
Cryptography
CS 555

Week 3: 
• Building CPA-Secure Encryption Schemes
• Pseudorandom Functions/Permutations
• Block Ciphers + Modes of Operation
• CCA-Security (definition)
• Message Authentication Codes [time permitting]

Readings: Katz and Lindell Chapter 3.5-3.7
Reminder: Homework 3 is due on Thursday at 11:59PM on Gradescope
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Recap

• Using PRGs to achieve Semantic Security (Single Message Eavesdropping)

• Multiple Message Eavesdropping Experiment
• Impossible to achieve with stateless/deterministic encryption scheme

• Chosen Plaintext Attacks and CPA-Security

• PRF Security: ∀𝑃𝑃𝑃𝑃𝑃𝑃 𝐷𝐷 (distinguisher) ∃𝜇𝜇 . (negligible))
ADVD ≔ 𝑃𝑃𝑃𝑃 𝐷𝐷𝐹𝐹𝑘𝑘(.) 1𝑛𝑛 − 𝑃𝑃𝑃𝑃 𝐷𝐷𝑓𝑓(.) 1𝑛𝑛 ≤ 𝜇𝜇 𝑛𝑛

where 𝑓𝑓(. ) is a truly random function and PRF key k is picked randomly
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Recap CPA-Security

• Defend against eavesdropping attacker’s ability to influence messages that 
honest party encrypts

• More powerful than known plaintext attacks (knows vs controls encrypted message)

• Historical Importance: Battle of Midway

• CPA-Security Equivalence
• Multiple vs Single Encryption Game

• Limitations of Threat Model
• Passive vs Active Attacker
• What if attacker can get honest party to (partially) decrypt some messages? 
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Chosen Plaintext Attacks (Examples)

• CPA-attacker influences messages that honest party encrypts

• Eve sends Bob a document/e-mail expecting that Bob will encrypt it and 
forward it to Alice

• Eve registers herself in a database expecting that Bob (employee) will 
forward the encrypted database to her boss.

• Eve generate important news that Bob will encrypt and pass on to Alice
• Plant objects at specific GPS coordinates
• Broadcast Message (Battle of Midway)
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Week 3: Topic 1: 
Pseudorandom Functions and 

CPA-Security

5



PRF Security

Definition 3.25: A keyed function F: 0,1 𝑛𝑛 × 0,1 𝑛𝑛 → 0,1 𝑛𝑛 is a 
pseudorandom function if for all PPT distinguishers D there is a negligible 
function 𝜇𝜇 s.t. 

𝑃𝑃𝑃𝑃 𝐷𝐷𝐹𝐹𝑘𝑘(.) 1𝑛𝑛 − 𝑃𝑃𝑃𝑃 𝐷𝐷𝑓𝑓(.) 1𝑛𝑛 ≤ 𝜇𝜇 𝑛𝑛
Notes: 
• the first probability is taken over the uniform choice of 𝑘𝑘 ∈ 0,1 𝑛𝑛 as well 

as the randomness of D. 
• the second probability is taken over uniform choice of f ∈Funcnas well as 

the randomness of D. 
• D is not given the secret k in the first probability (otherwise easy to 

distinguish…how?)
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PRF-Security as a Game
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m1

Random bit b
𝐊𝐊 ← 𝐆𝐆𝐆𝐆𝐆𝐆 𝟏𝟏𝒏𝒏
Truly random func R
ri = FK(mi)    if b=1

R(mi)    o.w

b’

m2

r2

r3

m3

…

∀𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴 ∃𝜇𝜇 (negligible) s. t
Pr 𝐴𝐴 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝑏𝑏′ = 𝑏𝑏 ≤

1
2

+ 𝜇𝜇(𝑛𝑛)

r1



PRF Security Concrete Version

Definition 3.25: A keyed function F: 0,1 𝑛𝑛 × 0,1 𝑛𝑛 → 0,1 𝑛𝑛 is a 
𝑡𝑡 𝑛𝑛 , 𝑞𝑞 𝑛𝑛 , 𝜀𝜀 𝑛𝑛 -secure pseudorandom function if for all 

distinguishers D running in time at most 𝒕𝒕 𝒏𝒏 and making at most 
𝒒𝒒 𝒏𝒏 queries we have

𝑃𝑃𝑃𝑃 𝐷𝐷𝐹𝐹𝑘𝑘(.) 1𝑛𝑛 − 𝑃𝑃𝑃𝑃 𝐷𝐷𝑓𝑓(.) 1𝑛𝑛 ≤ 𝜀𝜀 𝑛𝑛
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Reminder: CPA-Security (Single Message)
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m0,m1

Random bit b
𝐊𝐊 ← 𝐆𝐆𝐆𝐆𝐆𝐆 𝟏𝟏𝒏𝒏

c = EncK(mb)

b’

m2

c2 = EncK(m2)

c3 = EncK(m3)
m3

…

∀𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴 ∃𝜇𝜇 (negligible) s. t
Pr 𝐴𝐴 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝑏𝑏′ = 𝑏𝑏 ≤

1
2

+ 𝜇𝜇(𝑛𝑛)



CPA-Secure Encryption

• Gen: on input 1n pick uniform 𝑘𝑘 ∈ 0,1 𝑛𝑛

• Enc: Input 𝑘𝑘 ∈ 0,1 𝑛𝑛 and 𝑚𝑚 ∈ 0,1 𝑛𝑛

Output 𝑐𝑐 = 𝑃𝑃,𝐹𝐹𝑘𝑘 𝑃𝑃 ⨁𝑚𝑚 for uniform 𝑃𝑃 ∈ 0,1 𝑛𝑛

• Dec: Input 𝑘𝑘 ∈ 0,1 𝑛𝑛 and 𝑐𝑐 = 𝑃𝑃, 𝐺𝐺
Output 𝑚𝑚 = 𝐹𝐹𝑘𝑘 𝑃𝑃 ⨁𝐺𝐺

Theorem: If F is a pseudorandom function, then (Gen,Enc,Dec) is a CPA-
secure encryption scheme for messages of length n.
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How to begin proof?



Breaking CPA-Security (Single Message)
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m0,m1

Random bit b
𝐊𝐊 ← 𝐆𝐆𝐆𝐆𝐆𝐆 𝟏𝟏𝒏𝒏

𝑃𝑃,𝐹𝐹𝑘𝑘 𝑃𝑃 ⨁𝑚𝑚𝑏𝑏

b’

m2

𝑃𝑃2,𝐹𝐹𝑘𝑘 𝑃𝑃2 ⨁𝑚𝑚2

𝑃𝑃3,𝐹𝐹𝑘𝑘 𝑃𝑃3 ⨁𝑚𝑚3

m3

…

Assumption: ∃ PPT 𝐴𝐴, P (non − negligible) s. t
Pr 𝐴𝐴 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝑏𝑏′ = 𝑏𝑏 ≥

1
2

+ 𝑃𝑃(𝑛𝑛)



Security Reduction

• Step 1: Assume for contraction that we have a PPT attacker A that breaks CPA-
Security.

• Step 2: Construct a PPT distinguisher D which breaks PRF security.
• Distinguisher DO (oracle O --- either f or Fk)

• Simulate A
• Whenever A queries its encryption oracle on a message m 

• Select random r and query O(r)
• Return 𝑐𝑐 = 𝑃𝑃,𝑂𝑂 𝑃𝑃 ⨁𝑚𝑚

• Whenever A outputs messages m0,m1
• Select random r and bit b
• Return 𝑐𝑐 = 𝑃𝑃,𝑂𝑂 𝑃𝑃 ⨁𝑚𝑚𝑏𝑏

• Whenever A outputs b’
• Output 1 if b=b’
• Output 0 otherwise
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Analysis: Suppose that O = f then

Pr D𝐹𝐹𝑘𝑘 = 1 = Pr 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴,Π
𝑐𝑐𝑐𝑐𝑐𝑐

= 1
Suppose that O = f then 

Pr D𝑓𝑓 = 1 =Pr 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴,�Π
𝑐𝑐𝑐𝑐𝑐𝑐

= 1

where �Π denotes the encryption scheme in which 
Fk is replaced by truly random f.



Security Reduction

• Step 1: Assume for contraction that we have a PPT attacker A that breaks 
CPA-Security.

• Step 2: Construct a PPT distinguisher D which breaks PRF security.
• Distinguisher DO (oracle O --- either f or Fk)

• Simulate A
• Whenever A queries its encryption oracle on a message m 

• Select random r and query O(r)
• Return 𝑐𝑐 = 𝑃𝑃,𝑂𝑂 𝑃𝑃 ⨁𝑚𝑚

• Whenever A outputs messages m0,m1
• Select random r and bit b
• Return 𝑐𝑐 = 𝑃𝑃,𝑂𝑂 𝑃𝑃 ⨁𝑚𝑚𝑏𝑏

• Whenever A outputs b’
• Output 1 if b=b’
• Output 0 otherwise
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Analysis: By PRF security, for some negligible function 𝜇𝜇,
we have

Pr 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴,Π
𝑐𝑐𝑐𝑐𝑐𝑐

= 1 − Pr 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴,�Π
𝑐𝑐𝑐𝑐𝑐𝑐

= 1
= Pr[D𝐹𝐹𝑘𝑘 = 1] − Pr[D𝑓𝑓 = 1] ≤ 𝜇𝜇(𝑛𝑛)

Implies: Pr 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴,�Π
𝑐𝑐𝑐𝑐𝑐𝑐

= 1 ≥ Pr 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴,Π
𝑐𝑐𝑐𝑐𝑐𝑐

= 1 − 𝜇𝜇(𝑛𝑛)



Security Reduction
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• Fact: Pr 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴,�Π
𝑐𝑐𝑐𝑐𝑐𝑐

= 1 ≥ Pr 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴,Π
𝑐𝑐𝑐𝑐𝑐𝑐

= 1 -𝜇𝜇(𝑛𝑛)

• Claim: For any attacker A making at most q(n) queries we have

Pr 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴,�Π
𝑐𝑐𝑐𝑐𝑐𝑐

= 1 ≤
1
2

+
𝑞𝑞(𝑛𝑛)

2𝑛𝑛

Conclusion: For any attacker A making at most q(n) queries we have

Pr 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴,Π
𝑐𝑐𝑐𝑐𝑐𝑐

= 1 ≤
1
2

+
𝑞𝑞 𝑛𝑛

2𝑛𝑛
+ 𝜇𝜇 𝑛𝑛

where 𝑞𝑞 𝑛𝑛
2𝑛𝑛

+ 𝜇𝜇 𝑛𝑛 is negligible.



Finishing Up

Claim: For any attacker A making at most q(n) queries we have

Pr PrivK𝐴𝐴,�Π
𝑐𝑐𝑐𝑐𝑐𝑐

= 1 ≤
1
2

+
𝑞𝑞(𝑛𝑛)

2𝑛𝑛
Proof: Let m0,m1 denote the challenge messages and let r* denote the 
random string used to produce the challenge ciphertext 

𝑐𝑐 = 𝑃𝑃∗,𝑓𝑓 𝑃𝑃∗ ⨁𝑚𝑚𝑏𝑏

And let r1,…,rq denote the random strings used to produce the other 
ciphertexts 𝑐𝑐𝑃𝑃 = 𝑃𝑃𝑖𝑖 , 𝑓𝑓 𝑃𝑃𝑖𝑖 ⨁𝑚𝑚𝑖𝑖 . 
If r∗ ≠ r1,…,rqthen then c leaks no information about b (information 
theoretically). 
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Finishing Up

Claim: For any attacker A making at most q(n) queries we have

Pr 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴,�Π
𝑐𝑐𝑐𝑐𝑐𝑐

= 1 ≤
1
2

+
𝑞𝑞(𝑛𝑛)

2𝑛𝑛
Proof: If r∗ ≠ r1,…,rq then then c leaks no information about b 
(information theoretically). We have 

Pr 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴,�Π
𝑐𝑐𝑐𝑐𝑐𝑐

= 1
≤ Pr 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴,�Π

𝑐𝑐𝑐𝑐𝑐𝑐
= 1 �r∗ ≠ r1,…,rq + Pr r∗ ∈ r1,…,rq

≤
1
2

+
𝑞𝑞(𝑛𝑛)

2𝑛𝑛
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Conclusion

Enck(m) = 𝑃𝑃,𝐹𝐹𝑘𝑘 𝑃𝑃 ⨁𝑚𝑚

Deck( 𝑃𝑃, 𝐺𝐺 ) = 𝐹𝐹𝑘𝑘 𝑃𝑃 ⨁𝐺𝐺

For any attacker A making at most q(n) queries we have

Pr 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴,Π
𝑐𝑐𝑐𝑐𝑐𝑐

= 1 ≤
1
2

+
𝑞𝑞 𝑛𝑛

2𝑛𝑛
+ 𝜇𝜇 𝑛𝑛

22

PRF Security

Suggested Exercise: Work out concrete version of security proof



Are PRFs or PRGs more Powerful?

•Easy to construct a secure PRG from a PRF
G(s) = Fs(1)|…|Fs(ℓ)

•Construct a PRF from a PRG?
• Tricky, but possible… (Katz and Lindell Section 7.5)
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PRFs from PRGs

Theorem: Suppose that there is a PRG G with 
expansion factor ℓ 𝑛𝑛 = 2𝑛𝑛. Then there is a secure PRF.

Let G(x) = G0(x)||G1(x)     (first/last n bits of output)

𝑭𝑭𝑲𝑲 𝒙𝒙𝟏𝟏, … ,𝒙𝒙𝒏𝒏 = 𝑮𝑮𝒙𝒙𝒏𝒏 … 𝑮𝑮𝒙𝒙𝟐𝟐 𝑮𝑮𝒙𝒙𝟏𝟏 𝑲𝑲 …
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Theorem: If G is a PRG then Fk is a PRF



PRFs from PRGs

Theorem: Suppose that there is a PRG G with 
expansion factor ℓ 𝑛𝑛 = 2𝑛𝑛. Then there is a secure PRF.
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k

G0(k) G1(k)

G0(G0(k)) G1(G0(k))

……

G0(G1(k)) G1(G1(k))

……

0

0

0

0

… … … …

0 00

1

1

1

1

1

1

1

Fk(011)=G1(G1(G0(k)))



Stream Ciphers Modes

• What if we don’t know the length of the message to be encrypted a priori?
• Stream Cipher: 𝐺𝐺∞ 𝐺𝐺, 1𝑛𝑛 outputs n pseudorandom bits as follows
• Initial State: st0 = Initialize(s)                       
• Repeat

• (yi,sti)=GetBits(sti-1)
• Output yi

• Synchronized Mode
• Message sequence:   m1,m2,…
• Ciphertext sequence: ci = mi ⨁yi (same length as ciphertext!)
• “CPA-like” security follows from cipher security (must stop after n-bits)
• Deterministic encryption, what gives???
• Requires both parties to maintain state (not good for sporadic communication) 
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Stream Ciphers Modes

• What if we don’t want to keep state?
• Unsynchronized Mode

• Message sequence:   m1,m2,…
• Ciphertext sequence: ci = IV, 𝑚𝑚𝑖𝑖⨁ 𝐺𝐺∞ 𝑘𝑘, 𝐼𝐼𝐼𝐼, 1 𝑚𝑚𝑖𝑖

• CPA-Secure if Fk(IV) = 𝐺𝐺∞ 𝑘𝑘, 𝐼𝐼𝐼𝐼, 1𝑛𝑛 is a (weak) PRF.
• No shared state, but longer ciphertexts….
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Week 3: Topic 2: Modes of 
Encryption, The Penguin and 

CCA security
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Pseudorandom Permutation

A keyed function F: 0,1 𝑛𝑛 × 0,1 𝑛𝑛 → 0,1 𝑛𝑛, which is 
invertible and “looks random” without the secret key k. 

• Similar to a PRF, but 
• Computing Fk(x) and Fk−1 x is efficient (polynomial-time)

Definition 3.28: A keyed function F: 0,1 𝑛𝑛 × 0,1 𝑛𝑛 → 0,1 𝑛𝑛 is a strong 
pseudorandom permutation if for all PPT distinguishers D there is a 
negligible function 𝜇𝜇 s.t. 

𝑃𝑃𝑃𝑃 𝐷𝐷𝐹𝐹𝑘𝑘 . ,𝐹𝐹𝑘𝑘
−1 . 1𝑛𝑛 − 𝑃𝑃𝑃𝑃 𝐷𝐷𝑓𝑓 . ,𝑓𝑓−1 . 1𝑛𝑛 ≤ 𝜇𝜇 𝑛𝑛

30



Pseudorandom Permutation

Definition 3.28: A keyed function F: 0,1 𝑛𝑛 × 0,1 𝑛𝑛 → 0,1 𝑛𝑛 is a strong 
pseudorandom permutation if for all PPT distinguishers D there is a negligible 
function 𝜇𝜇 s.t. 

𝑃𝑃𝑃𝑃 𝐷𝐷𝐹𝐹𝑘𝑘 . ,𝐹𝐹𝑘𝑘
−1 . 1𝑛𝑛 − 𝑃𝑃𝑃𝑃 𝐷𝐷𝑓𝑓 . ,𝑓𝑓−1 . 1𝑛𝑛 ≤ 𝜇𝜇 𝑛𝑛

Notes: 
• the first probability is taken over the uniform choice of 𝑘𝑘 ∈ 0,1 𝑛𝑛 as well as the 

randomness of D. 
• the second probability is taken over uniform choice of f ∈Permnas well as the 

randomness of D. 
• D is never given the secret k
• However, D is given oracle access to (keyed) permutation and inverse
• Strong pseudorandom permutation: attacker doesn’t get oracle access to inverse
• Can build strong pseudorandom permutation given pseudorandom function
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Electronic Code Book (ECB) Mode

• Uses strong PRP Fk(x) and 𝐹𝐹𝑘𝑘−1 𝑥𝑥
• Enck

• Input: m1,…,mℓ
• Output: Fk(m1), … , Fk(mℓ )

• How to decrypt?
• Is this secure?
• Hint: Encryption is deterministic.

• Implication: Not CPA-Secure
• But, it gets even worse
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ECB Mode (A Failed Approach)
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The Penguin Principle
If you can still see the penguin after 
“encrypting” the image something is very 
very wrong with the encryption scheme.
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Cipher Block Chaining

• CBC-Mode (below) is CPA-secure if Ek is a PRP

35

IV

IV

Reduces bandwidth!

Message:   3n bits
Ciphertext: 4n bits

How to decrypt? (Hint: Can be done in parallel)



Recap

• PRFs/PRPs

• CPA-Secure Encryption + Security Reduction
Enc𝑘𝑘 𝑚𝑚 = 𝑃𝑃,𝐹𝐹𝑘𝑘 𝑃𝑃 ⨁𝑚𝑚

• ECB Mode + Penguin Principle
• CBC Mode (CPA Secure)
• Chained CBC-Mode

36

Reminder: HW Due Tonight
11:59PM on Gradescope



Chained CBC-Mode

• First glance: seems similar to CBC-Mode and reduces bandwidth
• Vulnerable to CPA-Attack!   (Set m4 = IV⨁𝑐𝑐3⨁𝑚𝑚1

′ and c4=c1 iff m1=m1’)
• Moral: Be careful when tweaking encryption scheme!

37

c3

c4 c5 c6

m4 m5 m6

IV

IV



Counter Mode

• Input: m1,…,mn
• Output: c = (ctr, c1,c2,…,cn) where ctr is chosen uniformly at random
• Theorem: If Ek is PRF (or PRP) then counter mode is CPA-Secure
• Advantages: Parallelizable encryption/decryption

39



Galois Counter Mode (GCM)

• AES-GCM is CCA-secure (> CPA-security)
• Bonus: Authentication Encryption with 

Associated Data
• Ensure integrity of ciphertext
• Attacker cannot even generate new/valid 

ciphertext!
• Ensures attacker cannot tamper with 

associated packet data 
• Source IP
• Destination IP
• Why can’t these values be encrypted? 

• Encryption is largely parallelizable!

40
Outputs: iv, ciphertexts 1 & 2, 
authentication tag

Input: plaintexts 1 & 2



Week 3: Topic 3: 
CCA-Security

42



Chosen Ciphertext Attacks

• Sometimes an attacker has ability to obtain (partial) decryptions of 
ciphertexts of its choice.

• CPA-Security does not model this ability.
Examples: 
• An attacker may learn that a ciphertext corresponds to an ill-formed 

plaintext based on the reaction (e.g., server replies with “invalid 
message”).

• Monitor enemy behavior after receiving an encrypted message.
• Authentication Protocol: Send Enck(r) to recipient who authenticates 

by responding with r.
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CCA-Security (Ind-CCA2) 

44

m0,m1

Random bit b
K = Gen(.)

c = EncK(mb)

b’

m2

c2 = EncK(m2)

m3 = DecK(c3)
c3

…

“No Way!”
c4 =c

m-1
c-1 = EncK(m-1)

m-2 = DecK(c-2)
c-2 …

We could set m0 = m-1 or m1 = m-2 etc…

However, we could still flip 1 bit 
of c and ask challenger to decrypt



CCA-Security 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴,Π
𝑐𝑐𝑐𝑐𝑐𝑐 𝑛𝑛

1. Challenger generates a secret key k and a bit b
2. Adversary (A) is given oracle access to Enck and Deck
3. Adversary outputs m0,m1
4. Challenger sends the adversary c=Enck(mb).
5. Adversary maintains oracle access to  Enck and Deck ,however the adversary is 

not allowed to query Deck(c).
6. Eventually, Adversary outputs b’.

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴,Π
𝑐𝑐𝑐𝑐𝑐𝑐 𝑛𝑛 = 1 if b = b′; otherwise 0.

CCA-Security: For all PPT A exists a negligible function negl(n) s.t.

Pr 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴,Π
𝑐𝑐𝑐𝑐𝑐𝑐 𝑛𝑛 = 1 ≤

1
2

+ 𝑛𝑛𝐺𝐺𝑛𝑛𝑛𝑛(𝑛𝑛)
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CCA-Security

Definition 3.33: An encryption scheme Π is CCA-secure if for all PPT A 
there is a negligible function negl(n) such that

Pr 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴,Π
𝑐𝑐𝑐𝑐𝑐𝑐 𝑛𝑛 = 1 ≤

1
2

+ 𝑛𝑛𝐺𝐺𝑛𝑛𝑛𝑛(𝑛𝑛)
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CPA-Security doesn’t imply CCA-Security

Enck(m) = 𝑃𝑃,𝐹𝐹𝑘𝑘 𝑃𝑃 ⨁𝑚𝑚

Attacker: Selects m0 = 0n and m1 = 1n

Attacker Receives: c = 𝑃𝑃, 𝐺𝐺 where 𝐺𝐺 = 𝐹𝐹𝑘𝑘 𝑃𝑃 ⨁𝑚𝑚𝑏𝑏
Attacker Queries: Deck(c’) for 

c′ = 𝑃𝑃, s⨁10𝑛𝑛−1

Attacker Receives: m = �10𝑛𝑛−1 if 𝑏𝑏 = 0
01𝑛𝑛−1 if 𝑏𝑏 = 1

Example Shows: CPA-Security doesn’t imply CCA Security (Why?)
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Attacks in the Wild

• Padding Oracle Attack
• Length of plaintext message must be multiple of block length (e.g., 16 bytes)
• Popular fix PKCS #5 padding 

• 1 bytes of padding (0x01)
• 2 bytes of padding (0x0202)
• 3 bytes of padding (0x030303)
• 4 bytes of padding (0x04040404)
• Invalid: (0x020303)

• “Bad Padding Error”
• Adversary submits ciphertext(s) and waits to if this error is produced
• Attacker can repeatedly modify ciphertext to reveal original plaintext piece by piece!
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Example
M=“hello…please keep this message secret”+0x030303

C = 𝑃𝑃, 𝐺𝐺 = 𝐹𝐹𝑘𝑘 𝑃𝑃 ⨁𝑀𝑀
• C′ = 𝑃𝑃,𝐹𝐹𝑘𝑘 𝑃𝑃 ⨁𝑀𝑀⨁0x0000 … .30303⨁0x00000 … 0202

Ask to decrypt C’
• If we added 3 bytes of padding?

•  C’ can be decrypted  (Looks like the message M’ = M + 0x0301 with 1 byte padding).
• If we added > 3 (or < 3) bytes of padding?

• We will get a decryption error (bad padding)!

Once we know we have three bits of padding we can set 
C′′ = 𝑃𝑃, 𝐺𝐺 = 𝐹𝐹𝑘𝑘 𝑃𝑃 ⨁ 𝑀𝑀⨁0x0000 … .030303 ⨁0x0 … 𝐠𝐠𝐠𝐠040404

If C’’ decrypts then we can infer the byte t s.t. 𝑀𝑀 = 𝑥𝑥 ∥ 𝒕𝒕 ∥ (0𝑥𝑥0𝑥0𝑥0𝑥) since 𝐭𝐭⨁𝐠𝐠𝐠𝐠 = 0x04. 
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Example

M=“hello…please keep this message secret”+0x030303
C = 𝑃𝑃, 𝐺𝐺 = 𝐹𝐹𝑘𝑘 𝑃𝑃 ⨁𝑀𝑀

Once we know we have three bits of padding we can set 
C′′ = 𝑃𝑃, 𝐺𝐺 = 𝐹𝐹𝑘𝑘 𝑃𝑃 ⨁ 𝑀𝑀⨁0x0000 … .030303 ⨁0x0 …𝐠𝐠𝐠𝐠040404

If C’’ decrypts then we can infer the byte t s.t. 𝑀𝑀 = 𝑥𝑥 ∥ 𝒕𝒕 ∥ (0𝑥𝑥0𝑥0𝑥0𝑥)
since 𝐭𝐭⨁𝐠𝐠𝐠𝐠 = 0x04. 

Question: How do we infer the next byte t’?
Answer: Set C′′′ = C′′⨁0x0 …𝐠𝐠𝐠𝐠05050505
if decryption is successful then 𝐭𝐭′⨁𝐠𝐠𝐠𝐠 = 0x05
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CCA-Security

• CCA-Security is strictly stronger than CPA-Security
• Note: If a scheme has indistinguishable encryptions under one chosen-ciphertext attack 

then it has indistinguishable multiple encryptions under chosen-ciphertext attacks. 
• None of the encryption schemes we have considered so far are CCA-Secure 
• Achieving CCA-Security? 

• Useful to guarantee integrity of the ciphertext
• Idea: If attacker cannot generate valid new ciphertext c’ (distinct from ciphertext obtained via 

eavesdropping) then ability to query decryption oracle is useless!
• CCA-Security requires non-malleability.
• Intuition: if attacker tampers with ciphertext c then c’ is either invalid or m’ is unrelated to m
• Let 𝑐𝑐 = EncK mb . Suppose attacker could generate a new valid ciphertext 𝑐𝑐′ ≠ 𝑐𝑐 such that 𝑚𝑚′ is 

related to mb the but not message 𝑚𝑚1−𝑏𝑏
• How can the attacker win the CCA-Security game?
• Ask for decryption of c’ and check if 𝑚𝑚′ is related to 𝑚𝑚1 or 𝑚𝑚0
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Week 3: Topic 4: 
Message Authentication Codes

(Part 1)
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What Does It Mean to “Secure Information” 

• Confidentiality (Security/Privacy)
• Only intended recipient can see the communication

53



What Does It Mean to “Secure Information” 

• Confidentiality (Security/Privacy)
• Only intended recipient can see the communication

• Integrity (Authenticity)
• The message was actually sent by the alleged sender

Bob
Alice

I love you 
Alice… - Bob

We need to 
break up -Bob
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Message Authentication Codes

• CPA-Secure Encryption: Focus on Secrecy 
• But does not promise integrity

• Message Authentication Codes: Focus on Integrity
• But does not promise secrecy

• CCA-Secure Encryption: Requires Integrity and Secrecy
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What Does It Mean to “Secure Information” 

• Integrity (Authenticity)
• The message was actually sent by the alleged sender
• And the received message matches the original 

Bob
Alice

Pay robot 
devil $50

Pay robot 
devil $5,000
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Error Correcting Codes?

• Tool to detect/correct a small number of random errors in 
transmission

• Examples: Parity Check, Reed-Solomon Codes, LDPC, Hamming Codes 
…

• Provides no protection against a malicious adversary who can 
introduce an arbitrary number of errors

• Still useful when implementing crypto in the real world (Why?)
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Modifying Ciphertexts

Enck(m) = 𝑐𝑐 = 𝑃𝑃,𝐹𝐹𝑘𝑘 𝑃𝑃 ⨁𝑚𝑚

𝑐𝑐′ = 𝑃𝑃,𝐹𝐹𝑘𝑘 𝑃𝑃 ⨁𝑚𝑚⨁𝑦𝑦 = Enck(𝑚𝑚⨁𝑦𝑦)

Deck (𝑐𝑐′) = 𝐹𝐹𝑘𝑘 𝑃𝑃 ⨁𝐹𝐹𝑘𝑘 𝑃𝑃 ⨁𝑚𝑚⨁𝑦𝑦 = 𝑚𝑚⨁𝑦𝑦

If attacker knows original message he can forge c’ to decrypt to any 
message he wants. 
Even if attacker doesn’t know message he may find it advantageous to 
flip certain bits (e.g., decimal places)
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Message Authentication Code Syntax

Definition 4.1: A message authentication code (MAC) consists of three 
algorithms

• Gen(1𝑛𝑛;𝑅𝑅) (Key-generation algorithm)
• Input: security parameter 1n (unary) and random bits R
• Output: Secret key k ∈ 𝒦𝒦

• Mack(𝑚𝑚;𝑅𝑅) (Tag Generation algorithm)
• Input: Secret key k ∈ 𝒦𝒦 and message m ∈ ℳ and random bits R
• Output: a tag t

• Vrfyk(𝑚𝑚, 𝑡𝑡) (Verification algorithm)
• Input: Secret key k ∈ 𝒦𝒦, a message m and a tag t 
• Output: a bit b (b=1 means “valid” and b=0 means “invalid”)

• Invariant?
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Message Authentication Code Syntax

Definition 4.1: A message authentication code (MAC) consists of three 
algorithms

• Gen(1𝑛𝑛;𝑅𝑅) (Key-generation algorithm)
• Input: security parameter 1n (unary) and random bits R
• Output: Secret key k ∈ 𝒦𝒦

• Mack(𝑚𝑚;𝑅𝑅) (Tag Generation algorithm)
• Input: Secret key k ∈ 𝒦𝒦 and message m ∈ ℳ and random bits R
• Output: a tag t

• Vrfyk(𝑚𝑚, 𝑡𝑡) (Verification algorithm)
• Input: Secret key k ∈ 𝒦𝒦, a message m and a tag t 
• Output: a bit b (b=1 means “valid” and b=0 means “invalid”)

• Invariant?
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Message Authentication Code Syntax

Definition 4.1: A message authentication code (MAC) consists of three 
algorithms Π = Gen, Mac, Vrfy

• Gen(1𝑛𝑛;𝑅𝑅) (Key-generation algorithm)
• Input: security parameter 1n (unary) and random bits R
• Output: Secret key k ∈ 𝒦𝒦

• Mack(𝑚𝑚;𝑅𝑅) (Tag Generation algorithm)
• Input: Secret key k ∈ 𝒦𝒦 and message m ∈ ℳ and random bits R
• Output: a tag t

• Vrfyk(𝑚𝑚, 𝑡𝑡) (Verification algorithm)
• Input: Secret key k ∈ 𝒦𝒦, a message m and a tag t 
• Output: a bit b (b=1 means “valid” and b=0 means “invalid”)

Vrfyk(𝑚𝑚, Mack(𝑚𝑚;𝑅𝑅)) = 1

61

Security Goal (Informal): Attacker should not be able to forge a valid tag t’ for new 
message m’ that s/he wants to send.



MAC Authentication Game  (Macforge𝐴𝐴,Π(𝑛𝑛)) 

62

mq

K = Gen(.)

tq = MacK(mq)

Macforge𝐴𝐴,Π(𝑛𝑛) = Vrfyk(𝑚𝑚, 𝑡𝑡)
𝑚𝑚, 𝑡𝑡 s.t 𝑚𝑚 ∉ 𝑚𝑚1, … ,𝑚𝑚𝑞𝑞

m1
t1 = MacK(m1)

t2 = MacK (m2)
m2 …

∀𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴 ∃𝜇𝜇 (negligible) s. t
Pr Macforge𝐴𝐴,Π 𝑛𝑛 = 1 ≤ 𝜇𝜇(𝑛𝑛)



Discussion

• Is the definition too strong?
• Attacker wins if he can forge any message
• Does not necessarily attacker can forge a “meaningful message”
• “Meaningful Message” is context dependent
• Conservative Approach: Prove Security against more powerful attacker
• Conservative security definition can be applied broadly

• Replay Attacks?
• t=MacK(“Pay Bob $1,000 from Alice’s bank account”)
• Alice cannot modify message to say $10,000, but…
• She may try to replay it 10 times
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Replay Attacks

• MACs alone do not protect against replay attacks 
(they are stateless)

• Common Defenses:
• Include Sequence Numbers in Messages (requires 

synchronized state) 
• Can be tricky over a lossy channel

• Timestamp Messages
• Double check timestamp before taking action
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Strong MACs

• Previous game ensures attacker cannot generate a valid tag for a new 
message. 

• However, attacker may be able to generate a second valid tag t’ for a 
message m after observing (m,t)

• Strong MAC: attacker cannot generate second valid tag, even for a 
known message
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Strong MAC Authentication (Macsforge𝐴𝐴,Π(𝑛𝑛)) 
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mq

K = Gen(.)

tq = MacK(mq)

Macsforge𝐴𝐴,Π(𝑛𝑛) = Vrfyk(𝑚𝑚, 𝑡𝑡)
m, t s.t m, t ∉ (m1, t1), … , (mq, t𝑞𝑞)

m1
t1 = MacK(m1)

t2 = MacK (m2)
m2 …

∀𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴 ∃𝜇𝜇 (negligible) s. t
Pr Macsforge𝐴𝐴,Π 𝑛𝑛 = 1 ≤ 𝜇𝜇(𝑛𝑛)



Deterministic MACs

• Canonical Verification Algorithm

Vrfyk(𝑚𝑚, 𝑡𝑡) = �1 if 𝑡𝑡 = Mack(𝑚𝑚)
0 otherwise

• “All real-world MACs use canonical verification” – page 115
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Strong MAC vs Regular MAC

Proposition 4.4:  Let Π = Gen, Mac, Vrfy be a secure MAC that uses 
canonical verification. Then Π is a strong MAC.

“All real-world MACs use canonical verification” – page 115

Should attacker have access to VrfyK(.) oracle in games?
(e.g., CPA vs CCA security for encryption)
Irrelevant if the MAC uses canonical verification!
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Timing Attacks (Side Channel)

Naïve Canonical Verification Algorithm
Input: m,t’

t=MacK(m)   
for i=1 to tag-length

if t[i] != t’[i] then
return 0

return 1

69

Example

t= 1 0 1 0 1 1 1 0
t’= 1 0 1 0 1 1 1 1

Returns 0 after 8 steps



Timing Attacks (Side Channel)

Naïve Canonical Verification Algorithm
Input: m,t’

t=MacK(m)   
for i=1 to tag-length

if t[i] != t’[i] then
return 0

return 1

70

Example

t= 1 0 1 0 1 1 1 0
t’= 0 0 1 0 1 1 1 0

Returns 0 after 1 step



Timing Attack

• MACs used to verify code updates for Xbox 360

• Implementation allowed different rejection times (side-channel)

• Attacks exploited vulnerability to load pirated games onto hardware

• Moral: Ensure verification is time-independent
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Improved Canonical Verification Algorithm

Input: m,t’

B=1
t=MacK(m)   
for i=1 to tag-length

if t[i] != t’[i] then
B=0

else (dummy op)
return B

72

Example

t= 1 0 1 0 1 1 1 0
t’= 0 0 1 0 1 0 1 0

Returns 0 after 8 steps



Side-Channel Attacks

• Cryptographic Definition
• Attacker only observes outputs of oracles (Enc, Dec, Mac) and nothing else

• When attacker gains additional information like timing (not captured by 
model) we call it a side channel attack.

Other Examples
• Differential Power Analysis
• Cache Timing Attack
• Power Monitoring
• Acoustic Cryptanalysis
• …many others
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Recap

• Data Integrity
• Message Authentication Codes
• Side-Channel Attacks
• Build Secure MACs
• Construct CCA-Secure Encryption Scheme

Current Goal:
• Build a Secure MAC

• Key tool in Construction of CCA-Secure Encryption Schemes
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General vs Fixed Length MAC

ℳ = 0,1 ∗

versus

ℳ = 0,1 ℓ(𝑛𝑛)
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Strong MAC Construction (Fixed Length)

Simply uses a secure PRF F
Mack(𝑚𝑚) = FK(𝑚𝑚)

Question: How to verify the a MAC?

Canonical Verification Algorithm…

Vrfyk(𝑚𝑚, 𝑡𝑡) = �1 if 𝑡𝑡 = FK(𝑚𝑚)
0 otherwise
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Strong MAC Authentication (Macsforge𝐴𝐴,Π(𝑛𝑛)) 
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mq

K = Gen(.)

tq = MacK(mq)

Macsforge𝐴𝐴,Π(𝑛𝑛) = Vrfyk(𝑚𝑚, 𝑡𝑡)
m, t s.t m, t ∉ (m1, t1), … , (mq, t𝑞𝑞)

m1
t1 = MacK(m1)

t2 = MacK (m2)
m2 …

∀𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴 ∃𝜇𝜇 (negligible) s. t
Pr Macsforge𝐴𝐴,Π 𝑛𝑛 = 1 ≤ 𝜇𝜇(𝑛𝑛)



Concrete Version: 𝑡𝑡 𝑛𝑛 , 𝑞𝑞 𝑛𝑛 , 𝜀𝜀(𝑛𝑛) -secure MAC
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mq

K = Gen(.)

tq = MacK(mq)

Macsforge𝐴𝐴,Π(𝑛𝑛) = Vrfyk(𝑚𝑚, 𝑡𝑡)
m, t s.t m, t ∉ (m1, t1), … , (mq, t𝑞𝑞)

m1
t1 = MacK(m1)

t2 = MacK (m2)
m2 …

∀ 𝐴𝐴 with time(A) ≤ 𝑡𝑡 𝑛𝑛 , queries(A) ≤ 𝑞𝑞 𝑛𝑛
Pr Macsforge𝐴𝐴,Π 𝑛𝑛 = 1 ≤ 𝜀𝜀(𝑛𝑛)



Strong MAC Construction (Fixed Length)

Mack(𝑚𝑚) = FK(𝑚𝑚)

Vrfyk(𝑚𝑚, 𝑡𝑡) = �1 if 𝑡𝑡 = FK(𝑚𝑚)
0 otherwise

Theorem 4.6: If F is a PRF then this is a secure (fixed-length) MAC for 
messages of length n.
Proof: Start with attacker who breaks MAC security and build an attacker 
who breaks PRF security (contradiction!)
Sufficient to start with attacker who breaks regular MAC security (why?)
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Breaking MAC Security  (Macforge𝐴𝐴,Π(𝑛𝑛)) 

81

mq

K = Gen(.)

𝒕𝒕𝒒𝒒 = 𝑭𝑭𝑲𝑲 𝒎𝒎𝒒𝒒

Macforge𝐴𝐴,Π(𝑛𝑛) = Vrfyk(𝑚𝑚, 𝑡𝑡)
𝑚𝑚, 𝑡𝑡 s.t 𝑚𝑚 ∉ 𝑚𝑚1, … ,𝑚𝑚𝑞𝑞

m1
𝒕𝒕𝟏𝟏 = 𝑭𝑭𝑲𝑲 𝒎𝒎𝟏𝟏

𝒕𝒕𝟐𝟐 = 𝑭𝑭𝑲𝑲 𝒎𝒎𝟐𝟐

m2 …

∃𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴 𝑎𝑎𝑛𝑛𝑎𝑎 𝑛𝑛(. ) (positive/non negligible) s. t
Pr Macforge𝐴𝐴,Π 𝑛𝑛 = 1 > 𝑛𝑛(𝑛𝑛)



A Similar Game  (Macforge𝐴𝐴,�Π(𝑛𝑛)) 
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mq

Truly Random Function
f ∈Funcn

tq = f(mq)

Macforge𝐴𝐴,�Π(𝑛𝑛) = Vrfyk(𝑚𝑚, 𝑡𝑡)
𝑚𝑚, 𝑡𝑡 s.t 𝑚𝑚 ∉ 𝑚𝑚1, … ,𝑚𝑚𝑞𝑞

m1
t1 = f(m1)

t2 = f (m2)
m2 …

Claim: ∀𝐴𝐴 𝑛𝑛𝑛𝑛𝑡𝑡 𝑗𝑗𝐺𝐺𝐺𝐺𝑡𝑡 𝑃𝑃𝑃𝑃𝑃𝑃
Pr Macforge𝐴𝐴,�Π 𝑛𝑛 = 1 ≤ 2−𝑛𝑛

Why? Because f(m) is 
distributed uniformly 

in {0,1}n so Pr[f(m)=t]=2-n



PRF Distinguisher D

• Given oracle O (either FK or truly random f)
• Run PPT Macforge adversary A
• When adversary queries with message m, respond with O(m)
• Output 1 if attacker wins (otherwise 0)

• If O = f then
Pr 𝐷𝐷𝑂𝑂 1𝑛𝑛 = 1 = Pr Macforge𝐴𝐴,�Π 𝑛𝑛 = 1 ≤ 2−𝑛𝑛

• If O=FK then 
Pr 𝐷𝐷𝑂𝑂 1𝑛𝑛 = 1 = Pr Macforge𝐴𝐴,Π 𝑛𝑛 = 1 > 𝑛𝑛(𝑛𝑛)
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PRF Distinguisher D

• If O = f then
Pr 𝐷𝐷𝑂𝑂 1𝑛𝑛 = 1 = Pr Macforge𝐴𝐴,�Π 𝑛𝑛 = 1 ≤ 2−𝑛𝑛

• If O=FK then 
Pr 𝐷𝐷𝑂𝑂 1𝑛𝑛 = 1 = Pr Macforge𝐴𝐴,Π 𝑛𝑛 = 1 > 𝑛𝑛(𝑛𝑛)

Advantage:
Pr 𝐷𝐷𝐹𝐹𝐾𝐾 1𝑛𝑛 = 1 − Pr 𝐷𝐷𝑓𝑓 1𝑛𝑛 = 1 > 𝑛𝑛 𝑛𝑛 − 2−𝑛𝑛

Note that 𝑛𝑛 𝑛𝑛 − 2−𝑛𝑛 is non-negligible and D runs in PPT if A does. 
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Strong MAC Construction (Fixed Length)

Mack(𝑚𝑚) = FK(𝑚𝑚)

Vrfyk(𝑚𝑚, 𝑡𝑡) = �1 if 𝑡𝑡 = FK(𝑚𝑚)
0 otherwise

Theorem 4.6: If F is a PRF then this is a secure (fixed-length) MAC for 
messages of length n.
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Strong MAC Construction (Fixed Length)

Mack(𝑚𝑚) = FK(𝑚𝑚)

Vrfyk(𝑚𝑚, 𝑡𝑡) = �1 if 𝑡𝑡 = FK(𝑚𝑚)
0 otherwise

Theorem (Concrete): If F is a 𝑡𝑡 𝑛𝑛 , 𝑞𝑞 𝑛𝑛 , 𝜀𝜀(𝑛𝑛) -secure PRF then the above 
construction is a 𝑡𝑡 𝑛𝑛 − 𝑂𝑂 𝑛𝑛 , 𝑞𝑞 𝑛𝑛 , 𝜀𝜀 𝑛𝑛 + 2−𝑛𝑛 -secure MAC for ℳ =
0,1 𝑛𝑛 (messages of length n).

Example: F is a 2𝑛𝑛, 2𝑛𝑛/2, 2−𝑛𝑛 -secure PRF- the above MAC construction is
2𝑛𝑛 − 𝑂𝑂 𝑛𝑛 , 2𝑛𝑛/2, 2−𝑛𝑛+1 -secure
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Strong MAC Construction (Fixed Length)

Mack(𝑚𝑚) = FK(𝑚𝑚)

Vrfyk(𝑚𝑚, 𝑡𝑡) = �1 if 𝑡𝑡 = FK(𝑚𝑚)
0 otherwise

Theorem (Concrete): If F is a 𝑡𝑡 𝑛𝑛 , 𝑞𝑞 𝑛𝑛 , 𝜀𝜀(𝑛𝑛) -secure PRF then the above 
construction is a 𝑡𝑡 𝑛𝑛 − 𝑂𝑂 𝑛𝑛 , 𝑞𝑞 𝑛𝑛 , 𝜀𝜀 𝑛𝑛 + 2−𝑛𝑛 -secure MAC for ℳ = 0,1 𝑛𝑛

(messages of length n).
Limitation: What if we want to authenticate a longer message? ℳ = 0,1 ∗
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MACs for Arbitrary Length Messages

• Building Block Π’=(Mac’,Vrfy’), a secure MAC for length n messages 

First: A few failed attempts
Let m = m1,…,md where each mi is n bits and let 𝑡𝑡𝑖𝑖 = Mac𝐾𝐾′ 𝑚𝑚𝑖𝑖

MacK(m) = 𝑡𝑡1, … , 𝑡𝑡𝑑𝑑

What is wrong?
Block-reordering attack 

MacK(md,…,𝑚𝑚1) = 𝑡𝑡𝑑𝑑 , … , 𝑡𝑡1
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𝑚𝑚1 = “I love you”
𝑚𝑚2 = “I will never say that”
𝑚𝑚3 = “you are stupid”



MACs for Arbitrary Length Messages

• Building Block Π’=(Mac’,Vrfy’), a secure MAC for length n messages 

Attempt 2
Let m = m1,…,md where each mi is n bits and let 𝑡𝑡𝑖𝑖 = Mac𝐾𝐾′ 𝑃𝑃 ∥ 𝑚𝑚𝑖𝑖

MacK(m) = 𝑡𝑡1, … , 𝑡𝑡𝑑𝑑

Addresses block-reordering attack.
Any other concerns?

Truncation attack! 
MacK(m1,…,𝑚𝑚𝑑𝑑−1) = 𝑡𝑡1, … , 𝑡𝑡𝑑𝑑−1
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Suppose 𝑚𝑚1, … ,𝑚𝑚𝑑𝑑−1,𝑚𝑚𝑑𝑑 =
“I don’t like you. I LOVE you!”



MACs for Arbitrary Length Messages

• Building Block Π’=(Mac’,Vrfy’), a secure MAC for length n messages 

Attempt 3
Let m = m1,…,md where each mi is n bits and m has length ℓ = 𝑛𝑛𝑎𝑎
Let 𝑡𝑡𝑖𝑖 = Mac𝐾𝐾′ 𝑃𝑃 ∥ ℓ ∥ 𝑚𝑚𝑖𝑖

MacK(m) = 𝑡𝑡1, … , 𝑡𝑡𝑑𝑑

Addresses truncation.
Any other concerns?

Mix and Match Attack! 
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MACs for Arbitrary Length Messages

Let m = m1,…,md where each mi is n bits and m has length ℓ = 𝑛𝑛𝑎𝑎
Let m’ = m’1,…,m’d where each m’i is n bits and m has length ℓ = 𝑛𝑛𝑎𝑎

Let 𝑡𝑡𝑖𝑖 = Mac𝐾𝐾′ 𝑃𝑃 ∥ ℓ ∥ 𝑚𝑚𝑖𝑖 and 𝑡𝑡′𝑖𝑖 = Mac𝐾𝐾′ 𝑃𝑃 ∥ ℓ ∥ 𝑚𝑚𝑖𝑖 ′
MacK(m) = 𝑡𝑡1, … , 𝑡𝑡𝑑𝑑

MacK(mʹ) = 𝑡𝑡′1, … , 𝑡𝑡′𝑑𝑑
Mix and Match Attack! 

MacK(m1,mʹ2,m3,...) = 𝑡𝑡1, 𝑡𝑡′2, 𝑡𝑡3, …
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𝑚𝑚1 = “What will I say to Eve?”
𝑚𝑚2 = “You are evil and vile.”
𝑚𝑚3 = “Please leave me alone!”
𝑚𝑚4 = “Your sworn enemy - BOB”

𝑡𝑡 = 𝑡𝑡1, 𝑡𝑡2, , 𝑡𝑡3, 𝑡𝑡4

𝑚𝑚1′ = “Dear Alice”
𝑚𝑚2′ = “You are wonderful.”

𝑚𝑚3′ = “I can’t wait to see you!”
𝑚𝑚4′ = “XOXOXOXOXO - BOB”

𝑡𝑡′ = 𝑡𝑡1′, 𝑡𝑡2′, , 𝑡𝑡3′, 𝑡𝑡4′

𝑚𝑚1′ = “Dear Alice”
𝑚𝑚2 = “You are evil and vile.”
𝑚𝑚3 = “Please leave me alone!”
𝑚𝑚4 = “Your sworn enemy - BOB”

𝑡𝑡′′ = 𝑡𝑡1′, 𝑡𝑡2, , 𝑡𝑡3, 𝑡𝑡4



MACs for Arbitrary Length Messages

• A non-failed approach 
• Building Block Π’=(Mac’,Vrfy’), a secure MAC for length n messages 
• Let m = m1,…,md where each mi is n/4 bits and m has length ℓ < 2𝑛𝑛/4

MacK(m)=
• Select random 𝑛𝑛

4
bit nonce 𝑃𝑃

• Let 𝑡𝑡𝑖𝑖 = 𝑀𝑀𝑎𝑎𝑐𝑐𝐾𝐾′ 𝑃𝑃 ∥ ℓ ∥ 𝑃𝑃 ∥ 𝑚𝑚𝑖𝑖 for i=1,…,d 
• (Note: encode i and ℓ as 𝑛𝑛

4
bit strings)

• Output 𝑃𝑃, 𝑡𝑡1, … , 𝑡𝑡𝑑𝑑
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MACs for Arbitrary Length Messages

MacK(m)=
• Select random n/4 bit string r
• Let 𝑡𝑡𝑖𝑖 = Mac𝐾𝐾′ 𝑃𝑃 ∥ ℓ ∥ 𝑃𝑃 ∥ 𝑚𝑚𝑖𝑖 for i=1,…,d 

• (Note: encode i and ℓ as n/4 bit strings)
• Output 𝑃𝑃, 𝑡𝑡1, … , 𝑡𝑡𝑑𝑑

Theorem 4.8: If Π′ is a secure MAC for messages of fixed length n, 
above construction Π = (Mac, Vrfy) is secure MAC for arbitrary length 
messages.
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Recap

• CPA-Security vs. CCA-Security
• PRFs

Today’s Goals:
• Introduce Message Authentication Codes (MACs)

• Key tool in Construction of CCA-Secure Encryption Schemes

• Build Secure MACs
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