
Cryptography
CS 555

Week 4:
• Message Authentication Codes
• CBC-MAC
• Authenticated Encryption + CCA Security

Readings: Katz and Lindell Chapter 4.1-4.4
Homework 1 Solutions Released
Homework 2 Released: Due Feb 18 @11:59PM on Gradescope

2Spring 2021

Recap

• Chosen Plaintext Attacks/Chosen Ciphertext Attacks
• CPA vs CCA-security

• Blockciphers and Modes of Operation

• Message Authentication Codes
• Confidentiality vs Integrity
• Canonical Verification and Timing Side Channel

Current Goal:
• Build a Secure MAC

• Key tool in Construction of CCA-Secure Encryption Schemes

3

Week 4: Topic 1:
Constructing Message Authentication

Codes

5

Message Authentication Code Syntax

Definition 4.1: A message authentication code (MAC) consists of three
algorithms Π = Gen, Mac, Vrfy

• Gen(1𝑛𝑛;𝑅𝑅) (Key-generation algorithm)
• Input: security parameter 1n (unary) and random bits R
• Output: Secret key k ∈ 𝒦𝒦

• Mack(𝑚𝑚;𝑅𝑅) (Tag Generation algorithm)
• Input: Secret key k ∈ 𝒦𝒦 and message m ∈ ℳ and random bits R
• Output: a tag t

• Vrfyk(𝑚𝑚, 𝑡𝑡) (Verification algorithm)
• Input: Secret key k ∈ 𝒦𝒦, a message m and a tag t
• Output: a bit b (b=1 means “valid” and b=0 means “invalid”)

Vrfyk(𝑚𝑚, Mack(𝑚𝑚;𝑅𝑅)) = 1

6

Security Goal (Informal): Attacker should not be able to forge a valid tag t’ for new
message m’ that s/he wants to send.

General vs Fixed Length MAC

ℳ = 0,1 ∗

versus

ℳ = 0,1 ℓ(𝑛𝑛)

21

Strong MAC Construction (Fixed Length)

Simply uses a secure PRF F
Mack(𝑚𝑚) = FK(𝑚𝑚)

Question: How to verify the a MAC?

Canonical Verification Algorithm…

Vrfyk(𝑚𝑚, 𝑡𝑡) = �1 if 𝑡𝑡 = FK(𝑚𝑚)
0 otherwise

22

Strong MAC Authentication (Macsforge𝐴𝐴,Π(𝑛𝑛))

23

mq

K = Gen(.)

tq = MacK(mq)

Macsforge𝐴𝐴,Π(𝑛𝑛) = Vrfyk(𝑚𝑚, 𝑡𝑡)
m, t s.t m, t ∉ (m1, t1), … , (mq, t𝑞𝑞)

m1
t1 = MacK(m1)

t2 = MacK (m2)
m2 …

∀𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴 ∃𝜇𝜇 (negligible) s. t
Pr Macsforge𝐴𝐴,Π 𝑛𝑛 = 1 ≤ 𝜇𝜇(𝑛𝑛)

Concrete Version: 𝑡𝑡 𝑛𝑛 , 𝑞𝑞 𝑛𝑛 , 𝜀𝜀(𝑛𝑛) -secure MAC

24

mq

K = Gen(.)

tq = MacK(mq)

Macsforge𝐴𝐴,Π(𝑛𝑛) = Vrfyk(𝑚𝑚, 𝑡𝑡)
m, t s.t m, t ∉ (m1, t1), … , (mq, t𝑞𝑞)

m1
t1 = MacK(m1)

t2 = MacK (m2)
m2 …

∀ 𝐴𝐴 with time(A) ≤ 𝑡𝑡 𝑛𝑛 , queries(A) ≤ 𝑞𝑞 𝑛𝑛
Pr Macsforge𝐴𝐴,Π 𝑛𝑛 = 1 ≤ 𝜀𝜀(𝑛𝑛)

Strong MAC Construction (Fixed Length)

Mack(𝑚𝑚) = FK(𝑚𝑚)

Vrfyk(𝑚𝑚, 𝑡𝑡) = �1 if 𝑡𝑡 = FK(𝑚𝑚)
0 otherwise

Theorem 4.6: If F is a PRF then this is a secure (fixed-length) MAC for
messages of length n.
Proof: Start with attacker who breaks MAC security and build an attacker
who breaks PRF security (contradiction!)
Sufficient to start with attacker who breaks regular MAC security (why?)

25

Breaking MAC Security (Macforge𝐴𝐴,Π(𝑛𝑛))

26

mq

K = Gen(.)

𝒕𝒕𝒒𝒒 = 𝑭𝑭𝑲𝑲 𝒎𝒎𝒒𝒒

Macforge𝐴𝐴,Π(𝑛𝑛) = Vrfyk(𝑚𝑚, 𝑡𝑡)
𝑚𝑚, 𝑡𝑡 s.t 𝑚𝑚 ∉ 𝑚𝑚1, … ,𝑚𝑚𝑞𝑞

m1
𝒕𝒕𝟏𝟏 = 𝑭𝑭𝑲𝑲 𝒎𝒎𝟏𝟏

𝒕𝒕𝟐𝟐 = 𝑭𝑭𝑲𝑲 𝒎𝒎𝟐𝟐

m2 …

∃𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴 𝑎𝑎𝑛𝑛𝑎𝑎 𝑔𝑔(.) (positive/non negligible) s. t
Pr Macforge𝐴𝐴,Π 𝑛𝑛 = 1 > 𝑔𝑔(𝑛𝑛)

A Similar Game (Macforge𝐴𝐴,�Π(𝑛𝑛))

27

mq

Truly Random Function
f ∈Funcn

tq = f(mq)

Macforge𝐴𝐴,�Π(𝑛𝑛) = Vrfyk(𝑚𝑚, 𝑡𝑡)
𝑚𝑚, 𝑡𝑡 s.t 𝑚𝑚 ∉ 𝑚𝑚1, … ,𝑚𝑚𝑞𝑞

m1
t1 = f(m1)

t2 = f (m2)
m2 …

Claim: ∀𝐴𝐴 𝑛𝑛𝑛𝑛𝑡𝑡 𝑗𝑗𝑗𝑗𝑗𝑗𝑡𝑡 𝑃𝑃𝑃𝑃𝑃𝑃
Pr Macforge𝐴𝐴,�Π 𝑛𝑛 = 1 ≤ 2−𝑛𝑛

Why? Because f(m) is
distributed uniformly

in {0,1}n so Pr[f(m)=t]=2-n

PRF Distinguisher D

• Given oracle O (either FK or truly random f)
• Run PPT Macforge adversary A
• When adversary queries with message m, respond with O(m)
• Output 1 if attacker wins (otherwise 0)

• If O = f then
Pr 𝐷𝐷𝑂𝑂 1𝑛𝑛 = 1 = Pr Macforge𝐴𝐴,�Π 𝑛𝑛 = 1 ≤ 2−𝑛𝑛

• If O=FK then
Pr 𝐷𝐷𝑂𝑂 1𝑛𝑛 = 1 = Pr Macforge𝐴𝐴,Π 𝑛𝑛 = 1 > 𝑔𝑔(𝑛𝑛)

28

PRF Distinguisher D

• If O = f then
Pr 𝐷𝐷𝑂𝑂 1𝑛𝑛 = 1 = Pr Macforge𝐴𝐴,�Π 𝑛𝑛 = 1 ≤ 2−𝑛𝑛

• If O=FK then
Pr 𝐷𝐷𝑂𝑂 1𝑛𝑛 = 1 = Pr Macforge𝐴𝐴,Π 𝑛𝑛 = 1 > 𝑔𝑔(𝑛𝑛)

Advantage:
Pr 𝐷𝐷𝐹𝐹𝐾𝐾 1𝑛𝑛 = 1 − Pr 𝐷𝐷𝑓𝑓 1𝑛𝑛 = 1 > 𝑔𝑔 𝑛𝑛 − 2−𝑛𝑛

Note that 𝑔𝑔 𝑛𝑛 − 2−𝑛𝑛 is non-negligible and D runs in PPT if A does.

29

Strong MAC Construction (Fixed Length)

Mack(𝑚𝑚) = FK(𝑚𝑚)

Vrfyk(𝑚𝑚, 𝑡𝑡) = �1 if 𝑡𝑡 = FK(𝑚𝑚)
0 otherwise

Theorem 4.6: If F is a PRF then this is a secure (fixed-length) MAC for
messages of length n.

30

Strong MAC Construction (Fixed Length)

Mack(𝑚𝑚) = FK(𝑚𝑚)

Vrfyk(𝑚𝑚, 𝑡𝑡) = �1 if 𝑡𝑡 = FK(𝑚𝑚)
0 otherwise

Theorem (Concrete): If F is a 𝑡𝑡 𝑛𝑛 , 𝑞𝑞 𝑛𝑛 , 𝜀𝜀(𝑛𝑛) -secure PRF then the above
construction is a 𝑡𝑡 𝑛𝑛 − 𝑂𝑂 𝑛𝑛 , 𝑞𝑞 𝑛𝑛 , 𝜀𝜀 𝑛𝑛 + 2−𝑛𝑛 -secure MAC for ℳ =
0,1 𝑛𝑛 (messages of length n).

Example: F is a 2𝑛𝑛, 2𝑛𝑛/2, 2−𝑛𝑛 -secure PRF- the above MAC construction is
2𝑛𝑛 − 𝑂𝑂 𝑛𝑛 , 2𝑛𝑛/2, 2−𝑛𝑛+1 -secure

31

Strong MAC Construction (Fixed Length)

Mack(𝑚𝑚) = FK(𝑚𝑚)

Vrfyk(𝑚𝑚, 𝑡𝑡) = �1 if 𝑡𝑡 = FK(𝑚𝑚)
0 otherwise

Theorem (Concrete): If F is a 𝑡𝑡 𝑛𝑛 , 𝑞𝑞 𝑛𝑛 , 𝜀𝜀(𝑛𝑛) -secure PRF then the above
construction is a 𝑡𝑡 𝑛𝑛 − 𝑂𝑂 𝑛𝑛 , 𝑞𝑞 𝑛𝑛 , 𝜀𝜀 𝑛𝑛 + 2−𝑛𝑛 -secure MAC for ℳ = 0,1 𝑛𝑛

(messages of length n).
Limitation: What if we want to authenticate a longer message? ℳ = 0,1 ∗

32

MACs for Arbitrary Length Messages

• Building Block Π’=(Mac’,Vrfy’), a secure MAC for length n messages

First: A few failed attempts
Let m = m1,…,md where each mi is n bits and let 𝑡𝑡𝑖𝑖 = Mac𝐾𝐾′ 𝑚𝑚𝑖𝑖

MacK(m) = 𝑡𝑡1, … , 𝑡𝑡𝑑𝑑

What is wrong?
Block-reordering attack

MacK(md,…,𝑚𝑚1) = 𝑡𝑡𝑑𝑑 , … , 𝑡𝑡1

33

𝑚𝑚1 = “I love you”
𝑚𝑚2 = “I will never say that”
𝑚𝑚3 = “you are stupid”

MACs for Arbitrary Length Messages

• Building Block Π’=(Mac’,Vrfy’), a secure MAC for length n messages

Attempt 2
Let m = m1,…,md where each mi is n bits and let 𝑡𝑡𝑖𝑖 = Mac𝐾𝐾′ 𝑖𝑖 ∥ 𝑚𝑚𝑖𝑖

MacK(m) = 𝑡𝑡1, … , 𝑡𝑡𝑑𝑑

Addresses block-reordering attack.
Any other concerns?

Truncation attack!
MacK(m1,…,𝑚𝑚𝑑𝑑−1) = 𝑡𝑡1, … , 𝑡𝑡𝑑𝑑−1

34

Suppose 𝑚𝑚1, … ,𝑚𝑚𝑑𝑑−1,𝑚𝑚𝑑𝑑 =
“I don’t like you. I LOVE you!”

MACs for Arbitrary Length Messages

• Building Block Π’=(Mac’,Vrfy’), a secure MAC for length n messages

Attempt 3
Let m = m1,…,md where each mi is n bits and m has length ℓ = 𝑛𝑛𝑎𝑎
Let 𝑡𝑡𝑖𝑖 = Mac𝐾𝐾′ 𝑖𝑖 ∥ ℓ ∥ 𝑚𝑚𝑖𝑖

MacK(m) = 𝑡𝑡1, … , 𝑡𝑡𝑑𝑑

Addresses truncation.
Any other concerns?

Mix and Match Attack!

35

MACs for Arbitrary Length Messages

Let m = m1,…,md where each mi is n bits and m has length ℓ = 𝑛𝑛𝑎𝑎
Let m’ = m’1,…,m’d where each m’i is n bits and m has length ℓ = 𝑛𝑛𝑎𝑎

Let 𝑡𝑡𝑖𝑖 = Mac𝐾𝐾′ 𝑖𝑖 ∥ ℓ ∥ 𝑚𝑚𝑖𝑖 and 𝑡𝑡′𝑖𝑖 = Mac𝐾𝐾′ 𝑖𝑖 ∥ ℓ ∥ 𝑚𝑚𝑖𝑖 ′
MacK(m) = 𝑡𝑡1, … , 𝑡𝑡𝑑𝑑

MacK(mʹ) = 𝑡𝑡′1, … , 𝑡𝑡′𝑑𝑑
Mix and Match Attack!

MacK(m1,mʹ2,m3,...) = 𝑡𝑡1, 𝑡𝑡′2, 𝑡𝑡3, …

36

37

𝑚𝑚1 = “What will I say to Eve?”
𝑚𝑚2 = “You are evil and vile.”
𝑚𝑚3 = “Please leave me alone!”
𝑚𝑚4 = “Your sworn enemy - BOB”

𝑡𝑡 = 𝑡𝑡1, 𝑡𝑡2, , 𝑡𝑡3, 𝑡𝑡4

𝑚𝑚1′ = “Dear Alice”
𝑚𝑚2′ = “You are wonderful.”

𝑚𝑚3′ = “I can’t wait to see you!”
𝑚𝑚4′ = “XOXOXOXOXO - BOB”

𝑡𝑡′ = 𝑡𝑡1′, 𝑡𝑡2′, , 𝑡𝑡3′, 𝑡𝑡4′

𝑚𝑚1′ = “Dear Alice”
𝑚𝑚2 = “You are evil and vile.”
𝑚𝑚3 = “Please leave me alone!”
𝑚𝑚4 = “Your sworn enemy - BOB”

𝑡𝑡′′ = 𝑡𝑡1′, 𝑡𝑡2, , 𝑡𝑡3, 𝑡𝑡4

MACs for Arbitrary Length Messages

• A non-failed approach
• Building Block Π’=(Mac’,Vrfy’), a secure MAC for length n messages
• Let m = m1,…,md where each mi is n/4 bits and m has length ℓ < 2𝑛𝑛/4

MacK(m)=
• Select random 𝑛𝑛

4
bit nonce 𝑟𝑟

• Let 𝑡𝑡𝑖𝑖 = 𝑀𝑀𝑎𝑎𝑀𝑀𝐾𝐾′ 𝑟𝑟 ∥ ℓ ∥ 𝑖𝑖 ∥ 𝑚𝑚𝑖𝑖 for i=1,…,d
• (Note: encode i and ℓ as 𝑛𝑛

4
bit strings)

• Output 𝑟𝑟, 𝑡𝑡1, … , 𝑡𝑡𝑑𝑑
38

MACs for Arbitrary Length Messages

MacK(m)=
• Select random n/4 bit string r
• Let 𝑡𝑡𝑖𝑖 = Mac𝐾𝐾′ 𝑟𝑟 ∥ ℓ ∥ 𝑖𝑖 ∥ 𝑚𝑚𝑖𝑖 for i=1,…,d

• (Note: encode i and ℓ as n/4 bit strings)
• Output 𝑟𝑟, 𝑡𝑡1, … , 𝑡𝑡𝑑𝑑

Theorem 4.8: If Π′ is a secure MAC for messages of fixed length n,
above construction Π = (Mac, Vrfy) is secure MAC for arbitrary length
messages.

39

CBC-MAC

Advantages over Previous Solution
• Both MACs are secure
• Works for unbounded length messages
• Canonical Verification
• Short Authentication tag
• Parallelizable 40

FK(.)

𝑚𝑚1 𝑚𝑚2 𝑚𝑚3

⨁

FK(.)

⨁

FK(.)

⨁

𝜏𝜏 = MacK 𝑚𝑚

for i=1,…,d
𝑡𝑡𝑖𝑖 = Mac𝐾𝐾′ 𝑟𝑟 ∥ ℓ ∥ 𝑖𝑖 ∥ 𝑚𝑚𝑖𝑖
(encode i and ℓ as n/4 bit strings)

Output 𝑟𝑟, 𝑡𝑡1, … , 𝑡𝑡𝑑𝑑

Caveat: Tricky Padding Issues arise if
|m| is not a multiple of the block-

length. See textbook.

We will see a simpler MAC
construction using hash functions

soon.

FK(.)

𝑚𝑚

Coming Soon

• CBC-MAC and Authenticated Encryption
• Read Katz and Lindell 4.4-4.5

41

Week 4
Topics 2&3: Authenticated Encryption + CCA-Security

42

Recap

• Message Authentication Codes
• Secrecy vs Confidentiality

Today’s Goals:
• Authenticated Encryption
• Build Authenticated Encryption Scheme with CCA-Security

43

Authenticated Encryption

Encryption: Hides a message from the attacker

Message Authentication Codes: Prevents attacker from tampering
with message

44

Unforgeable Encryption Experiment (Encforge𝐴𝐴,Π(𝑛𝑛))

45

mq

K = Gen(.)

cq = EncK(mq)

Encforge𝐴𝐴,Π 𝑛𝑛 = 1 if Deck 𝑀𝑀 ≠⊥
𝑀𝑀 s.t 𝑀𝑀 ∉ 𝑀𝑀1, … , cq

m1
c1 = EncK(m1)

c2 = EncK (m2)
m2

…

∀𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴 ∃𝜇𝜇 (negligible) s. t
Pr Encforge𝐴𝐴,Π 𝑛𝑛 = 1 ≤ 𝜇𝜇(𝑛𝑛)

Unforgeable Encryption Experiment (Encforge𝐴𝐴,Π(𝑛𝑛))

46

mq

K = Gen(.)

cq = EncK(mq)

Encforge𝐴𝐴,Π 𝑛𝑛 = 1 if Deck 𝑀𝑀 ≠⊥
𝑀𝑀 s.t 𝑀𝑀 ∉ 𝑀𝑀1, … , cq

m1
c1 = EncK(m1)

c2 = EncK (m2)
m2 …

∀𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴 ∃𝜇𝜇 (negligible) s. t
Pr Encforge𝐴𝐴,Π 𝑛𝑛 = 1 ≤ 𝜇𝜇(𝑛𝑛)

Game is very
similar to MAC-

Forge game

Call Π an authenticated
encryption scheme if it is
CCA-secure and any PPT
attacker wins Encforge

with negligible probability

Building Authenticated Encryption

Attempt 1: Let Enc𝐾𝐾′ 𝑚𝑚 be a CPA-Secure encryption scheme and let
Mac𝐾𝐾′ 𝑚𝑚 be a secure MAC

𝐸𝐸𝑛𝑛𝑀𝑀𝐾𝐾 𝑚𝑚 = Enc𝐾𝐾′ 𝑚𝑚 , Mac𝐾𝐾′ 𝑚𝑚

Any problems?
Enc𝐾𝐾′ 𝑚𝑚 = 𝑟𝑟,𝐹𝐹𝑘𝑘 𝑟𝑟 ⨁𝑚𝑚

Mac𝐾𝐾′ 𝑚𝑚 = 𝐹𝐹𝑘𝑘 𝑚𝑚

47

Building Authenticated Encryption

Attempt 1:
𝐸𝐸𝑛𝑛𝑀𝑀𝐾𝐾 𝑚𝑚 = 𝑟𝑟,𝐹𝐹𝑘𝑘 𝑟𝑟 ⨁𝑚𝑚,𝐹𝐹𝑘𝑘 𝑚𝑚

CPA-Attack:
• Intercept ciphertext c

𝑀𝑀 = 𝐸𝐸𝑛𝑛𝑀𝑀𝐾𝐾 𝑚𝑚 = 𝑟𝑟,𝐹𝐹𝑘𝑘 𝑟𝑟 ⨁𝑚𝑚,𝐹𝐹𝑘𝑘 𝑚𝑚
• Ask to encrypt r

𝑀𝑀𝑟𝑟 = 𝐸𝐸𝑛𝑛𝑀𝑀𝐾𝐾 𝑟𝑟 = 𝑟𝑟′,𝐹𝐹𝑘𝑘 𝑟𝑟′ ⨁𝑟𝑟,𝐹𝐹𝑘𝑘 𝑟𝑟

𝑚𝑚 = 𝐹𝐹𝑘𝑘 𝑟𝑟 ⨁ 𝐹𝐹𝑘𝑘 𝑟𝑟 ⨁𝑚𝑚
48

Building Authenticated Encryption

Attempt 1: Let Enc𝐾𝐾′ 𝑚𝑚 be a CPA-Secure encryption scheme and let
Mac𝐾𝐾′ 𝑚𝑚 be a secure MAC

𝐸𝐸𝑛𝑛𝑀𝑀𝐾𝐾 𝑚𝑚 = Enc𝐾𝐾′ 𝑚𝑚 , Mac𝐾𝐾′ 𝑚𝑚

49

Attack exploited fact
that same secret key
used for MAC’/Enc’

Independent Key Principle

“different instances of cryptographic
primitives should always use
independent keys”

50

Building Authenticated Encryption

Attempt 2: (Encrypt-and-Authenticate) Let Enc𝐾𝐾𝐸𝐸
′ 𝑚𝑚 be a CPA-

Secure encryption scheme and let Mac𝐾𝐾𝑀𝑀
′ 𝑚𝑚 be a secure MAC. Let

𝐾𝐾 = 𝐾𝐾𝐸𝐸 ,𝐾𝐾𝑀𝑀 then

𝐸𝐸𝑛𝑛𝑀𝑀𝐾𝐾 𝑚𝑚 = Enc𝐾𝐾𝐸𝐸
′ 𝑚𝑚 , Mac𝐾𝐾𝑀𝑀

′ 𝑚𝑚

Any problems?
Enc𝐾𝐾𝐸𝐸

′ 𝑚𝑚 = 𝑟𝑟,𝐹𝐹𝐾𝐾𝐸𝐸 𝑟𝑟 ⨁𝑚𝑚
Mac𝐾𝐾𝑀𝑀

′ 𝑚𝑚 = 𝐹𝐹𝐾𝐾𝑀𝑀 𝑚𝑚

51

Building Authenticated Encryption

Attempt 2: (Encrypt-and-Authenticate)
𝐸𝐸𝑛𝑛𝑀𝑀𝐾𝐾 𝑚𝑚 = 𝑟𝑟,𝐹𝐹𝐾𝐾𝐸𝐸 𝑟𝑟 ⨁𝑚𝑚,𝐹𝐹𝐾𝐾𝑀𝑀 𝑚𝑚

CPA-Attack:
• Select 𝑚𝑚0, 𝑚𝑚1
• Obtain ciphertext c

𝑀𝑀 = 𝑟𝑟,𝐹𝐹𝐾𝐾𝐸𝐸 𝑟𝑟 ⨁𝑚𝑚𝑏𝑏 ,𝐹𝐹𝐾𝐾𝑀𝑀 𝑚𝑚𝑏𝑏
• Ask to encrypt 𝑚𝑚0

𝑀𝑀𝑟𝑟 = 𝑟𝑟′,𝐹𝐹𝐾𝐾𝐸𝐸 𝑟𝑟′ ⨁𝑚𝑚0,𝐹𝐹𝐾𝐾𝑀𝑀 𝑚𝑚0

𝐹𝐹𝐾𝐾𝑀𝑀 𝑚𝑚0 =?𝐹𝐹𝐾𝐾𝑀𝑀 𝑚𝑚𝑏𝑏

52

Building Authenticated Encryption

Attempt 2: (Encrypt-and-Authenticate)
𝐸𝐸𝑛𝑛𝑀𝑀𝐾𝐾 𝑚𝑚 = 𝑟𝑟,𝐹𝐹𝐾𝐾𝐸𝐸 𝑟𝑟 ⨁𝑚𝑚,𝐹𝐹𝐾𝐾𝑀𝑀 𝑚𝑚

CPA-Attack:
• Select 𝑚𝑚0, 𝑚𝑚1
• Obtain ciphertext c

𝑀𝑀 = 𝑟𝑟,𝐹𝐹𝐾𝐾𝐸𝐸 𝑟𝑟 ⨁𝑚𝑚𝑏𝑏 ,𝐹𝐹𝐾𝐾𝑀𝑀 𝑚𝑚𝑏𝑏
• Ask to encrypt 𝑚𝑚0

𝑀𝑀𝑟𝑟 = 𝑟𝑟′,𝐹𝐹𝐾𝐾𝐸𝐸 𝑟𝑟′ ⨁𝑚𝑚0,𝐹𝐹𝐾𝐾𝑀𝑀 𝑚𝑚0

𝐹𝐹𝐾𝐾𝑀𝑀 𝑚𝑚0 =?𝐹𝐹𝐾𝐾𝑀𝑀 𝑚𝑚𝑏𝑏

53

Encrypt and
Authenticate

Paradigm does
not work in

general

Building Authenticated Encryption

Attempt 2: (Encrypt-and-Authenticate) Let Enc𝐾𝐾𝐸𝐸
′ 𝑚𝑚 be a CPA-

Secure encryption scheme and let Mac𝐾𝐾𝑀𝑀
′ 𝑚𝑚 be a secure MAC. Let

𝐾𝐾 = 𝐾𝐾𝐸𝐸 ,𝐾𝐾𝑀𝑀 then

𝐸𝐸𝑛𝑛𝑀𝑀𝐾𝐾 𝑚𝑚 = Enc𝐾𝐾𝐸𝐸
′ 𝑚𝑚 , Mac𝐾𝐾𝑀𝑀

′ 𝑚𝑚

54

Problem: MAC security
definition doesn’t

promise to hide m! This is what SSL does

Building Authenticated Encryption

Attempt 3: (Authenticate-then-encrypt) Let Enc𝐾𝐾𝐸𝐸
′ 𝑚𝑚 be a CPA-Secure

encryption scheme and let Mac𝐾𝐾𝑀𝑀
′ 𝑚𝑚 be a secure MAC. Let 𝐾𝐾 =

𝐾𝐾𝐸𝐸 ,𝐾𝐾𝑀𝑀 then

𝐸𝐸𝑛𝑛𝑀𝑀𝐾𝐾 𝑚𝑚 = Enc𝐾𝐾𝐸𝐸
′ 𝑚𝑚 ∥ 𝑡𝑡 where t = Mac𝐾𝐾𝑀𝑀

′ 𝑚𝑚

- Used in SSL/TLS
- Not generically secure (Hugo Krawczyk)
- Easy to make mistakes when implementing (e.g., Lucky13 attack on TLS)

55The Order of Encryption and Authentication for Protecting Communications (or: How Secure Is SSL?)

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.106.5488&rep=rep1&type=pdf

Authenticate-then-Encrypt: A Bad Case

Attempt 3: (Authenticate-then-encrypt)
𝐸𝐸𝑛𝑛𝑀𝑀𝐾𝐾 𝑚𝑚 = Enc𝐾𝐾𝐸𝐸

′ 𝑚𝑚 ∥ 𝑡𝑡 where t = Mac𝐾𝐾𝑀𝑀
′ 𝑚𝑚

(Contrived? Plausible?) bad case:
Enc𝐾𝐾𝐸𝐸

′ 𝑚𝑚 = 𝐸𝐸𝐸𝐸𝐸𝐸 𝑟𝑟,𝐹𝐹𝐾𝐾𝐸𝐸 𝑟𝑟 ⨁𝑚𝑚

D𝑒𝑒𝑀𝑀𝐾𝐾𝐸𝐸
′ 𝑀𝑀

𝑟𝑟, 𝑗𝑗 ≔ 𝐸𝐸𝐸𝐸𝐸𝐸𝐷𝐷 𝑀𝑀
Return 𝑚𝑚 = 𝐹𝐹𝐾𝐾𝐸𝐸 𝑟𝑟 ⨁𝑗𝑗

56

Error Correcting Code

Authenticate-then-Encrypt: A Bad Case

Attempt 3: (Authenticate-then-encrypt)
𝐸𝐸𝑛𝑛𝑀𝑀𝐾𝐾 𝑚𝑚 = Enc𝐾𝐾𝐸𝐸

′ 𝑚𝑚 ∥ 𝑡𝑡 where t = Mac𝐾𝐾𝑀𝑀
′ 𝑚𝑚

(Contrived? Plausible?) bad case:
Enc𝐾𝐾𝐸𝐸

′ 𝑚𝑚 = 𝐸𝐸𝐸𝐸𝐸𝐸 𝑟𝑟,𝐹𝐹𝐾𝐾𝐸𝐸 𝑟𝑟 ⨁𝑚𝑚

D𝑒𝑒𝑀𝑀𝐾𝐾𝐸𝐸
′ 𝑀𝑀

𝑟𝑟, 𝑗𝑗 ≔ 𝐸𝐸𝐸𝐸𝐸𝐸𝐷𝐷 𝑀𝑀
Return 𝑚𝑚 = 𝐹𝐹𝐾𝐾𝐸𝐸 𝑟𝑟 ⨁𝑗𝑗

57

Error Correcting Code
𝐸𝐸𝐸𝐸𝐸𝐸 101 = 111100001111

Ties?
𝐸𝐸𝐸𝐸𝐸𝐸𝐷𝐷 1100 = 1
𝐸𝐸𝐸𝐸𝐸𝐸𝐷𝐷 0011 = 1

Authenticate-then-Encrypt: A Bad Case

Attempt 3: (Authenticate-then-encrypt)
𝐸𝐸𝑛𝑛𝑀𝑀𝐾𝐾 𝑚𝑚 = Enc𝐾𝐾𝐸𝐸

′ 𝑚𝑚 ∥ 𝑡𝑡 where t = Mac𝐾𝐾𝑀𝑀
′ 𝑚𝑚

(Contrived? Plausible?) bad case:
Enc𝐾𝐾𝐸𝐸

′ 𝑚𝑚 = 𝐸𝐸𝐸𝐸𝐸𝐸 𝑟𝑟,𝐹𝐹𝐾𝐾𝐸𝐸 𝑟𝑟 ⨁𝑚𝑚

D𝑒𝑒𝑀𝑀𝐾𝐾𝐸𝐸
′ 𝑀𝑀

𝑟𝑟, 𝑗𝑗 ≔ 𝐸𝐸𝐸𝐸𝐸𝐸𝐷𝐷 𝑀𝑀
Return 𝑚𝑚 = 𝐹𝐹𝐾𝐾𝐸𝐸 𝑟𝑟 ⨁𝑗𝑗

58

Error Correcting Code
𝐸𝐸𝐸𝐸𝐸𝐸 101 = 111100001111

𝐸𝐸𝐸𝐸𝐸𝐸𝐷𝐷 1100 = 1
𝐸𝐸𝐸𝐸𝐸𝐸𝐷𝐷 0011 = 1

1. Attacker obtains c = 𝐸𝐸𝐸𝐸𝐸𝐸 𝑟𝑟, 𝑗𝑗 = 𝐹𝐹𝐾𝐾𝐸𝐸 𝑟𝑟 ⨁ 𝑚𝑚 ∥ 𝑡𝑡
2. Attacker asks for decryption of c′ = 𝐸𝐸𝐸𝐸𝐸𝐸 𝑟𝑟, 𝑗𝑗 ⨁ 0 … 0 ∥ 0011

• What happens if last bit of 𝑗𝑗 was a zero?
• Answer: decryption error since 𝑡𝑡′ = 𝑡𝑡⨁ 0 … 0 ∥ 1 !
• 𝐸𝐸𝐸𝐸𝐸𝐸𝐷𝐷 𝑀𝑀′ = 𝑟𝑟, 𝑗𝑗′ = 𝑗𝑗⨁ 0 … 0 ∥ 1

3. What happens if last bit of 𝑗𝑗 is a one?
• Answer: Valid! 𝐸𝐸𝐸𝐸𝐸𝐸𝐷𝐷 𝑀𝑀 = 𝐸𝐸𝐸𝐸𝐸𝐸𝐷𝐷 𝑀𝑀′

Can learn tag and message bit
by bit by repeatedly querying

decryption oracle!

Building Authenticated Encryption

Attempt 4: (Encrypt-then-authenticate) Let Enc𝐾𝐾𝐸𝐸
′ 𝑚𝑚 be a CPA-Secure

encryption scheme and let Mac𝐾𝐾𝑀𝑀
′ 𝑚𝑚 be a strongly secure MAC. Let

𝐾𝐾 = 𝐾𝐾𝐸𝐸 ,𝐾𝐾𝑀𝑀 then

𝐸𝐸𝑛𝑛𝑀𝑀𝐾𝐾 𝑚𝑚 = c, Mac𝐾𝐾𝑀𝑀
′ c where c = Enc𝐾𝐾𝐸𝐸

′ 𝑚𝑚

Secure?

59

Recap

• MACs for Unbounded Length Messages
• Reordering/Truncation/Block Swapping Attacks
• Nonce Based Construction
• CBC MAC

• Authenticated Encryption = CCA-Secure + Unforgeable Encryptions
• Independent Key Principle
• Encrypt and Authenticate

• Not generically secure
• Authenticate then Encrypt

• Not generically secure
• Encrypt then Authenticate

• Always secure given CPA-Secure encryption + strongly secure MAC

60
Announcement: Quiz 2 Released today due by Saturday at 11:30PM on Brightspace

Building Authenticated Encryption

Theorem: (Encrypt-then-authenticate) Let Enc𝐾𝐾𝐸𝐸
′ 𝑚𝑚 be a CPA-Secure encryption

scheme and let Mac𝐾𝐾𝑀𝑀
′ 𝑚𝑚 be a strongly secure MAC. Then the following

construction is an authenticated encryption scheme.

𝐸𝐸𝑛𝑛𝑀𝑀𝐾𝐾 𝑚𝑚 = c, Mac𝐾𝐾𝑀𝑀
′ c where c = Enc𝐾𝐾𝐸𝐸

′ 𝑚𝑚

Proof?
Two Tasks:

Encforge𝐴𝐴,Π
CCA-Security

61

Building Authenticated Encryption

Theorem: (Encrypt-then-authenticate) Let Enc𝐾𝐾𝐸𝐸
′ 𝑚𝑚 be a CPA-Secure

encryption scheme and let Mac𝐾𝐾𝑀𝑀
′ 𝑚𝑚 be a strongly secure MAC. Then the

following construction is an authenticated encryption scheme.

𝐸𝐸𝑛𝑛𝑀𝑀𝐾𝐾 𝑚𝑚 = c, Mac𝐾𝐾𝑀𝑀
′ c where c = Enc𝐾𝐾𝐸𝐸

′ 𝑚𝑚

Proof Intuition: Suppose that we have already shown that any PPT attacker
wins Encforge𝐴𝐴,Π with negligible probability.

Why does CCA-Security now follow from CPA-Security?
CCA-Attacker has decryption oracle, but cannot exploit it! Why?
Always sees ⊥ “invalid ciphertext” when he query with unseen ciphertext

62

Encryption Forgery Attacker (Encforge𝐴𝐴,Π(𝑛𝑛))

63

mq

K = Gen(.)Encforge𝐴𝐴,Π 𝑛𝑛 = 1 iff Deck 𝑀𝑀 ≠⊥
𝑀𝑀 = 𝑚𝑚, 𝑡𝑡 s.t 𝑀𝑀 ∉ 𝑀𝑀1, … , cq

m1
c1 = c1′, Mac𝐾𝐾𝑀𝑀

′ c1′

c2 = c2′, Mac𝐾𝐾𝑀𝑀
′ c2′

m2

…

𝑚𝑚, 𝑡𝑡 ∉ c1′, t1′ , … , cq′, tq′

cq = cq′, Mac𝐾𝐾𝑀𝑀
′ cq′

iff Verif𝑦𝑦𝐾𝐾𝑀𝑀
′ 𝑚𝑚, 𝑡𝑡 = 1

MAC forgery for the key 𝐾𝐾𝑀𝑀

Unforgeable Encryptions

Theorem: (Encrypt-then-authenticate) Let Mac𝐾𝐾𝑀𝑀
′ 𝑚𝑚 be a strongly secure MAC. Then the

following construction has unforgeable encryptions.
𝐸𝐸𝑛𝑛𝑀𝑀𝐾𝐾 𝑚𝑚 = c, Mac𝐾𝐾𝑀𝑀

′ c where c = Enc𝐾𝐾𝐸𝐸
′ 𝑚𝑚

Note: unforgeable property holds even if the encryption scheme is not CPA-Secure.
Reduction: MAC Attacker A’ picks key KE and simulates encryption forgery attacker A
(Note: A’ plays the role of the challenger in the encryption forgery game).

Whenever A submits query mi to encryption oracle A’ responds by
1. computes ci′ = EncKE

′ m and
2. sends ci′ to MAC challenger to get MacKM

′ ci′ and
3. sends ci = ci′, Mac𝐾𝐾𝑀𝑀

′ ci′ back to A.
Whenever A outputs a forged ciphertext c = 𝑀𝑀′, 𝑡𝑡′ we output the pair (m=c’,t=t’) as our MAC
forgery

64

Unforgeable Encryptions

Reduction: MAC Attacker A’ picks key KE and simulates encryption forgery
attacker A
(Note: A’ plays the role of the challenger in the encryption forgery game).

Whenever A submits query mi to encryption oracle A’ responds by
1. computes ci′ = EncKE

′ m and
2. sends ci′ to MAC challenger to get MacKM

′ ci′ and
3. sends ci = ci′, Mac𝐾𝐾𝑀𝑀

′ ci′ back to A.
Whenever A outputs a forged ciphertext c = 𝑀𝑀′, 𝑡𝑡′ we output the pair
(m=c’,t=t’) as our MAC forgery.
Fact: A’ wins the MAC forgery game if and only if A wins the encryption forgery
game.

65

Proof Sketch (CCA-Security)

1. Let ValidDecQuery be event that attacker submits new/valid ciphertext to
decryption oracle at any point in time

2. Show Pr[ValidDecQuery] is negl(n) for any PPT CCA attacker A
• If not then we could win encryption forgery game with probability at least Pr[ValidDecQuery]/q

where q is the number of queries to the decryption oracle
• Reduction Challenge: a priori don’t know which query i* to decryption oracle yields encryption

forgery
• Solution: Guess index i of query Pr[i = i ∗] ≥ 1

𝑞𝑞
• We win the encryption forgery game if the event ValidDecQuery occurs and we guessed

correctly i = i ∗

• Pr Win Enc Forgery ≥ Pr ValidDecQuery ∧ i = i ∗ ≥
Pr ValidDecQuery

𝑞𝑞

• If Pr[ValidDecQuery] is non-negligible so is Pr Win Enc Forgery

66

Proof Sketch

1. Let ValidDecQuery be event that attacker submits new/valid
ciphertext to decryption oracle

2. Show Pr[ValidDecQuery] is negl(n) for any PPT attacker
• This also implies unforgeability (even if we gave the attacker 𝐾𝐾𝐸𝐸!).

3. Show that attacker who does not issue valid decryption query wins
CCA-security game with probability ½ + negl(n)
• Key Idea: Given attacker A breaking CCA-Security we can build A’ which

breaks CPA-security of EncKE
′

67

Proof Sketch
3. Show that attacker who does not issue valid decryption query wins CCA-security game with probability ½ + negl(n)

• Key Idea: Given attacker A breaking CCA-Security we can build A’ which breaks CPA-security of EncKE
′

Reduction: CPA attacker A’ picks MAC key KM and simulates CCA-Attacker A (A’ plays role of CCA challenger)
Whenever A queries encryption oracle on message m

A’ forwards encryption oracle to CPA challenger to get c′ = EncKE
′ (𝑚𝑚)

A’ computes t = MACKM(c′) and responds with c = (c, t)
Whenever A queries the decryption oracle on a ciphertext c

If c is the fresh ciphertext then respond with ⊥ (failure)
(If c was produced in response to a query then simply respond with the original message m)

Finally, A’ outputs the same guess b’ as A.
Claim: Pr[PrivK𝐴𝐴′,Π′

𝑐𝑐𝑝𝑝𝑝𝑝 𝑛𝑛] ≥ Pr[PrivK𝐴𝐴,Π
𝑐𝑐𝑐𝑐𝑝𝑝 𝑛𝑛 |ValidDecQuery] Pr ValidDecQuery

 If Pr[PrivK𝐴𝐴,Π
𝑐𝑐𝑐𝑐𝑝𝑝 𝑛𝑛] is non-negligible then so is Pr[PrivK𝐴𝐴′,Π′

𝑐𝑐𝑝𝑝𝑝𝑝 𝑛𝑛]

68
If A breaks CCA-security of our construction Π then A’ breaks CPA-security of Π′
(Contradiction! EncKE

′ is assumed to be CPA-secure)

Secure Communication Session

• Solution Protocol? Alice transmits c1 = EncK(m1) to Bob, who decrypts and sends
Alice c2 = EncK(m2) etc…

• Authenticated Encryption scheme is
• Stateless
• For fixed length-messages

• We still need to worry about
• Re-ordering attacks (or Truncation)

• Alice sends three n-bit message to Bob as c1 = EncK(m1), c2 = EncK(m2), c3 = EncK(m3). Mallory can reorder
• 𝑚𝑚1 = “I love you”, 𝑚𝑚2 = “I will never say that”, 𝑚𝑚3 = “you are stupid”

• Replay Attacks
• Mallory intercepts ciphertext c3 = EncK(m3) and can now replay the message m3 later in the conversation

• Reflection Attack
• Attacker intercepts message c1 = EncK(m1) sent from Alice to Bob and Mallory reply's to Alice with c1

69

Secure Communication Session

• Defense
• Counters (CTRA,B,CTRB,A)

• Number of messages sent from Alice to Bob (CTRA,B) --- initially 0
• Number of messages sent from Bob to Alice (CTRB,A) --- initially 0
• Protects against Re-ordering and Replay attacks

• Directionality Bit
• bA,B = 0 and bB,A = 1 (e.g., since A < B)

• Alice: To send m to Bob, set c=EncK(bA,B ∥ CTRA,B ∥m), send c and increment
CTRA,B

• Bob: Decrypts c, (if ⊥ then reject), obtain b ∥ CTR ∥m
• If CTR≠ CTRA,B or b≠ bA,B then reject
• Otherwise, output m and increment CTRA,B

70

Galois Counter Mode (GCM)

• AES-GCM is an Authenticated Encryption
Scheme

• Encrypt then Authenticate
• Only uses one symmetric key, but still secure

• Bonus: Authentication Encryption with Associated
Data

• Associated Data incorporated into MAC
• Ensures attacker cannot tamper with associated

packet data
• Source IP
• Destination IP
• Why can’t these values be encrypted?

• Encryption is largely parallelizable!

71

No truncation/reordering attacks possible
amongst the blocks of this message

Direction of Message is Authenticated

Authenticated Security vs CCA-Security

• Authenticated Encryption CCA-Security (by definition)

• CCA-Security does not necessarily imply Authenticate Encryption
• But most natural CCA-Secure constructions are also Authenticated Encryption

Schemes
• Some constructions are CCA-Secure, but do not provide Authenticated

Encryptions, but they are less efficient.

• Conceptual Distinction
• CCA-Security the goal is secrecy (hide message from active adversary)
• Authenticated Encryption: the goal is integrity + secrecy

72

Week 4: Topic 4:
Cryptographic Hash Functions

73

Hash Functions

H(x)=y

74

Long Input: 𝐱𝐱 Short Output: y s.t.
𝐲𝐲 ≪ 𝐱𝐱

Pigeonhole Principle

75

“You cannot fit 10 pigeons into 9 pigeonholes”

Hash Collisions

By Pigeonhole Principle there must
exist x and y s.t.

H(x) = H(y)

76

Classical Hash Function Applications

•Hash Tables
• O(1) lookup*

•“Good hash function” should yield “few collisions”

* Certain terms and conditions apply

77

Collision-Resistant Hash Function

Intuition: Hard for computationally bounded attacker to find any pair 𝑥𝑥, 𝑥𝑥′
s.t.

𝐻𝐻 𝑥𝑥 = 𝐻𝐻 𝑥𝑥′
How to formalize this intuition?
• Attempt 1: For all PPT A,

Pr 𝐴𝐴 1𝑛𝑛 = 𝑥𝑥, 𝑥𝑥′ 𝑗𝑗. 𝑡𝑡 𝐻𝐻 𝑥𝑥 = 𝐻𝐻(𝑥𝑥′) ≤ 𝑛𝑛𝑒𝑒𝑔𝑔𝑛𝑛(𝑛𝑛)

• The Problem: Let 𝑥𝑥, 𝑥𝑥′ be given s.t. 𝐻𝐻 𝑥𝑥 = 𝐻𝐻 𝑥𝑥′
𝐴𝐴𝑥𝑥,𝑥𝑥′ 1𝑛𝑛 = (𝑥𝑥, 𝑥𝑥′)

• We are assuming that |x| > |H(x)|. Why?
• H(x)=x is perfectly collision resistant! (but with no compression)

78

Keyed Hash Function Syntax

• Two Algorithms
• Gen(1𝑛𝑛;𝑅𝑅) (Key-generation algorithm)

• Input: Random Bits R
• Output: Secret key s

• 𝐻𝐻𝑠𝑠(𝑚𝑚) (Hashing Algorithm)
• Input: key 𝑗𝑗 and message m ∈ 0,1 ∗ (unbounded length)
• Output: hash value 𝐻𝐻𝑠𝑠(𝑚𝑚) ∈ 0,1 ℓ 𝑛𝑛

• Fixed length hash function
• 𝑚𝑚 ∈ 0,1 ℓ′ 𝑛𝑛 with ℓ′ 𝑛𝑛 > ℓ 𝑛𝑛

79

Collision Experiment (𝐻𝐻𝑎𝑎𝑗𝑗𝑎𝐸𝐸𝑛𝑛𝑛𝑛𝑛𝑛𝐴𝐴,Π(𝑛𝑛))

80

s = Gen(1𝑛𝑛;𝑅𝑅)

s

x1,x2

Definition: (Gen,H) is a collision resistant hash function if
∀𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴 ∃𝜇𝜇 (negligible) s. t

Pr 𝐻𝐻𝑎𝑎𝑗𝑗𝑎𝐸𝐸𝑛𝑛𝑛𝑛𝑛𝑛𝐴𝐴,Π(𝑛𝑛)=1 ≤ 𝜇𝜇(𝑛𝑛)

𝐻𝐻𝑎𝑎𝑗𝑗𝑎𝐸𝐸𝑛𝑛𝑛𝑛𝑛𝑛𝐴𝐴,Π(𝑛𝑛)= �1 𝑖𝑖𝑓𝑓 𝐻𝐻𝑠𝑠 𝑥𝑥1 = 𝐻𝐻𝑠𝑠 𝑥𝑥2
0 𝑛𝑛𝑡𝑡𝑎𝑒𝑒𝑟𝑟𝑜𝑜𝑖𝑖𝑗𝑗𝑒𝑒

Collision Experiment (𝐻𝐻𝑎𝑎𝑗𝑗𝑎𝐸𝐸𝑛𝑛𝑛𝑛𝑛𝑛𝐴𝐴,Π(𝑛𝑛))

81

s = Gen(1𝑛𝑛;𝑅𝑅)

s

x1,x2

Definition: (Gen,H) is a collision resistant hash function if
∀𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴 ∃𝜇𝜇 (negligible) s. t

Pr 𝐻𝐻𝑎𝑎𝑗𝑗𝑎𝐸𝐸𝑛𝑛𝑛𝑛𝑛𝑛𝐴𝐴,Π(𝑛𝑛)=1 ≤ 𝜇𝜇(𝑛𝑛)

𝐻𝐻𝑎𝑎𝑗𝑗𝑎𝐸𝐸𝑛𝑛𝑛𝑛𝑛𝑛𝐴𝐴,Π(𝑛𝑛)= �1 𝑖𝑖𝑓𝑓 𝐻𝐻𝑠𝑠 𝑥𝑥1 = 𝐻𝐻𝑠𝑠 𝑥𝑥2
0 𝑛𝑛𝑡𝑡𝑎𝑒𝑒𝑟𝑟𝑜𝑜𝑖𝑖𝑗𝑗𝑒𝑒

Key is not key
secret (just

random)

For simplicity we will
sometimes just say that H

(or Hs) is a collision
resistant hash function

Theory vs Practice

• Most cryptographic hash functions used in practice are un-keyed
• Examples: MD5, SHA1, SHA2, SHA3

• Tricky to formally define collision resistance for keyless hash function
• There is a PPT algorithm to find collisions
• We just usually can’t find this algorithm

82

	Cryptography�CS 555
	Recap
	Week 4: Topic 1: �Constructing Message Authentication Codes��
	Message Authentication Code Syntax
	General vs Fixed Length MAC
	Strong MAC Construction (Fixed Length)
	Strong MAC Authentication (Macsforge 𝐴,Π (𝑛))
	Concrete Version: 𝑡 𝑛 ,𝑞 𝑛 ,𝜀(𝑛) -secure MAC
	Strong MAC Construction (Fixed Length)
	Breaking MAC Security (Macforge 𝐴,Π (𝑛))
	A Similar Game (Macforge 𝐴, Π (𝑛))
	PRF Distinguisher D
	PRF Distinguisher D
	Strong MAC Construction (Fixed Length)
	Strong MAC Construction (Fixed Length)
	Strong MAC Construction (Fixed Length)
	MACs for Arbitrary Length Messages
	MACs for Arbitrary Length Messages
	MACs for Arbitrary Length Messages
	MACs for Arbitrary Length Messages
	Slide Number 37
	MACs for Arbitrary Length Messages
	MACs for Arbitrary Length Messages
	CBC-MAC
	Coming Soon
	Week 4
	Recap
	Authenticated Encryption
	Unforgeable Encryption Experiment (Encforge 𝐴,Π (𝑛))
	Unforgeable Encryption Experiment (Encforge 𝐴,Π (𝑛))
	Building Authenticated Encryption
	Building Authenticated Encryption
	Building Authenticated Encryption
	Independent Key Principle
	Building Authenticated Encryption
	Building Authenticated Encryption
	Building Authenticated Encryption
	Building Authenticated Encryption
	Building Authenticated Encryption
	Authenticate-then-Encrypt: A Bad Case
	Authenticate-then-Encrypt: A Bad Case
	Authenticate-then-Encrypt: A Bad Case
	Building Authenticated Encryption
	Recap
	Building Authenticated Encryption
	Building Authenticated Encryption
	Encryption Forgery Attacker (Encforge 𝐴,Π (𝑛))
	Unforgeable Encryptions
	Unforgeable Encryptions
	Proof Sketch (CCA-Security)
	Proof Sketch
	Proof Sketch
	Secure Communication Session
	Secure Communication Session
	Galois Counter Mode (GCM)
	Authenticated Security vs CCA-Security
	Week 4: Topic 4: �Cryptographic Hash Functions��
	Hash Functions
	Pigeonhole Principle
	Hash Collisions
	Classical Hash Function Applications
	Collision-Resistant Hash Function
	Keyed Hash Function Syntax
	Collision Experiment (𝐻𝑎𝑠ℎ𝐶𝑜𝑙𝑙 𝐴,Π (𝑛))
	Collision Experiment (𝐻𝑎𝑠ℎ𝐶𝑜𝑙𝑙 𝐴,Π (𝑛))
	Theory vs Practice

