
Reminder: Course Feedback

• If you haven’t already please complete your course evaluation before Sunday 
at 11:59PM. 

• What did you like about the course? What could be improved? Let me know! 
Your feedback is valuable and I carefully read through any comments after 
the semester is over.  

• Thanks to everyone who already completed there course evaluation! 
• Your feedback is anonymous and will not impact your grade (I cannot view 

your feedback until after grades are entered).
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Course Summary
Course Code Course Title Survey Start Date Survey End Date Report Access Start Response Rate
wl.202120.CS.55500.
FNY.18101 Cryptography 4/19/2021 9:00 AM 5/2/2021 11:59 PM 5/12/2021 12:00 AM 50.00% (4/8)



Announcements

Quiz 6: Due tomorrow (4/28) at 11:59PM
Homework 5: Due Thursday (4/29) at 11:59PM
• Late submissions allowed up until Friday (3/30) at 11:59PM
• We plan to release the solutions on Saturday

Final Exam:  Monday, May 3 at 10:30 AM 
Location:   FRNY B124 (right here!)

Time:   10:30AM – 12:30PM
(Practice Final Exam on Piazza)
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Final Exam

• Cumulative, but will focus a bit more heavily on topics from the 
second half of the semester

• You are allowed to prepare one page (8.5x11) of handwritten notes. 
Double sided

• Practice Exam on Piazza
• The real final will be shorter
• The real exam will have more short answer questions 
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Cryptography
CS 555

Week 15: 
• Zero-Knowledge Proofs
• Hot Topics in Cryptography
• Memory Hard Functions + Password Hashing

4Spring 2021



Recap: Zero-Knowledge Proof

Two parties: Prover P (PPT) and Verifier V (PPT)
(P is given witness for claim e.g., )

• Completeness: If claim is true honest prover can always convince 
honest verifier to accept.

• Soundness: If claim is false then Verifier should reject with probability 
at least ½. (Even if the prover tries to cheat)

• Zero-Knowledge: Verifier doesn’t learn anything about prover’s input 
from the protocol (other than that the claim is true). 

• Formalizing this last statement is tricky
• Zero-Knowledge: should hold even if the attacker is dishonest!
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Zero-Knowledge Proof for Square Root mod N

6

Bob (verifier); 
𝑧𝑧

Alice (prover);
x 
𝑧𝑧 = 𝑥𝑥2 mod N
(random y)

𝑀𝑀 = 𝑧𝑧𝑦𝑦2 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁

𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 𝒄𝒄 ∈ 𝟎𝟎,𝟏𝟏

Response 𝒓𝒓 = �𝒚𝒚 𝒊𝒊𝒊𝒊 𝒄𝒄 = 𝟎𝟎
𝒚𝒚𝑥𝑥 𝑖𝑖𝑖𝑖 𝑐𝑐 = 1

𝑫𝑫𝒄𝒄𝒄𝒄𝒊𝒊𝑫𝑫𝒊𝒊𝑫𝑫𝒄𝒄 𝒅𝒅 = �
𝟏𝟏 𝒊𝒊𝒊𝒊 𝒄𝒄 = 𝟎𝟎 𝒄𝒄𝒄𝒄𝒅𝒅𝑴𝑴 = 𝒛𝒛𝒓𝒓𝟐𝟐 mod N
𝟏𝟏 𝒊𝒊𝒊𝒊 𝒄𝒄 = 𝟏𝟏 𝒄𝒄𝒄𝒄𝒅𝒅𝑴𝑴 = 𝒓𝒓𝟐𝟐 mod N
0 𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖𝑜𝑜𝑜𝑜

Zero-Knowledge: How does the simulator work?



Zero-Knowledge Proof vs. Digital Signature

• Digital Signatures are transferrable
• E.g., Alice signs a message m with her secret key and sends the signature 𝜎𝜎 to 

Bob. Bob can then send (m,𝜎𝜎) to Jane who is convinced that Alice signed the 
message m.

• Are Zero-Knowledge Proofs transferable?
• Suppose Alice (prover) interacts with Bob (verifier) to prove a statement (e.g., 

z has a square root modulo N) in Zero-Knowledge.
• Let 𝑽𝑽𝒊𝒊𝒄𝒄𝑽𝑽𝑽𝑽 be Bob’s view of the protocol.
• Suppose Bob sends 𝑽𝑽𝒊𝒊𝒄𝒄𝑽𝑽𝑽𝑽 to Jane. 
• Should Jane be convinced of the statement (e.g., z has a square root modulo 

N)>

7



Non-Interactive Zero-Knowledge Proof (NIZK)

8

Bob (verifier); 
𝑧𝑧

Alice (prover);
x 
𝑧𝑧 = 𝑥𝑥2 mod N
𝑦𝑦1, … ,𝑦𝑦𝑘𝑘

(random)

M1,…Mk where 𝑀𝑀𝑖𝑖 = 𝑦𝑦𝑖𝑖2𝑧𝑧 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁

𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝑫𝑫 𝒄𝒄 = 𝒄𝒄𝟏𝟏, … . , 𝒄𝒄𝒌𝒌 = 𝑯𝑯(M1,…Mk)

Responses r1,…,rk where 𝒓𝒓𝒊𝒊 = � 𝒚𝒚𝒊𝒊 𝒊𝒊𝒊𝒊 𝒄𝒄𝒊𝒊 = 𝟎𝟎
𝒚𝒚𝒊𝒊𝑥𝑥 𝑖𝑖𝑖𝑖 𝒄𝒄𝒊𝒊 = 1

𝑫𝑫𝒄𝒄𝒄𝒄𝒊𝒊𝑫𝑫𝒊𝒊𝑫𝑫𝒄𝒄 𝒅𝒅 = �
𝒊𝒊

𝒅𝒅𝒊𝒊 𝑽𝑽𝒄𝒄𝒄𝒄𝒓𝒓𝒄𝒄 𝒅𝒅𝒊𝒊 = �
𝟏𝟏 𝒊𝒊𝒊𝒊 𝒄𝒄𝒊𝒊 = 𝟎𝟎 𝒄𝒄𝒄𝒄𝒅𝒅𝑴𝑴𝒊𝒊 = 𝒓𝒓𝒊𝒊𝟐𝟐𝒛𝒛 mod N
𝟏𝟏 𝒊𝒊𝒊𝒊 𝒄𝒄𝒊𝒊 = 𝟏𝟏 𝒄𝒄𝒄𝒄𝒅𝒅𝑴𝑴𝒊𝒊 = 𝒓𝒓𝒊𝒊𝟐𝟐 mod N
0 𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖𝑜𝑜𝑜𝑜

Simulator Power: Can program the random oracle



Non-Interactive Zero-Knowledge Proof (NIZK)

9

Bob (verifier); 
𝑧𝑧

Alice (prover);
x 
𝑧𝑧 = 𝑥𝑥2 mod N
𝑦𝑦1, … ,𝑦𝑦𝑘𝑘

(random)

M1,…Mk where 𝑀𝑀𝑖𝑖 = 𝑦𝑦𝑖𝑖2𝑧𝑧 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁

𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝑫𝑫 𝒄𝒄 = 𝒄𝒄𝟏𝟏, … . , 𝒄𝒄𝒌𝒌 = 𝑯𝑯(z,M1,…Mk)

Responses r1,…,rk where 𝒓𝒓𝒊𝒊 = � 𝒚𝒚𝒊𝒊 𝒊𝒊𝒊𝒊 𝒄𝒄𝒊𝒊 = 𝟎𝟎
𝒚𝒚𝒊𝒊𝑥𝑥 𝑖𝑖𝑖𝑖 𝒄𝒄𝒊𝒊 = 1

𝑫𝑫𝒄𝒄𝒄𝒄𝒊𝒊𝑫𝑫𝒊𝒊𝑫𝑫𝒄𝒄 𝒅𝒅 = �
𝒊𝒊

𝒅𝒅𝒊𝒊 𝑽𝑽𝒄𝒄𝒄𝒄𝒓𝒓𝒄𝒄 𝒅𝒅𝒊𝒊 = �
𝟏𝟏 𝒊𝒊𝒊𝒊 𝒄𝒄𝒊𝒊 = 𝟎𝟎 𝒄𝒄𝒄𝒄𝒅𝒅𝑴𝑴𝒊𝒊 = 𝒓𝒓𝒊𝒊𝟐𝟐𝒛𝒛 mod N
𝟏𝟏 𝒊𝒊𝒊𝒊 𝒄𝒄𝒊𝒊 = 𝟏𝟏 𝒄𝒄𝒄𝒄𝒅𝒅𝑴𝑴𝒊𝒊 = 𝒓𝒓𝒊𝒊𝟐𝟐 mod N
0 𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖𝑜𝑜𝑜𝑜

Completeness: If Alice is honest Bob will always accept



Non-Interactive Zero-Knowledge Proof (NIZK)

10

Bob (verifier); 
𝑧𝑧

Alice (prover);
x 
𝑧𝑧 = 𝑥𝑥2 mod N
𝑦𝑦1, … ,𝑦𝑦𝑘𝑘

(random)

M1,…Mk where 𝑀𝑀𝑖𝑖 = 𝑦𝑦𝑖𝑖2𝑧𝑧 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁

𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝑫𝑫 𝒄𝒄 = 𝒄𝒄𝟏𝟏, … . , 𝒄𝒄𝒌𝒌 = 𝑯𝑯(z,M1,…Mk)

Responses r1,…,rk where 𝒓𝒓𝒊𝒊 = � 𝒚𝒚𝒊𝒊 𝒊𝒊𝒊𝒊 𝒄𝒄𝒊𝒊 = 𝟎𝟎
𝒚𝒚𝒊𝒊𝑥𝑥 𝑖𝑖𝑖𝑖 𝒄𝒄𝒊𝒊 = 1

𝑫𝑫𝒄𝒄𝒄𝒄𝒊𝒊𝑫𝑫𝒊𝒊𝑫𝑫𝒄𝒄 𝒅𝒅 = �
𝒊𝒊

𝒅𝒅𝒊𝒊 𝑽𝑽𝒄𝒄𝒄𝒄𝒓𝒓𝒄𝒄 𝒅𝒅𝒊𝒊 = �
𝟏𝟏 𝒊𝒊𝒊𝒊 𝒄𝒄𝒊𝒊 = 𝟎𝟎 𝒄𝒄𝒄𝒄𝒅𝒅𝑴𝑴𝒊𝒊 = 𝒓𝒓𝒊𝒊𝟐𝟐𝒛𝒛 mod N
𝟏𝟏 𝒊𝒊𝒊𝒊 𝒄𝒄𝒊𝒊 = 𝟏𝟏 𝒄𝒄𝒄𝒄𝒅𝒅𝑴𝑴𝒊𝒊 = 𝒓𝒓𝒊𝒊𝟐𝟐 mod N
0 𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖𝑜𝑜𝑜𝑜

Soundness: If the statement is false a malicious PPT prover should not be able to
Produce a proof that Bob accepts. 



Non-Interactive Zero-Knowledge Proof (NIZK)

11

Bob (verifier); 
𝑧𝑧

Alice (prover);
x 
𝑧𝑧 = 𝑥𝑥2 mod N
𝑦𝑦1, … ,𝑦𝑦𝑘𝑘

(random)

M1,…Mk where 𝑀𝑀𝑖𝑖 = 𝑦𝑦𝑖𝑖2𝑧𝑧 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁

𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝑫𝑫 𝒄𝒄 = 𝒄𝒄𝟏𝟏, … . , 𝒄𝒄𝒌𝒌 = 𝑯𝑯(z,M1,…Mk)

Responses r1,…,rk where 𝒓𝒓𝒊𝒊 = � 𝒚𝒚𝒊𝒊 𝒊𝒊𝒊𝒊 𝒄𝒄𝒊𝒊 = 𝟎𝟎
𝒚𝒚𝒊𝒊𝑥𝑥 𝑖𝑖𝑖𝑖 𝒄𝒄𝒊𝒊 = 1

𝑫𝑫𝒄𝒄𝒄𝒄𝒊𝒊𝑫𝑫𝒊𝒊𝑫𝑫𝒄𝒄 𝒅𝒅 = �
𝒊𝒊

𝒅𝒅𝒊𝒊 𝑽𝑽𝒄𝒄𝒄𝒄𝒓𝒓𝒄𝒄 𝒅𝒅𝒊𝒊 = �
𝟏𝟏 𝒊𝒊𝒊𝒊 𝒄𝒄𝒊𝒊 = 𝟎𝟎 𝒄𝒄𝒄𝒄𝒅𝒅𝑴𝑴𝒊𝒊 = 𝒓𝒓𝒊𝒊𝟐𝟐𝒛𝒛 mod N
𝟏𝟏 𝒊𝒊𝒊𝒊 𝒄𝒄𝒊𝒊 = 𝟏𝟏 𝒄𝒄𝒄𝒄𝒅𝒅𝑴𝑴𝒊𝒊 = 𝒓𝒓𝒊𝒊𝟐𝟐 mod N
0 𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖𝑜𝑜𝑜𝑜

Soundness: If the statement is false a malicious PPT prover should not be able to
Produce a proof that Bob accepts. 

Fact: If 𝑧𝑧 ≠ 𝑥𝑥2 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁 is not a square root 
then for each i< k either 
1)𝑀𝑀𝑖𝑖 does not have a square root  and Alice 

won’t be able to respond when 𝒄𝒄𝒊𝒊 = 1, or
2) 𝑧𝑧−1𝑀𝑀𝑖𝑖 does not have a square root and 

Alice won’t be able to respond when 𝒄𝒄𝒊𝒊 = 𝟎𝟎



Non-Interactive Zero-Knowledge Proof (NIZK)

12

Bob (verifier); 
𝑧𝑧

Alice (prover);
x 
𝑧𝑧 = 𝑥𝑥2 mod N
𝑦𝑦1, … ,𝑦𝑦𝑘𝑘

(random)

M1,…Mk where 𝑀𝑀𝑖𝑖 = 𝑦𝑦𝑖𝑖2𝑧𝑧 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁

𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝑫𝑫 𝒄𝒄 = 𝒄𝒄𝟏𝟏, … . , 𝒄𝒄𝒌𝒌 = 𝑯𝑯(z,M1,…Mk)

Responses r1,…,rk where 𝒓𝒓𝒊𝒊 = � 𝒚𝒚𝒊𝒊 𝒊𝒊𝒊𝒊 𝒄𝒄𝒊𝒊 = 𝟎𝟎
𝒚𝒚𝒊𝒊𝑥𝑥 𝑖𝑖𝑖𝑖 𝒄𝒄𝒊𝒊 = 1

𝑫𝑫𝒄𝒄𝒄𝒄𝒊𝒊𝑫𝑫𝒊𝒊𝑫𝑫𝒄𝒄 𝒅𝒅 = �
𝒊𝒊

𝒅𝒅𝒊𝒊 𝑽𝑽𝒄𝒄𝒄𝒄𝒓𝒓𝒄𝒄 𝒅𝒅𝒊𝒊 = �
𝟏𝟏 𝒊𝒊𝒊𝒊 𝒄𝒄𝒊𝒊 = 𝟎𝟎 𝒄𝒄𝒄𝒄𝒅𝒅𝑴𝑴𝒊𝒊 = 𝒓𝒓𝒊𝒊𝟐𝟐𝒛𝒛 mod N
𝟏𝟏 𝒊𝒊𝒊𝒊 𝒄𝒄𝒊𝒊 = 𝟏𝟏 𝒄𝒄𝒄𝒄𝒅𝒅𝑴𝑴𝒊𝒊 = 𝒓𝒓𝒊𝒊𝟐𝟐 mod N
0 𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖𝑜𝑜𝑜𝑜

Soundness: If the statement is false a malicious PPT prover should not be able to
produce a proof that Bob accepts. 

Definition: Call a random oracle query 
𝑯𝑯(M1,…Mk) lucky if Alice can respond to all 
challenges. Let Lj=1 if and only if query j is 
lucky.

Fact: 𝐏𝐏𝐏𝐏 𝑳𝑳𝒋𝒋 = 𝟏𝟏 |𝑳𝑳𝟏𝟏, … ,𝑳𝑳𝒋𝒋 ≠ 𝟏𝟏 ≤ 𝟐𝟐−𝒌𝒌
Union Bound: 𝑷𝑷𝒓𝒓 ∃𝒋𝒋 ≤ 𝒒𝒒.𝑳𝑳𝒋𝒋 = 𝟏𝟏 ≤ 𝒒𝒒𝟐𝟐−𝒌𝒌



NIZK Security (Random Oracle Model)

• Simulator is given statement to proof (e.g., 𝑧𝑧 has a square root modulo N)
• Simulator must output a proof 𝜋𝜋′𝑧𝑧 and a random oracle H’ 

(H’ must look like a random oracle)

• Distinguisher D
• World 1 (Simulated): Given z, 𝜋𝜋′𝑧𝑧 and oracle access to H’
• World 2 (Honest): Given z, 𝜋𝜋𝑧𝑧 (honest proof) and oracle access to H 
• Advantage: ADVD = 𝑃𝑃𝑜𝑜 𝐷𝐷𝐻𝐻 z, 𝜋𝜋𝑧𝑧 = 1 − 𝑃𝑃𝑜𝑜 𝐷𝐷𝐻𝐻𝐻 z, 𝜋𝜋′𝑧𝑧 = 1

• Zero-Knowledge: Any PPT distinguisher D should have negligible 
advantage.

• NIZK proof 𝜋𝜋𝑧𝑧 is transferrable (contrast with interactive ZK proof)
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Non-Interactive Zero-Knowledge Proof (NIZK)

14

Bob (verifier); 
𝑧𝑧

Simulator 
x 
𝑧𝑧 = 𝑥𝑥2 mod N
c = (𝑐𝑐1, … , 𝑐𝑐𝑘𝑘)
𝑦𝑦1, … ,𝑦𝑦𝑘𝑘
(random)

M1,…Mk where 𝑀𝑀𝑖𝑖 = 𝑦𝑦𝑖𝑖2𝑧𝑧1−𝑐𝑐𝑖𝑖 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁

𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝑫𝑫 𝒄𝒄 = 𝒄𝒄𝟏𝟏, … . , 𝒄𝒄𝒌𝒌
Program 𝑯𝑯 M1,…Mk ≔ 𝒄𝒄

Responses r1,…,rk where 𝒓𝒓𝒊𝒊 = �𝒚𝒚𝒊𝒊 𝒊𝒊𝒊𝒊 𝒄𝒄𝒊𝒊 = 𝟎𝟎
𝒚𝒚𝒊𝒊 𝑖𝑖𝑖𝑖 𝒄𝒄𝒊𝒊 = 1

𝑫𝑫𝒄𝒄𝒄𝒄𝒊𝒊𝑫𝑫𝒊𝒊𝑫𝑫𝒄𝒄 𝒅𝒅 = �
𝒊𝒊

𝒅𝒅𝒊𝒊 𝑽𝑽𝒄𝒄𝒄𝒄𝒓𝒓𝒄𝒄 𝒅𝒅𝒊𝒊 = �
𝟏𝟏 𝒊𝒊𝒊𝒊 𝒄𝒄𝒊𝒊 = 𝟎𝟎 𝒄𝒄𝒄𝒄𝒅𝒅𝑴𝑴𝒊𝒊 = 𝒓𝒓𝒊𝒊𝟐𝟐𝒛𝒛 mod N
𝟏𝟏 𝒊𝒊𝒊𝒊 𝒄𝒄𝒊𝒊 = 𝟏𝟏 𝒄𝒄𝒄𝒄𝒅𝒅𝑴𝑴𝒊𝒊 = 𝒓𝒓𝒊𝒊𝟐𝟐 mod N
0 𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖𝑜𝑜𝑜𝑜

Simulator Power: Can program the random oracle



Σ-Protocols

• Prover Input: instance/claim x and witness w 

• Verifier Input: Instance x

• Σ-Protocols: three-message structure
• Prover sends first message m=P1(x,w; r1)
• Verifier responds with random challenge c
• Prover sends response R=P2(x,w,r1,c; r2)
• Verifier outputs decision V(x,m,c,R)
• Completeness: If w is a valid witness for instance x then Pr[V(x,c,R)=1]=1
• Soundness: If the claim x is false then V(x,c,R)=0 with probability at least ½
• Zero-Knowledge: Simulator can produce computationally indistinguishable transcript 

15



Σ-Protocols and Fiat-Shamir Transform

• Convert Σ-Protocols into Non-Interactive ZK Proof
• Prover Input: instance/claim x and witness w 
• Verifier Input: Instance x
• Step 1: Prover generates first messages for n instances of the protocol

• mi = P1(x,w; ri) for each i=1 to n

• Step 2: Prover uses random oracle to extract random coins zj=H(x,j, m1,….,mn) for 
j=1 to n 

• Prover samples challenges c1,…,cn using random strings z1,…,zn i.e., ci=SampleChallenge(zi)

• Step 3: Prover computes responses R1,…,Rn 
• RiP2(x,w,ri,ci)

• Step 4: Prover outputs the proof  𝑚𝑚𝑖𝑖 , 𝑐𝑐𝑖𝑖 , 𝑧𝑧𝑖𝑖 𝑖𝑖≤𝑛𝑛

16



Σ-Protocols and Fiat-Shamir Transform

• Step 1: Prover generates first messages for n instances of the protocol
• mi = P1(x,w; ri) for each i=1 to n

• Step 2: Prover uses random oracle to extract random coins zi=H(x,i, m1,….,mn) for i=1 to n 
• Prover samples challenges c1,…,cn using random strings z1,…,zn i.e., ci=SampleChallenge(zi)

• Step 3: Prover computes responses R1,…,Rn 
• RiP2(x,w,ri,ci)

• Step 4: Prover outputs the proof  𝜋𝜋 = 𝑚𝑚𝑖𝑖 , 𝑐𝑐𝑖𝑖 ,𝑅𝑅𝑖𝑖 𝑖𝑖≤𝑛𝑛
Verifier: VNI(x,𝜋𝜋) check that for all 𝑖𝑖 ≤ 𝑛𝑛

1. V(x, 𝑚𝑚𝑖𝑖 , 𝑐𝑐𝑖𝑖 ,𝑅𝑅𝑖𝑖 )=1 and  
2. ci=SampleChallenge(zi) where zi=H(x,i, m1,….,mn)

17



Σ-Protocols and Fiat-Shamir Transform

• Step 1: Prover generates first messages for n instances of the protocol
• mi = P1(x,w; ri) for each i=1 to n

• Step 2: Prover uses random oracle to extract random coins zi=H(x,i, m1,….,mn) for i=1 to 
n 

• Prover samples challenges c1,…,cn using random strings z1,…,zn i.e., ci=SampleChallenge(zi)
• Step 3: Prover computes responses R1,…,Rn 

• RiP2(x,w,ri,ci)
• Step 4: Prover outputs the proof  𝜋𝜋 = 𝑚𝑚𝑖𝑖 , 𝑐𝑐𝑖𝑖 ,𝑅𝑅𝑖𝑖 𝑖𝑖≤𝑛𝑛
Zero-Knowledge (Idea): 
Step 1: Run simulator for Σ n-times to obtain n transcripts 𝑚𝑚𝑖𝑖 , 𝑐𝑐𝑖𝑖 ,𝑅𝑅𝑖𝑖 for each 𝑖𝑖 ≤ 𝑛𝑛. 
Step 2: Program the random oracle so that H(x,i, m1,….,mn)=zi where 
ci=SampleChallenge(zi)

18



Zero-Knowledge Proof for all NP

• CLIQUE
• Input: Graph G=(V,E) and integer k>0
• Question: Does G have a clique of size k?

• CLIQUE is NP-Complete
• Any problem in NP reduces to CLIQUE
• A zero-knowledge proof for CLIQUE yields proof for all of NP via reduction

• Prover:
• Knows k vertices v1,…,vk in G=(V,E) that form a clique

19



Zero-Knowledge Proof for all NP

20

A B

C D

E G
F

H

IJ

K
L

𝜎𝜎 𝐺𝐺

Adjacency matrix 𝐴𝐴𝜎𝜎 𝐺𝐺

0 ⋯ 1
⋮ ⋱ ⋮
1 ⋯ 0

A L

L

A

Commitment to 𝐴𝐴𝜎𝜎 𝐺𝐺

𝐶𝐶𝑚𝑚𝑚𝑚 0, 𝑜𝑜𝐴𝐴,𝐴𝐴 ⋯ 𝐶𝐶𝑚𝑚𝑚𝑚 1, 𝑜𝑜𝐴𝐴,𝐿𝐿
⋮ ⋱ ⋮

𝐶𝐶𝑚𝑚𝑚𝑚 1, 𝑜𝑜𝐿𝐿,𝐴𝐴 ⋯ 𝐶𝐶𝑚𝑚𝑚𝑚 0, 𝑜𝑜𝐿𝐿,𝐿𝐿

A L

L

A



Zero-Knowledge Proof for all NP

• Prover:
• Knows k vertices v1,…,vk in G=(V,E) that for a clique

1. Prover commits to a permutation 𝜎𝜎 over V
2. Prover commits to the adjacency matrix 𝐴𝐴𝜎𝜎 𝐺𝐺 of 𝜎𝜎(G)
3. Verifier sends challenge c (either 1 or 0)
4. If c=0 then prover reveals 𝜎𝜎 and adjacency matrix 𝐴𝐴𝜎𝜎 𝐺𝐺

1. Verifier confirms that adjacency matrix is correct for 𝜎𝜎(G)
5. If c=1 then prover reveals the submatrix formed by first 

rows/columns of 𝐴𝐴𝜎𝜎 𝐺𝐺 corresponding to 𝜎𝜎 𝑣𝑣1 , … ,𝜎𝜎 𝑣𝑣𝑘𝑘
1. Verifier confirms that the submatrix forms a clique.
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Zero-Knowledge Proof for all NP

• Completeness: Honest prover can always make honest verifier accept
• Soundness: If prover commits to adjacency matrix 𝐴𝐴𝜎𝜎 𝐺𝐺 of 𝜎𝜎(G) and 

can reveal a clique in submatrix of 𝐴𝐴𝜎𝜎 𝐺𝐺 then G itself contains a k-
clique. Proof invokes binding property of commitment scheme.

• Zero-Knowledge: Simulator cheats and either commits to wrong 
adjacency matrix or cannot reveal clique. Repeat until we produce a  
successful transcript. Indistinguishability of transcripts follows from 
hiding property of commitment scheme.

22



Secure Multiparty Computation (Adversary 
Models)
• Semi-Honest (“honest, but curious”)

• All parties follow protocol instructions, but…
• dishonest parties may be curious to violate privacy of others when possible

• Fully Malicious Model
• Adversarial Parties may deviate from the protocol arbitrarily

• Quit unexpectedly
• Send different messages

• It is much harder to achieve security in the fully malicious model
• Convert Secure Semi-Honest Protocol into Secure Protocol in Fully 

Malicious Mode?
• Tool: Zero-Knowledge Proofs
• Prove: My behavior in the protocol is consistent with honest party

23



CS 555:Week 15: Hot Topics
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Shor’s Algorithm

• Quantum Algorithm to Factor Integers

• Running Time 
O((log N)2(log log N)(log log log N))

• Building Quantum Circuits is challenging, but...
• RSA is broken if we build a quantum computer

• Current record: Factor 21=3x7 with Shor’s Algorithm
• Source: Experimental Realisation of Shor’s Quatum Factoring Algorithm Using 

Quibit Recycling (https://arxiv.org/pdf/1111.4147.pdf)

https://en.wikipedia.org/wiki/Shor%27s_algorithm

https://arxiv.org/pdf/1111.4147.pdf
https://en.wikipedia.org/wiki/Shor's_algorithm


Quantum Resistant Crypto

• Symmetric key primitives are believed to be safe
• …but Grover’s Algorithm does speed up brute-force attacks 

significantly (2𝑛𝑛 𝑣𝑣𝑜𝑜 2𝑛𝑛)
• Solution: Double Key Lengths 

• Integer Factoring, Discrete Log and Elliptic Curve Discrete Log are not 
safe

• All public key encryption algorithms we have covered
• RSA, RSA-OAEP, El-Gamal,….

https://en.wikipedia.org/wiki/Lattice-based_cryptography

https://en.wikipedia.org/wiki/Lattice-based_cryptography


Post Quantum Cryptography

• Symmetric key primitives are believed to be safe
• …but Grover’s Algorithm does speed up brute-force attacks 

significantly (2𝑛𝑛 𝑣𝑣𝑜𝑜 2𝑛𝑛)
• Solution: Double Key Lengths 

• Hashed Based Signatures
• Lamport Signatures and extensions

• Lattice Based Cryptography is a promising approach for Quantum 
Resistant Public Key Crypto

• Ring-LWE
• NTRU

https://security.googleblog.com/2016/07/experimenting-with-post-quantum.html

https://security.googleblog.com/2016/07/experimenting-with-post-quantum.html


Lattices

• Basis: 𝐵𝐵 = 𝒃𝒃1, … ,𝒃𝒃𝑛𝑛
• Lattice: 

L B ≔ ∑𝑖𝑖≤𝑛𝑛 𝑎𝑎𝑖𝑖 𝒃𝒃𝑖𝑖 𝑎𝑎1, … , 𝑎𝑎𝑛𝑛 ∈ ℤ

• Example: 𝒃𝒃1 = (1,5) and 𝒃𝒃2 = (5,0)
• 0,25 = −5𝒃𝒃1 + 𝒃𝒃2 is in the lattice L B
• 0, 2 is not in the lattice L B

• Shortest Vector Problem: Find shortest
(non-zero) vector in L B

28

Each 𝒃𝒃𝑖𝑖 is a vector 𝒃𝒃𝑖𝑖 ∈ ℝ𝑛𝑛 ,  span 𝒃𝒃1, … ,𝒃𝒃𝑛𝑛 = ℝ𝑛𝑛

integers

Usually defined using Euclidean Norm



Lattices

• Basis: 𝐵𝐵 = 𝒃𝒃1, … ,𝒃𝒃𝑛𝑛
• Lattice: 

L B ≔ ∑𝑖𝑖≤𝑛𝑛 𝑎𝑎𝑖𝑖 𝒃𝒃𝑖𝑖 𝑎𝑎1, … ,𝑎𝑎𝑛𝑛 ∈ ℤ

• Example: 𝒃𝒃1 = (1,5) and 𝒃𝒃2 = (5,0)
• 0,25 = −5𝒃𝒃1 + 𝒃𝒃2 is in the lattice L B
• 0, 2 is not in the lattice L B

• Closest Vector Problem: Given 𝒗𝒗 ∈ ℝ𝑛𝑛

find vector in L B closest to 𝒗𝒗
Example: 0,25 is lattice point closest to 
𝒗𝒗 = (1,24)

29

Each 𝒃𝒃𝑖𝑖 is a vector 𝒃𝒃𝑖𝑖 ∈ ℝ𝑛𝑛 ,  span 𝒃𝒃1, … ,𝒃𝒃𝑛𝑛 = ℝ𝑛𝑛

integers



Hard Lattice Problems 

• Shortest Vector Problem: Find shortest (non-zero) vector in L B

• Closest Vector Problem: Given 𝒗𝒗 ∈ ℝ𝑛𝑛 find vector in L B closest to 𝒗𝒗

• Approximation versions 
• Relax requirement to find shortest/closest vector

• No known (quantum) algorithm to solve above problems
• Even approximation is hard
• Conjectured to be ``average case” hard (needed for crypto)

30



GGH Encryption Scheme

• Goldreich-Goldwasser-Halevi (GGH)
• Security Assumption (Lattices): Closest Vector Problem is Hard

• No known quantum algorithm breaks the assumption

• Private Key: Matrix B and a unimodular matrix U
• 𝐵𝐵 = 𝒃𝒃1, … ,𝒃𝒃𝑛𝑛 is the basis of a lattice L with ``nice properties”

• All vectors 𝒃𝒃𝑖𝑖 are short and nearly orthogonal e.g., inner product 𝒃𝒃𝑖𝑖 ,𝒃𝒃𝑗𝑗 is small

• Public Key: 𝐵𝐵𝐻 = 𝑈𝑈𝐵𝐵
• 𝐵𝐵𝐻 is a second basis for the lattice L

31



GGH Encryption Scheme

• Private Key: Matrix B and a unimodular matrix U
• 𝐵𝐵 = 𝒃𝒃1, … ,𝒃𝒃𝑛𝑛 is the basis of a lattice L with ``nice properties”

• All vectors 𝒃𝒃𝑖𝑖 are short and nearly orthogonal e.g., inner product 𝒃𝒃𝑖𝑖 ,𝒃𝒃𝑗𝑗 is small

• Public Key: 𝐵𝐵𝐻 = 𝑈𝑈𝐵𝐵
• 𝐵𝐵𝐻 = 𝒃𝒃1′, … ,𝒃𝒃𝑛𝑛′ is a second basis for the lattice L

Encryption: message m = 𝑚𝑚1, … ,𝑚𝑚𝑛𝑛 with each −M < 𝑚𝑚𝑖𝑖 < 𝑀𝑀
1. Compute 𝑣𝑣 = 𝑚𝑚 ⋅ 𝐵𝐵𝐻= ∑𝑖𝑖≤𝑛𝑛𝑚𝑚𝑖𝑖 𝒃𝒃𝑖𝑖′
2. Pick a random error vector 𝑜𝑜 with small norm
3. Return 𝑐𝑐 = 𝑣𝑣 + 𝑜𝑜

32



GGH Encryption Scheme

• Private Key: Matrix B and a unimodular matrix U
• 𝐵𝐵 = 𝒃𝒃1, … ,𝒃𝒃𝑛𝑛 is the basis of a lattice L with ``nice properties”

• All vectors 𝒃𝒃𝑖𝑖 are short and nearly orthogonal e.g., inner product 𝒃𝒃𝑖𝑖 ,𝒃𝒃𝑗𝑗 is small

• Public Key: 𝐵𝐵𝐻 = 𝑈𝑈𝐵𝐵
• 𝐵𝐵𝐻 = 𝒃𝒃1′, … ,𝒃𝒃𝑛𝑛′ is a second basis for the lattice L

Decryption: ciphertext 𝑐𝑐 = 𝑣𝑣 + 𝑜𝑜 = 𝑜𝑜 + 𝑚𝑚 ⋅ 𝐵𝐵𝐻= 𝑜𝑜 + 𝑚𝑚 ⋅ 𝑈𝑈𝐵𝐵
Compute y = 𝑐𝑐 ⋅ 𝐵𝐵−1= 𝑚𝑚 ⋅ 𝑈𝑈 + 𝑜𝑜 ⋅ 𝐵𝐵−1

Babai Rounding Technique Removes small error term 𝑜𝑜 ⋅ 𝐵𝐵−1 from y
Return 𝑚𝑚 = 𝑦𝑦 − 𝑜𝑜 ⋅ 𝐵𝐵−1 ⋅ 𝑈𝑈−1 = 𝑚𝑚 ⋅ 𝑈𝑈 ⋅ 𝑈𝑈−1
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GGH Encryption Scheme

• Private Key: Matrix B and a unimodular matrix U
• 𝐵𝐵 = 𝒃𝒃1, … ,𝒃𝒃𝑛𝑛 is the basis of a lattice L with ``nice properties”

• All vectors 𝒃𝒃𝑖𝑖 are short and nearly orthogonal e.g., inner product 𝒃𝒃𝑖𝑖 ,𝒃𝒃𝑗𝑗 is small

• Public Key: 𝐵𝐵𝐻 = 𝑈𝑈𝐵𝐵
• 𝐵𝐵𝐻 = 𝒃𝒃1′, … ,𝒃𝒃𝑛𝑛′ is a second basis for the lattice L

Design Key Encapsulation Mechanism from GGH or other schemes 
like NTRU
• CPA/CCA-security

34



Fully Homomorphic Encryption (FHE)

• Idea: Alice sends Bob 𝐸𝐸𝑛𝑛𝑐𝑐𝑃𝑃𝑃𝑃𝐴𝐴 𝑥𝑥1 , … , 𝐸𝐸𝑛𝑛𝑐𝑐𝑃𝑃𝑃𝑃𝐴𝐴 𝑥𝑥𝑛𝑛
𝐸𝐸𝑛𝑛𝑐𝑐𝑃𝑃𝑃𝑃𝐴𝐴 𝑥𝑥𝑖𝑖 + 𝐸𝐸𝑛𝑛𝑐𝑐𝑃𝑃𝑃𝑃𝐴𝐴 𝑥𝑥𝑗𝑗 = 𝐸𝐸𝑛𝑛𝑐𝑐𝑃𝑃𝑃𝑃𝐴𝐴 𝑥𝑥𝑖𝑖 + 𝑥𝑥𝑗𝑗

and
𝐸𝐸𝑛𝑛𝑐𝑐𝑃𝑃𝑃𝑃𝐴𝐴 𝑥𝑥𝑖𝑖 × 𝐸𝐸𝑛𝑛𝑐𝑐𝑃𝑃𝑃𝑃𝐴𝐴 𝑥𝑥𝑗𝑗 = 𝐸𝐸𝑛𝑛𝑐𝑐𝑃𝑃𝑃𝑃𝐴𝐴 𝑥𝑥𝑖𝑖 × 𝑥𝑥𝑗𝑗

• Bob cannot decrypt messages, but given a circuit C can compute
𝐸𝐸𝑛𝑛𝑐𝑐𝑃𝑃𝑃𝑃𝐴𝐴 𝐶𝐶 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛

• Proposed Application: Export confidential computation to cloud 

https://simons.berkeley.edu/talks/shai-halevi-2015-05-18a (Lecture by Shai Halevi) 

https://simons.berkeley.edu/talks/shai-halevi-2015-05-18a


Fully Homomorphic Encryption (FHE)

• Idea: Alice sends Bob 𝐸𝐸𝑛𝑛𝑐𝑐𝑃𝑃𝑃𝑃𝐴𝐴 𝑥𝑥1 , … , 𝐸𝐸𝑛𝑛𝑐𝑐𝑃𝑃𝑃𝑃𝐴𝐴 𝑥𝑥𝑛𝑛
• Bob cannot decrypt messages, but given a circuit C can compute

𝐸𝐸𝑛𝑛𝑐𝑐𝑃𝑃𝑃𝑃𝐴𝐴 𝐶𝐶 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛
• We now have candidate constructions!

• Encryption/Decryption are polynomial time
• …but expensive in practice.
• Proved to be CPA-Secure under plausible assumptions

• Remark 1: Partially Homomorphic Encryption schemes cannot be 
CCA-Secure. Why not?

https://simons.berkeley.edu/talks/shai-halevi-2015-05-18a (Lecture by Shai Halevi) 

https://simons.berkeley.edu/talks/shai-halevi-2015-05-18a


Partially Homomorphic Encryption

• Plain RSA is multiplicatively homomorphic
𝐸𝐸𝑛𝑛𝑐𝑐𝑃𝑃𝑃𝑃𝐴𝐴 𝑥𝑥𝑖𝑖 × 𝐸𝐸𝑛𝑛𝑐𝑐𝑃𝑃𝑃𝑃𝐴𝐴 𝑥𝑥𝑗𝑗 = 𝐸𝐸𝑛𝑛𝑐𝑐𝑃𝑃𝑃𝑃𝐴𝐴 𝑥𝑥𝑖𝑖 × 𝑥𝑥𝑗𝑗

• But not additively homomorphic

• Pallier Cryptosystem
𝐸𝐸𝑛𝑛𝑐𝑐𝑃𝑃𝑃𝑃𝐴𝐴 𝑥𝑥𝑖𝑖 × 𝐸𝐸𝑛𝑛𝑐𝑐𝑃𝑃𝑃𝑃𝐴𝐴 𝑥𝑥𝑗𝑗 = 𝐸𝐸𝑛𝑛𝑐𝑐𝑃𝑃𝑃𝑃𝐴𝐴 𝑥𝑥𝑖𝑖 + 𝑥𝑥𝑗𝑗

𝐸𝐸𝑛𝑛𝑐𝑐𝑃𝑃𝑃𝑃𝐴𝐴 𝑥𝑥𝑖𝑖
𝑘𝑘

= 𝐸𝐸𝑛𝑛𝑐𝑐𝑃𝑃𝑃𝑃𝐴𝐴 𝑘𝑘 × 𝑥𝑥𝑗𝑗
• Not same as FHE, but still useful in multiparty computation

https://en.wikipedia.org/wiki/Paillier_cryptosystem

https://en.wikipedia.org/wiki/Paillier_cryptosystem


Program Obfuscation (Theoretical Cryptography)

• Program Obfuscation
• Idea: Alice obfuscates a circuit C and sends C to Bob
• Bob can run C, but cannot learn “anything else”
• Lots of applications…

• Indistinguishability Obfuscation
• Theoretically Possible

• In the sense that 𝑖𝑖 𝑛𝑛 = 2100000000𝑛𝑛100000 is technically polynomial time

• Secure Hardware Module (e.g., SGX) can be viewed as a way to 
accomplish this in practice

• Must trust third party (e.g., Intel)

https://simons.berkeley.edu/talks/amit-sahai-2015-05-19a (Lecture by Amit Sahai) 

https://simons.berkeley.edu/talks/amit-sahai-2015-05-19a


Differential Privacy



Release Aggregate Statistics?
• Question 1: How many people in this room have cancer?

• Question 2: How many students in this room have cancer?

• The difference (A1-A2) exposes my answer!



Differential Privacy: Definition
• n people
• Neighboring datasets:

• Replace x with x’

Name CS Prof? …   STD?

J Blocki +1 …      -1

[DMNS06, DKMMN06]

D

Name CS Prof? …      STD?

Bjork -1 …        ???

D’
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Differential Privacy vs Cryptography

• 𝜀𝜀 is not negligibly small. 
• We are not claiming that, when D and D’ are neighboring datasets,

𝑨𝑨𝒄𝒄𝒄𝒄(𝑫𝑫) ≡𝐶𝐶 𝑨𝑨𝒄𝒄𝒄𝒄(𝑫𝑫′)
• Otherwise, we would have 𝑨𝑨𝒄𝒄𝒄𝒄(𝑿𝑿) ≡𝐶𝐶 𝑨𝑨𝒄𝒄𝒄𝒄(𝒀𝒀′) for any two data-sets X 

and Y.
• Why?

• Cryptography
• Insiders/Outsiders 
• Only those with decryption key(s) can reveal secret
• Multiparty Computation: Alice and Bob learn nothing other than f(x,y)

42



Theorem: Let D = 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛 ∈ 0,1 𝑛𝑛

A 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛 = �
𝑖𝑖=1

𝑛𝑛

𝑥𝑥𝑖𝑖 + Lap
1
𝜀𝜀

,

satisfies 𝜀𝜀, 0 -differential privacy.  (True Answer, Noise)

Traditional Differential Privacy Mechanism
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Resources

• $99

Free PDF: 
https://www.cis.upenn.edu/~aaroth/Papers/privacybook.pdf

https://www.cis.upenn.edu/%7Eaaroth/Papers/privacybook.pdf


Password Storage and Key Derivation Functions

46

Username

jblocki

+

jblocki, 123456

SHA1(12345689d978034a3f6)=85e23cfe
0021f584e3db87aa72630a9a2345c062

Hash

85e23cfe0021f58
4e3db87aa72630
a9a2345c062

Salt

89d978034a3f6



Offline Attacks: A Common Problem

• Password breaches at major companies have affected millions billions
of user accounts.



Offline Attacks: A Common Problem

• Password breaches at major companies have affected millions billions
of user accounts.



Goal: Moderately Expensive Hash Function

Fast on PC and 
Expensive on ASIC?



Attempt 1: Hash Iteration

• BCRYPT

• PBKDF2 100,000 SHA256 computations
(iterative)

Estimated Cost on ASIC: $1 per billion password guesses [BS14]



The Challenge

User Patience

Disclaimer: This slide is entirely for humorous effect. 

Time

St
an

da
rd

 P
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nc
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U
SD

 $



Memory Hard Function (MHF)

• Intuition: computation costs dominated by memory costs
vs. 

• Data Independent Memory Hard Function (iMHF)
• Memory access pattern should not depend on input



https://password-hashing.net/

(2013-2015)

https://password-hashing.net/


https://password-hashing.net/

(2013-2015)

We recommend that 
you use Argon2…

https://password-hashing.net/


https://password-hashing.net/

(2013-2015)

We recommend that 
you use Argon2…
There are two main versions of 
Argon2, Argon2i and Argon2d. 
Argon2i is the safest against side-
channel attacks

https://password-hashing.net/


Depth-Robustness: The Key Property

Necessary [AB16] and sufficient
[ABP16] for secure iMHFs



Question

Are existing iMHF candidates based on depth-
robust DAGs?



Answer: No



Can we build a secure iMHF?

Github: https://github.com/Practical-Graphs/Argon2-Practical-Graph

https://github.com/Practical-Graphs/Argon2-Practical-Graph
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