
Cryptography
CS 555

Week 5: 
• Cryptographic Hash Functions
• HMACs
• Generic Attacks
• Random Oracle Model
• Applications of Hashing
Readings: Katz and Lindell Chapter 5, Appendix A.4
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Recap

• Authenticated Encryption + CCA-Security
• Encrypt and Authenticate [SSL]
• Authenticate then Encrypt [TLS] (Caution Required)
• Encrypt then Authenticate!

𝐸𝐸𝐸𝐸𝐸𝐸𝐾𝐾 𝑚𝑚 = c, Mac𝐾𝐾𝑀𝑀
′ c where c = Enc𝐾𝐾𝐸𝐸

′ 𝑚𝑚
• Secure Communication

• Attacks: Reflection/Replay/Reordering + Defenses
• AES-GCM

• Cryptographic Hash Functions
• Definitional Challenges
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Week 5: Topic 1: 
Cryptographic Hash Functions
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Keyed Hash Function Syntax

• Two Algorithms
• Gen(1𝑛𝑛;𝑅𝑅) (Key-generation algorithm)

• Input: Random Bits R
• Output: Secret key s

• 𝐻𝐻𝑠𝑠(𝑚𝑚) (Hashing Algorithm)
• Input: key 𝑠𝑠 and message m ∈ 0,1 ∗ (unbounded length)
• Output: hash value 𝐻𝐻𝑠𝑠(𝑚𝑚) ∈ 0,1 ℓ 𝑛𝑛

• Fixed length hash function
• 𝑚𝑚 ∈ 0,1 ℓ′ 𝑛𝑛 with ℓ′ 𝑛𝑛 > ℓ 𝑛𝑛
• Example: 𝑚𝑚 ∈ 0,1 2𝑛𝑛 and 𝐻𝐻𝑠𝑠(𝑚𝑚) ∈ 0,1 𝑛𝑛

4



Collision Experiment (𝐻𝐻𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐴𝐴,Π(𝑛𝑛)) 
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s = Gen(1𝑛𝑛;𝑅𝑅)

s

x1,x2

Definition: (Gen,H) is a collision resistant hash function if 
∀𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴 ∃𝜇𝜇 (negligible) s. t

Pr 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐴𝐴,Π(𝑛𝑛)=1 ≤ 𝜇𝜇(𝑛𝑛)

𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐴𝐴,Π(𝑛𝑛)= �1 𝑖𝑖𝑖𝑖 𝐻𝐻𝑠𝑠 𝑥𝑥1 = 𝐻𝐻𝑠𝑠 𝑥𝑥2
0 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜



Collision Experiment (𝐻𝐻𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐴𝐴,Π(𝑛𝑛)) 
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s = Gen(1𝑛𝑛;𝑅𝑅)

s

x1,x2

Definition: (Gen,H) is a collision resistant hash function if 
∀𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴 ∃𝜇𝜇 (negligible) s. t

Pr 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐴𝐴,Π(𝑛𝑛)=1 ≤ 𝜇𝜇(𝑛𝑛)

𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐴𝐴,Π(𝑛𝑛)= �1 𝑖𝑖𝑖𝑖 𝐻𝐻𝑠𝑠 𝑥𝑥1 = 𝐻𝐻𝑠𝑠 𝑥𝑥2
0 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

Key is not key 
secret (just 

random)

For simplicity we will 
sometimes just say that H 

(or Hs) is a collision 
resistant hash function



Concrete Security (𝐻𝐻𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐴𝐴,Π(𝑛𝑛)) 
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s = Gen(1𝑛𝑛;𝑅𝑅)

s

x1,x2

Definition: (Gen,H) is a 𝑡𝑡, 𝜀𝜀 −collision resistant hash function 
if  ∀ 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝐴𝐴 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑖𝑖𝑖𝑖 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑎𝑎𝑎𝑎 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑡𝑡(𝑛𝑛)

Pr 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐴𝐴,Π(𝑛𝑛)=1 ≤ 𝜀𝜀(𝑛𝑛)

𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐴𝐴,Π(𝑛𝑛)= �1 𝑖𝑖𝑖𝑖 𝐻𝐻𝑠𝑠 𝑥𝑥1 = 𝐻𝐻𝑠𝑠 𝑥𝑥2
0 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜



Theory vs Practice

• Most cryptographic hash functions used in practice are un-keyed
• Examples: MD5, SHA1, SHA2, SHA3, Blake2B

• Tricky to formally define collision resistance for keyless hash function
• There is a PPT algorithm to find collisions
• We just usually can’t find this algorithm 
• Guarantee for protocol using H

If we know an explicit efficient algorithm A
breaking our protocol then there is an efficient
blackbox reduction transforming A into an efficient 
collision finding algorithm.
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Weaker Requirements for Cryptographic Hash

• Target-Collision Resistance
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s = Gen(1𝑛𝑛;𝑅𝑅)
𝑥𝑥 ∈ 0,1 𝑛𝑛

s,x

x’

HashTgtCollA,Π(𝑛𝑛)= � 1 if Hs x′ = Hs x
0 otherwise

Question: Why is collision resistance stronger?



Weaker Requirements for Cryptographic Hash

• Preimage Resistance (One-Wayness)
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s = Gen(1𝑛𝑛;𝑅𝑅)
𝑦𝑦 ∈ 0,1 ℓ(𝑛𝑛)

s, 𝑦𝑦

x

HashPreImgResA,Π(n)= � 1 if Hs x = y
0 otherwise

Question: Why is collision resistance stronger?



Merkle-Damgård Transform

• Most cryptographic hash functions accept fixed length inputs

• What if we want to hash arbitrary length strings?

Construction: Suppose (Gen,h) fixed length hash function from 2n bits 
to n bits, define 𝐻𝐻𝑠𝑠 as follows

𝐻𝐻𝑠𝑠(𝑥𝑥1, … , 𝑥𝑥𝑑𝑑) = ℎ𝑠𝑠 ℎ𝑠𝑠 ℎ𝑠𝑠 ℎ𝑠𝑠 …ℎ𝑠𝑠 0𝑛𝑛 ∥ 𝑥𝑥1 ∥ 𝑥𝑥𝑑𝑑−1 ∥ 𝑥𝑥𝑑𝑑 ∥ 𝑥𝑥
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Merkle-Damgård Transform

Construction: (Gen,h) fixed length hash function from 2n bits to n bits

𝐻𝐻𝑠𝑠(𝑥𝑥) =
1. Break x into n bit segments x1,..,xd (pad last block by 0’s)
2. 𝑧𝑧0 = 0𝑛𝑛 (initialization)
3. For i = 1 to d

1. 𝑧𝑧𝑖𝑖 = ℎ𝑠𝑠 𝑧𝑧𝑖𝑖−1 ∥ 𝑥𝑥i

4. Output 𝑧𝑧𝑑𝑑+1 = ℎ𝑠𝑠 𝑧𝑧𝑑𝑑 ∥ 𝐿𝐿 where 𝐿𝐿 encodes 𝑥𝑥 as an n-bit string
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Merkle-Damgård Transform

Theorem: If (Gen,h) is collision resistant then so is (Gen,H)

Proof: Show that any collision in Hs yields a collision in hs. Thus a PPT 
attacker AH for (Gen,H) can be transformed into PPT attacker Ah for (Gen,h).

Suppose that  AH finds a collision i.e., distinct x and x’ such that
𝐻𝐻𝑠𝑠(𝑥𝑥) = 𝐻𝐻𝑠𝑠(𝑥𝑥′)

(note x and x’ may have different lengths)
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Merkle-Damgård Transform

Theorem: If (Gen,h) is collision resistant then so is (Gen,H)

Proof: Suppose that 𝐻𝐻𝑠𝑠(𝑥𝑥) = 𝐻𝐻𝑠𝑠(𝑥𝑥′). We will extract a collision for ℎ𝑠𝑠.
Case 1: L=|x|=|x’|=L’  (proof for case two is similar)
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𝐻𝐻𝑠𝑠(𝑥𝑥) = 𝑧𝑧𝑑𝑑+1 = ℎ𝑠𝑠 𝑧𝑧𝑑𝑑 ∥ 𝐿𝐿 = 𝐻𝐻𝑠𝑠(𝑥𝑥𝑥) = 𝑧𝑧𝑑𝑑+1′ = ℎ𝑠𝑠 𝑧𝑧𝑑𝑑′ ∥ 𝐿𝐿𝐿

𝑧𝑧𝑑𝑑 ∥ 𝐿𝐿 =? 𝑧𝑧𝑑𝑑′ ∥ 𝐿𝐿𝐿No  Found collision
ℎ𝑠𝑠 𝑧𝑧𝑑𝑑 ∥ 𝐿𝐿 = ℎ𝑠𝑠 𝑧𝑧𝑑𝑑′ ∥ 𝐿𝐿𝐿 Yes? 

𝑧𝑧𝑑𝑑 = ℎ𝑠𝑠 𝑧𝑧𝑑𝑑−1 ∥ 𝑥𝑥𝑑𝑑 = ℎ𝑠𝑠 𝑧𝑧𝑑𝑑−1′ ∥ 𝑥𝑥𝑑𝑑′ = 𝑧𝑧𝑑𝑑′



Merkle-Damgård Transform

Theorem: If (Gen,h) is collision resistant then so is (Gen,H)

Proof: Suppose that 
𝐻𝐻𝑠𝑠(𝑥𝑥) = 𝐻𝐻𝑠𝑠(𝑥𝑥′)

Case 1: L=|x|=|x’|=L’  (proof for case two is similar)
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𝑧𝑧𝑑𝑑 = ℎ𝑠𝑠 𝑧𝑧𝑑𝑑−1 ∥ 𝑥𝑥𝑑𝑑 = ℎ𝑠𝑠 𝑧𝑧𝑑𝑑−1′ ∥ 𝑥𝑥𝑑𝑑′ = 𝑧𝑧𝑑𝑑′

𝑧𝑧𝑑𝑑−1 ∥ 𝑥𝑥𝑑𝑑 =? 𝑧𝑧𝑑𝑑−1′ ∥ 𝑥𝑥𝑑𝑑′
No  Found collision
ℎ𝑠𝑠 𝑧𝑧𝑑𝑑−1 ∥ 𝑥𝑥𝑑𝑑 = ℎ𝑠𝑠 𝑧𝑧𝑑𝑑−1′ ∥ 𝑥𝑥𝑑𝑑′ Yes? 

𝑧𝑧𝑑𝑑−1 = ℎ𝑠𝑠 𝑧𝑧𝑑𝑑−2 ∥ 𝑥𝑥𝑑𝑑−1 = ℎ𝑠𝑠 𝑧𝑧𝑑𝑑−2′ ∥ 𝑥𝑥𝑑𝑑−1′ = 𝑧𝑧𝑑𝑑−1′



Merkle-Damgård Transform

Theorem: If (Gen,h) is collision resistant then so is (Gen,H)

Proof: Suppose that 
𝐻𝐻𝑠𝑠(𝑥𝑥) = 𝐻𝐻𝑠𝑠(𝑥𝑥′)

Case 1: |x|=|x’|  (proof for case two is similar)
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If for some i we have 𝑧𝑧𝑖𝑖−1 ∥ 𝑥𝑥𝑖𝑖 ≠ 𝑧𝑧𝑖𝑖−1′ ∥ 𝑥𝑥𝑖𝑖′ then we will find a collision

But x and x’ are different so we must have 𝑥𝑥𝑖𝑖 ≠ 𝑥𝑥𝑖𝑖′ for some 𝑖𝑖 ≤ 𝑑𝑑!



Merkle-Damgård Transform

Theorem (Concrete Version): If (Gen,h) is (𝑡𝑡, 𝜀𝜀)-collision resistant then 
(Gen,H) is is (𝑡𝑡′, 𝜀𝜀)-collision resistant for where 𝑡𝑡′ = 𝑂𝑂 𝑡𝑡

Analysis: Run attacker AH to get pair x and x’ (time t), then compute 𝑧𝑧𝑖𝑖
(resp. 𝑧𝑧𝑖𝑖′) values to extract collision.  
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𝐻𝐻𝑠𝑠(𝑥𝑥) = 𝑧𝑧𝑑𝑑+1 = ℎ𝑠𝑠 𝑧𝑧𝑑𝑑 ∥ 𝐿𝐿 = 𝐻𝐻𝑠𝑠(𝑥𝑥𝑥) = 𝑧𝑧𝑑𝑑+1′ = ℎ𝑠𝑠 𝑧𝑧𝑑𝑑′ ∥ 𝐿𝐿𝐿

𝑧𝑧𝑑𝑑 ∥ 𝐿𝐿 =? 𝑧𝑧𝑑𝑑′ ∥ 𝐿𝐿𝐿No  Found collision
ℎ𝑠𝑠 𝑧𝑧𝑑𝑑 ∥ 𝐿𝐿 = ℎ𝑠𝑠 𝑧𝑧𝑑𝑑′ ∥ 𝐿𝐿𝐿 Yes? 

𝑧𝑧𝑑𝑑 = ℎ𝑠𝑠 𝑧𝑧𝑑𝑑−1 ∥ 𝑥𝑥𝑑𝑑 = ℎ𝑠𝑠 𝑧𝑧𝑑𝑑−1′ ∥ 𝑥𝑥𝑑𝑑′ = 𝑧𝑧𝑑𝑑′



Week 5: Topic 2: 
HMACs and Generic Attacks
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MACs for Arbitrary Length Messages

MacK(m)=
• Select random n/4 bit string r
• Let 𝑡𝑡𝑖𝑖 = Mac𝐾𝐾′ 𝑟𝑟 ∥ ℓ ∥ 𝑖𝑖 ∥ 𝑚𝑚𝑖𝑖 for i=1,…,d 

• (Note: encode i and ℓ as n/4 bit strings)
• Output 𝑟𝑟, 𝑡𝑡1, … , 𝑡𝑡𝑑𝑑

Theorem 4.8: If Π’ is a secure MAC for messages of fixed length n, 
above construction Π = (Mac, Vrfy) is secure MAC for arbitrary length 
messages.
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MACs for Arbitrary Length Messages

MacK(m)=
• Select random n/4 bit string r
• Let 𝑡𝑡𝑖𝑖 = Mac𝐾𝐾′ 𝑟𝑟 ∥ ℓ ∥ 𝑖𝑖 ∥ 𝑚𝑚𝑖𝑖 for i=1,…,d 

• (Note: encode i and ℓ as n/4 bit strings)
• Output 𝑟𝑟, 𝑡𝑡1, … , 𝑡𝑡𝑑𝑑

Theorem 4.8: If Π’ is a secure MAC for messages of fixed length n, 
above construction Π = (Mac, Vrfy) is secure MAC for arbitrary length 
messages.

21

Disadvantage 1: Long 
output

Randomized Construction (no 
canonical verification). Disadvantage?

Disadvantages: Lose 
Strong-MAC Guarantee
(Multiple valid MACs of 

same message)



Hash and MAC Construction

Start with Π = Mac, Vrfy , a secure MAC for messages of fixed length, and 
(GenH,H) a collision resistant hash function and define Π′

𝑀𝑀𝑀𝑀𝑀𝑀 𝐾𝐾𝑀𝑀,𝑆𝑆
′ 𝑚𝑚 = 𝑀𝑀𝑀𝑀𝑀𝑀𝐾𝐾𝑀𝑀

𝐻𝐻𝑠𝑠 𝑚𝑚

𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 𝐾𝐾𝑀𝑀,𝑆𝑆
′ 𝑚𝑚, 𝑡𝑡 = 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝐾𝐾𝑀𝑀

𝐻𝐻𝑠𝑠 𝑚𝑚 , 𝑡𝑡

Theorem 5.6: Π′ is a secure MAC for arbitrary length message assuming that Π is 
a secure MAC and (GenH,H) is collision resistant.

Note: If Vrfy𝐾𝐾𝑀𝑀
𝑚𝑚, 𝑡𝑡 is canonical then Vrfy 𝐾𝐾𝑀𝑀,𝑆𝑆

′ 𝑚𝑚, 𝑡𝑡 is canonical.
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Hash and MAC Construction

Start with (Mac,Vrfy) a MAC for messages of fixed length and (GenH,H) a 
collision resistant hash function

𝑀𝑀𝑀𝑀𝑀𝑀 𝐾𝐾𝑀𝑀,𝑆𝑆
′ 𝑚𝑚 = 𝑀𝑀𝑀𝑀𝑀𝑀𝐾𝐾𝑀𝑀

𝐻𝐻𝑠𝑠 𝑚𝑚

Theorem 5.6: Above construction is a secure MAC.

Proof Intuition: If attacker successfully forges a valid MAC tag t’ for unseen 
message m’ then either
• Case 1: 𝐻𝐻𝑠𝑠 𝑚𝑚′ = 𝐻𝐻𝑠𝑠 𝑚𝑚𝑖𝑖 for some previously requested message mi
• Case 2: 𝐻𝐻𝑠𝑠 𝑚𝑚𝑚 ≠ 𝐻𝐻𝑠𝑠 𝑚𝑚𝑖𝑖 for every previously requested message mi
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Hash and MAC Construction

Theorem 5.6: Above construction is a secure MAC.

Proof Intuition: If attacker successfully forges a valid MAC tag t’ for 
unseen message m’ then either
• Case 1: 𝐻𝐻𝑠𝑠 𝑚𝑚′ = 𝐻𝐻𝑠𝑠 𝑚𝑚𝑖𝑖 for some previously requested message mi

• Attacker can find hash collisions!
• Case 2: 𝐻𝐻𝑠𝑠 𝑚𝑚𝑚 ≠ 𝐻𝐻𝑠𝑠 𝑚𝑚𝑖𝑖 for every previously requested message mi

• Attacker forged a valid new tag on the “new message” 𝑯𝑯𝒔𝒔 𝒎𝒎𝒎
• Violates security of the original fixed length MAC
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Hash and MAC Construction
Start with (Mac,Vrfy) a MAC for messages of fixed length and (GenH,H) a collision resistant hash function

𝑀𝑀𝑀𝑀𝑀𝑀 𝐾𝐾𝑀𝑀,𝑆𝑆
′ 𝑚𝑚 = 𝑀𝑀𝑀𝑀𝑀𝑀𝐾𝐾𝑀𝑀

𝐻𝐻𝑠𝑠 𝑚𝑚

Theorem 5.6 (Concrete Version): If 𝑀𝑀𝑀𝑀𝑀𝑀 is 𝑡𝑡, 𝑞𝑞𝑀𝑀𝑀𝑀𝑀𝑀 , 𝜀𝜀𝑀𝑀𝑀𝑀𝑀𝑀 − secure and (GenH,H) is 𝑡𝑡, 𝜀𝜀𝐻𝐻𝐻𝐻𝐻𝐻𝐻 −collision resistant then 𝑀𝑀𝑀𝑀𝑀𝑀 𝐾𝐾𝑀𝑀,𝑆𝑆
′ is 

𝑂𝑂(𝑡𝑡), 𝑞𝑞𝑀𝑀𝑀𝑀𝑀𝑀 , 𝜀𝜀𝑀𝑀𝑀𝑀𝑀𝑀 + 𝜀𝜀𝐻𝐻𝐻𝐻𝐻𝐻𝐻 − 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

Proof Intuition: When A succeeds we either get a hash collision (case 1) or a 𝑀𝑀𝑀𝑀𝑀𝑀𝐾𝐾𝑀𝑀
forgery (case 2)

𝐢𝐢𝐢𝐢 Pr case 2 > 𝜀𝜀𝑀𝑀𝑀𝑀𝑀𝑀 we could violate 𝑡𝑡, 𝑞𝑞𝑀𝑀𝑀𝑀𝑀𝑀 , 𝜀𝜀𝑀𝑀𝑀𝑀𝑀𝑀 − secure for 𝑀𝑀𝑀𝑀𝑀𝑀𝐾𝐾𝑀𝑀

Simulate 𝑀𝑀𝑀𝑀𝑀𝑀 𝐾𝐾𝑀𝑀,𝑆𝑆
′ attacker A

when attacker makes a query 𝑀𝑀𝑀𝑀𝑀𝑀 𝐾𝐾𝑀𝑀,𝑆𝑆
′ (𝑚𝑚) we 

1. compute  𝐻𝐻𝑠𝑠 𝑚𝑚 and 

2. forward  𝐻𝐻𝑠𝑠 𝑚𝑚 to 𝑀𝑀𝑀𝑀𝑀𝑀𝐾𝐾𝑀𝑀
oracle to get back 𝑀𝑀𝑀𝑀𝑀𝑀𝐾𝐾𝑀𝑀

𝐻𝐻𝑠𝑠 𝑚𝑚
A’s tag yields a 𝑀𝑀𝑀𝑀𝑀𝑀𝐾𝐾𝑀𝑀

forgery for new message with probability at least Pr case 2 > 𝜀𝜀𝑀𝑀𝑀𝑀𝑀𝑀
Similar argument I𝐟𝐟 Pr case 1 > 𝜀𝜀𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 we could violate 𝑡𝑡, 𝜀𝜀𝐻𝐻𝐻𝐻𝐻𝐻𝐻 −collision resistance for 𝐻𝐻𝑠𝑠 .
Therefore, A succeeds with probability at most 𝜀𝜀𝑀𝑀𝑀𝑀𝑀𝑀 + 𝜀𝜀𝐻𝐻𝐻𝐻𝐻𝐻𝐻

25



Recap

• Definition of Collision Resistant Hash Functions (Gen,H)
• Definitional challenges
• Gen(1n) outputs a public seed. 

• Merkle-Damgård construction to hash arbitrary length strings
• Proof of correctness

• Hash and MAC construction
• Proof of correctness

26



MAC from Collision Resistant Hash

• Failed Attempt:

Broken if 𝐻𝐻𝑠𝑠uses Merkle-Damgård Transform. Let 𝑚𝑚3 encode length of k ∥ 𝑚𝑚1 ∥ 𝑚𝑚2
and 𝐿𝐿3 encode the length ofk ∥ 𝑚𝑚1 ∥ 𝑚𝑚2 ∥ 𝑚𝑚3

𝑀𝑀𝑀𝑀𝑀𝑀 𝑘𝑘,𝑆𝑆 𝑚𝑚1 ∥ 𝑚𝑚2 ∥ 𝑚𝑚3 = ℎ𝑠𝑠 ℎ𝑠𝑠 ℎ𝑠𝑠 ℎ𝑠𝑠 ℎ𝑠𝑠 0𝑛𝑛 ∥ 𝑘𝑘 ∥ 𝑚𝑚1 ∥ 𝑚𝑚2 ∥ 𝑚𝑚3 ∥ 𝐿𝐿3
= ℎ𝑠𝑠 𝑀𝑀𝑀𝑀𝑀𝑀 𝑘𝑘,𝑆𝑆 𝑚𝑚1 ∥ 𝑚𝑚2 ∥ 𝐿𝐿3

Why does this mean 𝑴𝑴𝑴𝑴𝑴𝑴 𝒌𝒌,𝑺𝑺 is broken?

27

𝑀𝑀𝑀𝑀𝑀𝑀 𝑘𝑘,𝑆𝑆 𝑚𝑚 = 𝐻𝐻𝑠𝑠 𝑘𝑘 ∥ 𝑚𝑚



MAC from Collision Resistant Hash

• Failed Attempt:  𝑀𝑀𝑀𝑀𝑀𝑀 𝑘𝑘,𝑆𝑆 𝑚𝑚 = 𝐻𝐻𝑠𝑠 𝑘𝑘 ∥ 𝑚𝑚

Broken if 𝐻𝐻𝑠𝑠uses Merkle-Damgård Transform. Let 𝑚𝑚3 encode length of k ∥ 𝑚𝑚1 ∥ 𝑚𝑚2

𝑀𝑀𝑀𝑀𝑀𝑀 𝑘𝑘,𝑆𝑆 𝑚𝑚1 ∥ 𝑚𝑚2 ∥ 𝑚𝑚3 = ℎ𝑠𝑠 ℎ𝑠𝑠 ℎ𝑠𝑠 ℎ𝑠𝑠 ℎ𝑠𝑠 0𝑛𝑛 ∥ 𝑘𝑘 ∥ 𝑚𝑚1 ∥ 𝑚𝑚2 ∥ 𝑚𝑚3 ∥ 𝐿𝐿3
= ℎ𝑠𝑠 𝑀𝑀𝑀𝑀𝑀𝑀 𝑘𝑘,𝑆𝑆 𝑚𝑚1 ∥ 𝑚𝑚2 ∥ 𝐿𝐿3

Why does this mean 𝑴𝑴𝑴𝑴𝑴𝑴 𝒌𝒌,𝑺𝑺 is broken?

1. Attacker asks for 𝛕𝛕 = 𝑀𝑀𝑀𝑀𝑀𝑀 𝑘𝑘,𝑆𝑆 𝑚𝑚1 ∥ 𝑚𝑚2

2. Attacker computes 𝛕𝛕′ = ℎ𝑠𝑠 𝛕𝛕 ∥ 𝐿𝐿3 which is a forgery for the message 𝑚𝑚1 ∥ 𝑚𝑚2 ∥
𝑚𝑚3

28



HMAC

𝑀𝑀𝑀𝑀𝑀𝑀 𝑘𝑘,𝑆𝑆 𝑚𝑚 = 𝐻𝐻𝑠𝑠 𝑘𝑘⨁opad ∥ 𝐻𝐻𝑠𝑠 𝑘𝑘⨁ipad ∥ 𝑚𝑚

ipad?

29



HMAC

𝑀𝑀𝑀𝑀𝑀𝑀 𝑘𝑘,𝑆𝑆 𝑚𝑚 = 𝐻𝐻𝑠𝑠 𝑘𝑘⨁opad ∥ 𝐻𝐻𝑠𝑠 𝑘𝑘⨁ipad ∥ 𝑚𝑚

ipad = inner pad
opad = outer pad

Both ipad and opad are fixed constants.

Why use key twice?
Allows us to prove security from weak collision resistance of Hs

30



HMAC Security

𝑀𝑀𝑀𝑀𝑀𝑀 𝑘𝑘,𝑆𝑆 𝑚𝑚 = 𝐻𝐻𝑠𝑠 𝑘𝑘⨁opad ∥ 𝐻𝐻𝑠𝑠 𝑘𝑘⨁ipad ∥ 𝑚𝑚

Theorem (Informal): Assuming that 𝐻𝐻𝑠𝑠 is weakly collision resistant and 
that (certain other plausible assumptions hold) this is a secure MAC. 

Weak Collision Resistance: Give attacker oracle access 
to 𝑓𝑓 𝑚𝑚 = 𝐻𝐻𝑠𝑠 𝑘𝑘 ∥ 𝑚𝑚 (secret key k remains hidden). 

Attacker Goal: Find distinct m, m’ such that 𝑓𝑓 𝑚𝑚 = 𝑓𝑓 𝑚𝑚′

31



HMAC in Practice

• MD5 can no longer be viewed as collision resistant

• However, HMAC-MD5 remained unbroken after MD5 was broken
• Gave developers time to replace HMAC-MD5
• Nevertheless, don’t use HMAC-MD5!

• HMAC-SHA1 still seems to be okay (temporarily), despite collision
• HMAC is efficient and unbroken

• CBC-MAC was not widely deployed because it is “too slow”
• Instead practitioners often used heuristic constructions (which were breakable)

32



Finding Collisions

• Ideal Hashing Algorithm
• Random function H from {0,1}* to {0,1}ℓ

• Suppose attacker has oracle access to H(.)

• Attack 1: Evaluate H(.) on 2ℓ+1 distinct inputs.

33

Can we do 
better?



Birthday Attack for Finding Collisions

• Ideal Hashing Algorithm
• Random function H from {0,1}* to {0,1}ℓ
• Suppose attacker has oracle access to H(.)

• Attack 2: Evaluate H(.) on 𝑞𝑞 = 2 ℓ/2 +1 + 1 distinct inputs x1,…,xq.

Pr No Collision = Pr ∀𝑖𝑖 < 𝑗𝑗.𝐻𝐻(xi) ≠ 𝐻𝐻(xj)

= Pr 𝑫𝑫𝟐𝟐 �
𝑖𝑖=3

𝑞𝑞

𝑃𝑃𝑃𝑃 𝑫𝑫𝒊𝒊�𝑫𝑫𝒊𝒊−𝟏𝟏, … ,𝑫𝑫𝟐𝟐

𝑫𝑫𝒊𝒊 = 𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆 𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 𝐻𝐻 𝑥𝑥𝑖𝑖 ≠ 𝐻𝐻 𝑥𝑥𝑖𝑖−1 , … ,𝐻𝐻 𝑥𝑥1 34



Birthday Attack for Finding Collisions

• Ideal Hashing Algorithm
• Random function H from {0,1}* to {0,1}ℓ
• Suppose attacker has oracle access to H(.)

• Attack 2: Evaluate H(.) on 𝑞𝑞 = 2 ℓ/2 +1 + 1 distinct inputs x1,…,xq.

Pr ∀𝑖𝑖 < 𝑗𝑗.𝐻𝐻(xi) ≠ 𝐻𝐻(xj) =

1 × 1 −
1
2ℓ

Pr 𝐻𝐻 𝑥𝑥2 ≠𝐻𝐻 𝑥𝑥1

× 1 −
2
2ℓ

Pr 𝑫𝑫𝟑𝟑| 𝑫𝑫𝟐𝟐

× ⋯× 1 −
2 ℓ/2 +1

2ℓ

Pr 𝑫𝑫𝒒𝒒�𝑫𝑫𝒒𝒒−𝟏𝟏,…,𝑫𝑫𝟐𝟐

35
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Birthday Attack for Finding Collisions

• Ideal Hashing Algorithm
• Random function H from {0,1}* to {0,1}ℓ

• Suppose attacker has oracle access to H(.)

• Attack 2: Evaluate H(.) on 𝑞𝑞 = 2 ℓ/2 +1 + 1 distinct inputs x1,…,xq.

Pr ∀𝑖𝑖 < 𝑗𝑗.𝐻𝐻(xi) ≠ 𝐻𝐻(xj) = 1 1 −
1
2ℓ

1 −
2
2ℓ

1 −
3
2ℓ

… 1 −
2 ℓ/2 +1

2ℓ

≈ exp
−𝑞𝑞 𝑞𝑞 − 1

2ℓ+1
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Birthday Attack for Finding Collisions

• Ideal Hashing Algorithm
• Random function H from {0,1}* to {0,1}ℓ
• Suppose attacker has oracle access to H(.)

• Attack 2: Evaluate H(.) on 𝑞𝑞 = 2 ℓ/2 +1 + 1 distinct inputs x1,…,xq.

Pr ∀𝑖𝑖 < 𝑗𝑗.𝐻𝐻(xi) ≠ 𝐻𝐻(xj) = 1 1 −
1
2ℓ

1 −
2
2ℓ

1 −
3
2ℓ

… 1 −
2 ℓ/2 +1

2ℓ

≈ exp
−𝑞𝑞 𝑞𝑞 − 1

2ℓ+1
< exp

−42ℓ

2ℓ+1
= 𝑒𝑒−2 <

1
2

37



Birthday Attack for Finding Collisions

• Ideal Hashing Algorithm
• Random function H from {0,1}* to {0,1}ℓ
• Suppose attacker has oracle access to H(.)

• Attack 2: Evaluate H(.) on 𝑞𝑞 = 2 ℓ/2 +1 + 1 distinct inputs x1,…,xq.

Pr ∀𝑖𝑖 < 𝑗𝑗.𝐻𝐻(xi) ≠ 𝐻𝐻(xj) = 1 1 −
1
2ℓ

1 −
2
2ℓ

1 −
3
2ℓ

… 1 −
2 ℓ/2 +1

2ℓ

≈ exp
−𝑞𝑞 𝑞𝑞 − 1

2ℓ+1
< exp

−42ℓ

2ℓ+1
= 𝑒𝑒−2 <

1
2
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exp −𝑞𝑞 𝑞𝑞−1
2ℓ+1

< 𝜺𝜺 for 𝑞𝑞 > 2ℓ+1 ln 𝜺𝜺 + 1



Recap

• Collision Resistant Hash Functions
• Merkle–Damgård Construction
• Applications to MACs

• Hash and MAC
• Failed MAC: 𝑀𝑀𝑀𝑀𝑀𝑀 𝑘𝑘,𝑆𝑆 𝑚𝑚 = 𝐻𝐻𝑠𝑠 𝑘𝑘 ∥ 𝑚𝑚
• HMAC

• Birthday Attack: Finds collision in time 𝑞𝑞 = 2 ℓ/2 +1 + 1 (and space 𝑞𝑞)

• Reminder: Homework 2 Due Tonight
• Final Exam: Monday, May 3 at 10:30AM (FRNY B124)
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Birthday Attack for Finding Collisions

• Ideal Hashing Algorithm
• Random function H from {0,1}* to {0,1}ℓ

• Suppose attacker has oracle access to H(.)

• Attack 2: Evaluate H(.) on 𝑞𝑞 = 2 ℓ/2 +1 + 1 distinct inputs x1,…,xq.
• Store values xi,𝐻𝐻(xi) in a hash table of size q

• Requires time/space O(𝑞𝑞) = 𝑂𝑂 2ℓ
• Can we do better?

40



Floyd’s Cycle Finding Algorithm

• Analogy: Cycle detection in linked list 
• Can traverse “linked list” by computing H

41

• A cycle denotes a hash collision
• x3=H(x2)=H(x12)

• Occurs after O 2ℓ/2 steps by 
birthday paradox

• First attack phase detects cycle
• Second phase identifies collision

x0

x1

x2

x3=H(x2)

X4 = 𝐻𝐻(x3)
x5 x6

x7

x8

x9

x10x11

x12



Small Space Birthday Attack

• Attack 2: Select random x0, define xi ≔ 𝐻𝐻(xi−1)
• Initialize: x=x0 and xʹ=x0
• Repeat for i=1,2,…

• x:=H(x) now x = xi

• xʹ:=H(H(xʹ)) now   x′ = x2i

• If x=x’ then break
• Reset x=x0 and set xʹ=x and remember i

• Repeat for j=1 to i
• If H(x) = H(x’) then  output x,x’
• Else x:= H(x), x’ = H(x)                     Now x=xj AND x′ = xi+j

42

Claim: for some 𝑘𝑘 ≤ 𝑖𝑖 the collision is
xk=H(𝑥𝑥𝑘𝑘−1)=H(𝑥𝑥𝑘𝑘+𝑖𝑖−1)
Proof: Let C be length of cycle, 
Let k= #steps before cycle
2i-k = i-k mod C  i= mod C

Tortoise takes i-k steps inside cycle
(equivalent to k backwards steps)Hare takes 2i-k total 

steps inside cycle, 
looping around before 
ending in same place

Initially, for phase 2 we have  
xʹ=xi and x = x0 after j=k-1 
steps we have x=𝑥𝑥𝑘𝑘−1
and

xʹ=xi+K-1=xk+C−1



Small Space Birthday Attack

• Attack 2: Select random x0, define xi = 𝐻𝐻(xi−1)
• Initialize: x=x0 and xʹ=x0
• Repeat for i=1,2,…

• x:=H(x) now x = xi

• xʹ:=H(H(xʹ)) now   x′ = x2i

• If x=x’ then break
• Reset x=x0 and set xʹ=x
• Repeat for j=1 to i

• If H(x) = H(x’) then  output x,x’
• Else x:= H(x), x’ = H(x)                     Now x=xj AND x′ = xi+j

43

Finds collision after 
O 2ℓ/2 steps in 

expectation



Small Space Birthday Attack

• Can be adapted to find “meaningful collisions” if we have a large message space 
O 2ℓ

• Example:  S = 𝑆𝑆1 ∪ 𝑆𝑆2 with 𝑆𝑆1 = 𝑆𝑆2 = 2ℓ−1
• 𝑆𝑆1 = Set of positive recommendation letters
• 𝑆𝑆2 = Set of negative recommendation letters

• Goal: find 𝑧𝑧1 ∈ 𝑆𝑆1, 𝑧𝑧2 ∈ 𝑆𝑆2, such that H(z1) = H(z2)

• Can adapt previous attack by defining an injective mapping b: 0,1 ℓ → 𝑆𝑆
xi = 𝐻𝐻(b xi−1 )

• If xi = xi+j then 𝐻𝐻 b xi−1 = 𝐻𝐻 b xi+j−1  Colliding inputs are both in S

44



Pre-Computation Attacks for Targeted Collision

• Challenger: Picks random x and sends y=H(x) to attacker
• Attacker’s Goal: Find some x’ (not necessarily x) s.t. y=H(x’)
• Brute-Force Attack: Requires 2ℓ−1 queries to H on average.
• Pre-Computation Attack: What if we know we will need to do this 

multiple times?
• Pre-Processing Cost (one-time cost):  O(2ℓ)
• Post-Processing Cost: ≪ 2ℓ (is this possible?)

• Applications:
• Targeted Hash Inversion, MAC forgery, Signature Forgery, Key-Recovery, 

Password Cracking etc…



Pre-Computation Attacks for Targeted Collision

• Precomputation (𝑡𝑡 × 𝑠𝑠 steps, 2𝑠𝑠 memory)

46

𝑠𝑠𝑠𝑠1 = 𝑥𝑥11

𝑥𝑥21 = 𝐻𝐻 𝑥𝑥11

𝑥𝑥𝑖𝑖+11 = 𝐻𝐻 𝑥𝑥𝑖𝑖1

𝑥𝑥𝑡𝑡1 = 𝑒𝑒𝑝𝑝1

…

…

𝑥𝑥22 = 𝐻𝐻 𝑥𝑥12

𝑥𝑥𝑖𝑖+12 = 𝐻𝐻 𝑥𝑥𝑖𝑖2
…

…

𝑠𝑠𝑠𝑠1 = 𝑥𝑥11

𝑥𝑥𝑡𝑡1 = 𝑒𝑒𝑝𝑝1

𝑠𝑠𝑠𝑠2 = 𝑥𝑥12

𝑥𝑥𝑡𝑡2 = 𝑒𝑒𝑝𝑝2

𝑥𝑥2𝑠𝑠 = 𝐻𝐻 𝑥𝑥1𝑠𝑠

…

…

𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑥𝑥1𝑠𝑠

𝑥𝑥𝑡𝑡𝑠𝑠 = 𝑒𝑒𝑝𝑝𝑠𝑠

…

… 𝑥𝑥𝑖𝑖+1𝑠𝑠 = 𝐻𝐻 𝑥𝑥𝑖𝑖𝑠𝑠



• Precomputation (𝑡𝑡 × 𝑠𝑠 steps, 2𝑠𝑠 × ℓ memory)

47

𝑥𝑥2
𝑗𝑗 = 𝐻𝐻 𝑥𝑥1

𝑗𝑗

…

…

𝑠𝑠𝑠𝑠𝑗𝑗 = 𝑥𝑥1
𝑗𝑗

𝑥𝑥𝑡𝑡
𝑗𝑗 = 𝑒𝑒𝑝𝑝𝑗𝑗

…

… 𝑥𝑥𝑖𝑖+1
𝑗𝑗 = 𝐻𝐻 𝑥𝑥𝑖𝑖

𝑗𝑗

…

…

• Goal: Find collision for target 𝑦𝑦 = 𝐻𝐻(𝑥𝑥)

𝑦𝑦0 = 𝑦𝑦

𝑦𝑦1 = 𝐻𝐻 𝑦𝑦0

𝑦𝑦𝑖𝑖 = 𝐻𝐻 𝑦𝑦𝑖𝑖−1

𝑦𝑦𝑘𝑘 = 𝑒𝑒𝑒𝑒𝑗𝑗

…

…

Pre-Computation Attacks for Targeted Collision



• Precomputation (𝑡𝑡 × 𝑠𝑠 steps, 2𝑠𝑠 × ℓ memory)

48

𝑥𝑥2
𝑗𝑗 = 𝐻𝐻 𝑥𝑥1

𝑗𝑗

…

…

𝑠𝑠𝑠𝑠𝑗𝑗 = 𝑥𝑥1
𝑗𝑗

𝑥𝑥𝑡𝑡
𝑗𝑗 = 𝑒𝑒𝑝𝑝𝑗𝑗

…

… 𝑥𝑥𝑖𝑖+1
𝑗𝑗 = 𝐻𝐻 𝑥𝑥𝑖𝑖

𝑗𝑗

…

…

• Goal: Find collision for target 𝑦𝑦 = 𝐻𝐻(𝑥𝑥)

𝑦𝑦0 = 𝑦𝑦

𝑦𝑦1 = 𝐻𝐻 𝑦𝑦0

𝑦𝑦𝑖𝑖 = 𝐻𝐻 𝑦𝑦𝑖𝑖−1

𝑦𝑦𝑘𝑘 = 𝑒𝑒𝑒𝑒𝑗𝑗

…

…

What We Hope is True: 
𝒕𝒕 × 𝒔𝒔 > 𝟐𝟐ℓ+𝟐𝟐 good chance that 
𝒚𝒚 = 𝒙𝒙𝒊𝒊

𝒋𝒋 for some 𝒊𝒊 ≤ 𝒕𝒕, 𝒋𝒋 ≤ 𝒔𝒔

… Not quite true…chains can intersect and 
may not represent 𝒕𝒕 × 𝒔𝒔 distinct points

Pre-Computation Attacks for Targeted CollisionSuppose 𝒚𝒚 = 𝒙𝒙𝒊𝒊
𝒋𝒋 for some 𝒊𝒊 ≤ 𝒕𝒕, 𝒋𝒋 ≤ 𝒔𝒔


𝒚𝒚 = 𝑯𝑯 𝒙𝒙𝒊𝒊−𝟏𝟏
𝒋𝒋 = 𝑯𝑯𝒊𝒊−𝟏𝟏 𝒔𝒔𝒔𝒔𝒋𝒋

(takes t steps to recover 𝒙𝒙𝒊𝒊−𝟏𝟏
𝒋𝒋 from  𝒔𝒔𝒔𝒔𝒋𝒋)



Intersecting Chains

• Precomputation (𝑡𝑡 × 𝑠𝑠 steps, 2𝑠𝑠 memory)

49

𝑥𝑥2
𝑗𝑗 = 𝐻𝐻 𝑥𝑥1

𝑗𝑗

…

…

𝑠𝑠𝑠𝑠𝑗𝑗 = 𝑥𝑥1
𝑗𝑗

𝑥𝑥𝑡𝑡
𝑗𝑗 = 𝑒𝑒𝑝𝑝𝑗𝑗

𝑥𝑥𝑖𝑖+1
𝑗𝑗 = 𝐻𝐻 𝑥𝑥𝑖𝑖

𝑗𝑗

… 𝑥𝑥2
𝑗𝑗𝑗 = 𝐻𝐻 𝑥𝑥1

𝑗𝑗𝑗

𝑠𝑠𝑠𝑠𝑗𝑗𝑗 = 𝑥𝑥1
𝑗𝑗𝑗

… 𝑥𝑥𝑡𝑡
𝑗𝑗𝑗 = 𝑒𝑒𝑝𝑝𝑗𝑗𝑗

…
𝑥𝑥𝑘𝑘
𝑗𝑗𝑗 = 𝐻𝐻 𝑥𝑥𝑘𝑘

𝑗𝑗𝑗

Intersecting chains contain ≪ 𝐬𝐬𝒕𝒕
distinct points. 

After initial intersection the 
chains merge together 



Targeted Collision Attacks 

• Precomputation (𝑡𝑡 × 𝑠𝑠 steps, 2𝑠𝑠 memory)

50

𝑠𝑠𝑠𝑠1 = 𝑥𝑥11

𝑥𝑥21 = 𝐻𝐻 𝑥𝑥11

𝑥𝑥𝑖𝑖+11 = 𝐻𝐻 𝑥𝑥𝑖𝑖1

𝑥𝑥𝑡𝑡1 = 𝑒𝑒𝑝𝑝1

…

…

𝑥𝑥22 = 𝐻𝐻 𝑥𝑥12

𝑥𝑥𝑖𝑖+12 = 𝐻𝐻 𝑥𝑥𝑖𝑖2
…

…

𝑠𝑠𝑠𝑠1 = 𝑥𝑥11

𝑥𝑥𝑡𝑡1 = 𝑒𝑒𝑝𝑝1

𝑠𝑠𝑠𝑠2 = 𝑥𝑥12

𝑥𝑥𝑡𝑡2 = 𝑒𝑒𝑝𝑝2

𝑥𝑥2𝑠𝑠 = 𝐻𝐻 𝑥𝑥1𝑠𝑠

…

…

𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑥𝑥1𝑠𝑠

𝑥𝑥𝑡𝑡𝑠𝑠 = 𝑒𝑒𝑝𝑝𝑠𝑠

…

… 𝑥𝑥𝑖𝑖+1𝑠𝑠 = 𝐻𝐻 𝑥𝑥𝑖𝑖𝑠𝑠

Fact: If 𝒕𝒕𝟐𝟐 × 𝒔𝒔 < 𝟐𝟐ℓ then chains contain 
𝛀𝛀 𝒕𝒕𝒔𝒔 distinct points, but then 

Pr[y in CHAIN]≈ 𝟏𝟏
𝒕𝒕

Solution: Repeat T=O(t) times using 
different H1,…, HT where Hi 𝑥𝑥 : = H 𝐹𝐹𝐾𝐾𝑖𝑖 𝑥𝑥

s chains for each Hj  (sT chains total) 



Targeted Collision Attacks 

• Precomputation (𝑠𝑠𝑠𝑠𝑠𝑠 steps, 2𝑠𝑠𝑠𝑠 memory)

51

𝑠𝑠𝑠𝑠1 = 𝑥𝑥11

𝑥𝑥2
𝑗𝑗,1 = 𝐻𝐻1 𝑥𝑥1

𝑗𝑗,1

𝑥𝑥𝑖𝑖+1
𝑗𝑗,1 = 𝐻𝐻1 𝑥𝑥𝑖𝑖

𝑗𝑗,1

𝑥𝑥𝑡𝑡1 = 𝑒𝑒𝑝𝑝1

…

…

𝑥𝑥2
𝑗𝑗,2 = 𝐻𝐻2 𝑥𝑥1

𝑗𝑗,2

𝑥𝑥𝑖𝑖+1
𝑗𝑗,2 = 𝐻𝐻2 𝑥𝑥𝑖𝑖

𝑗𝑗,2

…

…

𝑠𝑠𝑠𝑠𝑗𝑗 = 𝑥𝑥1
𝑗𝑗

𝑥𝑥𝑡𝑡
𝑗𝑗,1 = 𝑒𝑒𝑝𝑝𝑗𝑗,1

𝑠𝑠𝑠𝑠𝑗𝑗 = 𝑥𝑥1
𝑗𝑗

𝑥𝑥𝑡𝑡
𝑗𝑗,2 = 𝑒𝑒𝑝𝑝𝑗𝑗,2

𝑥𝑥2
𝑗𝑗,𝑇𝑇 = 𝐻𝐻𝑇𝑇 𝑥𝑥1

𝑗𝑗,𝑠𝑠

…

…

𝑠𝑠𝑠𝑠𝑗𝑗 = 𝑥𝑥1
𝑗𝑗

𝑥𝑥𝑡𝑡
𝑗𝑗,𝑇𝑇 = 𝑒𝑒𝑝𝑝𝑗𝑗,𝑇𝑇

…

… 𝑥𝑥𝑖𝑖+1
𝑗𝑗,𝑇𝑇 = 𝐻𝐻𝑇𝑇 𝑥𝑥𝑖𝑖

𝑗𝑗,𝑠𝑠



Targeted Collision Attacks 

• Precomputation (𝑠𝑠𝑡𝑡𝑡𝑡 steps, 2𝑠𝑠𝑇𝑇 memory)

52

𝑠𝑠𝑠𝑠1 = 𝑥𝑥11

𝑥𝑥2
𝑗𝑗,1 = 𝐻𝐻1 𝑥𝑥1

𝑗𝑗,1

𝑥𝑥𝑖𝑖+1
𝑗𝑗,1 = 𝐻𝐻1 𝑥𝑥𝑖𝑖

𝑗𝑗,1

𝑥𝑥𝑡𝑡1 = 𝑒𝑒𝑝𝑝1

…

…

𝑥𝑥2
𝑗𝑗,2 = 𝐻𝐻2 𝑥𝑥1

𝑗𝑗,2

𝑥𝑥𝑖𝑖+1
𝑗𝑗,2 = 𝐻𝐻2 𝑥𝑥𝑖𝑖

𝑗𝑗,2

…

…

𝑠𝑠𝑠𝑠𝑗𝑗 = 𝑥𝑥1
𝑗𝑗

𝑥𝑥𝑡𝑡
𝑗𝑗,1 = 𝑒𝑒𝑝𝑝𝑗𝑗,1

𝑠𝑠𝑠𝑠𝑗𝑗 = 𝑥𝑥1
𝑗𝑗

𝑥𝑥𝑡𝑡
𝑗𝑗,2 = 𝑒𝑒𝑝𝑝𝑗𝑗,2

𝑥𝑥2
𝑗𝑗,𝑇𝑇 = 𝐻𝐻𝑇𝑇 𝑥𝑥1

𝑗𝑗,𝑠𝑠

…

…

𝑠𝑠𝑠𝑠𝑗𝑗 = 𝑥𝑥1
𝑗𝑗

𝑥𝑥𝑡𝑡
𝑗𝑗,𝑇𝑇 = 𝑒𝑒𝑝𝑝𝑗𝑗,𝑇𝑇

…

… 𝑥𝑥𝑖𝑖+1
𝑗𝑗,𝑇𝑇 = 𝐻𝐻𝑇𝑇 𝑥𝑥𝑖𝑖

𝑗𝑗,𝑠𝑠

𝐻𝐻𝑖𝑖 𝑥𝑥 = 𝐻𝐻 𝐹𝐹𝐾𝐾𝑖𝑖 𝑥𝑥
Repeat for each starting 
point 𝑠𝑠𝑠𝑠𝑗𝑗 with 1 ≤ 𝑗𝑗 ≤ 𝑠𝑠



Targeted Collision Attacks 

• Precomputation (𝑠𝑠𝑡𝑡2 steps, 2𝑠𝑠𝑡𝑡 memory)

53

𝑠𝑠𝑠𝑠1 = 𝑥𝑥11

𝑥𝑥2
𝑗𝑗,1 = 𝐻𝐻1 𝑥𝑥1

𝑗𝑗,1

𝑥𝑥𝑖𝑖+1
𝑗𝑗,1 = 𝐻𝐻1 𝑥𝑥𝑖𝑖

𝑗𝑗,1

𝑥𝑥𝑡𝑡1 = 𝑒𝑒𝑝𝑝1

…

…

𝑥𝑥2
𝑗𝑗,2 = 𝐻𝐻2 𝑥𝑥1

𝑗𝑗,2

𝑥𝑥𝑖𝑖+1
𝑗𝑗,2 = 𝐻𝐻𝑖𝑖 𝑥𝑥𝑖𝑖

𝑗𝑗,2

…

…

𝑠𝑠𝑠𝑠𝑗𝑗 = 𝑥𝑥1
𝑗𝑗

𝑥𝑥𝑡𝑡
𝑗𝑗,1 = 𝑒𝑒𝑝𝑝𝑗𝑗,1

𝑠𝑠𝑠𝑠𝑗𝑗 = 𝑥𝑥1
𝑗𝑗

𝑥𝑥𝑡𝑡
𝑗𝑗,2 = 𝑒𝑒𝑝𝑝𝑗𝑗,2

𝑥𝑥2
𝑗𝑗,𝑇𝑇 = 𝐻𝐻𝑇𝑇 𝑥𝑥1

𝑗𝑗,𝑠𝑠

…

…

𝑠𝑠𝑠𝑠𝑗𝑗 = 𝑥𝑥1
𝑗𝑗

𝑥𝑥𝑡𝑡
𝑗𝑗,𝑇𝑇 = 𝑒𝑒𝑝𝑝𝑗𝑗,𝑇𝑇

…

… 𝑥𝑥𝑖𝑖+1
𝑗𝑗,𝑇𝑇 = 𝐻𝐻𝑖𝑖 𝑥𝑥𝑖𝑖

𝑗𝑗,𝑠𝑠

𝐻𝐻𝑖𝑖 𝑥𝑥 = 𝐻𝐻 𝐹𝐹𝐾𝐾𝑖𝑖 𝑥𝑥

Each 𝐻𝐻𝑖𝑖 Chains Contain: Ω 𝑠𝑠𝑠𝑠 distinct points
As long as 𝑠𝑠𝑡𝑡2 ≤ 2ℓ

Untangling Chains: 𝐻𝐻𝑖𝑖 won’t remain tangled 
with 𝐻𝐻𝑗𝑗 chains 

 all chains cover Ω 𝑠𝑠𝑡𝑡𝑡𝑡 = Ω 𝑠𝑠𝑡𝑡2 points



Post-Processing

Input: y
For each 𝑖𝑖 ≤ 𝑇𝑇 // Compute T chains of length t
𝑦𝑦𝑦 ≔ 𝑦𝑦 // Start each chain at 𝑦𝑦
For each 𝑗𝑗 ≤ 𝑡𝑡
𝑦𝑦′: = 𝐻𝐻𝑖𝑖 𝑦𝑦𝑦 // 𝑦𝑦′ = 𝑦𝑦𝑗𝑗,𝑖𝑖

For each k’ such that 𝑦𝑦′ = 𝑒𝑒𝑒𝑒𝑘𝑘′,𝑖𝑖
w′ ≔ 𝑠𝑠𝑝𝑝𝑘𝑘′ // recompute 𝐻𝐻𝑖𝑖 chain at 𝑠𝑠𝑠𝑠𝑘𝑘′
For each 𝑗𝑗′ ≤ 𝑡𝑡

If 𝑦𝑦 == 𝐻𝐻𝑖𝑖 𝑤𝑤′ return 𝐹𝐹𝐾𝐾𝑖𝑖 𝒘𝒘𝒘 else w′: = 𝐻𝐻𝑖𝑖 𝑤𝑤𝑤

54

𝑦𝑦0,𝑖𝑖 = 𝑦𝑦

𝑦𝑦1,𝑖𝑖 = 𝐻𝐻𝑖𝑖 𝑦𝑦0

𝑦𝑦𝑗𝑗,𝑖𝑖 = 𝐻𝐻𝑖𝑖 𝑦𝑦𝑗𝑗−1

𝑦𝑦𝑘𝑘,𝑖𝑖 = 𝑒𝑒𝑒𝑒𝑘𝑘′,𝑖𝑖

…

…



Post-Processing

Input: y
For each 𝑖𝑖 ≤ 𝑇𝑇 // Compute T chains of length t
𝑦𝑦𝑦 ≔ 𝑦𝑦 // Start each chain at 𝑦𝑦
For each 𝑗𝑗 ≤ 𝑡𝑡
𝑦𝑦′: = 𝐻𝐻𝑖𝑖 𝑦𝑦𝑦 // 𝑦𝑦′ = 𝑦𝑦𝑗𝑗,𝑖𝑖

For each k’ such that 𝑦𝑦′ = 𝑒𝑒𝑒𝑒𝑘𝑘′,𝑖𝑖
w′ ≔ 𝑠𝑠𝑝𝑝𝑘𝑘′ // recompute 𝐻𝐻𝑖𝑖 chain at 𝑠𝑠𝑠𝑠𝑘𝑘′
For each 𝑗𝑗′ ≤ 𝑡𝑡

If 𝑦𝑦 == 𝐻𝐻𝑖𝑖 𝑤𝑤′ return 𝐹𝐹𝐾𝐾𝑖𝑖 𝒘𝒘𝒘 else w′: = 𝐻𝐻𝑖𝑖 𝑤𝑤𝑤

55

𝑦𝑦0,𝑖𝑖 = 𝑦𝑦

𝑦𝑦1,𝑖𝑖 = 𝐻𝐻𝑖𝑖 𝑦𝑦0

𝑦𝑦𝑗𝑗,𝑖𝑖 = 𝐻𝐻𝑖𝑖 𝑦𝑦𝑗𝑗−1

𝑦𝑦𝑘𝑘,𝑖𝑖 = 𝑒𝑒𝑒𝑒𝑘𝑘′,𝑖𝑖

…

…

Observation 1: If y is on any of the chains 
i.e., 𝒚𝒚 = 𝒙𝒙𝒌𝒌

𝒋𝒋,𝒊𝒊 for some 𝒊𝒊 ≤ 𝑻𝑻, 𝒋𝒋 ≤ 𝒕𝒕, 𝒌𝒌 ≤ 𝒔𝒔
 We will hit the endpoint 𝑦𝑦′ = 𝑒𝑒𝑒𝑒𝑘𝑘′,𝑖𝑖
 We will find a pre-image of y



Post-Processing

Input: y
For each 𝑖𝑖 ≤ 𝑇𝑇 // Compute T chains of length t
𝑦𝑦𝑦 ≔ 𝑦𝑦 // Start each chain at 𝑦𝑦
For each 𝑗𝑗 ≤ 𝑡𝑡
𝑦𝑦′: = 𝐻𝐻𝑖𝑖 𝑦𝑦𝑦 // 𝑦𝑦′ = 𝑦𝑦𝑗𝑗,𝑖𝑖

For each k’ such that 𝑦𝑦′ = 𝑒𝑒𝑒𝑒𝑘𝑘′,𝑖𝑖
w′ ≔ 𝑠𝑠𝑝𝑝𝑘𝑘′ // recompute 𝐻𝐻𝑖𝑖 chain at 𝑠𝑠𝑠𝑠𝑘𝑘′
For each 𝑗𝑗′ ≤ 𝑡𝑡

If 𝑦𝑦 == 𝐻𝐻𝑖𝑖 𝑤𝑤′ return 𝐹𝐹𝐾𝐾𝑖𝑖 𝒘𝒘𝒘 else w′: = 𝐻𝐻𝑖𝑖 𝑤𝑤𝑤

56

𝑦𝑦0,𝑖𝑖 = 𝑦𝑦

𝑦𝑦1,𝑖𝑖 = 𝐻𝐻𝑖𝑖 𝑦𝑦0

𝑦𝑦𝑗𝑗,𝑖𝑖 = 𝐻𝐻𝑖𝑖 𝑦𝑦𝑗𝑗−1

𝑦𝑦𝑘𝑘,𝑖𝑖 = 𝑒𝑒𝑒𝑒𝑘𝑘′,𝑖𝑖

…

…

Observation 2: If 𝑦𝑦′ = 𝑒𝑒𝑒𝑒𝑘𝑘′,𝑖𝑖 when y is not 
on the  𝐻𝐻𝑖𝑖 chain starting at 𝑠𝑠𝑠𝑠𝑘𝑘′ then we 

waste t steps checking this chain. 

Let 𝑍𝑍𝑘𝑘,𝑖𝑖,𝑘𝑘𝑘 be an indicator random variable 
for the event that 𝑦𝑦𝑘𝑘,𝑖𝑖 = 𝑒𝑒𝑒𝑒𝑘𝑘′,𝑖𝑖 even 

though y is not on the chain
𝐄𝐄 𝑍𝑍𝑘𝑘,𝑖𝑖,𝑘𝑘𝑘 = 𝐏𝐏𝐏𝐏 𝑦𝑦𝑘𝑘,𝑖𝑖 = 𝑒𝑒𝑒𝑒𝑘𝑘′,𝑖𝑖 ≈ 2−ℓ

Let Z be total number of false positives

𝐄𝐄 𝑍𝑍 = 𝐄𝐄 �
𝑖𝑖,𝑘𝑘′,𝑘𝑘

𝑍𝑍𝑘𝑘,𝑖𝑖,𝑘𝑘𝑘 ≈ 𝑠𝑠𝑠𝑠𝑠𝑠2−ℓ



Post-Processing

Input: y
For each 𝑖𝑖 ≤ 𝑇𝑇 // Compute T chains of length t
𝑦𝑦𝑦 ≔ 𝑦𝑦 // Start each chain at 𝑦𝑦
For each 𝑗𝑗 ≤ 𝑡𝑡
𝑦𝑦′: = 𝐻𝐻𝑖𝑖 𝑦𝑦𝑦 // 𝑦𝑦′ = 𝑦𝑦𝑗𝑗,𝑖𝑖

For each k’ such that 𝑦𝑦′ = 𝑒𝑒𝑒𝑒𝑘𝑘′,𝑖𝑖
w′ ≔ 𝑠𝑠𝑝𝑝𝑘𝑘′ // recompute 𝐻𝐻𝑖𝑖 chain at 𝑠𝑠𝑠𝑠𝑘𝑘′
For each 𝑗𝑗′ ≤ 𝑡𝑡

If 𝑦𝑦 == 𝐻𝐻𝑖𝑖 𝑤𝑤′ return 𝐹𝐹𝐾𝐾𝑖𝑖 𝒘𝒘𝒘 else w′: = 𝐻𝐻𝑖𝑖 𝑤𝑤𝑤

57

𝑦𝑦0,𝑖𝑖 = 𝑦𝑦

𝑦𝑦1,𝑖𝑖 = 𝐻𝐻𝑖𝑖 𝑦𝑦0

𝑦𝑦𝑗𝑗,𝑖𝑖 = 𝐻𝐻𝑖𝑖 𝑦𝑦𝑗𝑗−1

𝑦𝑦𝑘𝑘,𝑖𝑖 = 𝑒𝑒𝑒𝑒𝑘𝑘′,𝑖𝑖

…

…

Let Z be total number of false positives

𝐄𝐄 𝑍𝑍 = 𝐄𝐄 �
𝑖𝑖,𝑘𝑘′,𝑘𝑘

𝑍𝑍𝑘𝑘,𝑖𝑖,𝑘𝑘𝑘 ≈ 𝑠𝑠𝑠𝑠𝑠𝑠2−ℓ

Total Running Time: 𝑶𝑶 𝑻𝑻𝑻𝑻 + 𝑍𝑍𝑡𝑡

If 𝑠𝑠𝑠𝑠𝑠𝑠 ≈ 2ℓ and 𝑻𝑻 = 𝑶𝑶 𝒕𝒕 then total 
running time is 𝑶𝑶 𝒕𝒕𝟐𝟐



Targeted Collision Attacks 

• Precomputation (𝑡𝑡𝑡𝑡 × 𝑠𝑠 steps, 2𝑠𝑠𝑇𝑇 × ℓ memory)
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𝑥𝑥2
𝑗𝑗 = 𝐻𝐻1 𝑥𝑥1

𝑗𝑗

…

…

𝑠𝑠𝑠𝑠𝑗𝑗 = 𝑥𝑥1
𝑗𝑗

𝑥𝑥𝑡𝑡
𝑗𝑗 = 𝑒𝑒𝑝𝑝𝑗𝑗

…

… 𝑥𝑥𝑖𝑖+1
𝑗𝑗 = 𝐻𝐻𝑖𝑖−1 𝑥𝑥𝑖𝑖

𝑗𝑗

…

…

• Goal: Find collision for target 𝑦𝑦 = 𝐻𝐻(𝑥𝑥)

𝑦𝑦0 = 𝑦𝑦

𝑦𝑦1 = 𝐻𝐻1 𝑦𝑦0

𝑦𝑦𝑖𝑖 = 𝐻𝐻𝑖𝑖−1 𝑦𝑦𝑖𝑖−1

𝑦𝑦𝑘𝑘 = 𝑒𝑒𝑒𝑒𝑗𝑗

…

…

Set 𝑠𝑠 = 2
2ℓ
3 +1, 𝐓𝐓 = 𝑡𝑡 = 2

ℓ
3+1

Precomputation: 𝐎𝐎 𝟐𝟐ℓ

Space: 𝐎𝐎 2
2ℓ
3 × ℓ

Targeted Collision Search: 𝑶𝑶 2
𝟐𝟐ℓ
𝟑𝟑

Total Cost to find 2
ℓ
3

targeted collisions is 
just 𝐎𝐎 𝟐𝟐ℓ



Applications

• Key-Recovery Attacks on Block Cipher 𝐸𝐸:𝒦𝒦 × 0,1 𝑛𝑛 → 0,1 𝑛𝑛

• Pre-Computation: 𝑂𝑂 𝒦𝒦
• Crack 2

𝑛𝑛
𝟑𝟑 secret keys in total time 𝑶𝑶 𝒦𝒦 with space s = 𝑶𝑶 2

2𝑛𝑛
𝟑𝟑

• Run prior attack with “hash function” H: 0,1 𝑛𝑛 → 0,1 𝑛𝑛

• H 𝐾𝐾 = 𝐸𝐸𝐾𝐾 𝑟𝑟 for some random (fixed) 𝑟𝑟 ∈ 0,1 𝑛𝑛

• Password Cracking
• Attacker is given 𝐻𝐻𝐻 𝑥𝑥1 ,…, 𝐻𝐻𝐻 𝑥𝑥𝑘𝑘 for passwords 𝑥𝑥1, … , 𝑥𝑥𝑘𝑘 ∈ 𝒫𝒫𝒫𝒫𝒫𝒫𝒫𝒫 with 
𝒫𝒫𝒫𝒫𝒫𝒫𝒫𝒫 ≪ 𝒦𝒦

• Goal: Recover passwords 𝑥𝑥1, … , 𝑥𝑥𝑘𝑘
• Can crack all 𝑘𝑘 = 𝒫𝒫𝒫𝒫𝒫𝒫𝒫𝒫 1/3 passwords in total time 𝑶𝑶 𝒫𝒫𝒫𝒫𝒫𝒫𝒫𝒫 with space s =
𝑶𝑶 𝒫𝒫𝒫𝒫𝒫𝒫𝒫𝒫 2/3

• Domain Challenge: H′: 𝒫𝒫𝒫𝒫𝒫𝒫𝒫𝒫 → 0,1 𝑛𝑛 with 𝒫𝒫𝒫𝒫𝒫𝒫𝒫𝒫 ≪ 2𝑛𝑛
• Define (pseudo)random mapping 𝜇𝜇: 0,1 𝑛𝑛 → 𝒫𝒫𝒫𝒫𝒫𝒫𝒫𝒫
• Run prior attack with “hash function” H:𝒫𝒫𝒫𝒫𝒫𝒫𝒫𝒫 → 𝒫𝒫𝒫𝒫𝒫𝒫𝒫𝒫 as H 𝑥𝑥 = 𝜇𝜇 H′ 𝑥𝑥
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Week 5: Topic 3:
Random Oracle Model +  

Hashing Applications
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When Collision Resistance Isn’t Enough

• Example: Message Commitment
• Alice sends Bob: c = Hs 𝑟𝑟 ∥ 𝑚𝑚 (e.g., predicted winner of NCAA Tournament)
• Alice can later reveal message   (e.g., after the tournament is over)

• Just send r and m (note: r has fixed length)
• Why can Alice not change her message?

• Collision Resistance  Alice can’t find r’ and m’ s.t. c = Hs 𝑟𝑟′ ∥ 𝑚𝑚′
• In the meantime Bob shouldn’t learn anything about m

• Problem: Let (Gen,H’) be collision resistant then so is (Gen,H)

𝐻𝐻𝑠𝑠 𝑥𝑥1, … , 𝑥𝑥𝑑𝑑 = 𝐻𝐻′𝑠𝑠 𝑥𝑥1, … , 𝑥𝑥𝑑𝑑 ∥ 𝑥𝑥𝑑𝑑
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When Collision Resistance Isn’t Enough

• Problem: Let (Gen,H’) be collision resistant then so is (Gen,H)

𝐻𝐻𝑠𝑠 𝑥𝑥1, … , 𝑥𝑥𝑑𝑑 = 𝐻𝐻′𝑠𝑠 𝑥𝑥1, … , 𝑥𝑥𝑑𝑑 ∥ 𝑥𝑥𝑑𝑑
Note: An 𝐻𝐻𝑠𝑠 collision trivially yields a 𝐻𝐻′𝑠𝑠 collision

• (Gen,H) definitely does not hide all information about input 
(𝑥𝑥1, … , 𝑥𝑥𝑑𝑑)

• Conclusion: Collision resistance is not sufficient for message 
commitment
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The Tension
• Example: Message Commitment

• Alice sends Bob: Hs 𝑟𝑟 ∥ 𝑚𝑚 (e.g., predicted winners of NCAA Final Four)
• Alice can later reveal message            (e.g., after the Final Four is decided)
• In the meantime Bob shouldn’t learn anything about m

This is still a reasonable approach in practice!

• No attacks when instantiated with any reasonable candidate (e.g., SHA3)
• Cryptographic hash functions seem to provide “something” beyond 

collision resistance, but how do we model this capability?
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Random Oracle Model

• Model hash function H as a truly random function
• Algorithms can only interact with H as an oracle

• Query: x
• Response: H(x)

• If we submit the same query you see the same response
• If x has not been queried, then the value of H(x) is uniform

• Real World: H instantiated as cryptographic hash function (e.g., SHA3) 
of fixed length (no Merkle-Damgård)
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Back to Message Commitment

• Example: Message Commitment
• Alice sends Bob: H 𝑟𝑟 ∥ 𝑚𝑚 (e.g., predicted winners of NCAA Final Four)
• Alice can later reveal message   (e.g., after the Final Four is decided)

• Just send r and m (note: r has fixed length)
• Why can Alice not change her message?

• In the meantime Bob shouldn’t learn anything about m

• Random Oracle Model: Above message commitment scheme is 
secure (Alice cannot change m + Bob learns nothing about m)

• Security Definition + Proof later…
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Random Oracle Model: Pros

• It is easier to prove security in Random Oracle Model

• Suppose we are simulating attacker A in a reduction
• Extractability: When A queries H at x we see this query and learn x (and can 

easily find H(x))
• Programmability: We can set the value of H(x) to a value of our choice

• As long as the value is correctly distribute i.e., close to uniform

• Both Extractability and Programmability are useful tools for a 
security reduction!

70



Random Oracle Model: Pros

• It is easier to prove security in Random Oracle Model

• Provably secure constructions in random oracle model are often 
much more efficient (compared to provably secure construction is 
“standard model”

• Sometimes we only know how to design provably secure protocol in 
random oracle model
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Random Oracle Model: Cons

• Lack of formal justification
• Why should security guarantees translate when we instantiate 

random oracle with a real cryptographic hash function?

• We can construct (contrived) examples of protocols which are 
• Secure in random oracle model…
• But broken in the real world
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Random Oracle Model: Justification

“A proof of security in the random-oracle model is significantly better 
than no proof at all.”

• Evidence of sound design (any weakness involves the hash function 
used to instantiate the random oracle)

• Empirical Evidence for Security
“there have been no successful real-world attacks on 
schemes proven secure in the random oracle model”
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Hash Function Application: Fingerprinting

• The hash h(x) of a file x is a unique identifier for the file
• Collision Resistance  No need to worry about another file y with H(y)=H(y)

• Application 1: Virus Fingerprinting

• Application 2: P2P File Sharing

• Application 3: Data deduplication
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Tamper Resistant Storage
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m1

H(m1) m1’



Tamper Resistant Storage
File Index Hash

1 H(m1)

2 H(m2)

3 H(m3)
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m1,m2,m3

m1’

Send file 1

Disadvantage: Too 
many hashes to store



Tamper Resistant Storage
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m1,m2,m3

m1’

Send file 1

Disadvantage: Need all 
files to compute hash 

m1,m2,m3

H(m1,m2,m3)



Merkle Trees

𝐌𝐌𝐌𝐌𝐬𝐬 𝒙𝒙 ≔ hs 𝑥𝑥
𝐌𝐌𝐌𝐌𝐬𝐬 𝐱𝐱𝟏𝟏, … , 𝐱𝐱𝟐𝟐𝐢𝐢 ≔

hs 𝐌𝐌𝐌𝐌𝐬𝐬 𝐱𝐱𝟏𝟏, … , 𝐱𝐱𝟐𝟐𝐢𝐢−𝟏𝟏 ,𝐌𝐌𝐌𝐌𝐬𝐬 𝐱𝐱𝟐𝟐𝐢𝐢−𝟏𝟏+𝟏𝟏, … , 𝐱𝐱𝟐𝟐𝐢𝐢
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Theorem: Let (Gen, hs) be a collision resistant hash 
function then 𝐌𝐌𝐌𝐌𝐬𝐬 is collision resistant.

𝐱𝐱𝟏𝟏 𝐱𝐱𝟐𝟐



Merkle Trees

• Proof of Correctness for data block 2

• Verify that root matches
• Proof consists of just log(n) hashes

• Verifier only needs to permanently store 
only one hash value
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Tamper Resistant Storage
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m1,m2,m3,m4

m2’,h1,h3-4

Send file 2

Root: H1-4



Commitment Schemes

• Alice wants to commit a message m to Bob
• And possibly reveal it later at a time of her choosing

• Properties
• Hiding: commitment reveals nothing about m to Bob
• Binding: it is infeasible for Alice to alter message

82



Commitment Hiding  (Hiding𝐴𝐴,𝐶𝐶𝐶𝐶𝐶𝐶(𝑛𝑛)) 
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r = Gen(.)
Bit b

m0,m1

commit(r,mb)
b’

∀𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴 ∃𝜇𝜇 (negligible) s. t

Pr Hiding𝐴𝐴,𝐶𝐶𝐶𝐶𝐶𝐶 𝑛𝑛 = 1 ≤
1
2

+ 𝜇𝜇(𝑛𝑛)

Hiding𝐴𝐴,𝐶𝐶𝐶𝐶𝐶𝐶(𝑛𝑛)= �1 if 𝑏𝑏 = 𝑏𝑏′
0 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜



Commitment Binding (Binding𝐴𝐴,𝐶𝐶𝐶𝐶𝐶𝐶(𝑛𝑛)) 
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r0,r1,m0,m1

∀𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴 ∃𝜇𝜇 (negligible) s. t
Pr Binding𝐴𝐴,𝐶𝐶𝐶𝐶𝐶𝐶 𝑛𝑛 = 1 ≤ 𝜇𝜇(𝑛𝑛)

Binding𝐴𝐴,𝐶𝐶𝐶𝐶𝐶𝐶(𝑛𝑛)= �1 if commit(r0,m0)= commit(r1,m1)
0 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜



Secure Commitment Scheme

• Definition: A secure commitment scheme is hiding and binding
• Hiding

• Binding
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∀𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴 ∃𝜇𝜇 (negligible) s. t

Pr Hiding𝐴𝐴,𝐶𝐶𝐶𝐶𝐶𝐶 𝑛𝑛 = 1 ≤
1
2

+ 𝜇𝜇(𝑛𝑛)

∀𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴 ∃𝜇𝜇 (negligible) s. t
Pr Binding𝐴𝐴,𝐶𝐶𝐶𝐶𝐶𝐶 𝑛𝑛 = 1 ≤ 𝜇𝜇(𝑛𝑛)



Commitment Scheme in Random Oracle 
Model
• Commit(r,m):=H(m|r)

• Reveal(c):= (m,r)

Theorem: In the random oracle model this is a secure  commitment scheme. 
Proof Intuition: Let BAD event that attacker queries H 𝑟𝑟 ∥ 𝑚𝑚′ for 
any message m’ on any of q queries

• As long as the event BAD never occurs Bob learns nothing 
about m (in an information theoretic sense)

• If r is a random n-bit string then Pr BAD ≤ q
2n
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Commitment Hiding  (Hiding𝐴𝐴,𝐶𝐶𝐶𝐶𝐶𝐶(𝑛𝑛)) 
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r = Gen(1n)
Bit b

m0,m1

H(r,mb)
b’

∀𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑎𝑎𝑎𝑎 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑞𝑞 𝑛𝑛 𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞

Pr Hiding𝐴𝐴,𝐶𝐶𝐶𝐶𝐶𝐶 𝑛𝑛 = 1 ≤
1
2

+
𝑞𝑞(𝑛𝑛)

2𝑛𝑛

Hiding𝐴𝐴,𝐶𝐶𝐶𝐶𝐶𝐶(𝑛𝑛)= �1 𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑏𝑏′
0 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜



Other Applications

• Password Hashing

• Key Derivation 
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Next Week

• Stream Ciphers
• Block Ciphers
• Feistel Networks
• DES, 3DES
• Read Katz and Lindell 6.1-6.2
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