Cryptography
CS 555

Week 2:
e Computational Security against Eavesdropper

* Constructing Secure Encryption Schemes against Eavesdropper
e Chosen Plaintext Attacks and CPA-Security

Readings: Katz and Lindell Chapter 3.1-3.4

Homework 1 Released: Due Feb 4 at 11:59 PM on Gradescope
Spring 2021



Recap

e Historical Ciphers (and their weaknesses)
* Three Equivalent Definitions of Perfect Secrecy
* One-time-Pads

e Concrete vs Asymptotic Approach to Security
e Probabilistic Polynomial Time (PPT)
* Negligible Function



Private Key Encryption Syntax (Revisited)

e Message Space: M
e Key Space: K

e Three Algorithms
* Gen(1™; R) (Key-generation algorithm)
* Input: 1" (security parameter in unary) + Random BI
« Output: Secret key k € K Requirement: all three algorithms run
* Enc,(m; R) (Encryption algorithm) in probabilistic polynomial time
e Input: Secret key k € K and messagem € M + K
e Output: ciphertext c
e Dec,(c) (Decryption algorithm)
* Input: Secret key k € K and a ciphertex c
* Output: a plaintext message m € M or L (i. e“Fail”) Quick Comment on Notation:
K=Gen( R) vs.
K« Gen( )
e Invariant: Dec,(Enc,(m))=m
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Random bit b
K €< Gen(1")
c € Enc(m,)

%e Guesses b’ = b] + ug-(n)




Adversarial Indistinguishability Expetiment




EAV-Secure

Mgy, My

Random bit b
K €< Gen(1")
c € Enc(m,)

%e Guesses b’ = b] + ug-(n)

bl




(t(n), e(n))—EAV-Secu re (Concrete Version)

My, My

Rando t b
K €< Gen(1")
¢ = Enc (m,)

Pr [ %e Guesses b’ = b] + e(n)
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Aside: Message and Ciphertext Length

* In the previous game we typically require that [m,|=|m,|. Why?

* |t is impossible to support arbitrary length messages while hiding all
information about plaintext length

* Limitation: When could message length be sensitive?

e Numeric data (5 figure vs 6 figure salary)

e Database Searches: number of records returned can reveal information about
the query

e Compressed Data: Short compressed string indicates that original plaintext
has a lot of redundancy (e.g., CRIME attack on session cookies in HTTPS)



Implications of Indistinguishability

ith bit of message

Theorem 3.10: Let (Gen, Enc, Dec) be a fixed-length privz
encryption scheme for message of length £ that satisf

indistinguishability (prior definition) then for all B# attackers A and
anyi < £ we have

Pr[A(1", Encg(m)) :@ < % + negl(n)

Where the randomness is taken over K « Gen(1"), uniform m €
{0,1}* and the randomness of Enc and A.

Remark: A bit weaker than saying eavesdropping attacker obtains 'no

additional” information about message m.
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Semantic Security

Definition 3.12: Let I = (Gen, Enc, Dec)be a fixed-length private key encryption
scheme for message of length £. We say that the scheme is semantically secure
if for all PPT attackers A there exists a PPT algorithm A’ such that for any PPT
algorithm Sample all any polynomial time computable functions f and h we have

[PrlA(1", Encg (m), h(m)) = f(m)]



V" 4Joesn’t even get to see an

N h(m) background knowledge the yption of m! Just the length
attacker might have about m. of ml

Definition s. 12" Cet 11 — (Ut Yol

scheme for message of lengt ¥
if for all PPT attackers A there ¢
algorithm Sample all any polynog 2 e snputable

|IPr|A(1", Enc; )

(3

gth private key encryption
scheme is semantically secure

? gorithm A’ such that for any PPT
unctions f and h we have
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Semantic Security

Definition 3.12: Let [1 = (Gen, Enc, Dec) be a fixed-length private key encryption
scheme for message of length £. We say that the scheme is semantically secure if for
all PPT attackers A there exists a PPT algorithm A’ such that for any PPT algorithm
Sample all any polynomial time computable functions f and h we have

[Pr[A(1", Encg(m), h(m)) = f(m)]



Another Interpretation of Semantic Security

e World 2: Perfect Secrecy (Attacker doesn’t even see ciphertext).

e For all attackers A’ (even unbounded) with background knowledge h(m) we have
Pr[A"(1", Im|, h(m)) = f(m)] = Pr[f(m)| h(m),|m|]

e World 1: Attacker is PPT and sees ciphertext
 Best World 1 attacker does no better than World 2 attacker

* |PrlA(1", Encg (m), h(m)) = f(m)] — Pr[A'(1", |m|, h(m)) = f(m)]| <
negl(n)

 What is probability over?



Week 2: Topic 2: Constructing
Secure Encryption Schemes



New Goal

 Show how to build a symmetric encryption scheme with semantic
security.



Building Blocks

e Pseudorandom Generators
e Stream Ciphers




Pseudorandom Generator (PRG) G

* Input: Short random seed s € {0,1}"
e Output: Longer “pseudorandom” string G (s) € {0,1}*™ with £(n) > n
e £(n) is called expansion factor

* PRG Security: For all PPT attacker A there is a negligible function negl(.)
S.t

|Proego,1n[A(G(s)) = 1] = Pryeeo 1yem [A(R) = 1]| < negl(n)

* Concrete Security: We say that G(.) is a (t(n), e(n))-secure PRG if for all
attackers running in time at most t(n) we have

Prsefo,1)n [A(G(S)) = 1] — PrRe{O,l}f(") JA(R) = 1]| < ¢e(n)



PRG Security as a Game

Random bit b
If b=1
r « {0,1}71
R =G(r)
Else

A3

1
V%ezl,u%fr [ %e Guesses b’ = b] < 5 + le.(N)
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If b=1
r < {0,1}"
R =G(r)
Else

1
%%‘ Pr %e Guesses b’ = b] < 5 + &(n)
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A Bad PRG

G(s) =s]|1.

 What is the expansion factor?
e Answer: £(n)=n+1

e Task: Construct a distinguisher D which breaks PRG security for G

e One Answer: D(x|1)=1 and D(x|0)=0 for all x.
e Analysis: Pr[D(G(s))=1]="
e Analysis: Pr[D(R) =1] =7

* [Pryctor[D(G(5)) = 1] = Procgo o [DR) = 1]] =3



One-Time-Pads + PRGs

* Encryption:
e Secret key is the seed (K=s)
Enc,(m) = G(s)®m
Dec,(c) = G(s)Dc
e Advantage: |[m| =£€(n) > [s| =n
e Computational Security vs Information Theoretic (Perfect) Security
e Disadvantage: Still can only send one message

Theorem 3.18: If G is a pseudorandom generator then the above
encryption scheme has indistinguishable encryptions in the presence of
an eavesdropper.



One-Time-Pads + PRGs

Enc,(m) = G(s)®m
Dec.(c) = G(s)®c
Theorem 3.18: If G is a pseudorandom generator then the above encryption

scheme has indistinguishable encryptions in the presence of an
eavesdropper.

Proof by Reduction: Start with and attacker A that breaks security of

encryption scheme and transform A into distinguisher D that breaks PRG
security of G.

Why is this sufficient?



Breaking Semantic Security

Random bit b
Random seed s

Mgy, My

c = G(s)bm, ;

1
Pr[ Guesses b’ = b] > > + f(n)
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The Reduction

PRG Attacker

Encryption Attacker Random bit b
Mo T ; If b=1
’%6 ¢ = R®my, r « {0,1}"
b R = G(r)
Else

R « {0,1}¥(™
* What is Pr[b” # b’|b=0]? < {0,1}

. Hint. . . N _
Hint: What encryption scheme is used g = 1 if b”’=b’

. : 17— Wlh=11? .
What is Pr[b” = b’|b=1]: 0 otherwise
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Analysis

‘Prse{ojl}n [D(G(S)) — 1] — PrRE{O,l}‘?(n) [D(R) — 1]|
= |Pr|b” = b’|b=1] — Pr|b” # b’|b=0]|
= |Pr|b” = b’|b=1] — %]
> % +f(n) —% = f(n)

Recall: f(n) was (non-negligible) advantage of encryption attacker.

Implication: PRG G is also insecure (contrary to assumption).

QED



One-Time-Pads + PRGs

* Encryption:
e Secret key is the seed (K=s)
Enc,(m) = G(s)®m
Dec,(c) = G(s)Dc
* Advantage: |[m| = f(n) > |s| =n
e Computational Security vs Information Theoretic (Perfect) Security
* Disadvantages: can only send one message, no message integrity vs. active attacker

Theorem (Concrete Security): If Gisa (t(n), e(n) )-secure PRG then the above
encryption scheme is (t'(n) = t(n) — 0(n), e(n))-semantically secure.
Proof Idea: Use the same reduction. If encryption attacker runs in time t’ n? then

our PRG attacker runs in time t(n). If encryption attacker wins with probability
g(n) then our PRG attacker wins the PRG game with the same probability.



Candidate PRG

* Notation: Given string x € {0,1}" and a subset S c {1, ..., n} let X €
{0,1}!5! denote the substring formed by concatenating bits at the positions
in S.

e Example: x=10110 and S ={1,4,5} X=110

P(xq, Xy, X3, X4, X)) = Xy +X, + X5 + X, mOd 2

* Select random subsets S =S,,...,Spn) € {1, ...,n} of size |S;|=5 and with

f(n) = nt*
Gs(x) = P(xsl) R (xsg(n))



Stream Cipher vs PRG

* PRG pseudorandom bits output all at once

e Stream Cipher

e Pseudorandom bits can be output as a stream
e RC4, RC5 (Ron’s Code)

sty := Init(s)

For i=1to ¢:
(y.,st.):=GetBits(st, ,)

Output: vy,,....y,



The RC4 Stream Cipher

. ég%ré)prietary cipher owned by RSA, designed by Ron Rivest in

e Became publicin 1994.

e Simple and effective design.

e Variable key size (typical 40 to 256 bits),

e Output unbounded number of bytes.

e Widely used (web SSL/TLS, wireless WEP).

* Extensively studied, not a completely secure PRNG when
used correctly, re-knrewn-attacks-exist

 Newer Versions: RC5 and RC6
e Rijndael selected by NIST as AES in 2000
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The RC4 Cipher

* The cipher internal state consists of

e a 256-byte array S, which contains a permutation of O to
255

* total number of possible states is 256! ~ 21700
* two indexes: i, j
1 =] =0
Loop

i = (i + 1) (mod 256)

j = @ + S[i]) (mod 256)

swap(SLil, SOID
output S[S[i1] + S[j1]1 (mod 256)

End Loop

CS555 Spring 2012/Topic 5 51



Limitations of Current Security Definition

* Assumes adversary observes just one ciphertext

 What if adversary observes two ciphertexts?

c; = Enc(my) = G(s)®my
¢, = Ency(my) = G(s)®m;

* How could the adversary (Joe) attempt to modify c=Enc,(m) below?
m = “Pay Joe the following amount (USD): 000000101”



Limitations of Current Security Definition

* Assumes adversary observes just one ciphertext

 What if adversary observes two ciphertexts?

c; = Enc(my) = G(s)®my
¢, = Ency(my) = G(s)®m;

* How could the adversary (Joe) attempt to modify c=Enc,(m) below?
m = “Pay Joe the following amount (USD): 100000101”



Multiple Message Eavesdropping Experiment

Random bit b
K =Gen(.)
C, = EncK(mb’i)

1
V*%?IM%Pr [ %e Guesses b’ = b] < 5 + le.(N)
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Multiple Message Eavesdropping Experimen’

g .




Multiple vs Single Encryptions

If I1 has indistinguishable multiple encryptions in the presence of an
eavesdropper

then

[1 also has indistinguishable encryptions in the presence of an
eavesdropper.

Question: Are the definitions equivalent?

 Answer: No, indistinguishable multiple encryptions is a strictly
stronger security notion.



Example

Enc,(m) = G(s)®m
Dec,(c) = G(s)Dc

Recall: [ = (Gen, Enc, Dec) has indistinguishable encryptions in the
presence of an eavesdropper.

Claim: Il = (Gen, Enc, Dec) does not have indistinguishable multiple
encryptions in the presence of an eavesdropper.



my=(0£M, ™), m,=(0LM, 1£() ;
(¢ = G(s)Bmy,,c; = G(s)Om,,)

Random bit b
s < Gen(1")
¢; = Ency(my))

-

1 |f C1 = CZ
0 otherwise

\

Analysis: If b=0 then ¢; = G(s)® 0™ = ¢,
Analysis: If b=1 then ¢; = G(s)®0*™ = G(s)P1*™ = ¢,




Did We Cheat?

e Attack specifically exploited the fact that we can ask to see
multiple encryptions of the same message...

* The above argument might appear to show that no encryption
scheme provides secure indistinguishable multiple
encryptions in the presence of an eavesdropper.

Theorem: If Il is (stateless) encryption scheme and Enc is
deterministic then II does not provide secure indistinguishable
multiple encryptions



Multiple Message Eavesdropping

my=(0£M, ™), m,=(0LM, 1£()

Random bit b
s < Gen(1")
C, = EncK(mb’i)

(cl = Encg (my,),c; = Encg (mb,z))

-

1 |f Cl = CZ
0 otherwise

\

Analysis: If b=0 then ¢; = Encg (0f™W) = ¢,
Analysis: If b=1 then ¢; = Encg (0*™) # Encg (1t™W) = ¢,




Where to go from here?

Option 1: Weaken the security definition so that attacker cannot
request two encryptions of the same message.

 Undesirable!
 Example: Dataset in which many people have the last name “Smith”
 We will actually want to strengthen the definition later...

Option 2: Consider randomized encryption algorithms
' /

g w:?r.i U].e



Week 2: Topic 3: CPA-Security



Chosen-Plaintext Attacks

* Model ability of adversary to control or influence what the honest
parties encrypt.

e During World War 2 the British placed mines at specific locations,
knowing that the Germans, upon finding the mines, would encrypt
the location and send them back to headquarters. The encrypted
messages helped cryptanalysts at Bletchley Park to break the German

encryption scheme.



Chosen-Plaintext Attacks

* Model ability of adversary to control or influence what the honest
parties encrypt.

e Battle of Midway (WW!II). US Navy cryptanalysts intercept and
encrypted message which they are able to partially decode (May
1942).

* The message stated that the Japanese were planning an attack on
AF?

e Cryptanalysts could not decode ciphertext fragment AF.

e Best Guess: AF = “Midway Island.”



WIKIPEDIA
The Free Encyclopedia

Main page
Contents
Featured content
Current events

Random article
Donate to Wikipedia
Wikipedia sfore

Interaction
Help
About Wikipedia
Comrmunity porial
Recent changes

Contact page

Tranlc

Article Talk

Battle of Midway

& MNotloggedin Talk Contributions Create account Log in

Read Edit View history |=€arch Wikipedia Q

w

From Wikipedia, the free encyclopedia

Coordinates: - 28712'N 177 21'W

This article is about the 1942 baftle. For ofther uses, see The Battle of Midway (disambiguafion).

The Battle of Midway was a decisive naval battle in the Pacific
Theater of World War [1.¥I71¥ Between 4 and 7 June 1942, only
six months after Japan's attack on Pearl Harbor and one month
after the Battle of the Coral Sea, the United States Navy under
Admirals Chester Nimitz, Frank Jack Fletcher, and Raymond A.
Spruance decisively defeated an attacking fleet of the Impenal
Japanese Navy under Admirals Isoroku Yamamoto, Chuichi
Magumo, and Nobutake Kondo near Midway Atoll, inflicting
devastating damage on the Japanese fieet that proved
irreparable. Military historian John Keegan called it “the most
stunning and decisive blow in the history of naval warfare. "™

Battle of Midway
Part of the Pacific Theater of Waorld War 1|

U.5. Dnuﬁlae. SBD-3 Dauntless dive bombers from
USS Homet about to attack the buming Japanese

o mey - ] am [ -~ 2 g
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& MNotloggedin Talk Contributions Create account Log in

Arficle  Talk Read FEdit View history |=earch Wikipedia Q

Battle of Midway *

WIKIPEDIA
The Free Encyclopedia ' prom wikipedia, the free encyclopedia Coordinates: (g 28°12N 177°21'W
Main page This article is about the 1942 baftle. For ofther uses, see The Battle of Midway (disambiguafion).
Contents
- The Battle of Midway was a decisive naval battle in the Pacific -
Featurad content Battle of Midway
s Theater of World War [1.¥I71¥ Between 4 and 7 June 1942, only
urTent events ) Part of the Pacific Theater of Warld War ||
Random arficle six months after Japan's attack on Pearl Harbor and one month - .
Donate to Wikipedia after the Battle of the Coral Sea, the United States Navy under
Wikipedia store Admirals Chester Nimitz, Frank Jack Fletcher, and Raymond A.
BT Echon Spruance decisively defeated an attacking fleet of the Impenal
Help Japanese Navy under Admirals Isoroku Yamamoto, Chuichi
About Wikipedia Magumo, and Nobutake Kondo near Midway Atoll, inflicting
R devastating damage on the Japanese fleet that proved
Recent changes - . . - s _
S |rrepa_rahle. Mllrta_nr. h|stﬂnar_| John E&egan called it “the mﬂ[glt U.5. Douglas SB0-3 Dauntiess dive bombers from
stunning and decisive blow in the history of naval warfare." USS Hornet about to attack the buming Japanese
Tl . a me - - am = woa= -~ ——
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Multiple Message Security and CPA-Attacks

 Multiple Message Security
e Attacker must select all messages at the same time.
e Significant Limitation!

* In the WWII attacks cryptanalysts selected the message adaptively
e Selected message(s) to encrypt after observing target ciphertext



CPA-Security (Single Message)

my, My

Random bitb /7 ¢ &
K<€ Gen(1") &

VPPT A Ju (negligiblef s. t

Pr[A Guesses b' = b] < > + u(n)
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CPA-Security (Single Message)




CPA-Security (Multiple Messages)

Mg 1,My 4

C, = EncK(mb'l)

C, = Enc,((m,gz)

= Enck(mb;3)

My o, My 5

e

Mg 3,My 3

bl

Ra ndOm bit b !@ﬁ\ j;%»f
K<€ Gen(1") 0

VPPT A 3du (negligiblél) S. t
Pr[PrivKf "4 (1™)| < S+
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CPA-Security (Multiple Messages)

Mg 1,My 4

Random bitb /7
K€ Gen(1")

VPPT A Ju (negligiblel) S. t
Pr[PrivKf "4 (1™)| < >+ u(n)
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CPA-Security

Theorem: An encryption scheme Il = (Gen, Enc, Dec) that is CPA-Secure
for single encryptions is also CPA-secure for multiple encryptions.

e We will simply say CPA-security for simplicity

e To show CPA-Security it suffices to show CPA-security for single
encryptions.

e To reason about security of a protocol using II we can use game with
multiple encryptions.



CPA-Security

e CPA-security vs Multiple Message Encryption
* CPA-security is stronger guarantee
e Attacker can select messages adaptively

e CPA-security: minimal security notion for a modern cryptosystem

e Limitations of CPA-Security: Does not model and adversary who

e Attempts to modify messages
e Can get honest party to (partially) decrypt some messages



CPA-Security and Message Length

Observation: Given a CPA-secure encryption scheme Il =

(Gen, Enc, Dec) that supports single bit messages (M = {0,1}) itis
easy to build a CPA-secure scheme II'= (Gen', Enc’, Dec’) that
supports messages m = m,,...,.m_€ {0,1}" of length n.

Enc, (m) = (Ean (m,), ..., Ency (mn)>

Exercise: How would you prove II’ is CPA-secure?



Security Reduction

e Step 1: Assume for contraction that we have a PPT attacker A that
breaks CPA-Security.

e Step 2: Construct a PPT distinguisher D which breaks PRF security.



[T’ Encryption Attacker

The Reduction

Multiple Message CPA-Game

!

IT Encryption Attacker

Enci (m) = (Ency (m,), ..., Engy (m,))

Random bit b
K <« Gen(1")
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Week 2: Topic 4:
Pseudorandom Functions and
CPA-Security



Pseudorandom Function (PRF)

A keyed function F: {0,1} key(™) x {0,1}in() 5 £0,1}fout(V)
which “looks random” without the secret key k.

* {key(n) - length of secret key k
o £.,(n) -length of input
e £,,:(n) - length of output

e Typically, £ey (n)=€;n(n)=£ (1) =n (unless otherwise specified)

e Computing F,(x) is efficient (polynomial-time)



PRF vs. PRG

* Pseudorandom Generator G is not a keyed function

* PRG Security Model: Attacker sees only output G(r)
e Attacker who sees r can easily distinguish G(r) from
random

* PRF Security Model: Attacker sees both inputs and outputs

(ri,Fi(r:))
* |n fact, attacker can select inputs .
o Attacker Goal: distinguish F from a truly random function



Truly Random Function

* Let Func, denote the set of all functions f:{0,1}" = {0,1}".

* Question: How big is the set Func_? __

e Hint: Consider the lookup table. g 3(1) Eg 3(1);
e 2" entries in lookup table 2n 0 10 ;(0 10)
* n bits per entry (f(x))
* n2" bits to encode fEFunc, _ 111 f(1..11)

* Answer: |Func, | = 212" (by comparison only || = 2™ n-bit keys)
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Truly Random Function

* Let Func, denote the set of all functions f:{0,1}" = {0,1}".

e Can view entries in lookup table as populated in advance (uniformly)
e Space: n2" bits to encode f € Func,

e Alternatively, can view entries as populated uniformly “on-the-fly”
* Space: 2n X q(n) bits after g(n) queries to store prior responses

e Alternate view is often useful in security reductions
e Doesn’t require time to fully specify f € Func,



Oracle Notation

* We use Afl) to denote an algorithm A with oracle access
to a function f.

* A may adaptively query f(.) on multiple different inputs
X,,X,,... and A receives the answers f(x,),f(x,),...

 However, A can only use f(.) as a blackbox (no peaking at
the source code in the box)



PRF Security

Definition 3.25: A keyed function F: {0,1}"* x {0,1}" - {0,1}" is a
pseudorandom function if for all PPT distinguishers D there is a negligible
function u s.t.

|Pr|DFO (1) — Pr[D/OAM]| < un)
Notes:

e the first probability is taken over the uniform choice of k € {0,1}" as well
as the randomness of D.

* the second probability is taken over uniform choice of f EFunc as well as
the randomness of D.

e D is not given the secret k in the first probability (otherwise easy to
distinguish...how?)



PRF-Security as a Game

VPPT A Ju (negligiblef s. t

Pr[A Guesses b’ = b]| <

2

+ pu(n)

Random bit b

K « Gen(1")

Truly random func R

r,=F/(m,) if b=1
R(m,) ow



PRF Security Concrete Version

Definition 3.25: A keyed function F: {0,1}"* x {0,1}"* — {0,1}" is a
(t(n), qg(n), g(n))-secure pseudorandom function if for all
distinguishers D running in time at most £(nn) and making at most

g(n) queries we have
|Pr[DFO (™) — Pr[DFOAM]| < e(n)



Reminder: CPA-Security (Single Message)

my, My

VPPT A Ju (negligiblef s. t

Pr[A Guesses b' = b] < > + u(n)
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CPA-Secure Encryption

* Gen: on input 1" pick uniform k € {0,1}"
e Enc: Input k € {0,1}" and m € {0,1}"
Output ¢ = (r, F,,(r)®m) for uniform r € {0,1}"

e Dec: Input k € {0,1}" and ¢ = (r, s)
Outputm = F;. (r)®s

How to begin proof?

Theorem: If F is a pseudorandom function, then (Gen,Enc,Dec) is a CPA-
secure encryption scheme for messages of length n.
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Breaking CPA-Security (Single Message)

my, My

(r, Fo(r) ®my)

(7"2; Fk (7"2)6977{2)
(13, F () ®m3)

Random bit b

K < Gen(1"
Assumption: 3 PPT 4, P (non — negligible) s.t en(1%)
1

Pr|A Guesses b' = b] > > + P(n)



Security Reduction

e Step 1: Assume for contraction that we have a PPT attacker A that breaks
CPA-Security.

e Step 2: Construct a PPT distinguisher D which breaks PRF security.

* Distinguisher D® (oracle O --- either f or F,)

e Simulate A
 Whenever A queries its encryption oracle on a message m
e Select randomr
e Returnc = (r,0(r)®dm)
* Whenever A outputs messages my,m,

e Select randomrand bitb Fi _ 11 e
e Returnc = (r,0(r)®m;) PriD™k = 1]= Pr[anKA,H = 1]

« Whenever A outputs b’ Suppose that O =T then B
» Output 1 if b=b’ Pr[Df = 1]=Pr |Privi, T = 1|
e Qutput 0 otherwise

Analysis: Suppose that O = f then

where IT denotes the encryption scheme in which
F. is replaced by truly random f.



Security Reduction

e Step 1: Assume for contraction that we have a PPT attacker A that breaks
CPA-Security.

e Step 2: Construct a PPT distinguisher D which breaks PRF security.

* Distinguisher D® (oracle O --- either f or F,)

e Simulate A
 Whenever A queries its encryption oracle on a message m

e Select randomr

e Returnc = (r,0(r)®dm) Analysis: Suppose that O = F, then by PRF security, for
* Whenever A outputs messages my,m, some negligible function u, we have

e Select random rand bitb

* Returnc¢ = (r, 0(r)®my) |Pr[P‘richpa =1| —Pr lPrichpi = 1“
 Whenever A outputs b’ L |Pr[DFkA,—H 1] - Pripf = 1]] 2’“ ()

e Output 1if b=b’ B B - Hl=H

e Output 0 otherwise v -
Implies: Pr [PrivKAﬁ = 1] > Pr[Privl’('A'H = 1]-u(n)



Security Reduction
* Fact: Pr Per g = 1] = Pr Privl{z; = 1|-u(n)

e Claim: For any attacker A making at most q(n) gueries we have

Pr [Priv[(j 1] 2 1 2(:)

Conclusion: For any attacker A making at most g(n) queries we have

(:) + u(n)

cpa 1
Pr[PrivKA?H = 1] < > +

()

where — q + u(n) is negligible.



Finishing Up

Claim: For any attacker A making at most q(n) gueries we have
q(n)
Pr [PI‘IV = 1] —+ o
Proof: Let m,,m, denote the challenge messages and let r* denote the
random string used to produce the challenge ciphertext

c=(r", f(r*")®m)
And let ry,...,rqy denote the random strings used to produce the other
ciphertexts c; = (r;, f (r;)Dm;).

If r* #+ ry,..,fqthen then c leaks no information about b (information
theoretically).




Finishing Up

Claim: For any attacker A making at most q(n) queries we have
> P'Km-ﬂ_<1 q(n)
r[ VK, 5 = ] _§+ on

Proof: If r* +# ry,...,Fq then then c leaks no information about b
(information theoretically). We have

Pr [PrivK:% = 1]
< Pr [Privl{ Cp% =1

r* = 1‘1,---:1”q] + Pr[r* € {I‘l,...,rq}]

1 q(n)
<_
=77 o




Conclusion

Enc (m) = (7, F, (r)®m)

PRF Security

Dec, ((r,s)) = F,(r)®s

For any attacker A making at most q(n) queries we have

q(n)
Zn

. cpa 1
Pr|PrivK, ; = 1] < 5+ + u(n)

Suggested Exercise: Work out concrete version of security proof



Are PRFs or PRGs more Powerful?

e Easy to construct a secure PRG from a PRF
G(s) = F((1)]...[Fs(£)

e Construct a PRF from a PRG?
* Tricky, but possible... (Katz and Lindell Section 7.5)



PRFs from PRGs

Theorem: Suppose that there is a PRG G with
expansion factor £(n) = 2n. Then there is a secure PRF.

Let G(x) = Gy(x)]|G;(x) (first/last n bits of output)

Fi(xe, ., %) = Gy ( (ze (6., (K))) )

Theorem: If G is a PRG then F, is a PRF




PRFs from PRGs

Theorem: Suppose that there is a PRG G with
expansion factor £(n) = 2n. Then there is a secure PRF.

: F(011)=G,(G,(Gq(K)))
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