rightarrow \mathrm{H}(K, x)$ Collides with prior query with probability at most $\frac{2 \mathrm{q}}{2^{\lambda}-2 q}$

Hash Functions from Block Ciphers

$$
H(K, x)=F_{K}(x) \oplus x
$$

Analysis:

Fact 1: Query $q+1$ to ideal cipher yields collision (with prior query) with probability at most $\frac{q}{2^{\lambda}-q}$

Fact 2: The probability of finding a collision within q queries is at most $\sum_{i \leq q} \frac{\mathrm{i}}{2^{\lambda}-i} \leq \frac{\mathrm{q}(\mathrm{q}-1) / 2}{2^{\lambda}-q}$

A Broken Attempt

$$
H\left(K_{1}, K_{2}, x_{1}, x_{2}\right)=F_{K_{1}}\left(x_{1}\right) \oplus F_{K_{2}}\left(x_{2}\right) \oplus K_{1} \oplus K_{2}
$$

Collision Attack: Pick arbitrary keys $K_{0} \neq K_{1}$ Step 1: Query $\mathrm{x}_{1}:=F_{K_{0}}^{-1}\left(0^{n}\right)$ and $\mathrm{x}_{2}:=F_{K_{0}}^{-1}\left(1^{n}\right)$
Step 2: Query $\mathrm{w}_{1}:=F_{K_{1}}^{-1}\left(0^{n}\right)$ and $\mathrm{w}_{2}:=F_{K_{1}}^{-1}\left(1^{n}\right)$

$$
\begin{aligned}
H\left(K_{0}, K_{0}, x_{1}, x_{2}\right) & =F_{K_{0}}\left(x_{1}\right) \oplus F_{K_{0}}\left(x_{2}\right) \oplus K_{0} \oplus K_{0}=0^{n} \oplus 1^{n} \\
& =F_{K_{1}}\left(w_{1}\right) \oplus F_{K_{1}}\left(w_{2}\right)=H\left(K_{1}, K_{1}, x_{1}, x_{2}\right)
\end{aligned}
$$

Exploits the fact that we can query inverse oracle F_{K}^{-1}

CS 555: Week 6: Topic 1 Block Ciphers

An Existential Crisis?

- We have used primitives like PRGs, PRFs to build secure MACs, CCASecure Encryption, Authenticated Encryption etc...
- Do such primitives exist in practice?
- How do we build them?

Recap

- Hash Functions/PRGs/PRFs, CCA-Secure Encryption, MACs

Goals for This Week:

- Practical Constructions of Symmetric Key Primitives

Today's Goals: Block Ciphers

- Sbox
- Confusion Diffusion Paradigm
- Feistel Networks

Pseudorandom Permutation

A keyed function F: $\{0,1\}^{n} \times\{0,1\}^{n} \rightarrow\{0,1\}^{n}$, which is invertible and "looks random" without the secret key k .

- Similar to a PRF, but
- Computing $\mathrm{F}_{\mathrm{k}}(\mathrm{x})$ and $F_{k}^{-1}(x)$ is efficient (polynomial-time)

Definition 3.28: A keyed function $\mathrm{F}:\{0,1\}^{n} \times\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ is a strong pseudorandom permutation if for all PPT distinguishers D there is a negligible function μ s.t.

$$
\left|\operatorname{Pr}\left[D^{F_{k}(.), F_{k}^{-1}(.)}\left(1^{n}\right)\right]-\operatorname{Pr}\left[D^{f(.), f^{-1}(.)}\left(1^{n}\right)\right]\right| \leq \mu(n)
$$

Pseudorandom Permutation

Definition 3.28: A keyed function $F:\{0,1\}^{n} \times\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ is a strong pseudorandom permutation if for all PPT distinguishers D there is a negligible function μ s.t.

$$
\left|\operatorname{Pr}\left[D^{F_{k}(.), F_{k}^{-1}(.)}\left(1^{n}\right)\right]-\operatorname{Pr}\left[D^{f(.), f^{-1}(.)}\left(1^{n}\right)\right]\right| \leq \mu(n)
$$

Notes:

- the first probability is taken over the uniform choice of $k \in\{0,1\}^{n}$ as well as the randomness of D.
- the second probability is taken over uniform choice of $f \in \operatorname{Perm}_{n}$ as well as the randomness of D.
- D is never given the secret k
- However, D is given oracle access to keyed permutation and inverse

How many permutations?

- \mid Perm $_{\mathrm{n}} \mid=$?
- Answer: 2^{n} !
- How many bits to store $f \in$ Perm $_{n}$?
- Answer:

$$
\begin{gathered}
\log \left(2^{n}!\right)=\sum_{i=1}^{2^{n}} \log (\mathrm{i}) \\
\geq \sum_{i=2^{n-1}}^{2^{n}} n-1 \geq(n-1) \times 2^{n-1}
\end{gathered}
$$

How many bits to store permutations?

$$
\begin{gathered}
\log \left(2^{n}!\right)=\sum_{i=1}^{2^{n}} \log (\mathrm{i}) \\
\geq \sum_{i=2^{n-1}}^{2^{n}} n-1 \geq(n-1) \times 2^{n-1}
\end{gathered}
$$

Example: Storing $f \in \operatorname{Perm}_{50}$ requires over 6.8 petabytes (10^{15})
Example 2: Storing $f \in \operatorname{Perm}_{100}$ requires about 12 yottabytes (10^{24})
Example 3: Storing $f \in$ Perm $_{8}$ requires about 211 bytes

Attempt 1: Pseudorandom Permutation

- Select 16 random permutations on 8 -bits $f_{1}, \ldots, f_{16} \in$ Perm $_{8}$.
- Secret key: $k=f_{1}, \ldots, f_{16}$ (about 3 KB)
- Input: $x=x_{1}, \ldots, x_{16}$ (16 bytes)

$$
\mathrm{F}_{\mathrm{k}}(x)=\mathrm{f}_{1}\left(\mathrm{x}_{1}\right)\left\|\mathrm{f}_{2}\left(\mathrm{x}_{2}\right)\right\| \cdots \| \mathrm{f}_{16}\left(\mathrm{x}_{16}\right)
$$

- Any concerns?

Attempt 1: Pseudorandom Permutation

- Select 16 random permutations on 8 -bits $f_{1}, \ldots, f_{16} \in$ Perm $_{8}$.

$$
\mathrm{F}_{\mathrm{k}}(x)=\mathrm{f}_{1}\left(\mathrm{x}_{1}\right)\left\|\mathrm{f}_{2}\left(\mathrm{x}_{2}\right)\right\| \cdots \| \mathrm{f}_{16}\left(\mathrm{x}_{16}\right)
$$

- Any concerns?

$$
\begin{gathered}
F_{k}\left(x_{1}\left\|x_{2}\right\| \cdots \| x_{16}\right)=f_{1}\left(x_{1}\right)\left\|f_{2}\left(x_{2}\right)\right\| \cdots \| f_{16}\left(x_{16}\right) \\
F_{k}\left(0\left\|x_{2}\right\| \cdots \| x_{16}\right)=f_{1}(0)\left\|f_{2}\left(x_{2}\right)\right\| \cdots \| f_{16}\left(x_{16}\right)
\end{gathered}
$$

- Changing a bit of input produces insubstantial changes in the output.
- A truly random permutation $\mathrm{F} \in$ Perm $_{128}$ would not behave this way!

Pseudorandom Permutation Requirements

- Consider a truly random permutation $\mathrm{F} \in$ Perm $_{128}$
- Let inputs x and x^{\prime} differ on a single bit
- We expect outputs $F(x)$ and $F\left(x^{\prime}\right)$ to differ on approximately half of their bits
- $F(x)$ and $F\left(x^{\prime}\right)$ should be (essentially) independent.
- A pseudorandom permutation must exhibit the same behavior!

Confusion-Diffusion Paradigm

- Our previous construction was not pseudorandom, but applying the permutations does accomplish something
- They introduce confusion into F
- Attacker cannot invert (after seeing a few outputs)
- Approach:
- Confuse: Apply random permutations f_{1}, \ldots, , to each block of input to obtain y_{1}, \ldots,
- Diffuse: Mix the bytes y_{1}, \ldots, to obtain byes z_{1}, \ldots,
- Confuse: Apply random permutations f_{1}, \ldots, with inputs z_{1}, \ldots,
- Repeat as necessary

Attempt 1: Pseudorandom Permutation

- Select 16 random permutations on 8 -bits $f_{1}, \ldots, f_{16} \in$ Perm $_{8}$.

$$
\mathrm{F}_{\mathrm{k}}(x)=\mathrm{f}_{1}\left(\mathrm{x}_{1}\right)\left\|\mathrm{f}_{2}\left(\mathrm{x}_{2}\right)\right\| \cdots \| \mathrm{f}_{16}\left(\mathrm{x}_{16}\right)
$$

- Any concerns?

$$
\begin{gathered}
F_{k}\left(x_{1}\left\|x_{2}\right\| \cdots \| x_{16}\right)=f_{1}\left(x_{1}\right)\left\|f_{2}\left(x_{2}\right)\right\| \cdots \| f_{16}\left(x_{16}\right) \\
F_{k}\left(0\left\|x_{2}\right\| \cdots \| x_{16}\right)=f_{1}(0)\left\|f_{2}\left(x_{2}\right)\right\| \cdots \| f_{16}\left(x_{16}\right)
\end{gathered}
$$

- Changing a bit of input produces insubstantial changes in the output.
- A truly random permutation $\mathrm{F} \in$ Perm $_{128}$ would not behave this way!

Confusion-Diffusion Paradigm

Example:

- Select 8 random permutations on 8 -bits $f_{1}, \ldots, f_{16} \in$ Perm $_{8}$
- Select 8 extra random permutations on 8 -bits $g_{1}, \ldots, g_{8} \in$ Perm $_{8}$
$\mathrm{F}_{\mathrm{k}}\left(\mathrm{x}_{1}\left\|\mathrm{x}_{2}\right\| \cdots \| \mathrm{x}_{8}\right)=$

1. $y_{1}\|\cdots\| y_{8}:=f_{1}\left(x_{1}\right)\left\|f_{2}\left(x_{2}\right)\right\| \cdots \| f_{8}\left(x_{8}\right)$
2. $z_{1}\|\cdots\| z_{8}:=\operatorname{Mix}\left(y_{1}\|\cdots\| y_{8}\right)$
3. Output: $\mathrm{f}_{1}\left(\mathrm{z}_{1}\right)\left\|\mathrm{f}_{2}\left(\mathrm{z}_{2}\right)\right\| \cdots \| \mathrm{f}_{8}\left(\mathrm{z}_{8}\right)$

Example Mixing Function

$\operatorname{Mix}\left(\mathrm{y}_{1}\|\cdots\| \mathrm{y}_{8}\right)=$

1. For $\mathrm{i}=1$ to 8
2. $\quad \mathrm{z}_{\mathrm{i}}:=\mathrm{y}_{1}[\mathrm{i}]\|\cdots\| \mathrm{y}_{8}[\mathrm{i}]$
3. End For
4. Output: $\mathrm{g}_{1}\left(\mathrm{z}_{1}\right)\left\|\mathrm{g}_{2}\left(\mathrm{z}_{2}\right)\right\| \cdots \| \mathrm{g}_{8}\left(\mathrm{z}_{8}\right)$

$$
\begin{gathered}
\\
\mathrm{z}_{1} \\
\mathrm{y}_{1}=\left[\begin{array}{ccc}
\mathrm{y}_{1}[1] & \cdots & \mathrm{y}_{8}[8] \\
\vdots & \ddots & \vdots \\
\mathrm{y}_{8}=[1] & \cdots & \mathrm{y}_{8}[8]
\end{array}\right]
\end{gathered}
$$

Are We Done?

$\mathrm{F}_{\mathrm{k}}\left(\mathrm{x}_{1}\left\|\mathrm{x}_{2}\right\| \cdots \| \mathrm{x}_{8}\right)=$

1. $y_{1}\|\cdots\| y_{8}:=f_{1}\left(x_{1}\right)\left\|f_{2}\left(x_{2}\right)\right\| \cdots \| f_{8}\left(x_{8}\right)$
2. $z_{1}\|\cdots\| z_{8}:=\operatorname{Mix}\left(y_{1}\|\cdots\| y_{8}\right)$
3. Output: $f_{1}\left(z_{1}\right)\left\|f_{2}\left(z_{2}\right)\right\| \cdots \| f_{8}\left(z_{8}\right)$

$$
\begin{gathered}
\\
\mathrm{y}_{1}=\left[\begin{array}{ccc}
\mathrm{z}_{1} & & \mathrm{z}_{8} \\
\mathrm{y}_{1}[1] \\
\vdots & \cdots & \mathrm{y}_{1}[8] \\
\mathrm{y}_{8}= & \ddots & \vdots \\
\mathrm{y}_{8}[1] & \cdots & \mathrm{y}_{8}[8]
\end{array}\right]
\end{gathered}
$$

Suppose $f_{1}\left(x_{1}\right)=00110101=y_{1}$ and $f_{1}\left(x_{1}^{\prime}\right)=00110100=y_{1}^{\prime}$
$F_{k}\left(x_{1}^{\prime}\left\|x_{2}\right\| \cdots \| x_{8}\right)=$

1. $y_{1}^{\prime}\|\cdots\| y_{8}:=f_{1}\left(x_{1}^{\prime}\right)\left\|f_{2}\left(x_{2}\right)\right\| \cdots \| f_{8}\left(x_{8}\right)$
2. $z_{1}\|\cdots\| z_{8}^{\prime}:=\operatorname{Mix}\left(y_{1}^{\prime}\|\cdots\| y_{8}\right)$
3. Output: $f_{1}\left(z_{1}\right)\left\|f_{2}\left(z_{2}\right)\right\| \cdots \| f_{8}\left(z_{8}^{\prime}\right)$

Highly unlikely that a truly random permutation would behave this way!

Substitution Permutation Networks

- S-box a public "substitution function" (e.g.S \in Perm $_{8}$).
- S is not part of a secret key, but can be used with one

$$
\mathrm{f}(\mathrm{x})=\mathrm{S}(\mathrm{x} \oplus k)
$$

- Input to round: x, k (k is subkey for current round)
- Key Mixing: Set $\mathrm{x}:=\mathrm{x} \oplus k$
- Substitution: $\mathrm{x}:=\mathrm{S}_{1}\left(\mathrm{x}_{1}\right)\left\|\mathrm{S}_{2}\left(\mathrm{x}_{2}\right)\right\| \cdots \| \mathrm{S}_{8}\left(\mathrm{x}_{8}\right)$
- Bit Mixing Permutation: permute the bits of x to obtain the round output

Substitution Permutation Networks

- Proposition 6.3: Let F be a keyed function defined by a Substitution Permutation Network. Then for any keys/number of rounds F_{k} is a permutation.
- Why? Composing permutations f,g results in another permutation $h(x)=g(f(x))$.

Remarks

- Want to achieve "avalanche effect" (one bit change should "affect" every output bit)
- Should a S-box be a random byte permutation?
- Better to ensure that $\mathrm{S}(\mathrm{x})$ differs from x on at least 2-bits (for all x)
- Helps to maximize "avalanche effect"
- Mixing Permutation should ensure that output bits of any given S-box are used as input to multiple S-boxes in the next round

Remarks

- How many rounds?
- Informal Argument: If we ensure that $S(x)$ differs from x on at least 2-bits (for all bytes x) then every input bit affects
- 2 bits of round 1 output
- 4 bits of round 2 output
- 8 bits of round 3 output
-
- 128 bits of round 4 output
- Need at least 7 rounds (minimum) to ensure that every input bit affects every output bit

Attacking Lower Round SPNs

- Trivial Case: One full round with no final key mixing step
- Key Mixing: Set $\mathrm{x}:=\mathrm{x} \oplus k$
- Substitution: y := $\mathrm{S}_{1}\left(\mathrm{x}_{1}\right)\left\|\mathrm{S}_{2}\left(\mathrm{x}_{2}\right)\right\| \cdots \| \mathrm{S}_{8}\left(\mathrm{x}_{8}\right)$
- Bit Mixing Permutation: P permute the bits of y to obtain the round output
- Given input/output ($\mathrm{x}, \mathrm{F}_{\mathrm{k}}(\mathrm{x})$)
- Permutations P and S_{i} are public and can be run in reverse
- $\mathrm{P}^{-1}\left(\mathrm{~F}_{\mathrm{k}}(\mathrm{x})\right)=\mathrm{S}_{1}\left(\mathrm{x}_{1} \oplus k_{1}\right)\left\|\mathrm{S}_{2}\left(\mathrm{x}_{2} \oplus k_{2}\right)\right\| \cdots \| \mathrm{S}_{8}\left(\mathrm{x}_{8} \oplus k_{8}\right)$
- $\mathrm{x}_{\mathrm{i}} \otimes k_{\mathrm{i}}=\mathrm{S}_{\mathrm{i}}^{-1}\left(\mathrm{~S}_{\mathrm{i}}\left(\mathrm{x}_{\mathrm{i}} \oplus k_{\mathrm{i}}\right)\right)$
- Attacker knows x_{i} and can thus obtain k_{i}

Attacking Lower Round SPNs

- Easy Case: One full round with final key mixing step
- Key Mixing: Set $\mathrm{x}:=\mathrm{x} \otimes k_{1}$
- Substitution: $y:=\mathrm{S}_{1}\left(\mathrm{x}_{1}\right)\left\|\mathrm{S}_{2}\left(\mathrm{x}_{2}\right)\right\|\| \| \mathrm{S}_{8}\left(\mathrm{x}_{8}\right)$
- Bit Mixing Permutation: $\mathrm{z}_{1}\|\cdots\| \mathrm{z}_{8}=\mathrm{P}(\mathrm{y})$
- Final Key Mixing: Output $\mathbf{z} \oplus k_{2}$
- Given input/output ($\mathrm{x}, \mathrm{F}_{\mathrm{k}}(\mathrm{x}$))
- Permutations P and S_{i} are public and can be run in reverse once k_{2} is known
- Immediately yields attack in 2^{64} time ($\mathrm{k}_{1}, \mathrm{k}_{2}$ are each 64 bit keys) which narrows down key-space to 2^{64} but we can do much better!

Attacking Lower Round SPNs

- Easy Case: One full round with final key mixing step
- Key Mixing: Set $\mathrm{x}:=\mathrm{x} \oplus k_{1}$
- Substitution: y := $\mathrm{S}_{1}\left(\mathrm{x}_{1}\right)\left\|\mathrm{S}_{2}\left(\mathrm{x}_{2}\right)\right\| \cdots \| \mathrm{S}_{8}\left(\mathrm{x}_{8}\right)$
- Bit Mixing Permutation: $\mathrm{z}_{1}\|\cdots\| \mathrm{z}_{8}=\mathrm{P}(\mathrm{y})$
- Final Key Mixing: Output $\mathrm{z} \oplus k_{2}$
- Given input/output ($\mathrm{x}, \mathrm{F}_{\mathrm{k}}(\mathrm{x})$)
- Permutations P and S_{i} are public and can be run in reverse once k_{2} is known
- Guessing 8 specific bits of k_{2} (which bits depends on P) we can obtain one value $y_{i}=$ $\mathrm{S}_{\mathrm{i}}\left(\mathrm{x}_{\mathrm{i}} \otimes k_{\mathrm{i}}\right)$
- Attacker knows x_{i} and can thus obtain k_{i} by inverting S_{i} and using XOR
- Narrows down key-space to 2^{64}, but in time 8×2^{8}

Attacking Lower Round SPNs

- Easy Case: One full round with final key mixing step
- Key Mixing: Set $\mathrm{x}:=\mathrm{x} \oplus k_{1}$
- Substitution: $\mathrm{y}:=\mathrm{S}_{1}\left(\mathrm{x}_{1}\right)\left\|\mathrm{S}_{2}\left(\mathrm{x}_{2}\right)\right\| \cdots \| \mathrm{S}_{8}\left(\mathrm{x}_{8}\right)$
- Bit Mixing Permutation: $\mathrm{z}_{1}\|\cdots\| \mathrm{z}_{8}=\mathrm{P}(\mathrm{y})$
- Final Key Mixing: Output $z \oplus k_{2}$
- Given several input/output pairs $\left(\mathrm{x}_{\mathrm{j}}, \mathrm{F}_{\mathrm{k}}\left(\mathrm{x}_{\mathrm{j}}\right)\right)$
- Can quickly recover k_{1} and k_{2}

Attacking Lower Round SPNs

- Harder Case: Two round SPN
- Exercise -
- Ideal Cipher Model: For each key K model F_{K} as a truly random permutation which may only be accessed in black box manner.
- Attacker may submit query ($\mathrm{K}, \mathrm{x},+$) and oracle responds with $F_{K}(x)$ or
- Stronger than assuming that F is a Pseudorandom Permutation
- (Equivalent to Random Oracle Model)

Feistel Networks

- Alternative to Substitution Permutation Networks
- Advantage: underlying functions need not be invertible, but the result is still a permutation

- $\mathrm{R}_{\mathrm{i}-1}=\mathrm{L}_{\mathrm{i}}$
- $\mathrm{L}_{\mathrm{i}-1}:=\mathrm{R}_{\mathrm{i}} \oplus F_{k_{i}}\left(\mathrm{R}_{\mathrm{i}-1}\right)$

Proposition: the function is invertible.

Digital Encryption Standard (DES): 16round Feistel Network.

CS 555: Week 6: Topic 2 DES, 3DES

Feistel Networks

- Alternative to Substitution Permutation Networks
- Advantage: underlying functions need not be invertible, but the result is still a permutation

- $\mathrm{L}_{\mathrm{i}+1}=\mathrm{R}_{\mathrm{i}}$
- $\mathrm{R}_{\mathrm{i}+1}:=\mathrm{L}_{\mathrm{i}} \oplus F_{k_{i}}\left(\mathrm{R}_{\mathrm{i}}\right)$

Proposition: the function is invertible.

Data Encryption Standard

- Developed in 1970s by IBM (with help from NSA)
- Adopted in 1977 as Federal Information Processing Standard (US)
- Data Encryption Standard (DES): 16-round Feistel Network.
- Key Length: 56 bits
- Vulnerable to brute-force attacks in modern times
- 1.5 hours at 14 trillion DES evals/second e.g., Antminer S9 runs at 14 TH/s

DES Round

Figure 3-6. DES Round

Generating the Round Keys

- Initial Key: 64 bits
- Effective Key Length: 56 bits
- Round Key Length: 48 bits (each)
- 16 round keys derived from initial key

DES Mangle Function

- Expand E: 32-bit input \rightarrow 48-bit output (duplicates 16 bits)
- S-boxes: $\mathrm{S}_{1}, \ldots, \mathrm{~S}_{8}$
- Input: 6-bits
- Output: 4 bits
- Not a permutation!
- 4-to-1 function
- Exactly four inputs mapped to each possible output

A DES Round

Mangle Function

S-Box Representation as Table
 4 columns (2 bits)

$$
x=101101
$$

$S(x)=$ Table[0110,11]

S-Box Representation

Each column is permutation

 4 columns (2 bits)| | | 00 | 01 | 10 | 11 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 凹 | 0000 | | | | |
| - | 0001 | | | | |
| \pm | 0010 | | | | |
| ๓ | 0011 | | | | |
| E | 0100 | | | | |
| $\stackrel{\square}{\square}$ | 0101 | | | | |
| 0 | 0110 | | | | $S(x)=1101$ |
| $\stackrel{0}{7}$ | | \cdots | | | |
| | 1111 | | | | |

$$
x=101101
$$

$S(x)=T[0110,11]$

Pseudorandom Permutation Requirements

- Consider a truly random permutation $\mathrm{F} \in$ Perm $_{128}$
- Let inputs x and x^{\prime} differ on a single bit
- We expect outputs $F(x)$ and $F\left(x^{\prime}\right)$ to differ on approximately half of their bits
- $F(x)$ and $F\left(x^{\prime}\right)$ should be (essentially) independent.
- A pseudorandom permutation must exhibit the same behavior!
- Requirement: DES Avalanche Effect!

DES Avalanche Effect

- Permutation the end of the mangle function helps to mix bits
- Special S-box property \#1

Let x and x^{\prime} differ on one bit then $S_{i}(x)$ differs from $S_{i}\left(x^{\prime}\right)$ on two bits.

Avalanche Effect Example

- Consider two 64 bit inputs
- $\left(L_{n}, R_{n}\right)$ and ($\left.L_{n}{ }^{\prime}, R_{n}^{\prime}=R_{n}\right)$
- L_{n} and L_{n}^{\prime} differ on one bit
- This is worst case example
- $L_{n+1}=L_{n+1}^{\prime}=R_{n}$
- But now $R^{\prime}{ }_{n+1}$ and R_{n+1} differ on one bit
- Even if we are unlucky $E\left(R_{n+1}^{\prime}\right)$ and $E\left(R_{n+1}\right)$ differ on 1 bit
- $\rightarrow R_{n+2}$ and R_{n+2}^{\prime} differ on two bits
- $\rightarrow L_{n+2}=R^{\prime}{ }_{n+1}$ and $L_{n+2}^{\prime}=R_{n+1}^{\prime}$ differ in one bit

A DES Round

Avalanche Effect Example

- R_{n+2} and $\mathrm{R}_{\mathrm{n}+2}^{\prime}$ differ on two bits
- $L_{n+2}=R_{n+1}$ and $L_{n+2}{ }^{\prime}=R_{n+1}^{\prime}$ differ in one bit
$\rightarrow R_{n+3}$ and $R^{\prime}{ }_{n+3}$ differ on four bits since we have different inputs to two of the S-boxes
$\rightarrow L_{n+3}=R^{\prime}{ }_{n+2}$ and $L_{n+2}{ }^{\prime}=R_{n+2}^{\prime}$ now differ on two bits
- Seven rounds we expect all 32 bits in right half to be "affected" by input change

A DES Round

DES has sixteen rounds

Attack on One-Round DES

- Given input output pair (x, y)
- $\mathrm{y}=\left(\mathrm{L}_{1}, \mathrm{R}_{1}\right)$
- $\mathrm{X}=\left(\mathrm{L}_{0}, \mathrm{R}_{0}\right)$
- Note: $\mathrm{R}_{0}=\mathrm{L}_{1}$
- Note: $\mathrm{R}_{1}=\mathrm{L}_{0} \oplus f_{1}\left(\mathrm{R}_{0}\right)$ where f_{1} is the Mangling Function with key k_{1}

Conclusion:

$$
f_{1}\left(\mathrm{R}_{0}\right)=\mathrm{L}_{0} \oplus \mathrm{R}_{1}
$$

Attack on One-Round DES

Attack on Two-Round DES

- Output $\mathrm{y}=\left(\mathrm{L}_{2}, \mathrm{R}_{2}\right)$
- Note: $\mathrm{R}_{1}=\mathrm{L}_{0} \oplus f_{1}\left(\mathrm{R}_{0}\right)$
- Also, $\mathrm{R}_{1}=\mathrm{L}_{2}$
- Thus, $f_{1}\left(\mathrm{R}_{0}\right)=\mathrm{L}_{2} \oplus \mathrm{~L}_{0}$
- So we can still attack the first round key $k 1$ as before as R_{0} and $L_{2} \oplus L_{0}$ are known
- Note: $\mathrm{R}_{2}=\mathrm{L}_{1} \oplus f_{2}\left(\mathrm{R}_{1}\right)$
- Also, $L_{1}=R_{0}$ and $R_{1}=L_{2}$
- Thus, $f_{2}\left(\mathrm{~L}_{2}\right)=\mathrm{R}_{2} \oplus \mathrm{R}_{0}$
- So we can attack the second round key $k 2$ as before as L_{2} and $R_{2} \oplus R_{0}$ are known

Attack on Three-Round DES

$$
\begin{aligned}
f_{1}\left(\mathbf{R}_{\mathbf{0}}\right) \oplus f_{3}\left(\mathbf{R}_{\mathbf{2}}\right) & =\left(\mathrm{L}_{0} \oplus \mathrm{~L}_{2}\right) \oplus\left(\mathrm{L}_{2} \oplus \mathrm{R}_{3}\right) \\
& =\mathrm{L}_{0} \oplus \mathrm{R}_{3}
\end{aligned}
$$

We know all of the values L_{0}, R_{0}, R_{3} and $L_{3}=R_{2}$.

Leads to attack in time $\approx 2^{n / 2}$
(See details in textbook)

Remember that DES is 16 rounds

DES Security

- Best Known attack is brute-force 2^{56}
- Except under unrealistic conditions (e.g., 2^{43} known plaintexts)
- Brute force is not too difficult on modern hardware
- Attack can be accelerated further after precomputation
- Output is a few terabytes
- Subsequently keys are cracked in 2^{38} DES evaluations (minutes)
- Precomputation costs amortize over number of DES keys cracked
- Even in 1970 there were objections to the short key length for DES

Double DES

- Let $F_{k}(x)$ denote the DES block cipher
- A new block cipher F^{\prime} with a key $k=\left(k_{1}, k_{2}\right)$ of length 2 n can be defined by

$$
F_{k}^{\prime}(x)=F_{k_{2}}\left(F_{k_{1}}(x)\right)
$$

- Can you think of an attack better than brute-force?

Meet in the Middle Attack

$$
F_{k}^{\prime}(x)=F_{k_{2}}\left(F_{k_{1}}(x)\right)
$$

Goal: Given $\left(x, \mathrm{c}=F_{k}^{\prime}(x)\right)$ try to find secret key k in time and space $0\left(n 2^{n}\right)$.

- Solution?
- Key Observation

$$
F_{k_{1}}(x)=F_{k_{2}}^{-1}(\mathrm{c})
$$

- Compute $F_{K}^{-1}(\mathrm{c})$ and $F_{K}(x)$ for each potential n -bit key K and store $\left(K, F_{K}^{-1}(\mathrm{c})\right)$ and $\left(\boldsymbol{K}, F_{K}(\mathrm{x})\right)$
- Sort each list of pairs (by $F_{K}^{-1}(\mathrm{c})$ or $F_{K}(\mathrm{x})$) to find K_{1} and K_{2}.

Triple DES Variant 1

- Let $F_{k}(x)$ denote the DES block cipher
- A new block cipher F^{\prime} with a key $k=\left(k_{1}, k_{2}, k_{3}\right)$ of length 2 n can be defined by

$$
F_{k}^{\prime}(x)=F_{k_{3}}\left(F_{k_{2}}^{-1}\left(F_{k_{1}}(x)\right)\right)
$$

- Meet-in-the-Middle Attack Requires time $\Omega\left(2^{2 n}\right)$ and space $\Omega\left(2^{2 n}\right)$

Triple DES Variant 1

Allows backward compatibility with DES by setting $k_{1}=k_{2}=k_{3}$

- Let $F_{k}(x)$ denote the DES block cipher
- A new block cipher F^{\prime} with a key $k=\left(k_{1}, k_{2}, k_{3}\right)$ of length 2 n can be defined by

$$
F_{k}^{\prime}(x)=F_{k_{3}}\left(F_{k_{2}}^{-1}\left(F_{k_{1}}(x)\right)\right)
$$

- Meet-in-the-Middle Attack Requires time $\Omega\left(2^{2 n}\right)$ and space $\Omega\left(2^{2 n}\right)$

Triple DES Variant 2

Just two keys!

- Let $F_{k}(x)$ denote the DES block cipher
- A new block cipher F^{\prime} with a key $k=\left(k_{1}, k_{2}\right)$ of length $2 n$ can be defined by

$$
F_{k}^{\prime}(x)=F_{k_{1}}\left(F_{k_{2}}^{-1}\left(F_{k_{1}}(x)\right)\right)
$$

- Meet-in-the-Middle Attack still requires time $\Omega\left(2^{2 n}\right)$ and space $\Omega\left(2^{2 n}\right)$
- Brute force is more efficient: time is still $\Omega\left(2^{2 n}\right)$, but space usage is constant
- Key length is still just 112 bits (NIST recommends 128+ bits)

Triple DES Variant 1

$$
F_{k}^{\prime}(x)=F_{k_{3}}\left(F_{k_{2}}^{-1}\left(F_{k_{1}}(x)\right)\right)
$$

- Standardized in 1999
- Still widely used, but it is relatively slow (three block cipher operations)
- Current gold standard: AES

CS 555:Week 6: Topic 2 Stream Ciphers

PRG Security as a Game

Stream Cipher vs PRG

- PRG pseudorandom bits output all at once
- Stream Cipher
- Pseudorandom bits can be output as a stream
- RC4, RC5 (Ron's Code)

$$
\begin{aligned}
& \mathrm{st}_{0}:=\operatorname{lnit}(\mathrm{s}) \\
& \text { For } \mathrm{i}=1 \text { to } \ell \text { : } \\
& \qquad\left(\mathrm{y}_{\mathrm{i}}, \mathrm{st}_{\mathrm{i}}\right):=\text { GetBits }\left(\mathrm{st}_{\mathrm{i}-1}\right)
\end{aligned}
$$

Output: $\mathrm{y}_{1}, \ldots, \mathrm{y}_{\ell}$

Linear Feedback Shift Register

Linear Feedback Shift Register

- State at time t: $s_{n-1}^{t}, \ldots, s_{1}^{t}, s_{0}^{t}$ (n registers)
- Feedback Coefficients: $\mathrm{S} \subseteq\{0, \ldots, n\}$

Linear Feedback Shift Register

- State at time t: $s_{n-1}^{t}, \ldots, s_{1}^{t}, s_{0}^{t}$ (n registers)
- Feedback Coefficients: $S \subseteq\{0, \ldots, n-1\}$
- State at time $\mathbf{t + 1}: \oplus_{i \in S} s_{i}^{t}, s_{n-1}^{t}, \ldots, s_{1}^{t}$,

$$
s_{n-1}^{t+1}=\oplus_{i \in S} s_{i}^{t}, \quad \text { and } \quad s_{i}^{t+1}=s_{i+1}^{t} \text { for } \mathrm{i}<\mathrm{n}-1
$$

Linear Feedback Shift Register

- Observation 1: First n bits of output reveal initial state

$$
y_{1}, \ldots, y_{n}=s_{0}^{0}, s_{1}^{0}, \ldots, s_{n-1}^{0}
$$

- Observation 2: Next n bits allow us to solve for n unknowns

$$
\begin{gathered}
x_{i}=\left\{\begin{array}{cc}
1 & \text { if } i \in S \\
0 & \text { otherwise }
\end{array}\right. \\
y_{n+1}=y_{n} x_{n-1}+\cdots+y_{1} x_{0}
\end{gathered}
$$

Linear Feedback Shift Register

- Observation 1: First n bits of output reveal initial state

$$
y_{1}, \ldots, y_{n}=s_{0}^{0}, s_{1}^{0}, \ldots, s_{n-1}^{0}
$$

- Observation 2: Next n bits allow us to solve for n unknowns

$$
\begin{gathered}
x_{i}=\left\{\begin{array}{cc}
1 & \text { if } i \in S \\
0 & \text { otherwise }
\end{array}\right. \\
y_{n+1}=y_{n} x_{n-1}+\cdots+y_{1} x_{0} \bmod 2
\end{gathered}
$$

Linear Feedback Shift Register

- Observation 2: Next n bits allow us to solve for n unknowns

$$
\begin{gathered}
x_{i}=\left\{\begin{array}{cc}
1 & \text { if } i \in S \\
0 & \text { otherwise }
\end{array}\right. \\
y_{n+1}=y_{n} x_{n-1}+\cdots+y_{1} x_{0} \bmod 2 \\
\vdots \\
y_{2 n}=y_{2 n-1} x_{n-1}+\cdots+y_{n} x_{0} \bmod 2
\end{gathered}
$$

Removing Linearity

- Attacks exploited linear relationship between state and output bits
- Nonlinear Feedback:

$$
\begin{gathered}
s_{n-1}^{t+1}=\bigoplus_{t \in S} S_{t^{\prime}}^{t} \\
S_{n-1}^{t+1}=g\left(s_{0}^{t}, S_{1}^{t}, \ldots, S_{n-1}^{t}\right)
\end{gathered}
$$

Removing Linearity

- Attacks exploited linear relationship between state and output bits
- Nonlinear Combination:

$$
y_{t+1}=f\left(s_{0}^{t}, s_{1}^{t}, \ldots, s_{n-1}^{t}\right)
$$

- Important: f must be balanced!

$$
\operatorname{Pr}[f(x)=1] \approx \frac{1}{2}
$$

Trivium (2008)

- Won the eSTREAM competition
- Currently, no known attacks are better than brute force
- Couples Output from three nonlinear Feedback Shift Registers
- First 4*288 "output bits" are discared

Combination Generator

- Attacks exploited linear relationship between state and output bits
- Nonlinear Combination:

$$
y_{t+1}=f\left(s_{0}^{t}, s_{1}^{t}, \ldots, s_{n-1}^{t}\right)
$$

- Important: f must be balanced!

$$
\operatorname{Pr}[f(x)=1] \approx \frac{1}{2}
$$

Feedback Shift Registers

- Good performance in hardware
- Performance is less ideal for software

Stream Ciphers

- RC4
- A proprietary cipher owned by RSA, designed by Ron Rivest in 1987 (public 1994)
- Widely used (web SSL/TLS, wireless WEP).
- Distinguishable from random stream
- Second byte of output is 0 with probability $\approx \frac{2}{256}$ (vs. $\frac{1}{256}$ for a truly random stream)
- Newer Versions: RC5 and RC6
- Salsa20
- Rijndael selected by NIST as AES in 2000

RC4 Attacks

- Wired Equivalent Privacy (WEP) encryption used RC4 with an initialization vector
- Description of RC4 doesn't involve initialization vector...
- But WEP imposes an initialization vector
- K=IV || K'
- Since IV is transmitted attacker may have first few bytes of the secret key K!
- Giving the attacker partial knowledge of K often allows recovery of the entire key K^{\prime} over time!

Hash Functions from Block Ciphers

- Davies-Meyer Construction from block cipher F_{K}

$$
H(K, x)=F_{K}(x) \oplus x
$$

Theorem: If $F:\{0,1\}^{\lambda} \times\{0,1\}^{\lambda} \rightarrow\{0,1\}^{\lambda}$ is modeled as an ideal block cipher then Davies-Meyer construction is a collision-resistant hash function (Concrete: Need roughly $q \approx 2^{\lambda / 2}$ queries to find collision)

Ideal Cipher Model: For each key K model F_{K} as a truly random permutation which may only be accessed in black box manner.

- (Equivalent to Random Oracle Model)

Advanced Encryption Standard (AES)

- (1997) US National Institute of Standards and Technology (NIST) announces competition for new block cipher to replace DES
- Fifteen algorithms were submitted from all over the world
- Analyzed by NIST
- Contestants given a chance to break competitors schemes
- October, 2000 NIST announces a winner Rijndael
- Vincent Rijmen and Joan Daemen
- No serious vulnerabilities found in four other finalists
- Rijndael was selected for efficiency, hardware performance, flexibility etc...

Advanced Encryption Standard

- Block Size: 128 bits (viewed as 4×4 byte array)
- Key Size: 128, 192 or 256
- Essentially a Substitution Permutation Network
- AddRoundKey: Generate 128-bit sub-key from master key XOR with current state
- SubBytes: Each byte of state array (16 bytes) is replaced by another byte according a a single S-box (lookup table)
- ShiftRows - shift ith row by i bytes
- MixColumns - permute the bits in each column

Substitution Permutation Networks

- S-box a public "substitution function" (e.g. $S \in$ Perm $_{8}$).
- S is not part of a secret key, but can be used with one

$$
\mathrm{f}(\mathrm{x})=\mathrm{S}(\mathrm{x} \oplus k)
$$

Input to round: x, k (k is subkey for current round)

1. Key Mixing: Set $\mathrm{x}:=\mathrm{x} \oplus k$

Note: there are only n ! possible bit mixing permutations of [n] as opposed to $2^{n!}$ Permutations of $\{0,1\}^{n}$
2. Substitution: $x:=S_{1}\left(x_{1}\right)\left\|S_{2}\left(x_{2}\right)\right\| \cdots \| S_{8}\left(x_{8}\right)$
3. Bit Mixing Permutation: permute the bits of x to obtain the round output

Substitution Permutation Networks

- Proposition 6.3: Let F be a keyed function defined by a Substitution Permutation Network. Then for any keys/number of rounds F_{k} is a permutation.
- Why? Composing permutations f,g results in another permutation $h(x)=g(f(x))$.

Advanced Encryption Standard

- Block Size: 128 bits
- Key Size: 128, 192 or 256
- Essentially a Substitution Permutation Network
- AddRoundKey: Generate 128-bit sub-key from master key, XOR with current state array
- SubBytes: Each byte of state array (16 bytes) is replaced by another byte according a single S-box (lookup table)
- ShiftRows
- MixColumns

AddRoundKey:
Round Key (16 Bytes)

11110000			
01100010	\ldots		
00110000		\ldots	
11111111			\ldots

11111111			
11000001	...		
11111100		...	
10000000			...

State

State

S(11111111)			
$\mathbf{S (1 1 0 0 0 0 0 1)}$	$\mathrm{S}(\ldots)$		
$\mathbf{S (1 1 1 1 1 1 0 0)}$		$\mathrm{S}(\ldots)$	
$\mathbf{S (1 0 0 0 0 0 0 0)}$			$\mathrm{S}(\ldots)$

Shift Rows

$S(11111111)$			
	S(11000001)	$S(\ldots)$	
$S(\ldots)$		$S(11111100)$	
		$S(\ldots)$	$S(\mathbf{1 0 0 0 0 0 0 0})$

State

$S(11111111)$			
	S(11000001)	$S(\ldots)$	
$S(\ldots)$		$S(11111100)$	
		$S(\ldots)$	$S(10000000)$

Mix Columns

Invertible (linear) transformation.

Key property: if inputs differ in $b>0$ bytes then output differs in 5-b bytes (minimum)

AES

- We just described one round of the SPN
- AES uses
- 10 rounds (with 128 bit key)
- 12 rounds (with 192 bit key)
- 14 rounds (with 256 bit key)

Announcements

- Homework 2 Solutions Posted (See Piazza).
- Please read through carefully and make sure you understand the solutions to each problem.
- Grading in progress
- No Class on Tuesday (October Break)
- Look for Practice Midterm Next Week

Recap

- 2DES, Meet in the Middle Attack
- 3DES
- Stream Ciphers
- Breaking Linear Feedback Shift Registers
- Trivium
- AES

AES Attacks?

- Side channel attacks affect a few specific implementations
- But, this is not a weakness of AES itself
- Timing attack on OpenSSL's implementation AES encryption (2005, Bernstein)
- (2009) Related-Key Attack on 11 round version of AES
- Related Key Attack: Attacker convinces Alice to use two related (but unknown) keys
- recovers 256 -bit key in time 2^{70}
- But AES is 14 round (with 256 bit key) so the attack doesn't apply in practice
- (2009) Related Key Attack on 192-bit and 256 bit version of AES
- recovers 256-bit key in time $2^{99.5}$.
- (2011) Key Recovery attack on AES-128 in time $2^{126.2}$.
- Improved to $2^{126.0}$ for AES-128, $2^{189.9}$ for AES-192 and $2^{254.3}$ for AES-256
- First public cipher approved by NSA for Top Secret information
- SECRET level (AES-128,AES-192 \& AES-256), TOP SECRET level (AES-128,AES-192 \& AES-256)

NIST Recommendations

Ok, as CRHF and in Digital Signatures

Ok, to use for HMAC, Key Derivation and as PRG

Date	Minimum of Strength	Symmetric Algorithms	Factoring Modulus		ete thm Group	Elliptic Curve	Hash (A)	Hash (B)
(Legacy)	80	2TDEA*	1024	160	1024	160	SHA-1**	
2016-2030	112	3TDEA	2048	224	2048	224	SHA-224 SHA-512/224 SHA3-224	
2016-2030 \& beyond	128	AES-128	3072	256	3072	256	SHA-256 SHA-512/256 SHA3-256	SHA-1
$\begin{gathered} 2016-2030 \\ \text { \& beyond } \end{gathered}$	192	AES-192	7680	384	7680	384	$\begin{aligned} & \text { SHA-384 } \\ & \text { SHA3-384 } \end{aligned}$	$\begin{gathered} \text { SHA-224 } \\ \text { SHA-512/224 } \end{gathered}$
$\begin{gathered} 2016-2030 \\ \text { \& beyond } \end{gathered}$	256	AES-256	15360	512	15360	512	$\begin{aligned} & \text { SHA-512 } \\ & \text { SHA3-512 } \end{aligned}$	SHA-256 SHA-512/256 SHA-384 SHA-512 SHA3-512

Linear Cryptanalysis

$$
y=F_{K}(x)
$$

Definition: Fixed set of input bits $i_{1}, \ldots, i_{\text {in }}$ and output bits $i_{1}{ }^{\prime}, \ldots, i_{\text {out }}{ }^{\prime}$ are said to have ε-linear bias if the following holds

$$
\left|\operatorname{Pr}\left[x_{i_{1}} \oplus x_{i_{2}} \ldots \oplus x_{i_{i_{n}}} \oplus y_{i_{1}} \oplus y_{i_{2^{\prime}}} \ldots \oplus y_{i_{\text {out }}}\right]\right|=\varepsilon
$$

(randomness taken over the selection of input x and secret key K)

Linear Cryptanalysis

Definition: Fixed set of input bits $i_{1}, \ldots, i_{\text {in }}$ and output bits $i_{1}{ }^{\prime}, \ldots, i_{\text {out }}{ }^{\prime}$ are said to have ε-linear bias if the following holds

$$
\left|\operatorname{Pr}\left[x_{i_{1}} \oplus x_{i_{2}} \ldots \oplus x_{i_{\text {in }}} \oplus y_{i_{1}} \oplus y_{i_{2}, \ldots}, \ldots y_{i_{o u t^{\prime}}}\right]-\frac{1}{2}\right|=\varepsilon
$$

(randomness taken over the selection of input x and secret key $\mathrm{K}, \mathrm{y}=F_{K}(x)$)
Matsui: DES can be broken with just 2^{43} known plaintext/ciphertext pairs.

- Lots of examples needed!
- But the examples do not need to be chosen plaintext/ciphertext pairs...
- One encrypted file can provide a large amounts of known plaintext

Differential Cryptanalysis

Definition: We say that the differential $\left(\triangle_{x}, \triangle_{y}\right)$ occurs with probability p in the keyed block cipher F if

$$
\operatorname{Pr}\left[F_{K}\left(x_{1}\right) \oplus F_{K}\left(x_{1} \oplus \Delta_{x}\right)=\Delta_{y}\right] \geq p
$$

Can Lead to Efficient (Round) Key Recovery Attacks
Exploiting Weakness Requires: well over $\frac{1}{p}$ chosen plaintext-ciphertext pairs

Differentials in S-box can lead to (weaker) differentials in SPN.

