
Reminder: Course Feedback

• If you haven’t already please complete your course evaluation before Sunday
at 11:59PM.

• What did you like about the course? What could be improved? Let me know!
Your feedback is valuable and I carefully read through any comments after
the semester is over.

• Thanks to everyone who already completed there course evaluation!
• Your feedback is anonymous and will not impact your grade (I cannot view

your feedback until after grades are entered).
1

Course Summary
Course Code Course Title Survey Start Date Survey End Date Report Access Start Response Rate
wl.202120.CS.55500.
FNY.18101 Cryptography 4/19/2021 9:00 AM 5/2/2021 11:59 PM 5/12/2021 12:00 AM 50.00% (4/8)

Announcements

Quiz 6: Due tomorrow (4/28) at 11:59PM
Homework 5: Due Thursday (4/29) at 11:59PM
• Late submissions allowed up until Friday (3/30) at 11:59PM
• We plan to release the solutions on Saturday

Final Exam: Monday, May 3 at 10:30 AM
Location: FRNY B124 (right here!)

Time: 10:30AM – 12:30PM
(Practice Final Exam on Piazza)

2

Final Exam

• Cumulative, but will focus a bit more heavily on topics from the
second half of the semester

• You are allowed to prepare one page (8.5x11) of handwritten notes.
Double sided

• Practice Exam on Piazza
• The real final will be shorter
• The real exam will have more short answer questions

3

Cryptography
CS 555

Week 15:
• Zero-Knowledge Proofs
• Hot Topics in Cryptography
• Memory Hard Functions + Password Hashing

4Spring 2021

Recap: Zero-Knowledge Proof

Two parties: Prover P (PPT) and Verifier V (PPT)
(P is given witness for claim e.g.,)

• Completeness: If claim is true honest prover can always convince
honest verifier to accept.

• Soundness: If claim is false then Verifier should reject with probability
at least ½. (Even if the prover tries to cheat)

• Zero-Knowledge: Verifier doesn’t learn anything about prover’s input
from the protocol (other than that the claim is true).

• Formalizing this last statement is tricky
• Zero-Knowledge: should hold even if the attacker is dishonest!

5

Zero-Knowledge Proof for Square Root mod N

6

Bob (verifier);
𝑧𝑧

Alice (prover);
x
𝑧𝑧 = 𝑥𝑥2 mod N
(random y)

𝑀𝑀 = 𝑧𝑧𝑦𝑦2 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁

𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 𝒄𝒄 ∈ 𝟎𝟎,𝟏𝟏

Response 𝒓𝒓 = �𝒚𝒚 𝒊𝒊𝒊𝒊 𝒄𝒄 = 𝟎𝟎
𝒚𝒚𝑥𝑥 𝑖𝑖𝑖𝑖 𝑐𝑐 = 1

𝑫𝑫𝒄𝒄𝒄𝒄𝒊𝒊𝑫𝑫𝒊𝒊𝑫𝑫𝒄𝒄 𝒅𝒅 = �
𝟏𝟏 𝒊𝒊𝒊𝒊 𝒄𝒄 = 𝟎𝟎 𝒄𝒄𝒄𝒄𝒅𝒅𝑴𝑴 = 𝒛𝒛𝒓𝒓𝟐𝟐 mod N
𝟏𝟏 𝒊𝒊𝒊𝒊 𝒄𝒄 = 𝟏𝟏 𝒄𝒄𝒄𝒄𝒅𝒅𝑴𝑴 = 𝒓𝒓𝟐𝟐 mod N
0 𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖𝑜𝑜𝑜𝑜

Zero-Knowledge: How does the simulator work?

Zero-Knowledge Proof vs. Digital Signature

• Digital Signatures are transferrable
• E.g., Alice signs a message m with her secret key and sends the signature 𝜎𝜎 to

Bob. Bob can then send (m,𝜎𝜎) to Jane who is convinced that Alice signed the
message m.

• Are Zero-Knowledge Proofs transferable?
• Suppose Alice (prover) interacts with Bob (verifier) to prove a statement (e.g.,

z has a square root modulo N) in Zero-Knowledge.
• Let 𝑽𝑽𝒊𝒊𝒄𝒄𝑽𝑽𝑽𝑽 be Bob’s view of the protocol.
• Suppose Bob sends 𝑽𝑽𝒊𝒊𝒄𝒄𝑽𝑽𝑽𝑽 to Jane.
• Should Jane be convinced of the statement (e.g., z has a square root modulo

N)>

7

Non-Interactive Zero-Knowledge Proof (NIZK)

8

Bob (verifier);
𝑧𝑧

Alice (prover);
x
𝑧𝑧 = 𝑥𝑥2 mod N
𝑦𝑦1, … ,𝑦𝑦𝑘𝑘

(random)

M1,…Mk where 𝑀𝑀𝑖𝑖 = 𝑦𝑦𝑖𝑖2𝑧𝑧 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁

𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝑫𝑫 𝒄𝒄 = 𝒄𝒄𝟏𝟏, … . , 𝒄𝒄𝒌𝒌 = 𝑯𝑯(M1,…Mk)

Responses r1,…,rk where 𝒓𝒓𝒊𝒊 = � 𝒚𝒚𝒊𝒊 𝒊𝒊𝒊𝒊 𝒄𝒄𝒊𝒊 = 𝟎𝟎
𝒚𝒚𝒊𝒊𝑥𝑥 𝑖𝑖𝑖𝑖 𝒄𝒄𝒊𝒊 = 1

𝑫𝑫𝒄𝒄𝒄𝒄𝒊𝒊𝑫𝑫𝒊𝒊𝑫𝑫𝒄𝒄 𝒅𝒅 = �
𝒊𝒊

𝒅𝒅𝒊𝒊 𝑽𝑽𝒄𝒄𝒄𝒄𝒓𝒓𝒄𝒄 𝒅𝒅𝒊𝒊 = �
𝟏𝟏 𝒊𝒊𝒊𝒊 𝒄𝒄𝒊𝒊 = 𝟎𝟎 𝒄𝒄𝒄𝒄𝒅𝒅𝑴𝑴𝒊𝒊 = 𝒓𝒓𝒊𝒊𝟐𝟐𝒛𝒛 mod N
𝟏𝟏 𝒊𝒊𝒊𝒊 𝒄𝒄𝒊𝒊 = 𝟏𝟏 𝒄𝒄𝒄𝒄𝒅𝒅𝑴𝑴𝒊𝒊 = 𝒓𝒓𝒊𝒊𝟐𝟐 mod N
0 𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖𝑜𝑜𝑜𝑜

Simulator Power: Can program the random oracle

Non-Interactive Zero-Knowledge Proof (NIZK)

9

Bob (verifier);
𝑧𝑧

Alice (prover);
x
𝑧𝑧 = 𝑥𝑥2 mod N
𝑦𝑦1, … ,𝑦𝑦𝑘𝑘

(random)

M1,…Mk where 𝑀𝑀𝑖𝑖 = 𝑦𝑦𝑖𝑖2𝑧𝑧 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁

𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝑫𝑫 𝒄𝒄 = 𝒄𝒄𝟏𝟏, … . , 𝒄𝒄𝒌𝒌 = 𝑯𝑯(z,M1,…Mk)

Responses r1,…,rk where 𝒓𝒓𝒊𝒊 = � 𝒚𝒚𝒊𝒊 𝒊𝒊𝒊𝒊 𝒄𝒄𝒊𝒊 = 𝟎𝟎
𝒚𝒚𝒊𝒊𝑥𝑥 𝑖𝑖𝑖𝑖 𝒄𝒄𝒊𝒊 = 1

𝑫𝑫𝒄𝒄𝒄𝒄𝒊𝒊𝑫𝑫𝒊𝒊𝑫𝑫𝒄𝒄 𝒅𝒅 = �
𝒊𝒊

𝒅𝒅𝒊𝒊 𝑽𝑽𝒄𝒄𝒄𝒄𝒓𝒓𝒄𝒄 𝒅𝒅𝒊𝒊 = �
𝟏𝟏 𝒊𝒊𝒊𝒊 𝒄𝒄𝒊𝒊 = 𝟎𝟎 𝒄𝒄𝒄𝒄𝒅𝒅𝑴𝑴𝒊𝒊 = 𝒓𝒓𝒊𝒊𝟐𝟐𝒛𝒛 mod N
𝟏𝟏 𝒊𝒊𝒊𝒊 𝒄𝒄𝒊𝒊 = 𝟏𝟏 𝒄𝒄𝒄𝒄𝒅𝒅𝑴𝑴𝒊𝒊 = 𝒓𝒓𝒊𝒊𝟐𝟐 mod N
0 𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖𝑜𝑜𝑜𝑜

Completeness: If Alice is honest Bob will always accept

Non-Interactive Zero-Knowledge Proof (NIZK)

10

Bob (verifier);
𝑧𝑧

Alice (prover);
x
𝑧𝑧 = 𝑥𝑥2 mod N
𝑦𝑦1, … ,𝑦𝑦𝑘𝑘

(random)

M1,…Mk where 𝑀𝑀𝑖𝑖 = 𝑦𝑦𝑖𝑖2𝑧𝑧 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁

𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝑫𝑫 𝒄𝒄 = 𝒄𝒄𝟏𝟏, … . , 𝒄𝒄𝒌𝒌 = 𝑯𝑯(z,M1,…Mk)

Responses r1,…,rk where 𝒓𝒓𝒊𝒊 = � 𝒚𝒚𝒊𝒊 𝒊𝒊𝒊𝒊 𝒄𝒄𝒊𝒊 = 𝟎𝟎
𝒚𝒚𝒊𝒊𝑥𝑥 𝑖𝑖𝑖𝑖 𝒄𝒄𝒊𝒊 = 1

𝑫𝑫𝒄𝒄𝒄𝒄𝒊𝒊𝑫𝑫𝒊𝒊𝑫𝑫𝒄𝒄 𝒅𝒅 = �
𝒊𝒊

𝒅𝒅𝒊𝒊 𝑽𝑽𝒄𝒄𝒄𝒄𝒓𝒓𝒄𝒄 𝒅𝒅𝒊𝒊 = �
𝟏𝟏 𝒊𝒊𝒊𝒊 𝒄𝒄𝒊𝒊 = 𝟎𝟎 𝒄𝒄𝒄𝒄𝒅𝒅𝑴𝑴𝒊𝒊 = 𝒓𝒓𝒊𝒊𝟐𝟐𝒛𝒛 mod N
𝟏𝟏 𝒊𝒊𝒊𝒊 𝒄𝒄𝒊𝒊 = 𝟏𝟏 𝒄𝒄𝒄𝒄𝒅𝒅𝑴𝑴𝒊𝒊 = 𝒓𝒓𝒊𝒊𝟐𝟐 mod N
0 𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖𝑜𝑜𝑜𝑜

Soundness: If the statement is false a malicious PPT prover should not be able to
Produce a proof that Bob accepts.

Non-Interactive Zero-Knowledge Proof (NIZK)

11

Bob (verifier);
𝑧𝑧

Alice (prover);
x
𝑧𝑧 = 𝑥𝑥2 mod N
𝑦𝑦1, … ,𝑦𝑦𝑘𝑘

(random)

M1,…Mk where 𝑀𝑀𝑖𝑖 = 𝑦𝑦𝑖𝑖2𝑧𝑧 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁

𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝑫𝑫 𝒄𝒄 = 𝒄𝒄𝟏𝟏, … . , 𝒄𝒄𝒌𝒌 = 𝑯𝑯(z,M1,…Mk)

Responses r1,…,rk where 𝒓𝒓𝒊𝒊 = � 𝒚𝒚𝒊𝒊 𝒊𝒊𝒊𝒊 𝒄𝒄𝒊𝒊 = 𝟎𝟎
𝒚𝒚𝒊𝒊𝑥𝑥 𝑖𝑖𝑖𝑖 𝒄𝒄𝒊𝒊 = 1

𝑫𝑫𝒄𝒄𝒄𝒄𝒊𝒊𝑫𝑫𝒊𝒊𝑫𝑫𝒄𝒄 𝒅𝒅 = �
𝒊𝒊

𝒅𝒅𝒊𝒊 𝑽𝑽𝒄𝒄𝒄𝒄𝒓𝒓𝒄𝒄 𝒅𝒅𝒊𝒊 = �
𝟏𝟏 𝒊𝒊𝒊𝒊 𝒄𝒄𝒊𝒊 = 𝟎𝟎 𝒄𝒄𝒄𝒄𝒅𝒅𝑴𝑴𝒊𝒊 = 𝒓𝒓𝒊𝒊𝟐𝟐𝒛𝒛 mod N
𝟏𝟏 𝒊𝒊𝒊𝒊 𝒄𝒄𝒊𝒊 = 𝟏𝟏 𝒄𝒄𝒄𝒄𝒅𝒅𝑴𝑴𝒊𝒊 = 𝒓𝒓𝒊𝒊𝟐𝟐 mod N
0 𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖𝑜𝑜𝑜𝑜

Soundness: If the statement is false a malicious PPT prover should not be able to
Produce a proof that Bob accepts.

Fact: If 𝑧𝑧 ≠ 𝑥𝑥2 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁 is not a square root
then for each i< k either
1)𝑀𝑀𝑖𝑖 does not have a square root and Alice

won’t be able to respond when 𝒄𝒄𝒊𝒊 = 1, or
2) 𝑧𝑧−1𝑀𝑀𝑖𝑖 does not have a square root and

Alice won’t be able to respond when 𝒄𝒄𝒊𝒊 = 𝟎𝟎

Non-Interactive Zero-Knowledge Proof (NIZK)

12

Bob (verifier);
𝑧𝑧

Alice (prover);
x
𝑧𝑧 = 𝑥𝑥2 mod N
𝑦𝑦1, … ,𝑦𝑦𝑘𝑘

(random)

M1,…Mk where 𝑀𝑀𝑖𝑖 = 𝑦𝑦𝑖𝑖2𝑧𝑧 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁

𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝑫𝑫 𝒄𝒄 = 𝒄𝒄𝟏𝟏, … . , 𝒄𝒄𝒌𝒌 = 𝑯𝑯(z,M1,…Mk)

Responses r1,…,rk where 𝒓𝒓𝒊𝒊 = � 𝒚𝒚𝒊𝒊 𝒊𝒊𝒊𝒊 𝒄𝒄𝒊𝒊 = 𝟎𝟎
𝒚𝒚𝒊𝒊𝑥𝑥 𝑖𝑖𝑖𝑖 𝒄𝒄𝒊𝒊 = 1

𝑫𝑫𝒄𝒄𝒄𝒄𝒊𝒊𝑫𝑫𝒊𝒊𝑫𝑫𝒄𝒄 𝒅𝒅 = �
𝒊𝒊

𝒅𝒅𝒊𝒊 𝑽𝑽𝒄𝒄𝒄𝒄𝒓𝒓𝒄𝒄 𝒅𝒅𝒊𝒊 = �
𝟏𝟏 𝒊𝒊𝒊𝒊 𝒄𝒄𝒊𝒊 = 𝟎𝟎 𝒄𝒄𝒄𝒄𝒅𝒅𝑴𝑴𝒊𝒊 = 𝒓𝒓𝒊𝒊𝟐𝟐𝒛𝒛 mod N
𝟏𝟏 𝒊𝒊𝒊𝒊 𝒄𝒄𝒊𝒊 = 𝟏𝟏 𝒄𝒄𝒄𝒄𝒅𝒅𝑴𝑴𝒊𝒊 = 𝒓𝒓𝒊𝒊𝟐𝟐 mod N
0 𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖𝑜𝑜𝑜𝑜

Soundness: If the statement is false a malicious PPT prover should not be able to
produce a proof that Bob accepts.

Definition: Call a random oracle query
𝑯𝑯(M1,…Mk) lucky if Alice can respond to all
challenges. Let Lj=1 if and only if query j is
lucky.

Fact: 𝐏𝐏𝐏𝐏 𝑳𝑳𝒋𝒋 = 𝟏𝟏 |𝑳𝑳𝟏𝟏, … ,𝑳𝑳𝒋𝒋 ≠ 𝟏𝟏 ≤ 𝟐𝟐−𝒌𝒌
Union Bound: 𝑷𝑷𝒓𝒓 ∃𝒋𝒋 ≤ 𝒒𝒒.𝑳𝑳𝒋𝒋 = 𝟏𝟏 ≤ 𝒒𝒒𝟐𝟐−𝒌𝒌

NIZK Security (Random Oracle Model)

• Simulator is given statement to proof (e.g., 𝑧𝑧 has a square root modulo N)
• Simulator must output a proof 𝜋𝜋′𝑧𝑧 and a random oracle H’

(H’ must look like a random oracle)

• Distinguisher D
• World 1 (Simulated): Given z, 𝜋𝜋′𝑧𝑧 and oracle access to H’
• World 2 (Honest): Given z, 𝜋𝜋𝑧𝑧 (honest proof) and oracle access to H
• Advantage: ADVD = 𝑃𝑃𝑜𝑜 𝐷𝐷𝐻𝐻 z, 𝜋𝜋𝑧𝑧 = 1 − 𝑃𝑃𝑜𝑜 𝐷𝐷𝐻𝐻𝐻 z, 𝜋𝜋′𝑧𝑧 = 1

• Zero-Knowledge: Any PPT distinguisher D should have negligible
advantage.

• NIZK proof 𝜋𝜋𝑧𝑧 is transferrable (contrast with interactive ZK proof)

13

Non-Interactive Zero-Knowledge Proof (NIZK)

14

Bob (verifier);
𝑧𝑧

Simulator
x
𝑧𝑧 = 𝑥𝑥2 mod N
c = (𝑐𝑐1, … , 𝑐𝑐𝑘𝑘)
𝑦𝑦1, … ,𝑦𝑦𝑘𝑘
(random)

M1,…Mk where 𝑀𝑀𝑖𝑖 = 𝑦𝑦𝑖𝑖2𝑧𝑧1−𝑐𝑐𝑖𝑖 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁

𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝑫𝑫 𝒄𝒄 = 𝒄𝒄𝟏𝟏, … . , 𝒄𝒄𝒌𝒌
Program 𝑯𝑯 M1,…Mk ≔ 𝒄𝒄

Responses r1,…,rk where 𝒓𝒓𝒊𝒊 = �𝒚𝒚𝒊𝒊 𝒊𝒊𝒊𝒊 𝒄𝒄𝒊𝒊 = 𝟎𝟎
𝒚𝒚𝒊𝒊 𝑖𝑖𝑖𝑖 𝒄𝒄𝒊𝒊 = 1

𝑫𝑫𝒄𝒄𝒄𝒄𝒊𝒊𝑫𝑫𝒊𝒊𝑫𝑫𝒄𝒄 𝒅𝒅 = �
𝒊𝒊

𝒅𝒅𝒊𝒊 𝑽𝑽𝒄𝒄𝒄𝒄𝒓𝒓𝒄𝒄 𝒅𝒅𝒊𝒊 = �
𝟏𝟏 𝒊𝒊𝒊𝒊 𝒄𝒄𝒊𝒊 = 𝟎𝟎 𝒄𝒄𝒄𝒄𝒅𝒅𝑴𝑴𝒊𝒊 = 𝒓𝒓𝒊𝒊𝟐𝟐𝒛𝒛 mod N
𝟏𝟏 𝒊𝒊𝒊𝒊 𝒄𝒄𝒊𝒊 = 𝟏𝟏 𝒄𝒄𝒄𝒄𝒅𝒅𝑴𝑴𝒊𝒊 = 𝒓𝒓𝒊𝒊𝟐𝟐 mod N
0 𝑚𝑚𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖𝑜𝑜𝑜𝑜

Simulator Power: Can program the random oracle

Σ-Protocols

• Prover Input: instance/claim x and witness w

• Verifier Input: Instance x

• Σ-Protocols: three-message structure
• Prover sends first message m=P1(x,w; r1)
• Verifier responds with random challenge c
• Prover sends response R=P2(x,w,r1,c; r2)
• Verifier outputs decision V(x,m,c,R)
• Completeness: If w is a valid witness for instance x then Pr[V(x,c,R)=1]=1
• Soundness: If the claim x is false then V(x,c,R)=0 with probability at least ½
• Zero-Knowledge: Simulator can produce computationally indistinguishable transcript

15

Σ-Protocols and Fiat-Shamir Transform

• Convert Σ-Protocols into Non-Interactive ZK Proof
• Prover Input: instance/claim x and witness w
• Verifier Input: Instance x
• Step 1: Prover generates first messages for n instances of the protocol

• mi = P1(x,w; ri) for each i=1 to n

• Step 2: Prover uses random oracle to extract random coins zj=H(x,j, m1,….,mn) for
j=1 to n

• Prover samples challenges c1,…,cn using random strings z1,…,zn i.e., ci=SampleChallenge(zi)

• Step 3: Prover computes responses R1,…,Rn
• RiP2(x,w,ri,ci)

• Step 4: Prover outputs the proof 𝑚𝑚𝑖𝑖 , 𝑐𝑐𝑖𝑖 , 𝑧𝑧𝑖𝑖 𝑖𝑖≤𝑛𝑛

16

Σ-Protocols and Fiat-Shamir Transform

• Step 1: Prover generates first messages for n instances of the protocol
• mi = P1(x,w; ri) for each i=1 to n

• Step 2: Prover uses random oracle to extract random coins zi=H(x,i, m1,….,mn) for i=1 to n
• Prover samples challenges c1,…,cn using random strings z1,…,zn i.e., ci=SampleChallenge(zi)

• Step 3: Prover computes responses R1,…,Rn
• RiP2(x,w,ri,ci)

• Step 4: Prover outputs the proof 𝜋𝜋 = 𝑚𝑚𝑖𝑖 , 𝑐𝑐𝑖𝑖 ,𝑅𝑅𝑖𝑖 𝑖𝑖≤𝑛𝑛
Verifier: VNI(x,𝜋𝜋) check that for all 𝑖𝑖 ≤ 𝑛𝑛

1. V(x, 𝑚𝑚𝑖𝑖 , 𝑐𝑐𝑖𝑖 ,𝑅𝑅𝑖𝑖)=1 and
2. ci=SampleChallenge(zi) where zi=H(x,i, m1,….,mn)

17

Σ-Protocols and Fiat-Shamir Transform

• Step 1: Prover generates first messages for n instances of the protocol
• mi = P1(x,w; ri) for each i=1 to n

• Step 2: Prover uses random oracle to extract random coins zi=H(x,i, m1,….,mn) for i=1 to
n

• Prover samples challenges c1,…,cn using random strings z1,…,zn i.e., ci=SampleChallenge(zi)
• Step 3: Prover computes responses R1,…,Rn

• RiP2(x,w,ri,ci)
• Step 4: Prover outputs the proof 𝜋𝜋 = 𝑚𝑚𝑖𝑖 , 𝑐𝑐𝑖𝑖 ,𝑅𝑅𝑖𝑖 𝑖𝑖≤𝑛𝑛
Zero-Knowledge (Idea):
Step 1: Run simulator for Σ n-times to obtain n transcripts 𝑚𝑚𝑖𝑖 , 𝑐𝑐𝑖𝑖 ,𝑅𝑅𝑖𝑖 for each 𝑖𝑖 ≤ 𝑛𝑛.
Step 2: Program the random oracle so that H(x,i, m1,….,mn)=zi where
ci=SampleChallenge(zi)

18

Zero-Knowledge Proof for all NP

• CLIQUE
• Input: Graph G=(V,E) and integer k>0
• Question: Does G have a clique of size k?

• CLIQUE is NP-Complete
• Any problem in NP reduces to CLIQUE
• A zero-knowledge proof for CLIQUE yields proof for all of NP via reduction

• Prover:
• Knows k vertices v1,…,vk in G=(V,E) that form a clique

19

Zero-Knowledge Proof for all NP

20

A B

C D

E G
F

H

IJ

K
L

𝜎𝜎 𝐺𝐺

Adjacency matrix 𝐴𝐴𝜎𝜎 𝐺𝐺

0 ⋯ 1
⋮ ⋱ ⋮
1 ⋯ 0

A L

L

A

Commitment to 𝐴𝐴𝜎𝜎 𝐺𝐺

𝐶𝐶𝑚𝑚𝑚𝑚 0, 𝑜𝑜𝐴𝐴,𝐴𝐴 ⋯ 𝐶𝐶𝑚𝑚𝑚𝑚 1, 𝑜𝑜𝐴𝐴,𝐿𝐿
⋮ ⋱ ⋮

𝐶𝐶𝑚𝑚𝑚𝑚 1, 𝑜𝑜𝐿𝐿,𝐴𝐴 ⋯ 𝐶𝐶𝑚𝑚𝑚𝑚 0, 𝑜𝑜𝐿𝐿,𝐿𝐿

A L

L

A

Zero-Knowledge Proof for all NP

• Prover:
• Knows k vertices v1,…,vk in G=(V,E) that for a clique

1. Prover commits to a permutation 𝜎𝜎 over V
2. Prover commits to the adjacency matrix 𝐴𝐴𝜎𝜎 𝐺𝐺 of 𝜎𝜎(G)
3. Verifier sends challenge c (either 1 or 0)
4. If c=0 then prover reveals 𝜎𝜎 and adjacency matrix 𝐴𝐴𝜎𝜎 𝐺𝐺

1. Verifier confirms that adjacency matrix is correct for 𝜎𝜎(G)
5. If c=1 then prover reveals the submatrix formed by first

rows/columns of 𝐴𝐴𝜎𝜎 𝐺𝐺 corresponding to 𝜎𝜎 𝑣𝑣1 , … ,𝜎𝜎 𝑣𝑣𝑘𝑘
1. Verifier confirms that the submatrix forms a clique.

21

A B

C D

E G
F

H

IJ

K
L

Zero-Knowledge Proof for all NP

• Completeness: Honest prover can always make honest verifier accept
• Soundness: If prover commits to adjacency matrix 𝐴𝐴𝜎𝜎 𝐺𝐺 of 𝜎𝜎(G) and

can reveal a clique in submatrix of 𝐴𝐴𝜎𝜎 𝐺𝐺 then G itself contains a k-
clique. Proof invokes binding property of commitment scheme.

• Zero-Knowledge: Simulator cheats and either commits to wrong
adjacency matrix or cannot reveal clique. Repeat until we produce a
successful transcript. Indistinguishability of transcripts follows from
hiding property of commitment scheme.

22

Secure Multiparty Computation (Adversary
Models)
• Semi-Honest (“honest, but curious”)

• All parties follow protocol instructions, but…
• dishonest parties may be curious to violate privacy of others when possible

• Fully Malicious Model
• Adversarial Parties may deviate from the protocol arbitrarily

• Quit unexpectedly
• Send different messages

• It is much harder to achieve security in the fully malicious model
• Convert Secure Semi-Honest Protocol into Secure Protocol in Fully

Malicious Mode?
• Tool: Zero-Knowledge Proofs
• Prove: My behavior in the protocol is consistent with honest party

23

CS 555:Week 15: Hot Topics

24

Shor’s Algorithm

• Quantum Algorithm to Factor Integers

• Running Time
O((log N)2(log log N)(log log log N))

• Building Quantum Circuits is challenging, but...
• RSA is broken if we build a quantum computer

• Current record: Factor 21=3x7 with Shor’s Algorithm
• Source: Experimental Realisation of Shor’s Quatum Factoring Algorithm Using

Quibit Recycling (https://arxiv.org/pdf/1111.4147.pdf)

https://en.wikipedia.org/wiki/Shor%27s_algorithm

https://arxiv.org/pdf/1111.4147.pdf
https://en.wikipedia.org/wiki/Shor's_algorithm

Quantum Resistant Crypto

• Symmetric key primitives are believed to be safe
• …but Grover’s Algorithm does speed up brute-force attacks

significantly (2𝑛𝑛 𝑣𝑣𝑜𝑜 2𝑛𝑛)
• Solution: Double Key Lengths

• Integer Factoring, Discrete Log and Elliptic Curve Discrete Log are not
safe

• All public key encryption algorithms we have covered
• RSA, RSA-OAEP, El-Gamal,….

https://en.wikipedia.org/wiki/Lattice-based_cryptography

https://en.wikipedia.org/wiki/Lattice-based_cryptography

Post Quantum Cryptography

• Symmetric key primitives are believed to be safe
• …but Grover’s Algorithm does speed up brute-force attacks

significantly (2𝑛𝑛 𝑣𝑣𝑜𝑜 2𝑛𝑛)
• Solution: Double Key Lengths

• Hashed Based Signatures
• Lamport Signatures and extensions

• Lattice Based Cryptography is a promising approach for Quantum
Resistant Public Key Crypto

• Ring-LWE
• NTRU

https://security.googleblog.com/2016/07/experimenting-with-post-quantum.html

https://security.googleblog.com/2016/07/experimenting-with-post-quantum.html

Lattices

• Basis: 𝐵𝐵 = 𝒃𝒃1, … ,𝒃𝒃𝑛𝑛
• Lattice:

L B ≔ ∑𝑖𝑖≤𝑛𝑛 𝑎𝑎𝑖𝑖 𝒃𝒃𝑖𝑖 𝑎𝑎1, … , 𝑎𝑎𝑛𝑛 ∈ ℤ

• Example: 𝒃𝒃1 = (1,5) and 𝒃𝒃2 = (5,0)
• 0,25 = −5𝒃𝒃1 + 𝒃𝒃2 is in the lattice L B
• 0, 2 is not in the lattice L B

• Shortest Vector Problem: Find shortest
(non-zero) vector in L B

28

Each 𝒃𝒃𝑖𝑖 is a vector 𝒃𝒃𝑖𝑖 ∈ ℝ𝑛𝑛 , span 𝒃𝒃1, … ,𝒃𝒃𝑛𝑛 = ℝ𝑛𝑛

integers

Usually defined using Euclidean Norm

Lattices

• Basis: 𝐵𝐵 = 𝒃𝒃1, … ,𝒃𝒃𝑛𝑛
• Lattice:

L B ≔ ∑𝑖𝑖≤𝑛𝑛 𝑎𝑎𝑖𝑖 𝒃𝒃𝑖𝑖 𝑎𝑎1, … ,𝑎𝑎𝑛𝑛 ∈ ℤ

• Example: 𝒃𝒃1 = (1,5) and 𝒃𝒃2 = (5,0)
• 0,25 = −5𝒃𝒃1 + 𝒃𝒃2 is in the lattice L B
• 0, 2 is not in the lattice L B

• Closest Vector Problem: Given 𝒗𝒗 ∈ ℝ𝑛𝑛

find vector in L B closest to 𝒗𝒗
Example: 0,25 is lattice point closest to
𝒗𝒗 = (1,24)

29

Each 𝒃𝒃𝑖𝑖 is a vector 𝒃𝒃𝑖𝑖 ∈ ℝ𝑛𝑛 , span 𝒃𝒃1, … ,𝒃𝒃𝑛𝑛 = ℝ𝑛𝑛

integers

Hard Lattice Problems

• Shortest Vector Problem: Find shortest (non-zero) vector in L B

• Closest Vector Problem: Given 𝒗𝒗 ∈ ℝ𝑛𝑛 find vector in L B closest to 𝒗𝒗

• Approximation versions
• Relax requirement to find shortest/closest vector

• No known (quantum) algorithm to solve above problems
• Even approximation is hard
• Conjectured to be ``average case” hard (needed for crypto)

30

GGH Encryption Scheme

• Goldreich-Goldwasser-Halevi (GGH)
• Security Assumption (Lattices): Closest Vector Problem is Hard

• No known quantum algorithm breaks the assumption

• Private Key: Matrix B and a unimodular matrix U
• 𝐵𝐵 = 𝒃𝒃1, … ,𝒃𝒃𝑛𝑛 is the basis of a lattice L with ``nice properties”

• All vectors 𝒃𝒃𝑖𝑖 are short and nearly orthogonal e.g., inner product 𝒃𝒃𝑖𝑖 ,𝒃𝒃𝑗𝑗 is small

• Public Key: 𝐵𝐵𝐻 = 𝑈𝑈𝐵𝐵
• 𝐵𝐵𝐻 is a second basis for the lattice L

31

GGH Encryption Scheme

• Private Key: Matrix B and a unimodular matrix U
• 𝐵𝐵 = 𝒃𝒃1, … ,𝒃𝒃𝑛𝑛 is the basis of a lattice L with ``nice properties”

• All vectors 𝒃𝒃𝑖𝑖 are short and nearly orthogonal e.g., inner product 𝒃𝒃𝑖𝑖 ,𝒃𝒃𝑗𝑗 is small

• Public Key: 𝐵𝐵𝐻 = 𝑈𝑈𝐵𝐵
• 𝐵𝐵𝐻 = 𝒃𝒃1′, … ,𝒃𝒃𝑛𝑛′ is a second basis for the lattice L

Encryption: message m = 𝑚𝑚1, … ,𝑚𝑚𝑛𝑛 with each −M < 𝑚𝑚𝑖𝑖 < 𝑀𝑀
1. Compute 𝑣𝑣 = 𝑚𝑚 ⋅ 𝐵𝐵𝐻= ∑𝑖𝑖≤𝑛𝑛𝑚𝑚𝑖𝑖 𝒃𝒃𝑖𝑖′
2. Pick a random error vector 𝑜𝑜 with small norm
3. Return 𝑐𝑐 = 𝑣𝑣 + 𝑜𝑜

32

GGH Encryption Scheme

• Private Key: Matrix B and a unimodular matrix U
• 𝐵𝐵 = 𝒃𝒃1, … ,𝒃𝒃𝑛𝑛 is the basis of a lattice L with ``nice properties”

• All vectors 𝒃𝒃𝑖𝑖 are short and nearly orthogonal e.g., inner product 𝒃𝒃𝑖𝑖 ,𝒃𝒃𝑗𝑗 is small

• Public Key: 𝐵𝐵𝐻 = 𝑈𝑈𝐵𝐵
• 𝐵𝐵𝐻 = 𝒃𝒃1′, … ,𝒃𝒃𝑛𝑛′ is a second basis for the lattice L

Decryption: ciphertext 𝑐𝑐 = 𝑣𝑣 + 𝑜𝑜 = 𝑜𝑜 + 𝑚𝑚 ⋅ 𝐵𝐵𝐻= 𝑜𝑜 + 𝑚𝑚 ⋅ 𝑈𝑈𝐵𝐵
Compute y = 𝑐𝑐 ⋅ 𝐵𝐵−1= 𝑚𝑚 ⋅ 𝑈𝑈 + 𝑜𝑜 ⋅ 𝐵𝐵−1

Babai Rounding Technique Removes small error term 𝑜𝑜 ⋅ 𝐵𝐵−1 from y
Return 𝑚𝑚 = 𝑦𝑦 − 𝑜𝑜 ⋅ 𝐵𝐵−1 ⋅ 𝑈𝑈−1 = 𝑚𝑚 ⋅ 𝑈𝑈 ⋅ 𝑈𝑈−1

33

GGH Encryption Scheme

• Private Key: Matrix B and a unimodular matrix U
• 𝐵𝐵 = 𝒃𝒃1, … ,𝒃𝒃𝑛𝑛 is the basis of a lattice L with ``nice properties”

• All vectors 𝒃𝒃𝑖𝑖 are short and nearly orthogonal e.g., inner product 𝒃𝒃𝑖𝑖 ,𝒃𝒃𝑗𝑗 is small

• Public Key: 𝐵𝐵𝐻 = 𝑈𝑈𝐵𝐵
• 𝐵𝐵𝐻 = 𝒃𝒃1′, … ,𝒃𝒃𝑛𝑛′ is a second basis for the lattice L

Design Key Encapsulation Mechanism from GGH or other schemes
like NTRU
• CPA/CCA-security

34

Fully Homomorphic Encryption (FHE)

• Idea: Alice sends Bob 𝐸𝐸𝑛𝑛𝑐𝑐𝑃𝑃𝑃𝑃𝐴𝐴 𝑥𝑥1 , … , 𝐸𝐸𝑛𝑛𝑐𝑐𝑃𝑃𝑃𝑃𝐴𝐴 𝑥𝑥𝑛𝑛
𝐸𝐸𝑛𝑛𝑐𝑐𝑃𝑃𝑃𝑃𝐴𝐴 𝑥𝑥𝑖𝑖 + 𝐸𝐸𝑛𝑛𝑐𝑐𝑃𝑃𝑃𝑃𝐴𝐴 𝑥𝑥𝑗𝑗 = 𝐸𝐸𝑛𝑛𝑐𝑐𝑃𝑃𝑃𝑃𝐴𝐴 𝑥𝑥𝑖𝑖 + 𝑥𝑥𝑗𝑗

and
𝐸𝐸𝑛𝑛𝑐𝑐𝑃𝑃𝑃𝑃𝐴𝐴 𝑥𝑥𝑖𝑖 × 𝐸𝐸𝑛𝑛𝑐𝑐𝑃𝑃𝑃𝑃𝐴𝐴 𝑥𝑥𝑗𝑗 = 𝐸𝐸𝑛𝑛𝑐𝑐𝑃𝑃𝑃𝑃𝐴𝐴 𝑥𝑥𝑖𝑖 × 𝑥𝑥𝑗𝑗

• Bob cannot decrypt messages, but given a circuit C can compute
𝐸𝐸𝑛𝑛𝑐𝑐𝑃𝑃𝑃𝑃𝐴𝐴 𝐶𝐶 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛

• Proposed Application: Export confidential computation to cloud

https://simons.berkeley.edu/talks/shai-halevi-2015-05-18a (Lecture by Shai Halevi)

https://simons.berkeley.edu/talks/shai-halevi-2015-05-18a

Fully Homomorphic Encryption (FHE)

• Idea: Alice sends Bob 𝐸𝐸𝑛𝑛𝑐𝑐𝑃𝑃𝑃𝑃𝐴𝐴 𝑥𝑥1 , … , 𝐸𝐸𝑛𝑛𝑐𝑐𝑃𝑃𝑃𝑃𝐴𝐴 𝑥𝑥𝑛𝑛
• Bob cannot decrypt messages, but given a circuit C can compute

𝐸𝐸𝑛𝑛𝑐𝑐𝑃𝑃𝑃𝑃𝐴𝐴 𝐶𝐶 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛
• We now have candidate constructions!

• Encryption/Decryption are polynomial time
• …but expensive in practice.
• Proved to be CPA-Secure under plausible assumptions

• Remark 1: Partially Homomorphic Encryption schemes cannot be
CCA-Secure. Why not?

https://simons.berkeley.edu/talks/shai-halevi-2015-05-18a (Lecture by Shai Halevi)

https://simons.berkeley.edu/talks/shai-halevi-2015-05-18a

Partially Homomorphic Encryption

• Plain RSA is multiplicatively homomorphic
𝐸𝐸𝑛𝑛𝑐𝑐𝑃𝑃𝑃𝑃𝐴𝐴 𝑥𝑥𝑖𝑖 × 𝐸𝐸𝑛𝑛𝑐𝑐𝑃𝑃𝑃𝑃𝐴𝐴 𝑥𝑥𝑗𝑗 = 𝐸𝐸𝑛𝑛𝑐𝑐𝑃𝑃𝑃𝑃𝐴𝐴 𝑥𝑥𝑖𝑖 × 𝑥𝑥𝑗𝑗

• But not additively homomorphic

• Pallier Cryptosystem
𝐸𝐸𝑛𝑛𝑐𝑐𝑃𝑃𝑃𝑃𝐴𝐴 𝑥𝑥𝑖𝑖 × 𝐸𝐸𝑛𝑛𝑐𝑐𝑃𝑃𝑃𝑃𝐴𝐴 𝑥𝑥𝑗𝑗 = 𝐸𝐸𝑛𝑛𝑐𝑐𝑃𝑃𝑃𝑃𝐴𝐴 𝑥𝑥𝑖𝑖 + 𝑥𝑥𝑗𝑗

𝐸𝐸𝑛𝑛𝑐𝑐𝑃𝑃𝑃𝑃𝐴𝐴 𝑥𝑥𝑖𝑖
𝑘𝑘

= 𝐸𝐸𝑛𝑛𝑐𝑐𝑃𝑃𝑃𝑃𝐴𝐴 𝑘𝑘 × 𝑥𝑥𝑗𝑗
• Not same as FHE, but still useful in multiparty computation

https://en.wikipedia.org/wiki/Paillier_cryptosystem

https://en.wikipedia.org/wiki/Paillier_cryptosystem

Program Obfuscation (Theoretical Cryptography)

• Program Obfuscation
• Idea: Alice obfuscates a circuit C and sends C to Bob
• Bob can run C, but cannot learn “anything else”
• Lots of applications…

• Indistinguishability Obfuscation
• Theoretically Possible

• In the sense that 𝑖𝑖 𝑛𝑛 = 2100000000𝑛𝑛100000 is technically polynomial time

• Secure Hardware Module (e.g., SGX) can be viewed as a way to
accomplish this in practice

• Must trust third party (e.g., Intel)

https://simons.berkeley.edu/talks/amit-sahai-2015-05-19a (Lecture by Amit Sahai)

https://simons.berkeley.edu/talks/amit-sahai-2015-05-19a

Differential Privacy

Release Aggregate Statistics?
• Question 1: How many people in this room have cancer?

• Question 2: How many students in this room have cancer?

• The difference (A1-A2) exposes my answer!

Differential Privacy: Definition
• n people
• Neighboring datasets:

• Replace x with x’

Name CS Prof? … STD?

J Blocki +1 … -1

[DMNS06, DKMMN06]

D

Name CS Prof? … STD?

Bjork -1 … ???

D’
41

Differential Privacy vs Cryptography

• 𝜀𝜀 is not negligibly small.
• We are not claiming that, when D and D’ are neighboring datasets,

𝑨𝑨𝒄𝒄𝒄𝒄(𝑫𝑫) ≡𝐶𝐶 𝑨𝑨𝒄𝒄𝒄𝒄(𝑫𝑫′)
• Otherwise, we would have 𝑨𝑨𝒄𝒄𝒄𝒄(𝑿𝑿) ≡𝐶𝐶 𝑨𝑨𝒄𝒄𝒄𝒄(𝒀𝒀′) for any two data-sets X

and Y.
• Why?

• Cryptography
• Insiders/Outsiders
• Only those with decryption key(s) can reveal secret
• Multiparty Computation: Alice and Bob learn nothing other than f(x,y)

42

Theorem: Let D = 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛 ∈ 0,1 𝑛𝑛

A 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛 = �
𝑖𝑖=1

𝑛𝑛

𝑥𝑥𝑖𝑖 + Lap
1
𝜀𝜀

,

satisfies 𝜀𝜀, 0 -differential privacy. (True Answer, Noise)

Traditional Differential Privacy Mechanism

43

Resources

• $99

Free PDF:
https://www.cis.upenn.edu/~aaroth/Papers/privacybook.pdf

https://www.cis.upenn.edu/%7Eaaroth/Papers/privacybook.pdf

Password Storage and Key Derivation Functions

46

Username

jblocki

+

jblocki, 123456

SHA1(12345689d978034a3f6)=85e23cfe
0021f584e3db87aa72630a9a2345c062

Hash

85e23cfe0021f58
4e3db87aa72630
a9a2345c062

Salt

89d978034a3f6

Offline Attacks: A Common Problem

• Password breaches at major companies have affected millions billions
of user accounts.

Offline Attacks: A Common Problem

• Password breaches at major companies have affected millions billions
of user accounts.

Goal: Moderately Expensive Hash Function

Fast on PC and
Expensive on ASIC?

Attempt 1: Hash Iteration

• BCRYPT

• PBKDF2 100,000 SHA256 computations
(iterative)

Estimated Cost on ASIC: $1 per billion password guesses [BS14]

The Challenge

User Patience

Disclaimer: This slide is entirely for humorous effect.

Time

St
an

da
rd

 P
at

ie
nc

e
U

ni
ts

U
SD

 $

Memory Hard Function (MHF)

• Intuition: computation costs dominated by memory costs
vs.

• Data Independent Memory Hard Function (iMHF)
• Memory access pattern should not depend on input

https://password-hashing.net/

(2013-2015)

https://password-hashing.net/

https://password-hashing.net/

(2013-2015)

We recommend that
you use Argon2…

https://password-hashing.net/

https://password-hashing.net/

(2013-2015)

We recommend that
you use Argon2…
There are two main versions of
Argon2, Argon2i and Argon2d.
Argon2i is the safest against side-
channel attacks

https://password-hashing.net/

Depth-Robustness: The Key Property

Necessary [AB16] and sufficient
[ABP16] for secure iMHFs

Question

Are existing iMHF candidates based on depth-
robust DAGs?

Answer: No

Can we build a secure iMHF?

Github: https://github.com/Practical-Graphs/Argon2-Practical-Graph

https://github.com/Practical-Graphs/Argon2-Practical-Graph

	Reminder: Course Feedback
	Announcements
	Final Exam
	Cryptography�CS 555
	Recap: Zero-Knowledge Proof
	Zero-Knowledge Proof for Square Root mod N
	Zero-Knowledge Proof vs. Digital Signature
	Non-Interactive Zero-Knowledge Proof (NIZK)
	Non-Interactive Zero-Knowledge Proof (NIZK)
	Non-Interactive Zero-Knowledge Proof (NIZK)
	Non-Interactive Zero-Knowledge Proof (NIZK)
	Non-Interactive Zero-Knowledge Proof (NIZK)
	NIZK Security (Random Oracle Model)
	Non-Interactive Zero-Knowledge Proof (NIZK)
	Σ-Protocols
	Σ-Protocols and Fiat-Shamir Transform
	Σ-Protocols and Fiat-Shamir Transform
	Σ-Protocols and Fiat-Shamir Transform
	Zero-Knowledge Proof for all NP
	Zero-Knowledge Proof for all NP
	Zero-Knowledge Proof for all NP
	Zero-Knowledge Proof for all NP
	Secure Multiparty Computation (Adversary Models)
	CS 555:Week 15: Hot Topics
	Shor’s Algorithm
	Quantum Resistant Crypto
	Post Quantum Cryptography
	Lattices
	Lattices
	Hard Lattice Problems
	GGH Encryption Scheme
	GGH Encryption Scheme
	GGH Encryption Scheme
	GGH Encryption Scheme
	Fully Homomorphic Encryption (FHE)
	Fully Homomorphic Encryption (FHE)
	Partially Homomorphic Encryption
	Program Obfuscation (Theoretical Cryptography)
	Differential Privacy
	Release Aggregate Statistics?
	Differential Privacy: Definition
	Differential Privacy vs Cryptography
	Traditional Differential Privacy Mechanism
	Slide Number 44
	Resources
	 Password Storage and Key Derivation Functions
	Offline Attacks: A Common Problem
	Offline Attacks: A Common Problem
	Goal: Moderately Expensive Hash Function
	Attempt 1: Hash Iteration
	The Challenge
	Memory Hard Function (MHF)
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Depth-Robustness: The Key Property
	Question
	Answer: No
	Can we build a secure iMHF?

