
Cryptography
CS 555

Week 5:
• Cryptographic Hash Functions
• HMACs
• Generic Attacks
• Random Oracle Model
• Applications of Hashing
Readings: Katz and Lindell Chapter 5, Appendix A.4

1Spring 2021

Recap

• Authenticated Encryption + CCA-Security
• Encrypt and Authenticate [SSL]
• Authenticate then Encrypt [TLS] (Caution Required)
• Encrypt then Authenticate!

𝐸𝐸𝐸𝐸𝐸𝐸𝐾𝐾 𝑚𝑚 = c, Mac𝐾𝐾𝑀𝑀
′ c where c = Enc𝐾𝐾𝐸𝐸

′ 𝑚𝑚
• Secure Communication

• Attacks: Reflection/Replay/Reordering + Defenses
• AES-GCM

• Cryptographic Hash Functions
• Definitional Challenges

2

Week 5: Topic 1:
Cryptographic Hash Functions

3

Keyed Hash Function Syntax

• Two Algorithms
• Gen(1𝑛𝑛;𝑅𝑅) (Key-generation algorithm)

• Input: Random Bits R
• Output: Secret key s

• 𝐻𝐻𝑠𝑠(𝑚𝑚) (Hashing Algorithm)
• Input: key 𝑠𝑠 and message m ∈ 0,1 ∗ (unbounded length)
• Output: hash value 𝐻𝐻𝑠𝑠(𝑚𝑚) ∈ 0,1 ℓ 𝑛𝑛

• Fixed length hash function
• 𝑚𝑚 ∈ 0,1 ℓ′ 𝑛𝑛 with ℓ′ 𝑛𝑛 > ℓ 𝑛𝑛
• Example: 𝑚𝑚 ∈ 0,1 2𝑛𝑛 and 𝐻𝐻𝑠𝑠(𝑚𝑚) ∈ 0,1 𝑛𝑛

4

Collision Experiment (𝐻𝐻𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐴𝐴,Π(𝑛𝑛))

5

s = Gen(1𝑛𝑛;𝑅𝑅)

s

x1,x2

Definition: (Gen,H) is a collision resistant hash function if
∀𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴 ∃𝜇𝜇 (negligible) s. t

Pr 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐴𝐴,Π(𝑛𝑛)=1 ≤ 𝜇𝜇(𝑛𝑛)

𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐴𝐴,Π(𝑛𝑛)= �1 𝑖𝑖𝑖𝑖 𝐻𝐻𝑠𝑠 𝑥𝑥1 = 𝐻𝐻𝑠𝑠 𝑥𝑥2
0 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

Collision Experiment (𝐻𝐻𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐴𝐴,Π(𝑛𝑛))

6

s = Gen(1𝑛𝑛;𝑅𝑅)

s

x1,x2

Definition: (Gen,H) is a collision resistant hash function if
∀𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴 ∃𝜇𝜇 (negligible) s. t

Pr 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐴𝐴,Π(𝑛𝑛)=1 ≤ 𝜇𝜇(𝑛𝑛)

𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐴𝐴,Π(𝑛𝑛)= �1 𝑖𝑖𝑖𝑖 𝐻𝐻𝑠𝑠 𝑥𝑥1 = 𝐻𝐻𝑠𝑠 𝑥𝑥2
0 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

Key is not key
secret (just

random)

For simplicity we will
sometimes just say that H

(or Hs) is a collision
resistant hash function

Concrete Security (𝐻𝐻𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐴𝐴,Π(𝑛𝑛))

7

s = Gen(1𝑛𝑛;𝑅𝑅)

s

x1,x2

Definition: (Gen,H) is a 𝑡𝑡, 𝜀𝜀 −collision resistant hash function
if ∀ 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝐴𝐴 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑖𝑖𝑖𝑖 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑎𝑎𝑎𝑎 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑡𝑡(𝑛𝑛)

Pr 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐴𝐴,Π(𝑛𝑛)=1 ≤ 𝜀𝜀(𝑛𝑛)

𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐴𝐴,Π(𝑛𝑛)= �1 𝑖𝑖𝑖𝑖 𝐻𝐻𝑠𝑠 𝑥𝑥1 = 𝐻𝐻𝑠𝑠 𝑥𝑥2
0 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

Theory vs Practice

• Most cryptographic hash functions used in practice are un-keyed
• Examples: MD5, SHA1, SHA2, SHA3, Blake2B

• Tricky to formally define collision resistance for keyless hash function
• There is a PPT algorithm to find collisions
• We just usually can’t find this algorithm 
• Guarantee for protocol using H

If we know an explicit efficient algorithm A
breaking our protocol then there is an efficient
blackbox reduction transforming A into an efficient
collision finding algorithm.

8

Weaker Requirements for Cryptographic Hash

• Target-Collision Resistance

9

s = Gen(1𝑛𝑛;𝑅𝑅)
𝑥𝑥 ∈ 0,1 𝑛𝑛

s,x

x’

HashTgtCollA,Π(𝑛𝑛)= � 1 if Hs x′ = Hs x
0 otherwise

Question: Why is collision resistance stronger?

Weaker Requirements for Cryptographic Hash

• Preimage Resistance (One-Wayness)

10

s = Gen(1𝑛𝑛;𝑅𝑅)
𝑦𝑦 ∈ 0,1 ℓ(𝑛𝑛)

s, 𝑦𝑦

x

HashPreImgResA,Π(n)= � 1 if Hs x = y
0 otherwise

Question: Why is collision resistance stronger?

Merkle-Damgård Transform

• Most cryptographic hash functions accept fixed length inputs

• What if we want to hash arbitrary length strings?

Construction: Suppose (Gen,h) fixed length hash function from 2n bits
to n bits, define 𝐻𝐻𝑠𝑠 as follows

𝐻𝐻𝑠𝑠(𝑥𝑥1, … , 𝑥𝑥𝑑𝑑) = ℎ𝑠𝑠 ℎ𝑠𝑠 ℎ𝑠𝑠 ℎ𝑠𝑠 …ℎ𝑠𝑠 0𝑛𝑛 ∥ 𝑥𝑥1 ∥ 𝑥𝑥𝑑𝑑−1 ∥ 𝑥𝑥𝑑𝑑 ∥ 𝑥𝑥

11

Merkle-Damgård Transform

Construction: (Gen,h) fixed length hash function from 2n bits to n bits

𝐻𝐻𝑠𝑠(𝑥𝑥) =
1. Break x into n bit segments x1,..,xd (pad last block by 0’s)
2. 𝑧𝑧0 = 0𝑛𝑛 (initialization)
3. For i = 1 to d

1. 𝑧𝑧𝑖𝑖 = ℎ𝑠𝑠 𝑧𝑧𝑖𝑖−1 ∥ 𝑥𝑥i

4. Output 𝑧𝑧𝑑𝑑+1 = ℎ𝑠𝑠 𝑧𝑧𝑑𝑑 ∥ 𝐿𝐿 where 𝐿𝐿 encodes 𝑥𝑥 as an n-bit string

12

Merkle-Damgård Transform

Theorem: If (Gen,h) is collision resistant then so is (Gen,H)

Proof: Show that any collision in Hs yields a collision in hs. Thus a PPT
attacker AH for (Gen,H) can be transformed into PPT attacker Ah for (Gen,h).

Suppose that AH finds a collision i.e., distinct x and x’ such that
𝐻𝐻𝑠𝑠(𝑥𝑥) = 𝐻𝐻𝑠𝑠(𝑥𝑥′)

(note x and x’ may have different lengths)

13

Merkle-Damgård Transform

Theorem: If (Gen,h) is collision resistant then so is (Gen,H)

Proof: Suppose that 𝐻𝐻𝑠𝑠(𝑥𝑥) = 𝐻𝐻𝑠𝑠(𝑥𝑥′). We will extract a collision for ℎ𝑠𝑠.
Case 1: L=|x|=|x’|=L’ (proof for case two is similar)

14

𝐻𝐻𝑠𝑠(𝑥𝑥) = 𝑧𝑧𝑑𝑑+1 = ℎ𝑠𝑠 𝑧𝑧𝑑𝑑 ∥ 𝐿𝐿 = 𝐻𝐻𝑠𝑠(𝑥𝑥𝑥) = 𝑧𝑧𝑑𝑑+1′ = ℎ𝑠𝑠 𝑧𝑧𝑑𝑑′ ∥ 𝐿𝐿𝐿

𝑧𝑧𝑑𝑑 ∥ 𝐿𝐿 =? 𝑧𝑧𝑑𝑑′ ∥ 𝐿𝐿𝐿No  Found collision
ℎ𝑠𝑠 𝑧𝑧𝑑𝑑 ∥ 𝐿𝐿 = ℎ𝑠𝑠 𝑧𝑧𝑑𝑑′ ∥ 𝐿𝐿𝐿 Yes?

𝑧𝑧𝑑𝑑 = ℎ𝑠𝑠 𝑧𝑧𝑑𝑑−1 ∥ 𝑥𝑥𝑑𝑑 = ℎ𝑠𝑠 𝑧𝑧𝑑𝑑−1′ ∥ 𝑥𝑥𝑑𝑑′ = 𝑧𝑧𝑑𝑑′

Merkle-Damgård Transform

Theorem: If (Gen,h) is collision resistant then so is (Gen,H)

Proof: Suppose that
𝐻𝐻𝑠𝑠(𝑥𝑥) = 𝐻𝐻𝑠𝑠(𝑥𝑥′)

Case 1: L=|x|=|x’|=L’ (proof for case two is similar)

15

𝑧𝑧𝑑𝑑 = ℎ𝑠𝑠 𝑧𝑧𝑑𝑑−1 ∥ 𝑥𝑥𝑑𝑑 = ℎ𝑠𝑠 𝑧𝑧𝑑𝑑−1′ ∥ 𝑥𝑥𝑑𝑑′ = 𝑧𝑧𝑑𝑑′

𝑧𝑧𝑑𝑑−1 ∥ 𝑥𝑥𝑑𝑑 =? 𝑧𝑧𝑑𝑑−1′ ∥ 𝑥𝑥𝑑𝑑′
No  Found collision
ℎ𝑠𝑠 𝑧𝑧𝑑𝑑−1 ∥ 𝑥𝑥𝑑𝑑 = ℎ𝑠𝑠 𝑧𝑧𝑑𝑑−1′ ∥ 𝑥𝑥𝑑𝑑′ Yes?

𝑧𝑧𝑑𝑑−1 = ℎ𝑠𝑠 𝑧𝑧𝑑𝑑−2 ∥ 𝑥𝑥𝑑𝑑−1 = ℎ𝑠𝑠 𝑧𝑧𝑑𝑑−2′ ∥ 𝑥𝑥𝑑𝑑−1′ = 𝑧𝑧𝑑𝑑−1′

Merkle-Damgård Transform

Theorem: If (Gen,h) is collision resistant then so is (Gen,H)

Proof: Suppose that
𝐻𝐻𝑠𝑠(𝑥𝑥) = 𝐻𝐻𝑠𝑠(𝑥𝑥′)

Case 1: |x|=|x’| (proof for case two is similar)

16

If for some i we have 𝑧𝑧𝑖𝑖−1 ∥ 𝑥𝑥𝑖𝑖 ≠ 𝑧𝑧𝑖𝑖−1′ ∥ 𝑥𝑥𝑖𝑖′ then we will find a collision

But x and x’ are different so we must have 𝑥𝑥𝑖𝑖 ≠ 𝑥𝑥𝑖𝑖′ for some 𝑖𝑖 ≤ 𝑑𝑑!

Merkle-Damgård Transform

Theorem (Concrete Version): If (Gen,h) is (𝑡𝑡, 𝜀𝜀)-collision resistant then
(Gen,H) is is (𝑡𝑡′, 𝜀𝜀)-collision resistant for where 𝑡𝑡′ = 𝑂𝑂 𝑡𝑡

Analysis: Run attacker AH to get pair x and x’ (time t), then compute 𝑧𝑧𝑖𝑖
(resp. 𝑧𝑧𝑖𝑖′) values to extract collision.

17

𝐻𝐻𝑠𝑠(𝑥𝑥) = 𝑧𝑧𝑑𝑑+1 = ℎ𝑠𝑠 𝑧𝑧𝑑𝑑 ∥ 𝐿𝐿 = 𝐻𝐻𝑠𝑠(𝑥𝑥𝑥) = 𝑧𝑧𝑑𝑑+1′ = ℎ𝑠𝑠 𝑧𝑧𝑑𝑑′ ∥ 𝐿𝐿𝐿

𝑧𝑧𝑑𝑑 ∥ 𝐿𝐿 =? 𝑧𝑧𝑑𝑑′ ∥ 𝐿𝐿𝐿No  Found collision
ℎ𝑠𝑠 𝑧𝑧𝑑𝑑 ∥ 𝐿𝐿 = ℎ𝑠𝑠 𝑧𝑧𝑑𝑑′ ∥ 𝐿𝐿𝐿 Yes?

𝑧𝑧𝑑𝑑 = ℎ𝑠𝑠 𝑧𝑧𝑑𝑑−1 ∥ 𝑥𝑥𝑑𝑑 = ℎ𝑠𝑠 𝑧𝑧𝑑𝑑−1′ ∥ 𝑥𝑥𝑑𝑑′ = 𝑧𝑧𝑑𝑑′

Week 5: Topic 2:
HMACs and Generic Attacks

18

MACs for Arbitrary Length Messages

MacK(m)=
• Select random n/4 bit string r
• Let 𝑡𝑡𝑖𝑖 = Mac𝐾𝐾′ 𝑟𝑟 ∥ ℓ ∥ 𝑖𝑖 ∥ 𝑚𝑚𝑖𝑖 for i=1,…,d

• (Note: encode i and ℓ as n/4 bit strings)
• Output 𝑟𝑟, 𝑡𝑡1, … , 𝑡𝑡𝑑𝑑

Theorem 4.8: If Π’ is a secure MAC for messages of fixed length n,
above construction Π = (Mac, Vrfy) is secure MAC for arbitrary length
messages.

20

MACs for Arbitrary Length Messages

MacK(m)=
• Select random n/4 bit string r
• Let 𝑡𝑡𝑖𝑖 = Mac𝐾𝐾′ 𝑟𝑟 ∥ ℓ ∥ 𝑖𝑖 ∥ 𝑚𝑚𝑖𝑖 for i=1,…,d

• (Note: encode i and ℓ as n/4 bit strings)
• Output 𝑟𝑟, 𝑡𝑡1, … , 𝑡𝑡𝑑𝑑

Theorem 4.8: If Π’ is a secure MAC for messages of fixed length n,
above construction Π = (Mac, Vrfy) is secure MAC for arbitrary length
messages.

21

Disadvantage 1: Long
output

Randomized Construction (no
canonical verification). Disadvantage?

Disadvantages: Lose
Strong-MAC Guarantee
(Multiple valid MACs of

same message)

Hash and MAC Construction

Start with Π = Mac, Vrfy , a secure MAC for messages of fixed length, and
(GenH,H) a collision resistant hash function and define Π′

𝑀𝑀𝑀𝑀𝑀𝑀 𝐾𝐾𝑀𝑀,𝑆𝑆
′ 𝑚𝑚 = 𝑀𝑀𝑀𝑀𝑀𝑀𝐾𝐾𝑀𝑀

𝐻𝐻𝑠𝑠 𝑚𝑚

𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 𝐾𝐾𝑀𝑀,𝑆𝑆
′ 𝑚𝑚, 𝑡𝑡 = 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝐾𝐾𝑀𝑀

𝐻𝐻𝑠𝑠 𝑚𝑚 , 𝑡𝑡

Theorem 5.6: Π′ is a secure MAC for arbitrary length message assuming that Π is
a secure MAC and (GenH,H) is collision resistant.

Note: If Vrfy𝐾𝐾𝑀𝑀
𝑚𝑚, 𝑡𝑡 is canonical then Vrfy 𝐾𝐾𝑀𝑀,𝑆𝑆

′ 𝑚𝑚, 𝑡𝑡 is canonical.

22

Hash and MAC Construction

Start with (Mac,Vrfy) a MAC for messages of fixed length and (GenH,H) a
collision resistant hash function

𝑀𝑀𝑀𝑀𝑀𝑀 𝐾𝐾𝑀𝑀,𝑆𝑆
′ 𝑚𝑚 = 𝑀𝑀𝑀𝑀𝑀𝑀𝐾𝐾𝑀𝑀

𝐻𝐻𝑠𝑠 𝑚𝑚

Theorem 5.6: Above construction is a secure MAC.

Proof Intuition: If attacker successfully forges a valid MAC tag t’ for unseen
message m’ then either
• Case 1: 𝐻𝐻𝑠𝑠 𝑚𝑚′ = 𝐻𝐻𝑠𝑠 𝑚𝑚𝑖𝑖 for some previously requested message mi
• Case 2: 𝐻𝐻𝑠𝑠 𝑚𝑚𝑚 ≠ 𝐻𝐻𝑠𝑠 𝑚𝑚𝑖𝑖 for every previously requested message mi

23

Hash and MAC Construction

Theorem 5.6: Above construction is a secure MAC.

Proof Intuition: If attacker successfully forges a valid MAC tag t’ for
unseen message m’ then either
• Case 1: 𝐻𝐻𝑠𝑠 𝑚𝑚′ = 𝐻𝐻𝑠𝑠 𝑚𝑚𝑖𝑖 for some previously requested message mi

• Attacker can find hash collisions!
• Case 2: 𝐻𝐻𝑠𝑠 𝑚𝑚𝑚 ≠ 𝐻𝐻𝑠𝑠 𝑚𝑚𝑖𝑖 for every previously requested message mi

• Attacker forged a valid new tag on the “new message” 𝑯𝑯𝒔𝒔 𝒎𝒎𝒎
• Violates security of the original fixed length MAC

24

Hash and MAC Construction
Start with (Mac,Vrfy) a MAC for messages of fixed length and (GenH,H) a collision resistant hash function

𝑀𝑀𝑀𝑀𝑀𝑀 𝐾𝐾𝑀𝑀,𝑆𝑆
′ 𝑚𝑚 = 𝑀𝑀𝑀𝑀𝑀𝑀𝐾𝐾𝑀𝑀

𝐻𝐻𝑠𝑠 𝑚𝑚

Theorem 5.6 (Concrete Version): If 𝑀𝑀𝑀𝑀𝑀𝑀 is 𝑡𝑡, 𝑞𝑞𝑀𝑀𝑀𝑀𝑀𝑀 , 𝜀𝜀𝑀𝑀𝑀𝑀𝑀𝑀 − secure and (GenH,H) is 𝑡𝑡, 𝜀𝜀𝐻𝐻𝐻𝐻𝐻𝐻𝐻 −collision resistant then 𝑀𝑀𝑀𝑀𝑀𝑀 𝐾𝐾𝑀𝑀,𝑆𝑆
′ is

𝑂𝑂(𝑡𝑡), 𝑞𝑞𝑀𝑀𝑀𝑀𝑀𝑀 , 𝜀𝜀𝑀𝑀𝑀𝑀𝑀𝑀 + 𝜀𝜀𝐻𝐻𝐻𝐻𝐻𝐻𝐻 − 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

Proof Intuition: When A succeeds we either get a hash collision (case 1) or a 𝑀𝑀𝑀𝑀𝑀𝑀𝐾𝐾𝑀𝑀
forgery (case 2)

𝐢𝐢𝐢𝐢 Pr case 2 > 𝜀𝜀𝑀𝑀𝑀𝑀𝑀𝑀 we could violate 𝑡𝑡, 𝑞𝑞𝑀𝑀𝑀𝑀𝑀𝑀 , 𝜀𝜀𝑀𝑀𝑀𝑀𝑀𝑀 − secure for 𝑀𝑀𝑀𝑀𝑀𝑀𝐾𝐾𝑀𝑀

Simulate 𝑀𝑀𝑀𝑀𝑀𝑀 𝐾𝐾𝑀𝑀,𝑆𝑆
′ attacker A

when attacker makes a query 𝑀𝑀𝑀𝑀𝑀𝑀 𝐾𝐾𝑀𝑀,𝑆𝑆
′ (𝑚𝑚) we

1. compute 𝐻𝐻𝑠𝑠 𝑚𝑚 and

2. forward 𝐻𝐻𝑠𝑠 𝑚𝑚 to 𝑀𝑀𝑀𝑀𝑀𝑀𝐾𝐾𝑀𝑀
oracle to get back 𝑀𝑀𝑀𝑀𝑀𝑀𝐾𝐾𝑀𝑀

𝐻𝐻𝑠𝑠 𝑚𝑚
A’s tag yields a 𝑀𝑀𝑀𝑀𝑀𝑀𝐾𝐾𝑀𝑀

forgery for new message with probability at least Pr case 2 > 𝜀𝜀𝑀𝑀𝑀𝑀𝑀𝑀
Similar argument I𝐟𝐟 Pr case 1 > 𝜀𝜀𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 we could violate 𝑡𝑡, 𝜀𝜀𝐻𝐻𝐻𝐻𝐻𝐻𝐻 −collision resistance for 𝐻𝐻𝑠𝑠 .
Therefore, A succeeds with probability at most 𝜀𝜀𝑀𝑀𝑀𝑀𝑀𝑀 + 𝜀𝜀𝐻𝐻𝐻𝐻𝐻𝐻𝐻

25

Recap

• Definition of Collision Resistant Hash Functions (Gen,H)
• Definitional challenges
• Gen(1n) outputs a public seed.

• Merkle-Damgård construction to hash arbitrary length strings
• Proof of correctness

• Hash and MAC construction
• Proof of correctness

26

MAC from Collision Resistant Hash

• Failed Attempt:

Broken if 𝐻𝐻𝑠𝑠uses Merkle-Damgård Transform. Let 𝑚𝑚3 encode length of k ∥ 𝑚𝑚1 ∥ 𝑚𝑚2
and 𝐿𝐿3 encode the length ofk ∥ 𝑚𝑚1 ∥ 𝑚𝑚2 ∥ 𝑚𝑚3

𝑀𝑀𝑀𝑀𝑀𝑀 𝑘𝑘,𝑆𝑆 𝑚𝑚1 ∥ 𝑚𝑚2 ∥ 𝑚𝑚3 = ℎ𝑠𝑠 ℎ𝑠𝑠 ℎ𝑠𝑠 ℎ𝑠𝑠 ℎ𝑠𝑠 0𝑛𝑛 ∥ 𝑘𝑘 ∥ 𝑚𝑚1 ∥ 𝑚𝑚2 ∥ 𝑚𝑚3 ∥ 𝐿𝐿3
= ℎ𝑠𝑠 𝑀𝑀𝑀𝑀𝑀𝑀 𝑘𝑘,𝑆𝑆 𝑚𝑚1 ∥ 𝑚𝑚2 ∥ 𝐿𝐿3

Why does this mean 𝑴𝑴𝑴𝑴𝑴𝑴 𝒌𝒌,𝑺𝑺 is broken?

27

𝑀𝑀𝑀𝑀𝑀𝑀 𝑘𝑘,𝑆𝑆 𝑚𝑚 = 𝐻𝐻𝑠𝑠 𝑘𝑘 ∥ 𝑚𝑚

MAC from Collision Resistant Hash

• Failed Attempt: 𝑀𝑀𝑀𝑀𝑀𝑀 𝑘𝑘,𝑆𝑆 𝑚𝑚 = 𝐻𝐻𝑠𝑠 𝑘𝑘 ∥ 𝑚𝑚

Broken if 𝐻𝐻𝑠𝑠uses Merkle-Damgård Transform. Let 𝑚𝑚3 encode length of k ∥ 𝑚𝑚1 ∥ 𝑚𝑚2

𝑀𝑀𝑀𝑀𝑀𝑀 𝑘𝑘,𝑆𝑆 𝑚𝑚1 ∥ 𝑚𝑚2 ∥ 𝑚𝑚3 = ℎ𝑠𝑠 ℎ𝑠𝑠 ℎ𝑠𝑠 ℎ𝑠𝑠 ℎ𝑠𝑠 0𝑛𝑛 ∥ 𝑘𝑘 ∥ 𝑚𝑚1 ∥ 𝑚𝑚2 ∥ 𝑚𝑚3 ∥ 𝐿𝐿3
= ℎ𝑠𝑠 𝑀𝑀𝑀𝑀𝑀𝑀 𝑘𝑘,𝑆𝑆 𝑚𝑚1 ∥ 𝑚𝑚2 ∥ 𝐿𝐿3

Why does this mean 𝑴𝑴𝑴𝑴𝑴𝑴 𝒌𝒌,𝑺𝑺 is broken?

1. Attacker asks for 𝛕𝛕 = 𝑀𝑀𝑀𝑀𝑀𝑀 𝑘𝑘,𝑆𝑆 𝑚𝑚1 ∥ 𝑚𝑚2

2. Attacker computes 𝛕𝛕′ = ℎ𝑠𝑠 𝛕𝛕 ∥ 𝐿𝐿3 which is a forgery for the message 𝑚𝑚1 ∥ 𝑚𝑚2 ∥
𝑚𝑚3

28

HMAC

𝑀𝑀𝑀𝑀𝑀𝑀 𝑘𝑘,𝑆𝑆 𝑚𝑚 = 𝐻𝐻𝑠𝑠 𝑘𝑘⨁opad ∥ 𝐻𝐻𝑠𝑠 𝑘𝑘⨁ipad ∥ 𝑚𝑚

ipad?

29

HMAC

𝑀𝑀𝑀𝑀𝑀𝑀 𝑘𝑘,𝑆𝑆 𝑚𝑚 = 𝐻𝐻𝑠𝑠 𝑘𝑘⨁opad ∥ 𝐻𝐻𝑠𝑠 𝑘𝑘⨁ipad ∥ 𝑚𝑚

ipad = inner pad
opad = outer pad

Both ipad and opad are fixed constants.

Why use key twice?
Allows us to prove security from weak collision resistance of Hs

30

HMAC Security

𝑀𝑀𝑀𝑀𝑀𝑀 𝑘𝑘,𝑆𝑆 𝑚𝑚 = 𝐻𝐻𝑠𝑠 𝑘𝑘⨁opad ∥ 𝐻𝐻𝑠𝑠 𝑘𝑘⨁ipad ∥ 𝑚𝑚

Theorem (Informal): Assuming that 𝐻𝐻𝑠𝑠 is weakly collision resistant and
that (certain other plausible assumptions hold) this is a secure MAC.

Weak Collision Resistance: Give attacker oracle access
to 𝑓𝑓 𝑚𝑚 = 𝐻𝐻𝑠𝑠 𝑘𝑘 ∥ 𝑚𝑚 (secret key k remains hidden).

Attacker Goal: Find distinct m, m’ such that 𝑓𝑓 𝑚𝑚 = 𝑓𝑓 𝑚𝑚′

31

HMAC in Practice

• MD5 can no longer be viewed as collision resistant

• However, HMAC-MD5 remained unbroken after MD5 was broken
• Gave developers time to replace HMAC-MD5
• Nevertheless, don’t use HMAC-MD5!

• HMAC-SHA1 still seems to be okay (temporarily), despite collision
• HMAC is efficient and unbroken

• CBC-MAC was not widely deployed because it is “too slow”
• Instead practitioners often used heuristic constructions (which were breakable)

32

Finding Collisions

• Ideal Hashing Algorithm
• Random function H from {0,1}* to {0,1}ℓ

• Suppose attacker has oracle access to H(.)

• Attack 1: Evaluate H(.) on 2ℓ+1 distinct inputs.

33

Can we do
better?

Birthday Attack for Finding Collisions

• Ideal Hashing Algorithm
• Random function H from {0,1}* to {0,1}ℓ
• Suppose attacker has oracle access to H(.)

• Attack 2: Evaluate H(.) on 𝑞𝑞 = 2 ℓ/2 +1 + 1 distinct inputs x1,…,xq.

Pr No Collision = Pr ∀𝑖𝑖 < 𝑗𝑗.𝐻𝐻(xi) ≠ 𝐻𝐻(xj)

= Pr 𝑫𝑫𝟐𝟐 �
𝑖𝑖=3

𝑞𝑞

𝑃𝑃𝑃𝑃 𝑫𝑫𝒊𝒊�𝑫𝑫𝒊𝒊−𝟏𝟏, … ,𝑫𝑫𝟐𝟐

𝑫𝑫𝒊𝒊 = 𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆 𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 𝐻𝐻 𝑥𝑥𝑖𝑖 ≠ 𝐻𝐻 𝑥𝑥𝑖𝑖−1 , … ,𝐻𝐻 𝑥𝑥1 34

Birthday Attack for Finding Collisions

• Ideal Hashing Algorithm
• Random function H from {0,1}* to {0,1}ℓ
• Suppose attacker has oracle access to H(.)

• Attack 2: Evaluate H(.) on 𝑞𝑞 = 2 ℓ/2 +1 + 1 distinct inputs x1,…,xq.

Pr ∀𝑖𝑖 < 𝑗𝑗.𝐻𝐻(xi) ≠ 𝐻𝐻(xj) =

1 × 1 −
1
2ℓ

Pr 𝐻𝐻 𝑥𝑥2 ≠𝐻𝐻 𝑥𝑥1

× 1 −
2
2ℓ

Pr 𝑫𝑫𝟑𝟑| 𝑫𝑫𝟐𝟐

× ⋯× 1 −
2 ℓ/2 +1

2ℓ

Pr 𝑫𝑫𝒒𝒒�𝑫𝑫𝒒𝒒−𝟏𝟏,…,𝑫𝑫𝟐𝟐

35

𝑫𝑫𝟐𝟐

Birthday Attack for Finding Collisions

• Ideal Hashing Algorithm
• Random function H from {0,1}* to {0,1}ℓ

• Suppose attacker has oracle access to H(.)

• Attack 2: Evaluate H(.) on 𝑞𝑞 = 2 ℓ/2 +1 + 1 distinct inputs x1,…,xq.

Pr ∀𝑖𝑖 < 𝑗𝑗.𝐻𝐻(xi) ≠ 𝐻𝐻(xj) = 1 1 −
1
2ℓ

1 −
2
2ℓ

1 −
3
2ℓ

… 1 −
2 ℓ/2 +1

2ℓ

≈ exp
−𝑞𝑞 𝑞𝑞 − 1

2ℓ+1

36

Birthday Attack for Finding Collisions

• Ideal Hashing Algorithm
• Random function H from {0,1}* to {0,1}ℓ
• Suppose attacker has oracle access to H(.)

• Attack 2: Evaluate H(.) on 𝑞𝑞 = 2 ℓ/2 +1 + 1 distinct inputs x1,…,xq.

Pr ∀𝑖𝑖 < 𝑗𝑗.𝐻𝐻(xi) ≠ 𝐻𝐻(xj) = 1 1 −
1
2ℓ

1 −
2
2ℓ

1 −
3
2ℓ

… 1 −
2 ℓ/2 +1

2ℓ

≈ exp
−𝑞𝑞 𝑞𝑞 − 1

2ℓ+1
< exp

−42ℓ

2ℓ+1
= 𝑒𝑒−2 <

1
2

37

Birthday Attack for Finding Collisions

• Ideal Hashing Algorithm
• Random function H from {0,1}* to {0,1}ℓ
• Suppose attacker has oracle access to H(.)

• Attack 2: Evaluate H(.) on 𝑞𝑞 = 2 ℓ/2 +1 + 1 distinct inputs x1,…,xq.

Pr ∀𝑖𝑖 < 𝑗𝑗.𝐻𝐻(xi) ≠ 𝐻𝐻(xj) = 1 1 −
1
2ℓ

1 −
2
2ℓ

1 −
3
2ℓ

… 1 −
2 ℓ/2 +1

2ℓ

≈ exp
−𝑞𝑞 𝑞𝑞 − 1

2ℓ+1
< exp

−42ℓ

2ℓ+1
= 𝑒𝑒−2 <

1
2

38

exp −𝑞𝑞 𝑞𝑞−1
2ℓ+1

< 𝜺𝜺 for 𝑞𝑞 > 2ℓ+1 ln 𝜺𝜺 + 1

Recap

• Collision Resistant Hash Functions
• Merkle–Damgård Construction
• Applications to MACs

• Hash and MAC
• Failed MAC: 𝑀𝑀𝑀𝑀𝑀𝑀 𝑘𝑘,𝑆𝑆 𝑚𝑚 = 𝐻𝐻𝑠𝑠 𝑘𝑘 ∥ 𝑚𝑚
• HMAC

• Birthday Attack: Finds collision in time 𝑞𝑞 = 2 ℓ/2 +1 + 1 (and space 𝑞𝑞)

• Reminder: Homework 2 Due Tonight
• Final Exam: Monday, May 3 at 10:30AM (FRNY B124)

39

Birthday Attack for Finding Collisions

• Ideal Hashing Algorithm
• Random function H from {0,1}* to {0,1}ℓ

• Suppose attacker has oracle access to H(.)

• Attack 2: Evaluate H(.) on 𝑞𝑞 = 2 ℓ/2 +1 + 1 distinct inputs x1,…,xq.
• Store values xi,𝐻𝐻(xi) in a hash table of size q

• Requires time/space O(𝑞𝑞) = 𝑂𝑂 2ℓ
• Can we do better?

40

Floyd’s Cycle Finding Algorithm

• Analogy: Cycle detection in linked list
• Can traverse “linked list” by computing H

41

• A cycle denotes a hash collision
• x3=H(x2)=H(x12)

• Occurs after O 2ℓ/2 steps by
birthday paradox

• First attack phase detects cycle
• Second phase identifies collision

x0

x1

x2

x3=H(x2)

X4 = 𝐻𝐻(x3)
x5 x6

x7

x8

x9

x10x11

x12

Small Space Birthday Attack

• Attack 2: Select random x0, define xi ≔ 𝐻𝐻(xi−1)
• Initialize: x=x0 and xʹ=x0
• Repeat for i=1,2,…

• x:=H(x) now x = xi

• xʹ:=H(H(xʹ)) now x′ = x2i

• If x=x’ then break
• Reset x=x0 and set xʹ=x and remember i

• Repeat for j=1 to i
• If H(x) = H(x’) then output x,x’
• Else x:= H(x), x’ = H(x) Now x=xj AND x′ = xi+j

42

Claim: for some 𝑘𝑘 ≤ 𝑖𝑖 the collision is
xk=H(𝑥𝑥𝑘𝑘−1)=H(𝑥𝑥𝑘𝑘+𝑖𝑖−1)
Proof: Let C be length of cycle,
Let k= #steps before cycle
2i-k = i-k mod C  i= mod C

Tortoise takes i-k steps inside cycle
(equivalent to k backwards steps)Hare takes 2i-k total

steps inside cycle,
looping around before
ending in same place

Initially, for phase 2 we have
xʹ=xi and x = x0 after j=k-1
steps we have x=𝑥𝑥𝑘𝑘−1
and

xʹ=xi+K-1=xk+C−1

Small Space Birthday Attack

• Attack 2: Select random x0, define xi = 𝐻𝐻(xi−1)
• Initialize: x=x0 and xʹ=x0
• Repeat for i=1,2,…

• x:=H(x) now x = xi

• xʹ:=H(H(xʹ)) now x′ = x2i

• If x=x’ then break
• Reset x=x0 and set xʹ=x
• Repeat for j=1 to i

• If H(x) = H(x’) then output x,x’
• Else x:= H(x), x’ = H(x) Now x=xj AND x′ = xi+j

43

Finds collision after
O 2ℓ/2 steps in

expectation

Small Space Birthday Attack

• Can be adapted to find “meaningful collisions” if we have a large message space
O 2ℓ

• Example: S = 𝑆𝑆1 ∪ 𝑆𝑆2 with 𝑆𝑆1 = 𝑆𝑆2 = 2ℓ−1
• 𝑆𝑆1 = Set of positive recommendation letters
• 𝑆𝑆2 = Set of negative recommendation letters

• Goal: find 𝑧𝑧1 ∈ 𝑆𝑆1, 𝑧𝑧2 ∈ 𝑆𝑆2, such that H(z1) = H(z2)

• Can adapt previous attack by defining an injective mapping b: 0,1 ℓ → 𝑆𝑆
xi = 𝐻𝐻(b xi−1)

• If xi = xi+j then 𝐻𝐻 b xi−1 = 𝐻𝐻 b xi+j−1  Colliding inputs are both in S

44

Pre-Computation Attacks for Targeted Collision

• Challenger: Picks random x and sends y=H(x) to attacker
• Attacker’s Goal: Find some x’ (not necessarily x) s.t. y=H(x’)
• Brute-Force Attack: Requires 2ℓ−1 queries to H on average.
• Pre-Computation Attack: What if we know we will need to do this

multiple times?
• Pre-Processing Cost (one-time cost): O(2ℓ)
• Post-Processing Cost: ≪ 2ℓ (is this possible?)

• Applications:
• Targeted Hash Inversion, MAC forgery, Signature Forgery, Key-Recovery,

Password Cracking etc…

Pre-Computation Attacks for Targeted Collision

• Precomputation (𝑡𝑡 × 𝑠𝑠 steps, 2𝑠𝑠 memory)

46

𝑠𝑠𝑠𝑠1 = 𝑥𝑥11

𝑥𝑥21 = 𝐻𝐻 𝑥𝑥11

𝑥𝑥𝑖𝑖+11 = 𝐻𝐻 𝑥𝑥𝑖𝑖1

𝑥𝑥𝑡𝑡1 = 𝑒𝑒𝑝𝑝1

…

…

𝑥𝑥22 = 𝐻𝐻 𝑥𝑥12

𝑥𝑥𝑖𝑖+12 = 𝐻𝐻 𝑥𝑥𝑖𝑖2
…

…

𝑠𝑠𝑠𝑠1 = 𝑥𝑥11

𝑥𝑥𝑡𝑡1 = 𝑒𝑒𝑝𝑝1

𝑠𝑠𝑠𝑠2 = 𝑥𝑥12

𝑥𝑥𝑡𝑡2 = 𝑒𝑒𝑝𝑝2

𝑥𝑥2𝑠𝑠 = 𝐻𝐻 𝑥𝑥1𝑠𝑠

…

…

𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑥𝑥1𝑠𝑠

𝑥𝑥𝑡𝑡𝑠𝑠 = 𝑒𝑒𝑝𝑝𝑠𝑠

…

… 𝑥𝑥𝑖𝑖+1𝑠𝑠 = 𝐻𝐻 𝑥𝑥𝑖𝑖𝑠𝑠

• Precomputation (𝑡𝑡 × 𝑠𝑠 steps, 2𝑠𝑠 × ℓ memory)

47

𝑥𝑥2
𝑗𝑗 = 𝐻𝐻 𝑥𝑥1

𝑗𝑗

…

…

𝑠𝑠𝑠𝑠𝑗𝑗 = 𝑥𝑥1
𝑗𝑗

𝑥𝑥𝑡𝑡
𝑗𝑗 = 𝑒𝑒𝑝𝑝𝑗𝑗

…

… 𝑥𝑥𝑖𝑖+1
𝑗𝑗 = 𝐻𝐻 𝑥𝑥𝑖𝑖

𝑗𝑗

…

…

• Goal: Find collision for target 𝑦𝑦 = 𝐻𝐻(𝑥𝑥)

𝑦𝑦0 = 𝑦𝑦

𝑦𝑦1 = 𝐻𝐻 𝑦𝑦0

𝑦𝑦𝑖𝑖 = 𝐻𝐻 𝑦𝑦𝑖𝑖−1

𝑦𝑦𝑘𝑘 = 𝑒𝑒𝑒𝑒𝑗𝑗

…

…

Pre-Computation Attacks for Targeted Collision

• Precomputation (𝑡𝑡 × 𝑠𝑠 steps, 2𝑠𝑠 × ℓ memory)

48

𝑥𝑥2
𝑗𝑗 = 𝐻𝐻 𝑥𝑥1

𝑗𝑗

…

…

𝑠𝑠𝑠𝑠𝑗𝑗 = 𝑥𝑥1
𝑗𝑗

𝑥𝑥𝑡𝑡
𝑗𝑗 = 𝑒𝑒𝑝𝑝𝑗𝑗

…

… 𝑥𝑥𝑖𝑖+1
𝑗𝑗 = 𝐻𝐻 𝑥𝑥𝑖𝑖

𝑗𝑗

…

…

• Goal: Find collision for target 𝑦𝑦 = 𝐻𝐻(𝑥𝑥)

𝑦𝑦0 = 𝑦𝑦

𝑦𝑦1 = 𝐻𝐻 𝑦𝑦0

𝑦𝑦𝑖𝑖 = 𝐻𝐻 𝑦𝑦𝑖𝑖−1

𝑦𝑦𝑘𝑘 = 𝑒𝑒𝑒𝑒𝑗𝑗

…

…

What We Hope is True:
𝒕𝒕 × 𝒔𝒔 > 𝟐𝟐ℓ+𝟐𝟐 good chance that
𝒚𝒚 = 𝒙𝒙𝒊𝒊

𝒋𝒋 for some 𝒊𝒊 ≤ 𝒕𝒕, 𝒋𝒋 ≤ 𝒔𝒔

… Not quite true…chains can intersect and
may not represent 𝒕𝒕 × 𝒔𝒔 distinct points

Pre-Computation Attacks for Targeted CollisionSuppose 𝒚𝒚 = 𝒙𝒙𝒊𝒊
𝒋𝒋 for some 𝒊𝒊 ≤ 𝒕𝒕, 𝒋𝒋 ≤ 𝒔𝒔


𝒚𝒚 = 𝑯𝑯 𝒙𝒙𝒊𝒊−𝟏𝟏
𝒋𝒋 = 𝑯𝑯𝒊𝒊−𝟏𝟏 𝒔𝒔𝒔𝒔𝒋𝒋

(takes t steps to recover 𝒙𝒙𝒊𝒊−𝟏𝟏
𝒋𝒋 from 𝒔𝒔𝒔𝒔𝒋𝒋)

Intersecting Chains

• Precomputation (𝑡𝑡 × 𝑠𝑠 steps, 2𝑠𝑠 memory)

49

𝑥𝑥2
𝑗𝑗 = 𝐻𝐻 𝑥𝑥1

𝑗𝑗

…

…

𝑠𝑠𝑠𝑠𝑗𝑗 = 𝑥𝑥1
𝑗𝑗

𝑥𝑥𝑡𝑡
𝑗𝑗 = 𝑒𝑒𝑝𝑝𝑗𝑗

𝑥𝑥𝑖𝑖+1
𝑗𝑗 = 𝐻𝐻 𝑥𝑥𝑖𝑖

𝑗𝑗

… 𝑥𝑥2
𝑗𝑗𝑗 = 𝐻𝐻 𝑥𝑥1

𝑗𝑗𝑗

𝑠𝑠𝑠𝑠𝑗𝑗𝑗 = 𝑥𝑥1
𝑗𝑗𝑗

… 𝑥𝑥𝑡𝑡
𝑗𝑗𝑗 = 𝑒𝑒𝑝𝑝𝑗𝑗𝑗

…
𝑥𝑥𝑘𝑘
𝑗𝑗𝑗 = 𝐻𝐻 𝑥𝑥𝑘𝑘

𝑗𝑗𝑗

Intersecting chains contain ≪ 𝐬𝐬𝒕𝒕
distinct points.

After initial intersection the
chains merge together 

Targeted Collision Attacks

• Precomputation (𝑡𝑡 × 𝑠𝑠 steps, 2𝑠𝑠 memory)

50

𝑠𝑠𝑠𝑠1 = 𝑥𝑥11

𝑥𝑥21 = 𝐻𝐻 𝑥𝑥11

𝑥𝑥𝑖𝑖+11 = 𝐻𝐻 𝑥𝑥𝑖𝑖1

𝑥𝑥𝑡𝑡1 = 𝑒𝑒𝑝𝑝1

…

…

𝑥𝑥22 = 𝐻𝐻 𝑥𝑥12

𝑥𝑥𝑖𝑖+12 = 𝐻𝐻 𝑥𝑥𝑖𝑖2
…

…

𝑠𝑠𝑠𝑠1 = 𝑥𝑥11

𝑥𝑥𝑡𝑡1 = 𝑒𝑒𝑝𝑝1

𝑠𝑠𝑠𝑠2 = 𝑥𝑥12

𝑥𝑥𝑡𝑡2 = 𝑒𝑒𝑝𝑝2

𝑥𝑥2𝑠𝑠 = 𝐻𝐻 𝑥𝑥1𝑠𝑠

…

…

𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑥𝑥1𝑠𝑠

𝑥𝑥𝑡𝑡𝑠𝑠 = 𝑒𝑒𝑝𝑝𝑠𝑠

…

… 𝑥𝑥𝑖𝑖+1𝑠𝑠 = 𝐻𝐻 𝑥𝑥𝑖𝑖𝑠𝑠

Fact: If 𝒕𝒕𝟐𝟐 × 𝒔𝒔 < 𝟐𝟐ℓ then chains contain
𝛀𝛀 𝒕𝒕𝒔𝒔 distinct points, but then

Pr[y in CHAIN]≈ 𝟏𝟏
𝒕𝒕

Solution: Repeat T=O(t) times using
different H1,…, HT where Hi 𝑥𝑥 : = H 𝐹𝐹𝐾𝐾𝑖𝑖 𝑥𝑥

s chains for each Hj  (sT chains total)

Targeted Collision Attacks

• Precomputation (𝑠𝑠𝑠𝑠𝑠𝑠 steps, 2𝑠𝑠𝑠𝑠 memory)

51

𝑠𝑠𝑠𝑠1 = 𝑥𝑥11

𝑥𝑥2
𝑗𝑗,1 = 𝐻𝐻1 𝑥𝑥1

𝑗𝑗,1

𝑥𝑥𝑖𝑖+1
𝑗𝑗,1 = 𝐻𝐻1 𝑥𝑥𝑖𝑖

𝑗𝑗,1

𝑥𝑥𝑡𝑡1 = 𝑒𝑒𝑝𝑝1

…

…

𝑥𝑥2
𝑗𝑗,2 = 𝐻𝐻2 𝑥𝑥1

𝑗𝑗,2

𝑥𝑥𝑖𝑖+1
𝑗𝑗,2 = 𝐻𝐻2 𝑥𝑥𝑖𝑖

𝑗𝑗,2

…

…

𝑠𝑠𝑠𝑠𝑗𝑗 = 𝑥𝑥1
𝑗𝑗

𝑥𝑥𝑡𝑡
𝑗𝑗,1 = 𝑒𝑒𝑝𝑝𝑗𝑗,1

𝑠𝑠𝑠𝑠𝑗𝑗 = 𝑥𝑥1
𝑗𝑗

𝑥𝑥𝑡𝑡
𝑗𝑗,2 = 𝑒𝑒𝑝𝑝𝑗𝑗,2

𝑥𝑥2
𝑗𝑗,𝑇𝑇 = 𝐻𝐻𝑇𝑇 𝑥𝑥1

𝑗𝑗,𝑠𝑠

…

…

𝑠𝑠𝑠𝑠𝑗𝑗 = 𝑥𝑥1
𝑗𝑗

𝑥𝑥𝑡𝑡
𝑗𝑗,𝑇𝑇 = 𝑒𝑒𝑝𝑝𝑗𝑗,𝑇𝑇

…

… 𝑥𝑥𝑖𝑖+1
𝑗𝑗,𝑇𝑇 = 𝐻𝐻𝑇𝑇 𝑥𝑥𝑖𝑖

𝑗𝑗,𝑠𝑠

Targeted Collision Attacks

• Precomputation (𝑠𝑠𝑡𝑡𝑡𝑡 steps, 2𝑠𝑠𝑇𝑇 memory)

52

𝑠𝑠𝑠𝑠1 = 𝑥𝑥11

𝑥𝑥2
𝑗𝑗,1 = 𝐻𝐻1 𝑥𝑥1

𝑗𝑗,1

𝑥𝑥𝑖𝑖+1
𝑗𝑗,1 = 𝐻𝐻1 𝑥𝑥𝑖𝑖

𝑗𝑗,1

𝑥𝑥𝑡𝑡1 = 𝑒𝑒𝑝𝑝1

…

…

𝑥𝑥2
𝑗𝑗,2 = 𝐻𝐻2 𝑥𝑥1

𝑗𝑗,2

𝑥𝑥𝑖𝑖+1
𝑗𝑗,2 = 𝐻𝐻2 𝑥𝑥𝑖𝑖

𝑗𝑗,2

…

…

𝑠𝑠𝑠𝑠𝑗𝑗 = 𝑥𝑥1
𝑗𝑗

𝑥𝑥𝑡𝑡
𝑗𝑗,1 = 𝑒𝑒𝑝𝑝𝑗𝑗,1

𝑠𝑠𝑠𝑠𝑗𝑗 = 𝑥𝑥1
𝑗𝑗

𝑥𝑥𝑡𝑡
𝑗𝑗,2 = 𝑒𝑒𝑝𝑝𝑗𝑗,2

𝑥𝑥2
𝑗𝑗,𝑇𝑇 = 𝐻𝐻𝑇𝑇 𝑥𝑥1

𝑗𝑗,𝑠𝑠

…

…

𝑠𝑠𝑠𝑠𝑗𝑗 = 𝑥𝑥1
𝑗𝑗

𝑥𝑥𝑡𝑡
𝑗𝑗,𝑇𝑇 = 𝑒𝑒𝑝𝑝𝑗𝑗,𝑇𝑇

…

… 𝑥𝑥𝑖𝑖+1
𝑗𝑗,𝑇𝑇 = 𝐻𝐻𝑇𝑇 𝑥𝑥𝑖𝑖

𝑗𝑗,𝑠𝑠

𝐻𝐻𝑖𝑖 𝑥𝑥 = 𝐻𝐻 𝐹𝐹𝐾𝐾𝑖𝑖 𝑥𝑥
Repeat for each starting
point 𝑠𝑠𝑠𝑠𝑗𝑗 with 1 ≤ 𝑗𝑗 ≤ 𝑠𝑠

Targeted Collision Attacks

• Precomputation (𝑠𝑠𝑡𝑡2 steps, 2𝑠𝑠𝑡𝑡 memory)

53

𝑠𝑠𝑠𝑠1 = 𝑥𝑥11

𝑥𝑥2
𝑗𝑗,1 = 𝐻𝐻1 𝑥𝑥1

𝑗𝑗,1

𝑥𝑥𝑖𝑖+1
𝑗𝑗,1 = 𝐻𝐻1 𝑥𝑥𝑖𝑖

𝑗𝑗,1

𝑥𝑥𝑡𝑡1 = 𝑒𝑒𝑝𝑝1

…

…

𝑥𝑥2
𝑗𝑗,2 = 𝐻𝐻2 𝑥𝑥1

𝑗𝑗,2

𝑥𝑥𝑖𝑖+1
𝑗𝑗,2 = 𝐻𝐻𝑖𝑖 𝑥𝑥𝑖𝑖

𝑗𝑗,2

…

…

𝑠𝑠𝑠𝑠𝑗𝑗 = 𝑥𝑥1
𝑗𝑗

𝑥𝑥𝑡𝑡
𝑗𝑗,1 = 𝑒𝑒𝑝𝑝𝑗𝑗,1

𝑠𝑠𝑠𝑠𝑗𝑗 = 𝑥𝑥1
𝑗𝑗

𝑥𝑥𝑡𝑡
𝑗𝑗,2 = 𝑒𝑒𝑝𝑝𝑗𝑗,2

𝑥𝑥2
𝑗𝑗,𝑇𝑇 = 𝐻𝐻𝑇𝑇 𝑥𝑥1

𝑗𝑗,𝑠𝑠

…

…

𝑠𝑠𝑠𝑠𝑗𝑗 = 𝑥𝑥1
𝑗𝑗

𝑥𝑥𝑡𝑡
𝑗𝑗,𝑇𝑇 = 𝑒𝑒𝑝𝑝𝑗𝑗,𝑇𝑇

…

… 𝑥𝑥𝑖𝑖+1
𝑗𝑗,𝑇𝑇 = 𝐻𝐻𝑖𝑖 𝑥𝑥𝑖𝑖

𝑗𝑗,𝑠𝑠

𝐻𝐻𝑖𝑖 𝑥𝑥 = 𝐻𝐻 𝐹𝐹𝐾𝐾𝑖𝑖 𝑥𝑥

Each 𝐻𝐻𝑖𝑖 Chains Contain: Ω 𝑠𝑠𝑠𝑠 distinct points
As long as 𝑠𝑠𝑡𝑡2 ≤ 2ℓ

Untangling Chains: 𝐻𝐻𝑖𝑖 won’t remain tangled
with 𝐻𝐻𝑗𝑗 chains

 all chains cover Ω 𝑠𝑠𝑡𝑡𝑡𝑡 = Ω 𝑠𝑠𝑡𝑡2 points

Post-Processing

Input: y
For each 𝑖𝑖 ≤ 𝑇𝑇 // Compute T chains of length t
𝑦𝑦𝑦 ≔ 𝑦𝑦 // Start each chain at 𝑦𝑦
For each 𝑗𝑗 ≤ 𝑡𝑡
𝑦𝑦′: = 𝐻𝐻𝑖𝑖 𝑦𝑦𝑦 // 𝑦𝑦′ = 𝑦𝑦𝑗𝑗,𝑖𝑖

For each k’ such that 𝑦𝑦′ = 𝑒𝑒𝑒𝑒𝑘𝑘′,𝑖𝑖
w′ ≔ 𝑠𝑠𝑝𝑝𝑘𝑘′ // recompute 𝐻𝐻𝑖𝑖 chain at 𝑠𝑠𝑠𝑠𝑘𝑘′
For each 𝑗𝑗′ ≤ 𝑡𝑡

If 𝑦𝑦 == 𝐻𝐻𝑖𝑖 𝑤𝑤′ return 𝐹𝐹𝐾𝐾𝑖𝑖 𝒘𝒘𝒘 else w′: = 𝐻𝐻𝑖𝑖 𝑤𝑤𝑤

54

𝑦𝑦0,𝑖𝑖 = 𝑦𝑦

𝑦𝑦1,𝑖𝑖 = 𝐻𝐻𝑖𝑖 𝑦𝑦0

𝑦𝑦𝑗𝑗,𝑖𝑖 = 𝐻𝐻𝑖𝑖 𝑦𝑦𝑗𝑗−1

𝑦𝑦𝑘𝑘,𝑖𝑖 = 𝑒𝑒𝑒𝑒𝑘𝑘′,𝑖𝑖

…

…

Post-Processing

Input: y
For each 𝑖𝑖 ≤ 𝑇𝑇 // Compute T chains of length t
𝑦𝑦𝑦 ≔ 𝑦𝑦 // Start each chain at 𝑦𝑦
For each 𝑗𝑗 ≤ 𝑡𝑡
𝑦𝑦′: = 𝐻𝐻𝑖𝑖 𝑦𝑦𝑦 // 𝑦𝑦′ = 𝑦𝑦𝑗𝑗,𝑖𝑖

For each k’ such that 𝑦𝑦′ = 𝑒𝑒𝑒𝑒𝑘𝑘′,𝑖𝑖
w′ ≔ 𝑠𝑠𝑝𝑝𝑘𝑘′ // recompute 𝐻𝐻𝑖𝑖 chain at 𝑠𝑠𝑠𝑠𝑘𝑘′
For each 𝑗𝑗′ ≤ 𝑡𝑡

If 𝑦𝑦 == 𝐻𝐻𝑖𝑖 𝑤𝑤′ return 𝐹𝐹𝐾𝐾𝑖𝑖 𝒘𝒘𝒘 else w′: = 𝐻𝐻𝑖𝑖 𝑤𝑤𝑤

55

𝑦𝑦0,𝑖𝑖 = 𝑦𝑦

𝑦𝑦1,𝑖𝑖 = 𝐻𝐻𝑖𝑖 𝑦𝑦0

𝑦𝑦𝑗𝑗,𝑖𝑖 = 𝐻𝐻𝑖𝑖 𝑦𝑦𝑗𝑗−1

𝑦𝑦𝑘𝑘,𝑖𝑖 = 𝑒𝑒𝑒𝑒𝑘𝑘′,𝑖𝑖

…

…

Observation 1: If y is on any of the chains
i.e., 𝒚𝒚 = 𝒙𝒙𝒌𝒌

𝒋𝒋,𝒊𝒊 for some 𝒊𝒊 ≤ 𝑻𝑻, 𝒋𝒋 ≤ 𝒕𝒕, 𝒌𝒌 ≤ 𝒔𝒔
 We will hit the endpoint 𝑦𝑦′ = 𝑒𝑒𝑒𝑒𝑘𝑘′,𝑖𝑖
 We will find a pre-image of y

Post-Processing

Input: y
For each 𝑖𝑖 ≤ 𝑇𝑇 // Compute T chains of length t
𝑦𝑦𝑦 ≔ 𝑦𝑦 // Start each chain at 𝑦𝑦
For each 𝑗𝑗 ≤ 𝑡𝑡
𝑦𝑦′: = 𝐻𝐻𝑖𝑖 𝑦𝑦𝑦 // 𝑦𝑦′ = 𝑦𝑦𝑗𝑗,𝑖𝑖

For each k’ such that 𝑦𝑦′ = 𝑒𝑒𝑒𝑒𝑘𝑘′,𝑖𝑖
w′ ≔ 𝑠𝑠𝑝𝑝𝑘𝑘′ // recompute 𝐻𝐻𝑖𝑖 chain at 𝑠𝑠𝑠𝑠𝑘𝑘′
For each 𝑗𝑗′ ≤ 𝑡𝑡

If 𝑦𝑦 == 𝐻𝐻𝑖𝑖 𝑤𝑤′ return 𝐹𝐹𝐾𝐾𝑖𝑖 𝒘𝒘𝒘 else w′: = 𝐻𝐻𝑖𝑖 𝑤𝑤𝑤

56

𝑦𝑦0,𝑖𝑖 = 𝑦𝑦

𝑦𝑦1,𝑖𝑖 = 𝐻𝐻𝑖𝑖 𝑦𝑦0

𝑦𝑦𝑗𝑗,𝑖𝑖 = 𝐻𝐻𝑖𝑖 𝑦𝑦𝑗𝑗−1

𝑦𝑦𝑘𝑘,𝑖𝑖 = 𝑒𝑒𝑒𝑒𝑘𝑘′,𝑖𝑖

…

…

Observation 2: If 𝑦𝑦′ = 𝑒𝑒𝑒𝑒𝑘𝑘′,𝑖𝑖 when y is not
on the 𝐻𝐻𝑖𝑖 chain starting at 𝑠𝑠𝑠𝑠𝑘𝑘′ then we

waste t steps checking this chain.

Let 𝑍𝑍𝑘𝑘,𝑖𝑖,𝑘𝑘𝑘 be an indicator random variable
for the event that 𝑦𝑦𝑘𝑘,𝑖𝑖 = 𝑒𝑒𝑒𝑒𝑘𝑘′,𝑖𝑖 even

though y is not on the chain
𝐄𝐄 𝑍𝑍𝑘𝑘,𝑖𝑖,𝑘𝑘𝑘 = 𝐏𝐏𝐏𝐏 𝑦𝑦𝑘𝑘,𝑖𝑖 = 𝑒𝑒𝑒𝑒𝑘𝑘′,𝑖𝑖 ≈ 2−ℓ

Let Z be total number of false positives

𝐄𝐄 𝑍𝑍 = 𝐄𝐄 �
𝑖𝑖,𝑘𝑘′,𝑘𝑘

𝑍𝑍𝑘𝑘,𝑖𝑖,𝑘𝑘𝑘 ≈ 𝑠𝑠𝑠𝑠𝑠𝑠2−ℓ

Post-Processing

Input: y
For each 𝑖𝑖 ≤ 𝑇𝑇 // Compute T chains of length t
𝑦𝑦𝑦 ≔ 𝑦𝑦 // Start each chain at 𝑦𝑦
For each 𝑗𝑗 ≤ 𝑡𝑡
𝑦𝑦′: = 𝐻𝐻𝑖𝑖 𝑦𝑦𝑦 // 𝑦𝑦′ = 𝑦𝑦𝑗𝑗,𝑖𝑖

For each k’ such that 𝑦𝑦′ = 𝑒𝑒𝑒𝑒𝑘𝑘′,𝑖𝑖
w′ ≔ 𝑠𝑠𝑝𝑝𝑘𝑘′ // recompute 𝐻𝐻𝑖𝑖 chain at 𝑠𝑠𝑠𝑠𝑘𝑘′
For each 𝑗𝑗′ ≤ 𝑡𝑡

If 𝑦𝑦 == 𝐻𝐻𝑖𝑖 𝑤𝑤′ return 𝐹𝐹𝐾𝐾𝑖𝑖 𝒘𝒘𝒘 else w′: = 𝐻𝐻𝑖𝑖 𝑤𝑤𝑤

57

𝑦𝑦0,𝑖𝑖 = 𝑦𝑦

𝑦𝑦1,𝑖𝑖 = 𝐻𝐻𝑖𝑖 𝑦𝑦0

𝑦𝑦𝑗𝑗,𝑖𝑖 = 𝐻𝐻𝑖𝑖 𝑦𝑦𝑗𝑗−1

𝑦𝑦𝑘𝑘,𝑖𝑖 = 𝑒𝑒𝑒𝑒𝑘𝑘′,𝑖𝑖

…

…

Let Z be total number of false positives

𝐄𝐄 𝑍𝑍 = 𝐄𝐄 �
𝑖𝑖,𝑘𝑘′,𝑘𝑘

𝑍𝑍𝑘𝑘,𝑖𝑖,𝑘𝑘𝑘 ≈ 𝑠𝑠𝑠𝑠𝑠𝑠2−ℓ

Total Running Time: 𝑶𝑶 𝑻𝑻𝑻𝑻 + 𝑍𝑍𝑡𝑡

If 𝑠𝑠𝑠𝑠𝑠𝑠 ≈ 2ℓ and 𝑻𝑻 = 𝑶𝑶 𝒕𝒕 then total
running time is 𝑶𝑶 𝒕𝒕𝟐𝟐

Targeted Collision Attacks

• Precomputation (𝑡𝑡𝑡𝑡 × 𝑠𝑠 steps, 2𝑠𝑠𝑇𝑇 × ℓ memory)

60

𝑥𝑥2
𝑗𝑗 = 𝐻𝐻1 𝑥𝑥1

𝑗𝑗

…

…

𝑠𝑠𝑠𝑠𝑗𝑗 = 𝑥𝑥1
𝑗𝑗

𝑥𝑥𝑡𝑡
𝑗𝑗 = 𝑒𝑒𝑝𝑝𝑗𝑗

…

… 𝑥𝑥𝑖𝑖+1
𝑗𝑗 = 𝐻𝐻𝑖𝑖−1 𝑥𝑥𝑖𝑖

𝑗𝑗

…

…

• Goal: Find collision for target 𝑦𝑦 = 𝐻𝐻(𝑥𝑥)

𝑦𝑦0 = 𝑦𝑦

𝑦𝑦1 = 𝐻𝐻1 𝑦𝑦0

𝑦𝑦𝑖𝑖 = 𝐻𝐻𝑖𝑖−1 𝑦𝑦𝑖𝑖−1

𝑦𝑦𝑘𝑘 = 𝑒𝑒𝑒𝑒𝑗𝑗

…

…

Set 𝑠𝑠 = 2
2ℓ
3 +1, 𝐓𝐓 = 𝑡𝑡 = 2

ℓ
3+1

Precomputation: 𝐎𝐎 𝟐𝟐ℓ

Space: 𝐎𝐎 2
2ℓ
3 × ℓ

Targeted Collision Search: 𝑶𝑶 2
𝟐𝟐ℓ
𝟑𝟑

Total Cost to find 2
ℓ
3

targeted collisions is
just 𝐎𝐎 𝟐𝟐ℓ

Applications

• Key-Recovery Attacks on Block Cipher 𝐸𝐸:𝒦𝒦 × 0,1 𝑛𝑛 → 0,1 𝑛𝑛

• Pre-Computation: 𝑂𝑂 𝒦𝒦
• Crack 2

𝑛𝑛
𝟑𝟑 secret keys in total time 𝑶𝑶 𝒦𝒦 with space s = 𝑶𝑶 2

2𝑛𝑛
𝟑𝟑

• Run prior attack with “hash function” H: 0,1 𝑛𝑛 → 0,1 𝑛𝑛

• H 𝐾𝐾 = 𝐸𝐸𝐾𝐾 𝑟𝑟 for some random (fixed) 𝑟𝑟 ∈ 0,1 𝑛𝑛

• Password Cracking
• Attacker is given 𝐻𝐻𝐻 𝑥𝑥1 ,…, 𝐻𝐻𝐻 𝑥𝑥𝑘𝑘 for passwords 𝑥𝑥1, … , 𝑥𝑥𝑘𝑘 ∈ 𝒫𝒫𝒫𝒫𝒫𝒫𝒫𝒫 with
𝒫𝒫𝒫𝒫𝒫𝒫𝒫𝒫 ≪ 𝒦𝒦

• Goal: Recover passwords 𝑥𝑥1, … , 𝑥𝑥𝑘𝑘
• Can crack all 𝑘𝑘 = 𝒫𝒫𝒫𝒫𝒫𝒫𝒫𝒫 1/3 passwords in total time 𝑶𝑶 𝒫𝒫𝒫𝒫𝒫𝒫𝒫𝒫 with space s =
𝑶𝑶 𝒫𝒫𝒫𝒫𝒫𝒫𝒫𝒫 2/3

• Domain Challenge: H′: 𝒫𝒫𝒫𝒫𝒫𝒫𝒫𝒫 → 0,1 𝑛𝑛 with 𝒫𝒫𝒫𝒫𝒫𝒫𝒫𝒫 ≪ 2𝑛𝑛
• Define (pseudo)random mapping 𝜇𝜇: 0,1 𝑛𝑛 → 𝒫𝒫𝒫𝒫𝒫𝒫𝒫𝒫
• Run prior attack with “hash function” H:𝒫𝒫𝒫𝒫𝒫𝒫𝒫𝒫 → 𝒫𝒫𝒫𝒫𝒫𝒫𝒫𝒫 as H 𝑥𝑥 = 𝜇𝜇 H′ 𝑥𝑥

61

Week 5: Topic 3:
Random Oracle Model +

Hashing Applications

62

When Collision Resistance Isn’t Enough

• Example: Message Commitment
• Alice sends Bob: c = Hs 𝑟𝑟 ∥ 𝑚𝑚 (e.g., predicted winner of NCAA Tournament)
• Alice can later reveal message (e.g., after the tournament is over)

• Just send r and m (note: r has fixed length)
• Why can Alice not change her message?

• Collision Resistance  Alice can’t find r’ and m’ s.t. c = Hs 𝑟𝑟′ ∥ 𝑚𝑚′
• In the meantime Bob shouldn’t learn anything about m

• Problem: Let (Gen,H’) be collision resistant then so is (Gen,H)

𝐻𝐻𝑠𝑠 𝑥𝑥1, … , 𝑥𝑥𝑑𝑑 = 𝐻𝐻′𝑠𝑠 𝑥𝑥1, … , 𝑥𝑥𝑑𝑑 ∥ 𝑥𝑥𝑑𝑑
65

When Collision Resistance Isn’t Enough

• Problem: Let (Gen,H’) be collision resistant then so is (Gen,H)

𝐻𝐻𝑠𝑠 𝑥𝑥1, … , 𝑥𝑥𝑑𝑑 = 𝐻𝐻′𝑠𝑠 𝑥𝑥1, … , 𝑥𝑥𝑑𝑑 ∥ 𝑥𝑥𝑑𝑑
Note: An 𝐻𝐻𝑠𝑠 collision trivially yields a 𝐻𝐻′𝑠𝑠 collision

• (Gen,H) definitely does not hide all information about input
(𝑥𝑥1, … , 𝑥𝑥𝑑𝑑)

• Conclusion: Collision resistance is not sufficient for message
commitment

66

The Tension
• Example: Message Commitment

• Alice sends Bob: Hs 𝑟𝑟 ∥ 𝑚𝑚 (e.g., predicted winners of NCAA Final Four)
• Alice can later reveal message (e.g., after the Final Four is decided)
• In the meantime Bob shouldn’t learn anything about m

This is still a reasonable approach in practice!

• No attacks when instantiated with any reasonable candidate (e.g., SHA3)
• Cryptographic hash functions seem to provide “something” beyond

collision resistance, but how do we model this capability?

67

Random Oracle Model

• Model hash function H as a truly random function
• Algorithms can only interact with H as an oracle

• Query: x
• Response: H(x)

• If we submit the same query you see the same response
• If x has not been queried, then the value of H(x) is uniform

• Real World: H instantiated as cryptographic hash function (e.g., SHA3)
of fixed length (no Merkle-Damgård)

68

Back to Message Commitment

• Example: Message Commitment
• Alice sends Bob: H 𝑟𝑟 ∥ 𝑚𝑚 (e.g., predicted winners of NCAA Final Four)
• Alice can later reveal message (e.g., after the Final Four is decided)

• Just send r and m (note: r has fixed length)
• Why can Alice not change her message?

• In the meantime Bob shouldn’t learn anything about m

• Random Oracle Model: Above message commitment scheme is
secure (Alice cannot change m + Bob learns nothing about m)

• Security Definition + Proof later…

69

Random Oracle Model: Pros

• It is easier to prove security in Random Oracle Model

• Suppose we are simulating attacker A in a reduction
• Extractability: When A queries H at x we see this query and learn x (and can

easily find H(x))
• Programmability: We can set the value of H(x) to a value of our choice

• As long as the value is correctly distribute i.e., close to uniform

• Both Extractability and Programmability are useful tools for a
security reduction!

70

Random Oracle Model: Pros

• It is easier to prove security in Random Oracle Model

• Provably secure constructions in random oracle model are often
much more efficient (compared to provably secure construction is
“standard model”

• Sometimes we only know how to design provably secure protocol in
random oracle model

71

Random Oracle Model: Cons

• Lack of formal justification
• Why should security guarantees translate when we instantiate

random oracle with a real cryptographic hash function?

• We can construct (contrived) examples of protocols which are
• Secure in random oracle model…
• But broken in the real world

72

Random Oracle Model: Justification

“A proof of security in the random-oracle model is significantly better
than no proof at all.”

• Evidence of sound design (any weakness involves the hash function
used to instantiate the random oracle)

• Empirical Evidence for Security
“there have been no successful real-world attacks on
schemes proven secure in the random oracle model”

73

Hash Function Application: Fingerprinting

• The hash h(x) of a file x is a unique identifier for the file
• Collision Resistance  No need to worry about another file y with H(y)=H(y)

• Application 1: Virus Fingerprinting

• Application 2: P2P File Sharing

• Application 3: Data deduplication

74

Tamper Resistant Storage

75

m1

H(m1) m1’

Tamper Resistant Storage
File Index Hash

1 H(m1)

2 H(m2)

3 H(m3)

76

m1,m2,m3

m1’

Send file 1

Disadvantage: Too
many hashes to store

Tamper Resistant Storage

77

m1,m2,m3

m1’

Send file 1

Disadvantage: Need all
files to compute hash

m1,m2,m3

H(m1,m2,m3)

Merkle Trees

𝐌𝐌𝐌𝐌𝐬𝐬 𝒙𝒙 ≔ hs 𝑥𝑥
𝐌𝐌𝐌𝐌𝐬𝐬 𝐱𝐱𝟏𝟏, … , 𝐱𝐱𝟐𝟐𝐢𝐢 ≔

hs 𝐌𝐌𝐌𝐌𝐬𝐬 𝐱𝐱𝟏𝟏, … , 𝐱𝐱𝟐𝟐𝐢𝐢−𝟏𝟏 ,𝐌𝐌𝐌𝐌𝐬𝐬 𝐱𝐱𝟐𝟐𝐢𝐢−𝟏𝟏+𝟏𝟏, … , 𝐱𝐱𝟐𝟐𝐢𝐢

78

Theorem: Let (Gen, hs) be a collision resistant hash
function then 𝐌𝐌𝐌𝐌𝐬𝐬 is collision resistant.

𝐱𝐱𝟏𝟏 𝐱𝐱𝟐𝟐

Merkle Trees

• Proof of Correctness for data block 2

• Verify that root matches
• Proof consists of just log(n) hashes

• Verifier only needs to permanently store
only one hash value

80

Tamper Resistant Storage

81

m1,m2,m3,m4

m2’,h1,h3-4

Send file 2

Root: H1-4

Commitment Schemes

• Alice wants to commit a message m to Bob
• And possibly reveal it later at a time of her choosing

• Properties
• Hiding: commitment reveals nothing about m to Bob
• Binding: it is infeasible for Alice to alter message

82

Commitment Hiding (Hiding𝐴𝐴,𝐶𝐶𝐶𝐶𝐶𝐶(𝑛𝑛))

83

r = Gen(.)
Bit b

m0,m1

commit(r,mb)
b’

∀𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴 ∃𝜇𝜇 (negligible) s. t

Pr Hiding𝐴𝐴,𝐶𝐶𝐶𝐶𝐶𝐶 𝑛𝑛 = 1 ≤
1
2

+ 𝜇𝜇(𝑛𝑛)

Hiding𝐴𝐴,𝐶𝐶𝐶𝐶𝐶𝐶(𝑛𝑛)= �1 if 𝑏𝑏 = 𝑏𝑏′
0 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

Commitment Binding (Binding𝐴𝐴,𝐶𝐶𝐶𝐶𝐶𝐶(𝑛𝑛))

84

r0,r1,m0,m1

∀𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴 ∃𝜇𝜇 (negligible) s. t
Pr Binding𝐴𝐴,𝐶𝐶𝐶𝐶𝐶𝐶 𝑛𝑛 = 1 ≤ 𝜇𝜇(𝑛𝑛)

Binding𝐴𝐴,𝐶𝐶𝐶𝐶𝐶𝐶(𝑛𝑛)= �1 if commit(r0,m0)= commit(r1,m1)
0 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

Secure Commitment Scheme

• Definition: A secure commitment scheme is hiding and binding
• Hiding

• Binding

85

∀𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴 ∃𝜇𝜇 (negligible) s. t

Pr Hiding𝐴𝐴,𝐶𝐶𝐶𝐶𝐶𝐶 𝑛𝑛 = 1 ≤
1
2

+ 𝜇𝜇(𝑛𝑛)

∀𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴 ∃𝜇𝜇 (negligible) s. t
Pr Binding𝐴𝐴,𝐶𝐶𝐶𝐶𝐶𝐶 𝑛𝑛 = 1 ≤ 𝜇𝜇(𝑛𝑛)

Commitment Scheme in Random Oracle
Model
• Commit(r,m):=H(m|r)

• Reveal(c):= (m,r)

Theorem: In the random oracle model this is a secure commitment scheme.
Proof Intuition: Let BAD event that attacker queries H 𝑟𝑟 ∥ 𝑚𝑚′ for
any message m’ on any of q queries

• As long as the event BAD never occurs Bob learns nothing
about m (in an information theoretic sense)

• If r is a random n-bit string then Pr BAD ≤ q
2n

86

Commitment Hiding (Hiding𝐴𝐴,𝐶𝐶𝐶𝐶𝐶𝐶(𝑛𝑛))

87

r = Gen(1n)
Bit b

m0,m1

H(r,mb)
b’

∀𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑎𝑎𝑎𝑎 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑞𝑞 𝑛𝑛 𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞

Pr Hiding𝐴𝐴,𝐶𝐶𝐶𝐶𝐶𝐶 𝑛𝑛 = 1 ≤
1
2

+
𝑞𝑞(𝑛𝑛)

2𝑛𝑛

Hiding𝐴𝐴,𝐶𝐶𝐶𝐶𝐶𝐶(𝑛𝑛)= �1 𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑏𝑏′
0 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

Other Applications

• Password Hashing

• Key Derivation

88

Next Week

• Stream Ciphers
• Block Ciphers
• Feistel Networks
• DES, 3DES
• Read Katz and Lindell 6.1-6.2

89

	Cryptography�CS 555
	Recap
	Week 5: Topic 1: �Cryptographic Hash Functions��
	Keyed Hash Function Syntax
	Collision Experiment (𝐻𝑎𝑠ℎ𝐶𝑜𝑙𝑙 𝐴,Π (𝑛))
	Collision Experiment (𝐻𝑎𝑠ℎ𝐶𝑜𝑙𝑙 𝐴,Π (𝑛))
	Concrete Security (𝐻𝑎𝑠ℎ𝐶𝑜𝑙𝑙 𝐴,Π (𝑛))
	Theory vs Practice
	Weaker Requirements for Cryptographic Hash
	Weaker Requirements for Cryptographic Hash
	Merkle-Damgård Transform
	Merkle-Damgård Transform
	Merkle-Damgård Transform
	Merkle-Damgård Transform
	Merkle-Damgård Transform
	Merkle-Damgård Transform
	Merkle-Damgård Transform
	Week 5: Topic 2: �HMACs and Generic Attacks�
	MACs for Arbitrary Length Messages
	MACs for Arbitrary Length Messages
	Hash and MAC Construction
	Hash and MAC Construction
	Hash and MAC Construction
	Hash and MAC Construction
	Recap
	MAC from Collision Resistant Hash
	MAC from Collision Resistant Hash
	HMAC
	HMAC
	HMAC Security
	HMAC in Practice
	Finding Collisions
	Birthday Attack for Finding Collisions
	Birthday Attack for Finding Collisions
	Birthday Attack for Finding Collisions
	Birthday Attack for Finding Collisions
	Birthday Attack for Finding Collisions
	Recap
	Birthday Attack for Finding Collisions
	Floyd’s Cycle Finding Algorithm
	Small Space Birthday Attack
	Small Space Birthday Attack
	Small Space Birthday Attack
	Pre-Computation Attacks for Targeted Collision
	Pre-Computation Attacks for Targeted Collision
	Pre-Computation Attacks for Targeted Collision
	Pre-Computation Attacks for Targeted Collision
	Intersecting Chains
	Targeted Collision Attacks
	Targeted Collision Attacks
	Targeted Collision Attacks
	Targeted Collision Attacks
	Post-Processing
	Post-Processing
	Post-Processing
	Post-Processing
	Targeted Collision Attacks
	Applications
	�Week 5: Topic 3:�Random Oracle Model + Hashing Applications�
	When Collision Resistance Isn’t Enough
	When Collision Resistance Isn’t Enough
	The Tension
	Random Oracle Model
	Back to Message Commitment
	Random Oracle Model: Pros
	Random Oracle Model: Pros
	Random Oracle Model: Cons
	Random Oracle Model: Justification
	Hash Function Application: Fingerprinting
	Tamper Resistant Storage
	Tamper Resistant Storage
	Tamper Resistant Storage
	Merkle Trees
	Merkle Trees
	Tamper Resistant Storage
	Commitment Schemes
	Commitment Hiding (Hiding 𝐴,𝐶𝑜𝑚 (𝑛))
	Commitment Binding (Binding 𝐴,𝐶𝑜𝑚 (𝑛))
	Secure Commitment Scheme
	Commitment Scheme in Random Oracle Model
	Commitment Hiding (Hiding 𝐴,𝐶𝑜𝑚 (𝑛))
	Other Applications
	Next Week

