Cryptography
CS 555

Week 5:

e Cryptographic Hash Functions

e HMACs

 Generic Attacks

e Random Oracle Model

e Applications of Hashing

Readings: Katz and Lindell Chapter 5, Appendix A.4

Spring 2021



Recap

* Authenticated Encryption + CCA-Security
s« Encryptand-Authenticate {SSH

e Encrypt then Authenticate!
Enciy(m) = (C, MackM(c)) where ¢ = Ency_(m)

e Secure Communication

o Attacks: Reflection/Replay/Reordering + Defenses
* AES-GCM

e Cryptographic Hash Functions
e Definitional Challenges



Week 5: Topic 1:
Cryptographic Hash Functions



Keyed Hash Function Syntax

* Two Algorithms
 Gen(1"% R) (Key-generation algorithm)
e Input: Random Bits R
e Output: Seeret key s
 H>(m) (Hashing Algorithm)
* Input: key s and message m € {0,1}* (unbounded length)
e Output: hash value H5(m) € {0,1}f(™

* Fixed length hash function
e m € {0,1}¥ ™ with £'(n) > #(n)
e Example: m € {0,1}*" and H5(m) € {0,1}"



Collision Experiment (HashColl, j(n))

X1,X5

1 if H3(x1) = H(xy)

HashCollyn(n)= {O otherwise

s = Gen(1% R)

Definition: (Gen,H) is a collision resistant hash function if
VPPT A Ju (negligible) s. t

Pr[HaShCollA’H (n)= 1] < u(n)



Collision Experiment (HashColl, j(n))

For simplicity we will
sometimes just say that H

Key is not key
secret (just
random)

(or H®) is a collision
resistant hash function

Definition: (Gen,H) is a collision resistant hash function i
VPPT A Ju (negligible) s.t

Pr[HaShCollA,H (n)=1] < u(n)



Concrete Security (HashColl, ;(n))

X1,X5

1 if H3(x1) = H(xy)

HashCollyn(n)= {O otherwise

s = Gen(1% R)

Definition: (Gen,H) is a (t, €) —collision resistant hash function £
if V attackers A running in time at most t(n)
Pr[HaShCollA’H(n)=1] < ée(n)



Theory vs Practice

* Most cryptographic hash functions used in practice are un-keyed

e Examples: MD5, SHA1, SHA2, SHA3, Blake2B

* Tricky to formally define collision resistance for keyless hash function

e There is a PPT algorithm to find collisions
e We just usually can’t find this algorithm ©

e Guarantee for protocol using H
If we know an explicit efficient algorithm A
breaking our protocol then there is an efficient
blackbox reduction transforming A into an efficient
collision finding algorithm.

Formalizing Human Ignorance:
Collision-Resistant Hashing without the Keys
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Chiang Mai University, Chiang Mai 50200, Thailand
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Abstract. There is a foundational problem involving collision-resistant hash-hmections: com-
mon constructions are keyless, but formal definitions are keyed. The diserepancy stems from the
fact that a function H: {0,1}" — {0,1}" always admits an efficient collision-finding algorithm,
it’s just that us human beings might be unable to write the program down. We explain a simple
way to sidestep this difficulty that avoids having to key our hash functions. The idea is to state
theorems in a way that prescribes an explicitly-given reduction, normally a black-box one. We
illustrate this approach using well-known examples involving digital signatures, pseudorandom
tunctions, and the Merkle-Damgard construction.



Weaker Requirements for Cryptographic Hash

e Target-Collision Resistance

S,X

1 ifHS(x") = HS(x)

HashTgtColly n(n)= {O otherwise

. . . . x € {0,1}"
Question: Why is collision resistance stronger?



Weaker Requirements for Cryptographic Hash

* Preimage Resistance (One-Wayness)

1 ifH(x) =y

HashPreIngesA,H(n)={0 otherwise

s =Gen(1%R) /&

| | 1S] ' y € {0,1}3(11) %
Question: Why is collision resistance stronger?
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Merkle-Damgard Transform

* Most cryptographic hash functions accept fixed length inputs
 What if we want to hash arbitrary length strings?

Construction: Suppose (Gen,h) fixed length hash function from 2n bits
to n bits, define H> as follows

HS(xy, e, xg) = RS(RS(RS(RS (... RS(0™ I x))) Il xg—1) Il xg) Il |x])



Merkle-Damgard Transform

Construction: (Gen,h) fixed length hash function from 2n bits to n bits

H*(x) =
1. Break x into n bit segments x,,..,x4 (pad last block by 0’s)
2. zo = 0" (initialization)
3. Fori=1tod
1. z;=h>(zi—1 Il x})
4. Output zz,; = h®(z4 |l L) where L encodes |x| as an n-bit string



Merkle-Damgard Transform

Theorem: If (Gen,h) is collision resistant then so is (Gen,H)

Proof: Show that any collision in Hs yields a collision in h®. Thus a PPT
attacker A, for (Gen,H) can be transformed into PPT attacker A, for (Gen,h).

Suppose that A, finds a collision i.e., distinct x and x” such that
H*(x) = H*(x")
(note x and x” may have different lengths)



Merkle-Damgard Transform

Theorem: If (Gen,h) is collision resistant then so is (Gen,H)

Proof: Suppose that H®(x) = H®(x"). We will extract a collision for h*.
Case 1: L=|x]|=]|x"|=L" (proof for case two is similar)

HS(X) = Zi+1 — hS(Zd || L) = HS(X,) = Z£l+1 = hS(ZC,i ” L,)

z; | L =2z /
No = Found collision d ” Zq ” L
h*(zq I L) = h*(zg Il L) Yes?

zg = h*(zg-1 I x4) = h3(zg_1 | xg) = z,



Merkle-Damgard Transform

Theorem: If (Gen,h) is collision resistant then so is (Gen,H)

Proof: Suppose that
H*(x) = H*(x')
Case 1: L=|x]|=]|x"|=L" (proof for case two is similar)
Zg = h®(zg-1 I xq4) = h®(z5_1 I xg) = z
Zag-1 1 xqg =244 Il x4
No = Found collision

/ / ?

Zg—1 = h°(zg—3 I x4_1) = hS(Zc'z—z | x&_l) = Zc’i—l



Merkle-Damgard Transform

Theorem: If (Gen,h) is collision resistant then so is (Gen,H)

Proof: Suppose that
H*(x) = H*(x")
Case 1: |x|=|x"| (proof for case two is similar)

If for some i we have z; _; || x; # z;_, || x; then we will find a collision

But x and x’ are different so we must have x; # x; for some i < d!



Merkle-Damgard Transform

Theorem (Concrete Version): If (Gen,h) is (t, €)-collision resistant then
(Gen,H) is is (t', €)-collision resistant for where t’ = 0(t)

Analysis: Run attacker A, to get pair x and x’ (time t), then compute z;
(resp. z;') values to extract collision.

HS(X) = Zi+1 — hS(Zd || L) = HS(X,) = Z£l+1 = hS(ZC,i ” L’)

z; | L =2z /
No = Found collision d ” Zq ” L
h*(zq I L) = h*(zg Il L) Yes?

zg = h*(zg-1 I x4) = h3(zg_1 | xg) = z,



Week 5: Topic 2:
HMACs and Generic Attacks



MACs for Arbitrary Length Messages

Mac,(m)=
e Select random n/4 bit string r
e lett; = Macg(r | £ 1l i Il m;) fori=1,...,d
* (Note: encode i and £ as n/4 bit strings)
e Qutput (r, tq, ..., tq)

Theorem 4.8: If IT" is a secure MAC for messages of fixed length n,
above construction I1 = (Mac, Vrfy) is secure MAC for arbitrary length
messages.



MACstaeAcbitrary Leng

Disadvantages: Lose
Disadvantage 1: Long Strong-MAC Guarantee
output (Multiple valid MACs of
il same message)

and £ as n/4%
e Qutput (r,tq, ..., t)

Theorem 4.8: If IT’ : :
above constructia Randomized Construction (no

messages. canonical verification). Disadvantage?




Hash and MAC Construction

Start with I = (Mac, Vrfy), a secure MAC for messages of fixed length, and
(Geny,H) a collision resistant hash function and define IT’

Mac, K,.5) (m) = Macy_ (H(m))

Vrfyi s (mt) =Vrfyg (H*(m),t)

Theorem 5.6: I1' is a secure MAC for arbitrary length message assuming that IT is
a secure MAC and (Geny,H) is collision resistant.

Note: If VrnyM(m, t) is canonical then VrfyZKM’w(m, t) is canonical.



Hash and MAC Construction

Start with (Mac,Vrfy) a MAC for messages of fixed length and (Gen,,H) a
collision resistant hash function

Mac, K,.5) (m) = Macy_ (HS(m))
Theorem 5.6: Above construction is a secure MAC.

Proof Intuition: If attacker successfully forges a valid MAC tag t’ for unseen
message m’ then either

 Case 1: H(m') = H®(m,) for some previously requested message m.
 Case 2: H(m") + H®(m,) for every previously requested message m.



Hash and MAC Construction

Theorem 5.6: Above construction is a secure MAC.

Proof Intuition: If attacker successfully forges a valid MAC tag t’ for
unseen message m’ then either

 Case 1: H°(m') = HS(m,) for some previously requested message m.
» Attacker can find hash collisions!

 Case 2: H°(m') + H°(m,) for every previously requested message m.
» Attacker forged a valid new tag on the “new message” HS(m')
e Violates security of the original fixed length MAC
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Hash and MAC Construction

Start with (Mac,Vrfy) a MAC for messages of fixed length and (Geny,H) a collision resistant hash function
Mac{KM’S)(m) = MacKM(HS(m))

Theorem 5.6 (Concrete Version): If Mac is (t, Qyac, Emac) — Secure and (Gen,,H) is (t, €gqsn) —collision resistant then Mac('KM,S> is

(O), mac, Emac + €nasn) — secure
Proof Intuition: When A succeeds we either get a hash collision (case 1) or a MacKM forgery (case 2)
if Pr[case 2] > €3, We could violate (t, gy ac, Eyac) — secure for Macy
Simulate Macyy s, attacker A

when attacker makes a query Mac(’KM,”(m) we

1. compute H3(m) and

2. forward HS(m) to Macy oracle to get back MacKM(HS(m))

A’s tag yields a MacKM forgery for new message with probability at least Pr[case 2] > &y 4¢
Similar argument If Pr[case 1] > &4,y We could violate (t, £5,;,) —collision resistance for H5(.)

Therefore, A succeeds with probability at most €y4c + €xash



Recap

e Definition of Collision Resistant Hash Functions (Gen,H)
e Definitional challenges
e Gen(1") outputs a public seed.

 Merkle-Damgard construction to hash arbitrary length strings
e Proof of correctness

e Hash and MAC construction
e Proof of correctness



MAC from Collision Resistant Hash

e Failed Attempt:

Macg ,(m) = H*(k |l m)

Broken if H>uses Merkle-Damgard Transform. Let m; encode length of k || m, || m,
and L, encode the length ofk || m, | m, Il m,

Macg, s\(my Il my, Il mg) = h*(h°(h*(h° (R (0™ || k) | my) ' my) I ms) Il L)
— hS(MacM> (my Il my) Il Ly)

Why does this mean Mac, g, is broken?
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MAC from Collision Resistant Hash

* Failed Attempt: Mac, g,(m) = H*(k |l m)

Broken if H>uses Merkle-Damgard Transform. Let m; encode length of k || m, || m,
Macg, s\(my Il my Il mg) = h*(h*(h*(h° (R (0™ |l k) | my) ' my) I ms) Il L)
= hS(Mac, s, (m, Il m,) Il Ls)
Why does this mean Mac, g, is broken?

1. Attacker asks for t = Mac, ¢, (m, || m,)

2. Attacker computes T = h°(t || L;) which is a forgery for the message m, || m, ||
ms

28



HMAC

Mac, ,(m) = H® ((kEBopad) | HS((kEBipad) | m))

ipad?




HMAC

Macg, s\(m) = H® ((kEBopad) | HS((kEBipad) | m))

ipad = inner pad
opad = outer pad

Both ipad and opad are fixed constants.

Why use key twice?
Allows us to prove security from weak collision resistance of H°



HMAC Security

Macg, s\(m) = H® ((k@opad) | HS((kGBipad) | m))

Theorem (Informal): Assuming that H* is weakly collision resistant and
that (certain other plausible assumptions hold) this is a secure MAC.

Weak Collision Resistance: Give attacker oracle access
to f(m) = H3(k || m) (secret key k remains hidden).

Attacker Goal: Find distinct m, m’ such that f(m) = f(m’)



HMAC in Practice

* MD5 can no longer be viewed as collision resistant

e However, HMAC-MD5 remained unbroken after MD5 was broken

e Gave developers time to replace HMAC-MD5
 Nevertheless, don’t use HMAC-MD5!

e HMAC-SHAZ1 still seems to be okay (temporarily), despite collision

e HMAC is efficient and unbroken

e CBC-MAC was not widely deployed because it is “too slow”
* Instead practitioners often used heuristic constructions (which were breakable)



Finding Collisions

 |deal Hashing Algorithm
e Random function H from {0,1}* to {0,1}¢
e Suppose attacker has oracle access to H(.)

Can we do
e Attack 1: Evaluate H(.) on 2?+1 distinct inputs. better?

THE PIGEONHOLE PRINCIPLE

33



 |deal Hashing Algorithm
e Random function H from {0,1}* to {0,1}¢
e Suppose attacker has oracle access to H(.)

s 4 % LN -
\ 1
— - | "
L n L

e Attack 2: Evaluate H(.) on g = 2(¥/2)*1 4 1 distinct inputs xl,...,xq.'

Pr[No Collision] = Pr[Vi < ]C'I.H(xi) #+ H(x)]

= Pr[D,] 1_[ Pr|D;|D;_4, ..., Dy|
=3

D; = event that H(x;) + H(x;_1), ..., H(xq) y



 |deal Hashing Algorithm
e Random function H from {0,1}* to {0,1}¢
e Suppose attacker has oracle access to H(.)

sind - LN -
; ! 1

e Attack 2: Evaluate H(.) on g = 2(¥/2)*1 4 1 distinct inputs Xqseeer X

Pr(Vvi <j.H(x) # H(x)] =

Pr{AGr)#H(D]  Pr[D3| D] Pr|Dg|Dg-1,..D2

Y ~ Y 7 N

g 1 2 2(£/2)+1
1 X 1 —— X|1——]|X--X1[1
2°¢ 2 2t .




 |deal Hashing Algorithm
e Random function H from {0,1}* to {0,1}¢
e Suppose attacker has oracle access to H(.)

e Attack 2: Evaluate H(.) on g = 2%¥¢/2+1 4 1 distinct inputs X,,...,X

q°

| | 1 ’) 3 2(%’/2)+1
PI‘[Vl<].H(Xi):/—'H(Xj)]=1<1—?><1—?><1—?> (1— ¢ )

5 —q(q —1)
~ €Xp 26+1
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 |deal Hashing Algorithm
e Random function H from {0,1}* to {0,1}¢
e Suppose attacker has oracle access to H(.)

eisf CANAL
\ ] 1
— | .

e Attack 2: Evaluate H(.) on g = 2(¥/2)*1 4 1 distinct inputs Xqseeer X

1 ’ 3 2(3/2)+1
Privi <j.H(x) # H(x)] =1 (1 - ?) (1 - ﬁ) (1 - ?) (1 - 2f )

—q(g—1) —42¢ o, 1
zexp( e+ ><exp<2{,+1 =e <§
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Birthday Attack for Finding Collisions

 |deal Hashing Algorit
e Random function H f

—-q(q—1) [5P+1 1
e Suppose attacker ha: exp( ) < for q > 2¢+11n +1

2€+1

S

L
/
_»

e Attack 2: Evaluate H(

2(3/2)+1>
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Recap

e Collision Resistant Hash Functions
e Merkle—Damgard Construction

e Applications to MACs
 Hash and MAC

* Failed MAC: Mac, c\(m) = H*(k Il m)
 HMAC

« Birthday Attack: Finds collision in time g = 2(¢/2+1 4 1 (and space q)

e Reminder: Homework 2 Due Tonight
e Final Exam: Monday, May 3 at 10:30AM (FRNY B124)



 |deal Hashing Algorithm

e Random function H from {0,1}* to {0,1}¢
e Suppose attacker has oracle access to H(.)

e Attack 2: Evaluate H(.) on g = 2(£/2)+1 4 1 distinct inputs x,,...,X
» Store values (x;, H(x;)) in a hash table of size g

e Requires time/space O(q) = 0(\/?)
e Can we do better?

q°
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Floyd’s Cycle Fmdmg Algorithm
* A cycle denotes a hash collision
e X3=H(x;)=H(x4,)

* Occurs after O(2¢/2) steps by
birthday paradox

 First attack phase detects cycle

* Second phase identifies collision
X, = H(X3) . Xg

* Analogy: Cycle detection in linked list X, OO Xg
e Can traverse “linked list” by computing H

41



Small Space Birthday Attack

e Attack 2: Select random x,, define x, :== H(x,_;)

* Initialize: x=x, and x'=x, Claim: for some k < i the collision is
e Repeat fori=1,2,... X, =H(xp—1)=H(Xp1i-1)
e x:=H(x) now x =X Proof: Let C be length of cycle,
* X:=H(H(x))  now x' =x, Let k= #steps before cycle
* Ifx=x"then break 2i-k = i-k mod C = i=mod C
* Reset x=x, and set x'=x and remember i _ \ Tortoise takes i-k steps inside cycle
Hare takes 2i-k total (equivalent to k backwards steps)
steps inside cycle, /
e Repeatforj=1toi looping around before Initially, for phase 2 we have
ending in same place x'=x; and X = x, after j=k-1

e If H(x) = H(x’) then output x,x’

e Else x:= H(x), x" = H(x) Now x=x; AND x' = X, steps we have x=x,_4

and

’— —
X =Xisk-1"Xkc-1
42



Small Space Birthday Attack

e Attack 2: Select random x,, define x, = H(x,_
* Initialize: x=x, and x'=x,
e Repeat fori=1,2,... Finds collision after
0(2%/2) steps in
expectation

e x:=H(x) now X = X
o x":=H(H(x')) now X = X,
e If x=x’ then break
* Reset x=x,and set x'=x
e Repeatforj=1toi
e If H(x) = H(x’) then output x,x’
e Else x:= H(x), x’ = H(x) Now x=x; AND x' = Xis;
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Small Space Birthday Attack

. Ca(n P)e adapted to find “meaningful collisions” if we have a large message space
O(2

e Example: S=S,US, with|S;| =|S,| =2¢1
e S, =Set of positive recommendation letters
e S, =Set of negative recommendation letters

e Goal: find z; € §4, z, € S;, such that H(z,) = H(z,)

Can adapt previous attack by defining an injective mapping b: {0,1}¥ - S
x. = H(b(x._,))
If x, = x,,; then H(b(x_,)) = H(b(xi+j_1)) =» Colliding inputs are both in S



Pre-Computation Attacks for Targeted Collision

e Challenger: Picks random x and sends y=H(x) to attacker
e Attacker’s Goal: Find some x’ (not necessarily x) s.t. y=H(x’)
* Brute-Force Attack: Requires 2t-1 gueries to H on average.

* Pre-Computation Attack: What if we know we will need to do this
multiple times?
e Pre-Processing Cost (one-time cost): 0(2%)
e Post-Processing Cost: <« 2* (is this possible?)

e Applications:

e Targeted Hash Inversion, MAC forgery, Signature Forgery, Key-Recovery,
Password Cracking etc...



Pre-Computation Attacks for Targeted Collision

 Precomputation (t X s steps, 2s memory)

e

v

m 46




Pre-Computation Attacks for Targeted Collision

. Precomputatlon (t X s steps, 2s X £ memory)

e Goal: Find collision for target y = H(x)

m %
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Pre-Computation Attach sweesey=sfersomeisuj<s gjon

| 2>
y=H(x.,) = H(sp))

e Precomputation (t X s steps, 2s X (takes t steps to recover x}_, from sp))

e Goal: ollision for target y = H(x)
What We Hope is True:
t X s > 2¢*2 > good chance that

y=x’iforsomei§t,j§s

... Not quite true...chains can intersect and
may not represent t X s distinct points
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Intersecting Chains

. Precomputation (t X s steps, 2s memory)

Intersecting chains contain « st
distinct points.

M’ M%

After initial intersection the
chains merge together ®




Targeted Collision Attacks

Fact: If t2 X s < 2% then chains contain
Q(ts) distinct points, but then

Pry in CHAIN]~ %

 Precomputation (t X s steps, 2s memory)

)
Sp2 = Xq

_ 1
Sp1 = X4

gy

x! = H(xd) x% = H(x?) xS = H(x$)
o

Solution: Repeat T=0(t) times using l

X different H,,..., H; where H;(x): = H( (x)) Xivy = Hx)
s chains for each H; =» (sT chains total) |

X¢ = eps

Xt = €p1 e e
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Targeted Collision Attacks

e Precomputation (stT steps, 2sT memory)

@ aa=>» @




Repeat for each starting
point sp; with1 < j <s Attacks




Targeted Collision Attack

e Precomputation (st? steps, 2st mem H;(x) = H( (x))

— ) | — )

Fach H; Chains Contain: Q(st) distinct boihts
As long as st? < 2°¢

xl.jjrll = H; (xljl) Untangling Chains: H; won’t remain tangled

with Hj chains

=>» all chains cover Q(stT) = Q(st?) points




Post-Processing

Foreachi < T // Compute T chains of length t
y =y // Start each chain at y @
Foreachj <t
yi=HO) 11y =, = () g
w' = sp,s //recompute H; chain at sp,, @

For each k’ such that y’ = ep,;
Foreachj' <t

If y == H;(w') return F, (W') else w':= H;(w')
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POSt- P FOCesSsS | N g Observation 1: If y is on any of the chains

i.e.,y = x’kl forsomei <T,j <t,k<s
- We will hit the endpoint y' = ep;/;
Input: y - We will find a pre-image of y

Foreachi < T // Compute T chains of length t
y =y // Start each chain at y @
Foreachj <t
iz MO 11 <, N - i)
w' = sp,s //recompute H; chain at sp,, @

For each k’ such that y’ = ep,;
Foreachj' <t

If y == H;(w') return F, (W') else w':= H;(w')
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Observation 2: If y' = ep,; wheny is not
on the H; chain starting at sp; then we

PO St- P ro C e SS | n g waste t steps checking this chain.

Let Zy ; ., be an indicator random variable
for the event that y; ; = ep,/ ; even
though y is not on the chain

E|Zix]| =Prlyx; = eppr ;] = 27°

Input: y
Foreachi < T //Compute T chains of length
y =y // Start each chain at y
Foreachj <t

E[Z] = E Zyiw | = stT27*
yi=HO) /v =y

Lk’ k .
For each k’ such that y' = ep;/;
w' = sp, [/ recompute H; chain at sp, @

Foreachj <t

Let Z be total number of false positives

If y == H;(w') return F, (W') else w':= H;(w')
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Let Z be total number of false positives

Post-Processing

E[Z] = E z ~ stT2~¢

ik’ k

L ik

Input: y
Foreachi < T //Compute T chains of length
y =y // Start each chain at y
Foreachj <t

Total Running Time: O(Tt + Zt)

If stT ~ 2¢ and T = O(t) then total

running time is O(tz)
yi=HO) /v =y

For each k’ such that y' = ep;/; W
w' = sp, [/ recompute H; chain at sp, @

Foreachj <t

If y == H;(w') return F, (W') else w':= H;(w')
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Targeted Collision Attacks

* Precomputation (tT X s steps, 2sT X £ memory)

ind collision for target y = H(x)

2#
. Sets =237 T—t—2§+1

Precomputatlon: 0(2’?)
" |Space: 0(2 3 X f)

24
Targeted Collision Search: 0(2 3 )




Applications

» Key-Recovery Attacks on Block Cipher E: K x {0,1}" - {0,1}"
* Pre-Computation: O(|K|) .
* Crack 23 secret keys in total time O(|K|) with space s = 0(2?)
e Run prior attack with “hash function” H: {0,1}"* — {0,1}"
e H(K) = Ex(r) for some random (fixed) r € {0,1}"
e Password Cracking

e Attacker is given H'(x4),..., H (x;,) for passwords x4, ..., x;, € PWD.8 with
|PWDs| < | K| ! “ ! “

e Goal: Recover passwords x4, ..., X

e Can crack all k = |PWD.s|1/3 passwords in total time O(|PWD.s|) with space s =
O(|PWDs|?/3)
 Domain Challenge: H": |[PWDs| — {0,1}" with |PWDs| K 2"
* Define (pseudo)random mapping u:{0,1}"* > PWDs
e Run prior attack with “hash function” H: PWDs —» PWD.s as H(x) = u(H’(x))



Week 5: Topic 3:
Random Oracle Model +
Hashing Applications



When Collision Resistance Isn’t Enough

 Example: Message Commitment
 Alice sends Bob: ¢ = H3(r || m) (e.g., predicted winner of NCAA Tournament)

e Alice can later reveal message (e.g., after the tournament is over)
e Just send r and m (note: r has fixed length)

* Why can Alice not change her message? -

 Collision Resistance =» Alice can’t find r’ and m’ s.t. ¢ = Hs(r' || m’) LOCK BCA

* In the meantime Bob shouldn’t learn anything about m

4

& LOCK out
FOR SAFETY

* Problem: Let (Gen,H’) be collision resistant then so is (Gen,H)

H?(x1, .., Xg) = H” (%1, .., xg) |l xg
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When Collision Resistance Isn’t Enough

* Problem: Let (Gen,H’) be collision resistant then so is (Gen,H)

HS(xq, .., xg) = HS(xq, o, xq) Il x4

Note: An H® collision trivially yields a H'S collision

* (Gen,H) definitely does not hide all information about input
(X1, e, Xg)

e Conclusion: Collision resistance is not sufficient for message
commitment



The Tension

e Example: Message Commitment

 Alice sends Bob: H5(r || m) (e.g., predicted winners of NCAA Final Four)
e Alice can later reveal message (e.g., after the Final Four is decided)
* In the meantime Bob shouldn’t learn anything about m

This is still a reasonable approach in practice!

* No attacks when instantiated with any reasonable candidate (e.g., SHA3)

e Cryptographic hash functions seem to provide “something” beyond
collision resistance, but how do we model this capability?



Random QOracle Model

 Model hash function H as a truly random function

e Algorithms can only interact with H as an oracle
* Query: x
e Response: H(x)

* If we submit the same query you see the same response
* If x has not been queried, then the value of H(x) is uniform

* Real World: H instantiated as cryptographic hash function (e.g., SHA3)
of fixed length (no Merkle-Damgard)



Back to Message Commitment

e Example: Message Commitment
 Alice sends Bob: H(r || m) (e.g., predicted winners of NCAA Final Four)

e Alice can later reveal message (e.g., after the Final Four is decided)
e Just send r and m (note: r has fixed length)
 Why can Alice not change her message?

* In the meantime Bob shouldn’t learn anything about m

* Random Oracle Model: Above message commitment scheme is
secure (Alice cannot change m + Bob learns nothing about m)

e Security Definition + Proof later...



Random QOracle Model: Pros

* |t is easier to prove security in Random Oracle Model

e Suppose we are simulating attacker A in a reduction

e Extractability: When A queries H at x we see this query and learn x (and can
easily find H(x))
* Programmability: We can set the value of H(x) to a value of our choice
* As long as the value is correctly distribute i.e., close to uniform

e Both Extractability and Programmability are useful tools for a
security reduction!



Random QOracle Model: Pros

* |t is easier to prove security in Random Oracle Model

* Provably secure constructions in random oracle model are often
much more efficient (compared to provably secure construction is
“standard model”

 Sometimes we only know how to design provably secure protocol in
random oracle model



Random QOracle Model: Cons

e Lack of formal justification

 Why should security guarantees translate when we instantiate
random oracle with a real cryptographic hash function?

* We can construct (contrived) examples of protocols which are
e Secure in random oracle model...
e But broken in the real world



Random Oracle Model: Justification

“A proof of security in the random-oracle model is significantly better
than no proof at all.”

* Evidence of sound design (any weakness involves the hash function
used to instantiate the random oracle)

 Empirical Evidence for Security
“there have been no successful real-world attacks on

|H

schemes proven secure in the random oracle mode



Hash Function Application: Fingerprinting

* The hash h(x) of a file x is a unique identifier for the file
e Collision Resistance = No need to worry about another file y with H(y)=H(y)

* Application 1: Virus Fingerprinting
e Application 2: P2P File Sharing

* Application 3: Data deduplication



Tamper Resistant Storage

&

A ;

Dropbox
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Tamper Resistant Storage

Disadvantage: Too
many hashes to store

@

Dropbox

m,,m,, My

Send file 1

A
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Tamper Resistant Storage

Disadvantage: Need all
files to compute hash
ml’mz’m3

@

Dropbox

m,,m,, My

Send file 1

A
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Merkle Trees

MT?®(x) :== h%(x)
MTS(Xq, ..., Xyi ) =

hs (MTS(Xl; e, Xzi—l); MTS(XZi—1+1) L XZi))

gk
e = | /
B f ]
3 L

Theorem: Let (Gen, h®) be a collision resistant hash ; B \( i
function then MT? is collision resistant. o V. N
hi-4 -’:"" ‘
4 J'j.jl_ AT
hi2 h3.4 :
h/\\h h/\
1 2 3 4

X1 [Data block 1 Data block 2 Data block 3 Datablock4]| x 2




Merkle Trees

* Proof of Correctness for data block 2

hs

hy

Data block 1 Data block 2 Data block 3 Data block 4

e Verify that root matches

e Proof consists of just log(n) hashes
e Verifier only needs to permanently store
only one hash value
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Tamper Resistant Storage

@

Dropbox

m,,m,,ms;,m,

Send file 2

A
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Commitment Schemes

e Alice wants to commit a message m to Bob
e And possibly reveal it later at a time of her choosing

* Properties
e Hiding: commitment reveals nothing about m to Bob
e Binding: it is infeasible for Alice to alter message

4

LOCK BuX
& LoCK ourt
FOR SAFETY
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Commitment Hiding (Hidingy com (1))

My, My

commit(r,m,)

b)

1 ifb=">b

Hiding4,com ()= {O otherwise

VPPT A Ju (negligible) s.t
1
Pr[HldlngA com(M) = 1] + u(n)
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Commitment Binding (Binding 4 com (1))

l9,11,Mgp, My

1 if commit(r,,m,)= commit(r,,m,)

Bindingacom ()= {0 otherwise

VPPT A 3u (negligible) s.t
Pr[Binding Acom(M) = 1] < u(n)
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Secure Commitment Scheme

* Definition: A secure commitment scheme is hiding and binding
* Hiding
VPPT A Ju (negligible) s. t

1
Pr[Hiding,com(n) = 1] < 5 + u(n)

* Binding
VPPT A Ju (negligible) s.t

Pr[Binding 4 com(n) = 1| < u(n)



Commitment Scheme in Random Oracle
Model

e Commit(r,m):=H(m|r)
e Reveal(c):= (m,r)

Theorem: In the random oracle model this is a secure commitment scheme.
Proof Intuition: Let BAD event that attacker queries H(r || m’) for
any message m’ on any of g queries

* As long as the event BAD never occurs Bob learns nothing
about m (in an information theoretic sense)

* If r is a random n-bit string then Pr[BAD] < —

= Sn



Commitment Hiding (Hidingy com (1))

My, My

H(r:mb)

b)

1 ifb="b'

Hiding 5 com ()= {O otherwise

VPPT A making at most q(n) queries

n
Pr[HldlngA com(Mm) = 1] < — qz( )




Other Applications

e Password Hashing

e Key Derivation



Next Week

e Stream Ciphers

* Block Ciphers

e Feistel Networks

e DES, 3DES

* Read Katz and Lindell 6.1-6.2
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