Course Feedback

Course Summary						
Course Code	Course Title	Survey Start Date	Survey End Date	Report Access Start	Response Rate	
wl.202120.CS.55500. FNY.18101	Cryptography	4/19/2021 9:00 AM	5/2/2021 11:59 PM	5/12/2021 12:00 AM	0.00% (0/8)	

- Your feedback is valuable to me! What did you like about the course? What could be improved? Let me know! I carefully read through any comments after the semester is over.
- Your feedback is anonymous and will not impact your grade (I cannot view your feedback until after grades are entered).

Cryptography CS 555

Week 14:

- Multiparty Computation
- Yao's Garbled Circuits
- Zero-Knowledge Proofs
- Shamir Secret Sharing

Homework 5 due April 29th at 11:59 PM on Gradescope

Recap: Oblivious Transfer (OT)

• 1 out of 2 OT

- Alice has two messages m₀ and m₁
- At the end of the protocol
 - Bob gets exactly one of m₀ and m₁
 - Alice does not know which one, and Bob learns nothing about other message
- Oblivious Transfer with a Trusted Third Party

Yao's Garbled Circuits

- Alice and Bob want to compute a function $f(a_1, \dots, a_m, b_1, \dots, b_n)$
- Alice does not want to reveal her secret inputs a_1, \ldots, a_m
- Bob does not want to reveal his secret inputs b_1, \ldots, b_n
- Assume that Alice/Bob are semi-honest (honest, but curious)
 - They will faithfully follow the Garbled Circuit Protocol, but afterwards they are curious to learn about the other's secret inputs
 - Alice/Bob should learn nothing additional except for $f(a_1, ..., a_m, b_1, ..., b_n)$
- MPC Security formalized by simulator
 - Alice's Transcript: All of the messages she sends/receives as part of the protocol
 - Simulator Inputs: a_1, \dots, a_m and $f(a_1, \dots, a_m, b_1, \dots, b_n)$
 - Simulator S_A is not given Bob's input
 - Outputs transcript which is computationally indistinguishable from Alice's real transcript
 - Conclusion: Alice learns nothing aside from a_1, \dots, a_m and $f(a_1, \dots, a_m, b_1, \dots, b_n)$

Yao's Garbled Circuits

- Alice and Bob want to compute a function $f(a_1, \dots, a_m, b_1, \dots, b_n)$
- Alice does not want to reveal her secret inputs a_1, \ldots, a_m
- Bob does not want to reveal his secret inputs b_1, \ldots, b_n
- Assume that Alice/Bob are semi-honest (honest, but curious)
 - They will faithfully follow the Garbled Circuit Protocol, but afterwards they are curious to learn about the other's secret inputs
 - Alice/Bob should learn nothing additional except for $f(a_1, ..., a_m, b_1, ..., b_n)$
- MPC Security formalized by simulator
 - Bob's Transcript: All of the messages she sends/receives as part of the protocol
 - Simulator Inputs: b_1, \dots, b_n and $f(a_1, \dots, a_m, b_1, \dots, b_n)$
 - Simulator S_B is not given Alice's input
 - Outputs transcript which is computationally indistinguishable from Bob's real transcript
 - Conclusion: Bob learns nothing aside from b_1, \dots, b_n and $f(a_1, \dots, a_m, b_1, \dots, b_n)$

Yao's Protocol

Vitaly Shmatikov

Yao's Protocol

- Compute any function securely
 - ... in the semi-honest model
- First, convert the function into a boolean circuit

Overview:

- 1. Alice prepares "garbled" version C' of C
- 2. Sends "encrypted" form **x'** of her input **x**
- 3. Allows Bob to obtain "encrypted" form y' of his input y via OT
- 4. Bob can compute from C', x', y' the "encryption" z' of z=C(x,y)
- 5. Bob sends z' to Alice and she decrypts and reveals to him z

Crucial properties:

- 1. Bob never sees Alice's input x in unencrypted form.
- 2. Bob can obtain encryption of y without Alice learning y.
- 3. Neither party learns intermediate values.
- 4. Remains secure even if parties try to cheat.

Intuition

Intuition

1: Pick Random Keys For Each Wire

- Next, evaluate <u>one gate</u> securely
 - Later, generalize to the entire circuit
- Alice picks two random keys for each wire
 - One key corresponds to "0", the other to "1"
 - 6 keys in total for a gate with 2 input wires

2: Encrypt Truth Table

 Alice encrypts each row of the truth table by encrypting the output-wire key with the corresponding pair of input-wire keys

3: Send Garbled Truth Table

• Alice randomly permutes ("garbles") encrypted truth table and sends it to Bob

4: Send Keys For Alice's Inputs

- Alice sends the key corresponding to her input bit
 - Keys are random, so Bob does not learn what this bit is

5: Use OT on Keys for Bob's Input

- Alice and Bob run oblivious transfer protocol
 - Alice's input is the two keys corresponding to Bob's wire
 - Bob's input into OT is simply his 1-bit input on that wire

6: Evaluate Garbled Gate

- Using the two keys that he learned, Bob decrypts exactly one of the output-wire keys
 - Bob does not learn if this key corresponds to 0 or 1
 - Why is this important?

7: Evaluate Entire Circuit

- In this way, Bob evaluates entire garbled circuit
 - For each wire in the circuit, Bob learns only one key
 - It corresponds to 0 or 1 (Bob does not know which)
 - Therefore, Bob does not learn intermediate values (why?)

• Bob does not tell her intermediate wire keys (why?)

Alice's Input: a,b Bob's Input: c,d

$$f(a, b, c, d) = (a \land b) \lor (c \land d)$$

Alice's Input: a,b Bob's Input: c,d

 $f(a, b, c, d) = (a \land b) \lor (c \land d)$

Step 1: Alice picks keys for each wire $K_{a,0}, K_{b,0}, K_{c,0}, K_{d,0}, K_{e,0}, K_{f,0}, K_{g,0}$ $K_{a,1}, K_{b,1}, K_{c,1}, K_{d,1}, K_{e,1}, K_{f,1}, K_{g,1}$

Example Alice's Input: a,b Bob's Input: c,d $f(a, b, c, d) = (a \land b) \lor (c \land d)$ Step 2: Alice garbles each gate (+shuffle) $c_{e,1,1} = Enc_{K_{a,1}} \left(Enc_{K_{b,1}}(K_{e,1}) \right)$ $c_{e,0,1} = Enc_{K_{a,0}} \left(Enc_{K_{b,1}}(K_{e,0}) \right)$ $c_{e,0,0} = Enc_{K_{a,0}} \left(Enc_{K_{b,0}}(K_{e,0}) \right)$ $c_{e,1,0} = Enc_{K_{a,1}} \left(Enc_{K_{b,0}}(K_{e,0}) \right)$

If Alice forgets to shuffle then Bob would notice which ciphertext decrypts successfully, identify the corresponding row in the truth table and learn the corresponding wire values!

Example	
Alice's Input: a,b Bob's Input: c,d f(a,b,c,d) = (a/b)	$(b) \lor (c \land d)$
step 2. Alice gal ble	
$c_{g,0,0} = Enc_{K_{e,0}}$	$\left(Enc_{K_{f,0}}(K_{g,0}) \right)$
$c_{g,0,1} = Enc_{K_{e,0}}$	$\left(Enc_{K_{f,1}}(K_{g,1}) \right)$
$c_{g,1,0} = Enc_{\underline{K}_{e,1}}$	$\left(Enc_{K_{f,0}}(K_{g,1})\right)$
$c_{g,1,1} = Enc_{\underline{K}_{e,1}}$	$\left(Enc_{K_{f,1}}(K_{g,1})\right)$
$c_{g,0,0} = Enc_{K_{e,0}}$ $c_{g,0,1} = Enc_{K_{e,0}}$ $c_{g,1,0} = Enc_{K_{e,1}}$ $c_{g,1,1} = Enc_{K_{e,1}}$	$ \left\{ Enc_{K_{f,0}}(K_{g,0}) \right\} $ $ \left\{ Enc_{K_{f,1}}(K_{g,1}) \right\} $ $ \left\{ Enc_{K_{f,0}}(K_{g,1}) \right\} $ $ \left\{ Enc_{K_{f,1}}(K_{g,1}) \right\} $

Example
Alice's Input: a,b
Bob's Input: c,d

$$f(a, b, c, d) = (a \land b) \lor (c \land d)$$

Step 2: Alice garbles each gate (+shuffle)
 $c_{g,0,0} = Enc_{K_{e,0}} \left(Enc_{K_{f,0}}(K_{g,0}) \right)$
 $c_{g,1,1} = Enc_{K_{e,1}} \left(Enc_{K_{f,1}}(K_{g,1}) \right)$
 $c_{g,1,0} = Enc_{K_{e,1}} \left(Enc_{K_{f,0}}(K_{g,1}) \right)$
 $c_{g,0,1} = Enc_{K_{e,0}} \left(Enc_{K_{f,1}}(K_{g,1}) \right)$

Alice's Input: a,b Bob's Input: c,d $f(a, b, c, d) = (a \land b) \lor (c \land d)$ Step 2: Alice garbles each gate (gate f) $c_{f,0,0} = Enc_{K_{c,0}}(Enc_{K_{d,0}}(K_{f,0}))$ $c_{f,0,1} = Enc_{K_{c,0}}(Enc_{K_{d,1}}(K_{f,0}))$ $c_{f,1,0} = Enc_{K_{c,1}}(Enc_{K_{d,0}}(K_{f,0}))$ $c_{f,1,1} = Enc_{K_{c,1}}\left(Enc_{K_{d,1}}(K_{f,1})\right)$

Alice's Input: a,b Bob's Input: c,d $f(a, b, c, d) = (a \land b) \lor (c \land d)$ Step 2: Alice garbles each gate (+shuffle) $c_{f,1,0} = Enc_{K_{c,1}}(Enc_{K_{d,0}}(K_{f,0}))$ $c_{f,1,1} = Enc_{K_{c,1}}\left(Enc_{K_{d,1}}(K_{f,1})\right)$ $c_{f,0,0} = Enc_{K_{c,0}}(Enc_{K_{d,0}}(K_{f,0}))$ $c_{f,0,1} = Enc_{K_{c,0}}(Enc_{K_{d,1}}(K_{f,0}))$

Alice's Input: a,b Bob's Input: c,d $f(a, b, c, d) = (a \land b) \lor (c \land d)$ Step 3: Alice sends garbled circuit to Bob Gate e: *c*_{*e*,0,0}, *c*_{*e*,0,1}, *c*_{*e*,1,0}, *c*_{*e*,1,1} Gate f: *c*_{*f*,1,0}, *c*_{*f*,1,1}, *c*_{*f*,0,0}, *c*_{*f*,0,1} Gate g: *c*_{*g*,0,0}, *c*_{*g*,1,1}, *c*_{*g*,1,0}, *c*_{*g*,0,1} **Step 4:** Alice sends keys corresponding to her inputs

Example: a=0, b=1

Alice sends Bob $K_{a,0}$ and $K_{b,1}$

Alice's Input: a,b Bob's Input: c,d $f(a, b, c, d) = (a \land b) \lor (c \land d)$

Step 5: Alice and Bob run OT for each of Bob's input wires

Wire C OT:

Bob's Input: 1 if c=1; 0 otherwise

Alice's Input: $K_{c,0}$ and $K_{c,1}$

Bob's Output: $K_{c,0}$ if c=0; otherwise $K_{c,1}$

Alice's Output: Nothing

Alice's Input: a,b Bob's Input: c,d $f(a, b, c, d) = (a \land b) \lor (c \land d)$

Step 5: Alice and Bob run OT for each of Bob's input wires

Wire D OT:

Bob's Input: 1 if d=1; 0 otherwise

Alice's Input: $K_{d,0}$ and $K_{d,1}$

Bob's Output: $K_{d,0}$ if d=0; otherwise $K_{d,1}$

Alice's Output: Nothing

Example Alice's Input: a,b Bob's Input: c,d $f(a, b, c, d) = (a \land b) \lor (c \land d)$

Step 6: Bob evaluates the garbled circuit **Example:** a=0, b=1, c=1,d=1 Alice sent Bob $K_{a,0}$ and $K_{b,1}$ Bob obtains $K_{c,1}$ and $K_{d,1}$ from OTs

Alice's Input: a,b Bob's Input: c,d $f(a, b, c, d) = (a \land b) \lor (c \land d)$

Step 6: Bob evaluates the garbled circuit **Example:** a=0, b=1, c=1,d=1 Alice sent Bob $K_{a,0}$ and $K_{b,1}$ Bob obtains $K_{c,1}$ and $K_{d,1}$ from OTs Bob uses $K_{a,0}$ and $K_{b,1}$ to obtain $K_{e,0} = Dec_{K_{b,1}} \left(Dec_{K_{a,0}} (c_{e,0,1}) \right)$ Note 1: $c_{e,0,1} = Enc_{K_{a,0}}(Enc_{K_{b,1}}(K_{e,0}))$ so $Dec_{K_{h,1}}\left(Dec_{K_{a,0}}(c_{e,0,1})\right) = Dec_{K_{b}}$

$$e = a \wedge b$$

$$e = a \wedge b$$

$$a \wedge$$

Alice's Input: a,b Bob's Input: c,d $f(a, b, c, d) = (a \land b) \lor (c \land d)$

Alice's Input: a,b Bob's Input: c,d $f(a, b, c, d) = (a \land b) \lor (c \land d)$

Step 6: Bob evaluates the garbled circuit Example: a=0, b=1, c=1,d=1 Alice sent Bob $K_{a,0}$ and $K_{b,1}$ Bob obtains $K_{c,1}$ and $K_{d,1}$ from OTs Bob uses $K_{d,1}$ and $K_{c,1}$ to obtain $K_{f,1} = Dec_{K_{d,1}} \left(Dec_{K_{c,1}} (c_{f,1,1}) \right)$

Alice's Input: a,b Bob's Input: c,d $f(a, b, c, d) = (a \land b) \lor (c \land d)$

Step 6: Bob evaluates the garbled circuit Example: a=0, b=1, c=1,d=1 Alice sent Bob $K_{a,0}$ and $K_{b,1}$ Bob obtains $K_{c,1}$ and $K_{d,1}$ from OTs Bob uses $K_{e,0}$ and $K_{f,1}$ to obtain $K_{g,1} = Dec_{K_{f,1}} \left(Dec_{K_{e,0}}(c_{g,0,1}) \right)$

Alice's Input: a,b Bob's Input: c,d $f(a, b, c, d) = (a \land b) \lor (c \land d)$

Step 6: Bob \rightarrow Alices: output key(s) $K_{g,1}$ **Step 7:** Alice knows the output is g=1 (since she picked $K_{g,0}$ and $K_{g,1}$) Alice sends the output bit (g=1) back to Bob

Brief Discussion of Yao's Protocol

- Function must be converted into a circuit
 - For many functions, circuit will be huge
- If m gates in the circuit and n inputs from Bob, then need 4m encryptions and n oblivious transfers
 - Oblivious transfers for all inputs can be done in parallel
- Yao's construction gives a <u>constant-round</u> protocol for secure computation of <u>any</u> function in the semi-honest model
 - Number of rounds does not depend on the number of inputs or the size of the circuit!

Security (Semi-Honest Model)

- Security: Assuming that Alice and Bob are both semi-honest (follow the protocol) then there exist PPT simulators S_A and S_B s.t. Alice's Transcript $= \{A_n\}_{n \in \mathbb{N}} \equiv_C \{S_A(n, x, f(x, y))\}_{n \in \mathbb{N}}$ Bob's Transcript $= \{B_n\}_{n \in \mathbb{N}} \equiv_C \{S_B(n, y, f(x, y))\}_{n \in \mathbb{N}}$
- **Remark**: Simulator S_A is not given Bob's input (similarly, S_B is not given Alices's output $f_B(x, y)$)

Theorem (informal): If the oblivious transfer protocol is secure, and the underlying encryption scheme is CPA-secure then Yao's protocol is secure in the semi-honest adversary model.
Bob's Simulator

- Simulator Inputs: b_1, \dots, b_m and $f(a_1, \dots, a_m, b_1, \dots, b_n)$
- Step 1: Simulator picks keys $K_{w,0}$ and $K_{w,1}$ for each wire in circuit C_f
- Step 2: Simulator garbles circuit and outputs (honest) garbled circuit
- Step 3: Simulator outputs keys $K_{a_1,0},...,K_{a_m,0}$
 - this is what Bob would see in real protocol if Alice's input bits are 0's
 - Intuition: Distinguisher cannot tell the difference between $K_{a_1,0}$ and $K_{a_1,1}$ since both keys are picked randomly
- Step 4: Simulator runs OT protocols for each $i \leq n$
 - Sender's (Alice) Inputs: $K_{a_i,0}$ and $K_{a_i,1}$ (known to simulator)
 - Receiver's (Bob) Inputs: b_i

Bob's Simulator

- Simulator Inputs: b_1, \dots, b_m and $f(a_1, \dots, a_m, b_1, \dots, b_n)$
- ...
- Step 4: Simulator runs OT protocols for each $i \leq n$
 - Sender's (Alice) Inputs: $K_{a_i,0}$ and $K_{a_i,1}$ (known to simulator)
 - Receiver's (Bob) Inputs: b_i
 - Simulator Outputs Bob's transcript from each OT protocol
- Step 5:
 - Let g_i denote value of ith output wire o_i when evaluating $C_f(0, ..., 0, b_1, ..., b_n)$
 - Simulator outputs the key K_{o_i,g_i} for each output wire
 - Note: evaluating garbled circuit with given input keys yields key K_{o_i,g_i} for each output bit *i*
- Step 6: Simulator announces output bits $f(a_1, \dots, a_m, b_1, \dots, b_n)$
 - Note: These output bits are different than $C_f(0, ..., 0, b_1, ..., b_n)$
 - Distinguisher cannot tell the difference since the keys $K_{o_i,1-g_i}$ remains hidden (encrypted)
 - $K_{o_i,1-g_i}$ and K_{o_i,g_i} are just random strings

Course Feedback

Course Summary							
Course Code	Course Title	Survey Start Date	Survey End Date	Report Access Start	Response Rate		
wl.202120.CS.55500. FNY.18101	Cryptography	4/19/2021 9:00 AM	5/2/2021 11:59 PM	5/12/2021 12:00 AM	0.00% (0/8)		

- Your feedback is valuable to me! What did you like about the course? What could be improved? Let me know! I carefully read through any comments after the semester is over.
- Your feedback is anonymous and will not impact your grade (I cannot view your feedback until after grades are entered).

Recap: Yao's Garbled Circuits

- Alice Garbles circuit C to get C'
 - $K_{w,1}$ and $K_{w,0}$: True/False Key for Each wire w in C
 - Encrypted/Permuted Truth Table for each logical gate in C
 - Example for AND gate: f=c AND d
 - Given true key $K_{c,1}$ for wire c and false key $K_{d,0}$ for wire d should be able to recover false key $K_{f,0}$ for wire f

 $c_{f,1,0} = Enc_{K_{c,1}}(Enc_{K_{d,0}}(K_{f,0}))$

Recap: Yao's Garbled Circuits

- Alice Garbles circuit C to get C'
 - $K_{w,1}$ and $K_{w,0}$: True/False Key for Each wire w in C
 - Encrypted/Permuted Truth Table for each logical gate in C
 - Example for AND gate: f=c AND d
 - Given true key $K_{c,1}$ for wire c and false key $K_{d,0}$ for wire d should be able to recover false key $K_{f,0}$ for wire f

$$c_{f,1,0} = Enc_{K_{c,1}}\left(Enc_{K_{d,0}}(K_{f,0})\right)$$

- Alice directly sends Bob the relevant key for each of her input wires
- Alice/Bob use <u>Oblivious Transfer</u> so that Bob can learn the relevant keys for his input wires without revealing his inputs to Alice
- Bob can evaluate garbled circuit C' to obtain relevant keys for output wires and send them to Alice
- Alice can determine if each output key corresponds to true/false and send the final output back to Bob
- Protocol is secure in the semi-honest model of computation

Fully Malicious Security?

There is not much Bob can do besides following the protocol i.e., he obtains the garbled circuits + input keys and can only obtain one output key per wire.

What if Alice is malicious and does not follow the protocol?

- 1. Lie about the output bit(s) in the last step
- 2. Garble a different circuit C'

Example: C(x,y) = x AND y while C'(x,y) = x XOR y

Given C'(x,y) Alice learns Bob's input (y) directly

Alice could send back C(x,y), C'(x,y) or something entirely unrelated

Fully Malicious Security?

- 1. Alice could initially garble the wrong circuit C(x,y)=y.
 - 1. Example: Change OR gate to an XOR gate
- 2. Given output of C(x,y) Alice can still send Bob the output f(x,y).
- 3. Can Bob detect/prevent this?

Fix: Assume Alice and Bob have both committed to their inputs (x and y respectively) and the random coins (R_A and R_B respectively) they will use during the protocol:

Let $c_A = com(x, R_A; r_A)$ be Alice's commitment to x, R_A and $c_B = com(y, R_B; r_B)$.

- Alice and Bob can use a tool called zero-knowledge proofs to convince the other party that they are behaving honestly.
- Here we assume that Alice and Bob have both committed to correct inputs (Bob might use y which does not represent his real vote etc... but this is not a problem we can address with cryptography)

Fully Malicious Security?

Fix: Assume Alice and Bob have both committed to their inputs (x and y respectively) and random coins (R_A and R_B respectively):

Let $c_A = com(x, R_A; r_A)$ be Alice's commitment to x, R_A and $c_B = com(y, R_B; r_B)$.

- Alice and Bob can use a tool called zero-knowledge proofs to convince the other party that they are behaving honestly.
 - **Example**: After sending a her first message (A) Alice proves that the message m she just sent is the same message an honest party would have sent
 - Alice wants to convince Bob that there exists x, R_A and r_A s.t. 1) c_A=com(x,R_A;r_A) and 2) m is the message that would be produced if Alice is honest and runs with inputs x and R_A
 - Alice also does not want to reveal x or R_A to Bob!
 - Is this possible?
 - Yes! Tool = Zero-Knowledge Proofs!

Fully Malicious Security

- Assume Alice and Bob have both committed to their input: c_A=com(x,R_A;r_A) and c_B=com(y,R_B;r_B).
 - Here we assume that Alice and Bob have both committed to correct inputs (Bob might use y which does not represent his real vote etc... but this is not a problem we can address with cryptography)
 - Alice has c_B and can unlock c_A
 - Bob has c_A and can unlock c_B
- 1. Alice sets $C'_f = GarbleCircuit(C_f; R_A)$.
 - 1. Alice sends C'_{f} to Bob.
 - 2. Alice convinces Bob that C'_{f} = GarbleCircuit(C_{f} , ; R_{A}) (using a zero-knowledge proof)
- 2. Similarly, Bob/Alice can convince each-other that the OT protocols are run honestly (additional ZK proofs)
- 3. Alice can convince Bob that the final output bit(s) correspond to the keys that Alice sent (additional ZK proofs)

CS 555:Week 15: Zero-Knowledge Proofs

Computational Indistinguishability

- Consider two distributions X_{ℓ} and Y_{ℓ} (e.g., over strings of length ℓ).
- Let D be a distinguisher that attempts to guess whether a string s came from distribution X_ℓ or $Y_\ell.$

The advantage of a distinguisher D is

$$Adv_{D,\ell} = \left| Pr_{s \leftarrow \mathsf{X}_{\ell}}[D(s) = 1] - Pr_{s \leftarrow \mathsf{Y}_{\ell}}[D(s) = 1] \right|$$

Definition: We say that an ensemble of distributions $\{X_n\}_{n \in \mathbb{N}}$ and $\{Y_n\}_{n \in \mathbb{N}}$ are <u>computationally indistinguishable</u> if for all PPT distinguishers D, there is a negligible function negl(n), such that we have

 $Adv_{D,n} \leq negl(n)$

Computational Indictinguishability

- Consider two d
- Let D be a distinuition X_l

Notation: $\{X_n\}_{n \in \mathbb{N}} \equiv_C \{Y_n\}_{n \in \mathbb{N}}$ means that the ensembles are computationally indistinguishable.

ℓ). came from

The advantage of a distinguisher D is

$$Adv_{D,\ell} = \left| Pr_{s \leftarrow \mathsf{X}_{\ell}}[D(s) = 1] - Pr_{s \leftarrow \mathsf{Y}_{\ell}}[D(s) = 1] \right|$$

Definition: We say that an ensemble of distributions $\{X_n\}_{n \in \mathbb{N}}$ and $\{Y_n\}_{n \in \mathbb{N}}$ are <u>computationally indistinguishable</u> if for all PPT distinguishers D, there is a negligible function negl(n), such that we have

 $Adv_{D,n} \leq negl(n)$

P vs NP

- P decision problems that can be solved in polynomial time
- NP --- decision problems whose solutions can be verified in polynomial time
 - Examples: SHORT-PATH, COMPOSITE, 3SAT, CIRCUIT-SAT, 3COLOR,
 - DDH
 - Input: $A = g^{x_1}$, $B = g^{x_2}$ and Z
 - **Goal:** Decide if $Z = g^{x_1x_2}$ or $Z \neq g^{x_1x_2}$.
 - NP-Complete --- hardest problems in NP (e.g., all problems can be reduced to 3SAT)
- Witness
 - A short (polynomial size) string which allows a verify to check for membership
 - DDH Witness: x₁,x₂.

Zero-Knowledge Proof

Two parties: Prover P (PPT) and Verifier V (PPT)

(P is given witness for claim e.g., $w=(x_1,x_2)$ is a witness that $A = g^{x_1}$, $B = g^{x_2}$ and $Z = g^{x_1x_2}$ is a DDH tuple)

- **Completeness:** If claim is true honest prover can always convince honest verifier to accept the proof.
- Soundness: If claim is false then Verifier should reject with probability at least ½. (Even if the prover tries to cheat)
- Zero-Knowledge: Verifier doesn't learn anything about prover's input from the protocol (other than that the claim is true).
- Formalizing this last statement is tricky
- Zero-Knowledge: should hold even if the attacker is dishonest!

Zero-Knowledge Proof

Trans(1ⁿ,V',P,x,w,r_p,r_v) transcript produced when V' and P interact

- V' is given input X (the problem instance e.g., $X = g^{x}$)
- P is given input X and w (a witness for the claim e.g., w=x)
- V' and P use randomness r_p and r_v respectively
- Security parameter is n e.g., for encryption schemes, commitment schemes etc...

 $X_n = \text{Trans}(1^n, V', P, x, w)$ is a distribution over transcripts (over the randomness r_p, r_v)

(Blackbox Zero-Knowledge): There is a PPT simulator S such that for every V' (possibly cheating) S, with oracle access to V', can simulate X_n without a witness w. Formally,

$$\{X_n\}_{n\in\mathbb{N}}\equiv_C \{S^{V'(.)}(x,1^n)\}_{n\in\mathbb{N}}$$

Zero-Knowledge Proof

Trans(1ⁿ,V',P,x,w,r_p,r_v) transcript produced when V' and P interact

• V' is given input x (the problem instance e.g., $A = g^{x_1}$, $B = g^{x_2}$ and z_b)

P
 V Simulator S is not given witness W
 X_n

Oracle V'(x,trans) will output the next message V' would output given current transcript trans

(Blackbox Zero-Knowledge): There is a PPT simulator S such that for every V' (possibly cheating) S, with oracle access to V', can simulate X_n without a witness w. Formally,

$$\{X_n\}_{n\in\mathbb{N}}\equiv_C \{S^{V'(.)}(x,1^n)\}_{n\in\mathbb{N}}$$

Claim: There is some integer x such that $A = g^x$

Correctness: If Alice and Bob are honest then Bob will always accept

Correctness: If Alice and Bob are honest then Bob will always accept

Correctness: If Alice and Bob are honest then Bob will always accept

Zero-Knowledge Proof fc Assume that AB=C, now If $B = g^y$ and $C = g^{x+y}$ for some x,y then $A = g^x$

(random y) **Soundness**: If $A \neq g^x$ for some x then (honest) Bob will reject w.p. ½ (even if Alice cheats)

(random y) **Soundness**: If $A \neq g^x$ for some x then (honest) Bob will reject w.p. ½ (even if Alice cheats) $\rightarrow Pr[reject] \ge Pr[c=1] = \frac{1}{2} \text{ for some x w the conditions of } for$ $B = q^{y}, C = q^{x+y}$ challenge $c \in \{0, 1\}$ **Response** $r = \begin{cases} y & if c = 0 \\ y + x & if c = 1 \end{cases}$ Alice (prover); **Bob** (verifier); $Decision d = \begin{cases} 1 & if c = 0 and B = g^r and AB = C \\ 1 & if c = 1 and C = g^r and AB = C \\ 0 & otherwise \end{cases}$ $A = g^{\chi}$, X $A = g^{\chi}$, $B = q^{\mathcal{Y}},$

(random y) **Soundness**: If $A \neq g^x$ for some x then (honest) Bob will reject w.p. ½ (even if Alice cheats)

Transcript: $View_{V'} = (A, (B, C), c, r, d)$

	$\begin{cases} \boldsymbol{B} = \boldsymbol{g}^{\boldsymbol{y}}, \boldsymbol{C} = \boldsymbol{A}\boldsymbol{B} & \text{if b=0} \\ \boldsymbol{B} = \frac{\boldsymbol{C}}{\boldsymbol{A}}, \boldsymbol{C} = \boldsymbol{g}^{\boldsymbol{y}} & \boldsymbol{otherwise} \end{cases}$	
	challenge $c = V'(A, (B, C)) \in \{0, 1\}$	
	Response $m{r} = egin{cases} y & if \ c = b \ ot & otherwise \end{cases}$	Simulator
Dishonest (verifier); $A = g^x$,	Decision $d = V'(A, (B, C), c, r)$	<i>Cheat bit b,</i> $A = g^{x}$,
Zoro Knowlodgo:	For all DDT V' oviete DDT Sim $c + Viou = Sim$	$B = g^{y},$ (random y)
zeio-kiiowieuge.	V = C S =	$I \sim (A)$

	$\begin{cases} B = g^{y}, C = AB & \text{if b=0} \\ B = \frac{C}{A}, C = g^{y} \text{ otherwise} \end{cases}$		
	<i>challenge</i> $c = V'(A, (B, C)) \in \{0, 1\}$		
	Response $r = \begin{cases} y & if c = b \\ \bot & otherwise \end{cases}$	Simulator	
Dishonest (verifier); $A = g^{\chi}$,	Decision $d = V'(A, (B, C), c, r)$	$Cheat bit b,$ $A = g^{x},$	
		$B = g^{\mathcal{Y}}$, (random y)	

Zero-Knowledge: Simulator can produce identical transcripts (Repeat until $r \neq \perp$)

	$\begin{cases} B = g^{y}, C = AB & \text{if b=0} \\ B = \frac{C}{A}, C = g^{y} \text{ otherwise} \end{cases}$		
	<i>challenge</i> $c = V'(A, (B, C)) \in \{0, 1\}$		
	Response $m{r} = egin{cases} y & if \ c = b \ ot & otherwise \end{cases}$	Simulator	
Dishonest (verifier); $A = g^x$,	Decision $d = V'(A, (B, C), c, r)$	<i>Cheat bit b,</i> $A = g^{x},$ $B = g^{y},$	
		(random y)	

Zero-Knowledge: If $A = g^{\chi}$ for some χ then $View_{V'} \equiv_C Sim^{V'(.)}(A)$

Zero-Knowledge Proof for Square Root mod N

Completeness: If Alice knows x such $z = x^2 \mod N$ then Bob will always accept

Zero-Knowledge Proof for Square Root mod N

Soundness: If $z \neq x^2$ for some x then (honest) Bob will reject w.p. ½ (even if Alice cheats) ⁷⁹

Zero-Knowledge Proof for Square Root mod N

Zero-Knowledge: How does the simulator work?

Zero-Knowledge Proof vs. Digital Signature

- Digital Signatures are transferrable
 - E.g., Alice signs a message m with her secret key and sends the signature σ to Bob. Bob can then send (m, σ) to Jane who is convinced that Alice signed the message m.
- Are Zero-Knowledge Proofs transferable?
 - Suppose Alice (prover) interacts with Bob (verifier) to prove a statement (e.g., z has a square root modulo N) in Zero-Knowledge.
 - Let $View_V$ be Bob's view of the protocol.
 - Suppose Bob sends *View_V* to Jane.
 - Should Jane be convinced of the statement (e.g., z has a square root modulo N)>

Non-Interactive Zero-Knowledge Proof (NIZK)

NIZK Security (Random Oracle Model)

- Simulator is given statement to proof (e.g., z has a square root modulo N)
- Simulator must output a proof π'_z and a random oracle H'
- Distinguisher D
 - World 1 (Simulated): Given z, π'_z and oracle access to H'
 - World 2 (Honest): Given z, π_z (honest proof) and oracle access to H
 - Advantage: $ADV_D = |Pr[D^H(z, \pi_z) = 1] Pr[D^{H'}(z, \pi'_z) = 1]|$
- Zero-Knowledge: Any PPT distinguisher D should have negligible advantage.
- NIZK proof π_z is transferrable (contrast with interactive ZK proof)

Σ -Protocols

- Prover Input: instance/claim x and witness w
- Verifier Input: Instance x
- Σ -Protocols: three-message structure
 - Prover sends first message m=P₁(x,w; r₁)
 - Verifier responds with random challenge c
 - Prover sends response R=P₂(x,w,r₁,c; r₂)
 - Verifier outputs decision V(x,m,c,R)
 - **Completeness:** If w is a valid witness for instance x then Pr[V(x,c,R)=1]=1
 - **Soundness:** If the claim x is false then V(x,c,R)=0 with probability at least ½
 - Zero-Knowledge: Simulator can produce computationally indistinguishable transcript
$\Sigma\text{-}\mathsf{Protocols}$ and Fiat-Shamir Transform

- Convert Σ -Protocols into Non-Interactive ZK Proof
- Prover Input: instance/claim x and witness w
- Verifier Input: Instance x
- Step 1: Prover generates first messages for n instances of the protocol
 m_i = P₁(x,w; r_i) for each i=1 to n
- Step 2: Prover uses random oracle to extract random coins z_j=H(x,j, m₁,...,m_n) for j=1 to n
 - Prover samples challenges $c_1, ..., c_n$ using random strings $z_1, ..., z_n$ i.e., c_i =SampleChallenge(z_i)
- **Step 3:** Prover computes responses R₁,...,R_n
 - $R_i \leftarrow P_2(x,w,r_i,c_i)$
- **Step 4:** Prover outputs the proof $\{(m_i, c_i, z_i)\}_{i \le n}$

$\Sigma\text{-}\mathsf{Protocols}$ and Fiat-Shamir Transform

- Step 1: Prover generates first messages for n instances of the protocol
 - $m_i = P_1(x,w;r_i)$ for each i=1 to n
- Step 2: Prover uses random oracle to extract random coins z_i=H(x,i, m₁,...,m_n) for i=1 to n
 - Prover samples challenges $c_1, ..., c_n$ using random strings $z_1, ..., z_n$ i.e., c_i =SampleChallenge(z_i)
- **Step 3:** Prover computes responses R₁,...,R_n
 - $R_i \leftarrow P_2(x,w,r_i,c_i)$
- Step 4: Prover outputs the proof $\pi = \{(m_i, c_i, R_i)\}_{i \le n}$

Verifier: $V_{NI}(\mathbf{x}, \pi)$ check that for all $i \leq n$

1. $V(x, (m_i, c_i, R_i)) = 1$ and

2. c_i =SampleChallenge(z_i) where z_i =H(x,i, m_1 ,..., m_n)

$\Sigma\text{-}\mathsf{Protocols}$ and Fiat-Shamir Transform

- Step 1: Prover generates first messages for n instances of the protocol
 - $m_i = P_1(x,w; r_i)$ for each i=1 to n
- Step 2: Prover uses random oracle to extract random coins z_i=H(x,i, m₁,...,m_n) for i=1 to n
 - Prover samples challenges $c_1, ..., c_n$ using random strings $z_1, ..., z_n$ i.e., c_i =SampleChallenge(z_i)
- **Step 3:** Prover computes responses R₁,...,R_n
 - $R_i \leftarrow P_2(x,w,r_i,c_i)$
- Step 4: Prover outputs the proof $\pi = \{(m_i, c_i, R_i)\}_{i \le n}$ Zero-Knowledge (Idea):

Step 1: Run simulator for Σ n-times to obtain n transcripts (m_i, c_i, R_i) for each $i \leq n$.

Step 2: Program the random oracle so that $H(x,i, m_1,...,m_n)=z_i$ where $c_i=SampleChallenge(z_i)$

- CLIQUE
 - Input: Graph G=(V,E) and integer k>0
 - Question: Does G have a clique of size k?
- CLIQUE is NP-Complete
 - Any problem in NP reduces to CLIQUE
 - A zero-knowledge proof for CLIQUE yields proof for all of NP via reduction
- Prover:
 - Knows k vertices $v_1, ..., v_k$ in G=(V,E) that form a clique

- Prover:
 - Knows k vertices $v_1, ..., v_k$ in G=(V,E) that for a clique
- 1. Prover commits to a permutation σ over V
- 2. Prover commits to the adjacency matrix $A_{\sigma(G)}$ of $\sigma(G)$
- 3. Verifier sends challenge c (either 1 or 0)
- 4. If c=0 then prover reveals σ and adjacency matrix $A_{\sigma(G)}$
 - 1. Verifier confirms that adjacency matrix is correct for $\sigma(G)$
- 5. If c=1 then prover reveals the submatrix formed by first rows/columns of $A_{\sigma(G)}$ corresponding to $\sigma(v_1), \dots, \sigma(v_k)$
 - 1. Verifier confirms that the submatrix forms a clique.

- Completeness: Honest prover can always make honest verifier accept
- **Soundness**: If prover commits to adjacency matrix $A_{\sigma(G)}$ of $\sigma(G)$ and can reveal a clique in submatrix of $A_{\sigma(G)}$ then G itself contains a k-clique. Proof invokes binding property of commitment scheme.
- Zero-Knowledge: Simulator cheats and either commits to wrong adjacency matrix or cannot reveal clique. Repeat until we produce a successful transcript. Indistinguishability of transcripts follows from hiding property of commitment scheme.

Secure Multiparty Computation (Adversary Models)

- Semi-Honest ("honest, but curious")
 - All parties follow protocol instructions, but...
 - dishonest parties may be curious to violate privacy of others when possible
- Fully Malicious Model
 - Adversarial Parties may deviate from the protocol arbitrarily
 - Quit unexpectedly
 - Send different messages
 - It is much harder to achieve security in the fully malicious model
- Convert Secure Semi-Honest Protocol into Secure Protocol in Fully Malicious Mode?
 - Tool: Zero-Knowledge Proofs
 - Prove: My behavior in the protocol is consistent with honest party