
Course Feedback

• Your feedback is valuable to me! What did you like about the course? What
could be improved? Let me know! I carefully read through any comments
after the semester is over.

• Your feedback is anonymous and will not impact your grade (I cannot view
your feedback until after grades are entered).

1

Course Summary
Course Code Course Title Survey Start Date Survey End Date Report Access Start Response Rate
wl.202120.CS.55500.
FNY.18101 Cryptography 4/19/2021 9:00 AM 5/2/2021 11:59 PM 5/12/2021 12:00 AM 0.00% (0/8)

Cryptography
CS 555

Week 14:
• Multiparty Computation
• Yao’s Garbled Circuits
• Zero-Knowledge Proofs
• Shamir Secret Sharing

2Spring 2021

Homework 5 due April 29th at 11:59 PM on Gradescope

Recap: Oblivious Transfer (OT)

• 1 out of 2 OT
• Alice has two messages m0 and m1
• At the end of the protocol

• Bob gets exactly one of m0 and m1

• Alice does not know which one, and Bob learns nothing about other message

• Oblivious Transfer with a Trusted Third Party

9

1 out of 2 OT

m0

m1

b

mb

Yao’s Garbled Circuits

• Alice and Bob want to compute a function 𝑓𝑓 𝑎𝑎1, … ,𝑎𝑎𝑚𝑚, 𝑏𝑏1, … , 𝑏𝑏𝑛𝑛
• Alice does not want to reveal her secret inputs 𝑎𝑎1, … ,𝑎𝑎𝑚𝑚
• Bob does not want to reveal his secret inputs 𝑏𝑏1, … , 𝑏𝑏𝑛𝑛
• Assume that Alice/Bob are semi-honest (honest, but curious)

• They will faithfully follow the Garbled Circuit Protocol, but afterwards they are curious to
learn about the other’s secret inputs

• Alice/Bob should learn nothing additional except for 𝑓𝑓 𝑎𝑎1, … ,𝑎𝑎𝑚𝑚,𝑏𝑏1, … , 𝑏𝑏𝑛𝑛
• MPC Security formalized by simulator

• Alice’s Transcript: All of the messages she sends/receives as part of the protocol
• Simulator Inputs: 𝑎𝑎1, … ,𝑎𝑎𝑚𝑚 and 𝑓𝑓 𝑎𝑎1, … , 𝑎𝑎𝑚𝑚,𝑏𝑏1, … , 𝑏𝑏𝑛𝑛
• Simulator SA is not given Bob’s input
• Outputs transcript which is computationally indistinguishable from Alice’s real transcript
• Conclusion: Alice learns nothing aside from 𝑎𝑎1, … ,𝑎𝑎𝑚𝑚 and 𝑓𝑓 𝑎𝑎1, … ,𝑎𝑎𝑚𝑚, 𝑏𝑏1, … , 𝑏𝑏𝑛𝑛

14

Yao’s Garbled Circuits

• Alice and Bob want to compute a function 𝑓𝑓 𝑎𝑎1, … ,𝑎𝑎𝑚𝑚, 𝑏𝑏1, … , 𝑏𝑏𝑛𝑛
• Alice does not want to reveal her secret inputs 𝑎𝑎1, … ,𝑎𝑎𝑚𝑚
• Bob does not want to reveal his secret inputs 𝑏𝑏1, … , 𝑏𝑏𝑛𝑛
• Assume that Alice/Bob are semi-honest (honest, but curious)

• They will faithfully follow the Garbled Circuit Protocol, but afterwards they are curious to
learn about the other’s secret inputs

• Alice/Bob should learn nothing additional except for 𝑓𝑓 𝑎𝑎1, … ,𝑎𝑎𝑚𝑚,𝑏𝑏1, … , 𝑏𝑏𝑛𝑛
• MPC Security formalized by simulator

• Bob’s Transcript: All of the messages she sends/receives as part of the protocol
• Simulator Inputs: 𝑏𝑏1, … , 𝑏𝑏𝑛𝑛 and 𝑓𝑓 𝑎𝑎1, … ,𝑎𝑎𝑚𝑚, 𝑏𝑏1, … , 𝑏𝑏𝑛𝑛
• Simulator SB is not given Alice’s input
• Outputs transcript which is computationally indistinguishable from Bob’s real transcript
• Conclusion: Bob learns nothing aside from 𝑏𝑏1, … , 𝑏𝑏𝑛𝑛 and 𝑓𝑓 𝑎𝑎1, … , 𝑎𝑎𝑚𝑚,𝑏𝑏1, … , 𝑏𝑏𝑛𝑛

15

slide 16

Vitaly Shmatikov

CS 380S

Yao’s Protocol

slide 17
1

000

Yao’s Protocol
• Compute any function securely

• … in the semi-honest model

• First, convert the function into a boolean circuit

AND
x y

z

Truth table:

x y z

0 1 0
1 0 0

1 1 1

000
OR

x y

z

Truth table:

x y z

0 1 1
1 0 1

1 1

AND OR

AND

NOT

OR

AND

Alice’s inputs Bob’s inputs

Overview:
1. Alice prepares “garbled” version C’ of C
2. Sends “encrypted” form x’ of her input x
3. Allows Bob to obtain “encrypted” form y’ of his input y via OT
4. Bob can compute from C’,x’,y’ the “encryption” z’ of z=C(x,y)
5. Bob sends z’ to Alice and she decrypts and reveals to him z

AND OR

AND

NOT

OR

AND

Alice’s inputs Bob’s inputs

Crucial properties:
1. Bob never sees Alice’s input x in unencrypted form.
2. Bob can obtain encryption of y without Alice learning y.
3. Neither party learns intermediate values.
4. Remains secure even if parties try to cheat.

Intuition

a b

c

AND

Intuition

a b

c

AND

a

a

b

b

a b

ba

a

b

slide 21

1: Pick Random Keys For Each Wire

• Next, evaluate one gate securely
• Later, generalize to the entire circuit

• Alice picks two random keys for each wire
• One key corresponds to “0”, the other to “1”
• 6 keys in total for a gate with 2 input wires

AND
x y

zk0z, k1z

Alice Bob
k0x, k1x

k0y, k1y

slide 22

2: Encrypt Truth Table

• Alice encrypts each row of the truth table by
encrypting the output-wire key with the corresponding
pair of input-wire keys

AND
x y

z

k0z, k1z

Alice Bob
k0x, k1x

k0y, k1y

1

000
Original truth table:

x y z

0 1 0
1 0 0

1 1

Encrypted truth table:

Ek0x(Ek0y(k0z))
Ek0x(Ek1y(k0z))
Ek1x(Ek0y(k0z))
Ek1x(Ek1y(k1z))

slide 23

3: Send Garbled Truth Table

• Alice randomly permutes (“garbles”) encrypted truth
table and sends it to Bob

AND
x y

z

k0z, k1z

Alice Bob
k0x, k1x
k0y, k1y

Garbled truth table:

Ek0x(Ek0y(k0z))
Ek0x(Ek1y(k0z))
Ek1x(Ek0y(k0z))
Ek1x(Ek1y(k1z)) Ek0x(Ek0y(k0z))

Ek0x(Ek1y(k0z))
Ek1x(Ek0y(k0z))

Ek1x(Ek1y(k1z))

Does not know which row of
garbled table corresponds to
which row of original table

slide 24

4: Send Keys For Alice’s Inputs

• Alice sends the key corresponding to her input bit
• Keys are random, so Bob does not learn what this bit is

AND
x y

zk0z, k1z

Alice Bob
k0x, k1x
k0y, k1y

If Alice’s bit is 1, she
simply sends k1x to Bob;
if 0, she sends k0x

Learns Kb’x where b’
is Alice’s input bit,
but not b’ (why?)

Garbled truth table:

Ek0x(Ek0y(k0z))

Ek0x(Ek1y(k0z))
Ek1x(Ek0y(k0z))

Ek1x(Ek1y(k1z))

slide 25

5: Use OT on Keys for Bob’s Input

• Alice and Bob run oblivious transfer protocol
• Alice’s input is the two keys corresponding to Bob’s wire
• Bob’s input into OT is simply his 1-bit input on that wire

AND
x y

z

k0z, k1z

Alice Bob
k0x, k1x
k0y, k1y

Run oblivious transfer
Alice’s input: k0y, k1y
Bob’s input: his bit b
Bob learns kby
What does Alice learn?

Knows Kb’x where b’ is
Alice’s input bit and Kby

where b is his own input bit

Garbled truth table:

Ek0x(Ek0y(k0z))

Ek0x(Ek1y(k0z))
Ek1x(Ek0y(k0z))

Ek1x(Ek1y(k1z))

slide 26

6: Evaluate Garbled Gate

• Using the two keys that he learned, Bob decrypts
exactly one of the output-wire keys

• Bob does not learn if this key corresponds to 0 or 1
• Why is this important?

AND
x y

z

k0z, k1z

Alice Bob
k0x, k1x
k0y, k1y

Knows Kb’x where b’ is
Alice’s input bit and Kby

where b is his own input bit

Garbled truth table:

Ek0x(Ek0y(k0z))

Ek0x(Ek1y(k0z))
Ek1x(Ek0y(k0z))

Ek1x(Ek1y(k1z))

Suppose b’=0, b=1

This is the only row
Bob can decrypt.
He learns K0z

slide 27

• In this way, Bob evaluates entire garbled circuit
• For each wire in the circuit, Bob learns only one key
• It corresponds to 0 or 1 (Bob does not know which)

• Therefore, Bob does not learn intermediate values (why?)

• Bob tells Alice the key for the final output wire and she
tells him if it corresponds to 0 or 1

• Bob does not tell her intermediate wire keys (why?)

7: Evaluate Entire Circuit

AND OR

AND

NOT

OR

AND

Alice’s inputs Bob’s inputs

Example
Alice’s Input: a,b
Bob’s Input: c,d

𝑓𝑓 𝑎𝑎, 𝑏𝑏, 𝑐𝑐,𝑑𝑑 = 𝑎𝑎 ∧ 𝑏𝑏 ∨ 𝑐𝑐 ∧ 𝑑𝑑

28

a b

𝑒𝑒 = 𝑎𝑎 ∧ 𝑏𝑏

AND

c d

𝑓𝑓 = 𝑐𝑐 ∧ 𝑑𝑑

𝑔𝑔 = 𝑒𝑒 ∨ 𝑓𝑓

AND

OR

Example
Alice’s Input: a,b
Bob’s Input: c,d

𝑓𝑓 𝑎𝑎, 𝑏𝑏, 𝑐𝑐,𝑑𝑑 = 𝑎𝑎 ∧ 𝑏𝑏 ∨ 𝑐𝑐 ∧ 𝑑𝑑

Step 1: Alice picks keys for each wire
𝑲𝑲𝒂𝒂,𝟎𝟎, 𝑲𝑲𝒃𝒃,𝟎𝟎, 𝑲𝑲𝒄𝒄,𝟎𝟎, 𝑲𝑲𝒅𝒅,𝟎𝟎, 𝑲𝑲𝒆𝒆,𝟎𝟎, 𝑲𝑲𝒇𝒇,𝟎𝟎, 𝑲𝑲𝒈𝒈,𝟎𝟎
𝑲𝑲𝒂𝒂,𝟏𝟏, 𝑲𝑲𝒃𝒃,𝟏𝟏, 𝑲𝑲𝒄𝒄,𝟏𝟏, 𝑲𝑲𝒅𝒅,𝟏𝟏, 𝑲𝑲𝒆𝒆,𝟏𝟏, 𝑲𝑲𝒇𝒇,𝟏𝟏, 𝑲𝑲𝒈𝒈,𝟏𝟏

29

a b

𝑒𝑒 = 𝑎𝑎 ∧ 𝑏𝑏

AND

c d

𝑓𝑓 = 𝑐𝑐 ∧ 𝑑𝑑

𝑔𝑔 = 𝑒𝑒 ∨ 𝑓𝑓

Example
Alice’s Input: a,b
Bob’s Input: c,d
𝑓𝑓 𝑎𝑎, 𝑏𝑏, 𝑐𝑐,𝑑𝑑 = 𝑎𝑎 ∧ 𝑏𝑏 ∨ 𝑐𝑐 ∧ 𝑑𝑑
Step 2: Alice garbles each gate (gate e)

𝒄𝒄𝒆𝒆,𝟎𝟎,𝟎𝟎 = 𝑬𝑬𝑬𝑬𝒄𝒄𝑲𝑲𝒂𝒂,𝟎𝟎 𝑬𝑬𝑬𝑬𝒄𝒄𝑲𝑲𝒃𝒃,𝟎𝟎 𝑲𝑲𝒆𝒆,𝟎𝟎

𝒄𝒄𝒆𝒆,𝟎𝟎,𝟏𝟏 = 𝑬𝑬𝑬𝑬𝒄𝒄𝑲𝑲𝒂𝒂,𝟎𝟎 𝑬𝑬𝑬𝑬𝒄𝒄𝑲𝑲𝒃𝒃,𝟏𝟏 𝑲𝑲𝒆𝒆,𝟎𝟎

𝒄𝒄𝒆𝒆,𝟏𝟏,𝟎𝟎 = 𝑬𝑬𝑬𝑬𝒄𝒄𝑲𝑲𝒂𝒂,𝟏𝟏 𝑬𝑬𝑬𝑬𝒄𝒄𝑲𝑲𝒃𝒃,𝟎𝟎 𝑲𝑲𝒆𝒆,𝟎𝟎

𝒄𝒄𝒆𝒆,𝟏𝟏,𝟏𝟏 = 𝑬𝑬𝑬𝑬𝒄𝒄𝑲𝑲𝒂𝒂,𝟏𝟏 𝑬𝑬𝑬𝑬𝒄𝒄𝑲𝑲𝒃𝒃,𝟏𝟏 𝑲𝑲𝒆𝒆,𝟏𝟏

30

a b

𝑒𝑒 = 𝑎𝑎 ∧ 𝑏𝑏

AND

c d

𝑓𝑓 = 𝑐𝑐 ∧ 𝑑𝑑

𝑔𝑔 = 𝑒𝑒 ∨ 𝑓𝑓

AND

OR

Authenticated Encryption

If a=0 and b=0 then e= 𝑎𝑎 ∧ 𝑏𝑏 =0

If a=0 and b=1 then e= 𝑎𝑎 ∧ 𝑏𝑏 =0

If a=1 and b=0 then e= 𝑎𝑎 ∧ 𝑏𝑏 =0If a=1 and b=1 then e= 𝑎𝑎 ∧ 𝑏𝑏 =1

Example
Alice’s Input: a,b
Bob’s Input: c,d
𝑓𝑓 𝑎𝑎, 𝑏𝑏, 𝑐𝑐,𝑑𝑑 = 𝑎𝑎 ∧ 𝑏𝑏 ∨ 𝑐𝑐 ∧ 𝑑𝑑
Step 2: Alice garbles each gate (+shuffle)
𝒄𝒄𝒆𝒆,𝟏𝟏,𝟏𝟏 = 𝑬𝑬𝑬𝑬𝒄𝒄𝑲𝑲𝒂𝒂,𝟏𝟏 𝑬𝑬𝑬𝑬𝒄𝒄𝑲𝑲𝒃𝒃,𝟏𝟏 𝑲𝑲𝒆𝒆,𝟏𝟏

𝒄𝒄𝒆𝒆,𝟎𝟎,𝟏𝟏 = 𝑬𝑬𝑬𝑬𝒄𝒄𝑲𝑲𝒂𝒂,𝟎𝟎 𝑬𝑬𝑬𝑬𝒄𝒄𝑲𝑲𝒃𝒃,𝟏𝟏 𝑲𝑲𝒆𝒆,𝟎𝟎

𝒄𝒄𝒆𝒆,𝟎𝟎,𝟎𝟎 = 𝑬𝑬𝑬𝑬𝒄𝒄𝑲𝑲𝒂𝒂,𝟎𝟎 𝑬𝑬𝑬𝑬𝒄𝒄𝑲𝑲𝒃𝒃,𝟎𝟎 𝑲𝑲𝒆𝒆,𝟎𝟎

𝒄𝒄𝒆𝒆,𝟏𝟏,𝟎𝟎 = 𝑬𝑬𝑬𝑬𝒄𝒄𝑲𝑲𝒂𝒂,𝟏𝟏 𝑬𝑬𝑬𝑬𝒄𝒄𝑲𝑲𝒃𝒃,𝟎𝟎 𝑲𝑲𝒆𝒆,𝟎𝟎

31

a b

𝑒𝑒 = 𝑎𝑎 ∧ 𝑏𝑏

AND

c d

𝑓𝑓 = 𝑐𝑐 ∧ 𝑑𝑑

𝑔𝑔 = 𝑒𝑒 ∨ 𝑓𝑓

AND

OR

If Alice forgets to shuffle then Bob would notice which ciphertext decrypts
successfully, identify the corresponding row in the truth table and learn
the corresponding wire values!

Example
Alice’s Input: a,b
Bob’s Input: c,d
𝑓𝑓 𝑎𝑎, 𝑏𝑏, 𝑐𝑐,𝑑𝑑 = 𝑎𝑎 ∧ 𝑏𝑏 ∨ 𝑐𝑐 ∧ 𝑑𝑑
Step 2: Alice garbles each gate (gate g)
𝒄𝒄𝒈𝒈,𝟎𝟎,𝟎𝟎 = 𝑬𝑬𝑬𝑬𝒄𝒄𝑲𝑲𝒆𝒆,𝟎𝟎 𝑬𝑬𝑬𝑬𝒄𝒄𝑲𝑲𝒇𝒇,𝟎𝟎 𝑲𝑲𝒈𝒈,𝟎𝟎

𝒄𝒄𝒈𝒈,𝟎𝟎,𝟏𝟏 = 𝑬𝑬𝑬𝑬𝒄𝒄𝑲𝑲𝒆𝒆,𝟎𝟎 𝑬𝑬𝑬𝑬𝒄𝒄𝑲𝑲𝒇𝒇,𝟏𝟏 𝑲𝑲𝒈𝒈,𝟏𝟏

𝒄𝒄𝒈𝒈,𝟏𝟏,𝟎𝟎 = 𝑬𝑬𝑬𝑬𝒄𝒄𝑲𝑲𝒆𝒆,𝟏𝟏 𝑬𝑬𝑬𝑬𝒄𝒄𝑲𝑲𝒇𝒇,𝟎𝟎 𝑲𝑲𝒈𝒈,𝟏𝟏

𝒄𝒄𝒈𝒈,𝟏𝟏,𝟏𝟏 = 𝑬𝑬𝑬𝑬𝒄𝒄𝑲𝑲𝒆𝒆,𝟏𝟏 𝑬𝑬𝑬𝑬𝒄𝒄𝑲𝑲𝒇𝒇,𝟏𝟏 𝑲𝑲𝒈𝒈,𝟏𝟏

32

a b

𝑒𝑒 = 𝑎𝑎 ∧ 𝑏𝑏

AND

c d

𝑓𝑓 = 𝑐𝑐 ∧ 𝑑𝑑

𝑔𝑔 = 𝑒𝑒 ∨ 𝑓𝑓

AND

OR

Example
Alice’s Input: a,b
Bob’s Input: c,d
𝑓𝑓 𝑎𝑎, 𝑏𝑏, 𝑐𝑐,𝑑𝑑 = 𝑎𝑎 ∧ 𝑏𝑏 ∨ 𝑐𝑐 ∧ 𝑑𝑑
Step 2: Alice garbles each gate (+shuffle)
𝒄𝒄𝒈𝒈,𝟎𝟎,𝟎𝟎 = 𝑬𝑬𝑬𝑬𝒄𝒄𝑲𝑲𝒆𝒆,𝟎𝟎 𝑬𝑬𝑬𝑬𝒄𝒄𝑲𝑲𝒇𝒇,𝟎𝟎 𝑲𝑲𝒈𝒈,𝟎𝟎

𝒄𝒄𝒈𝒈,𝟏𝟏,𝟏𝟏 = 𝑬𝑬𝑬𝑬𝒄𝒄𝑲𝑲𝒆𝒆,𝟏𝟏 𝑬𝑬𝑬𝑬𝒄𝒄𝑲𝑲𝒇𝒇,𝟏𝟏 𝑲𝑲𝒈𝒈,𝟏𝟏

𝒄𝒄𝒈𝒈,𝟏𝟏,𝟎𝟎 = 𝑬𝑬𝑬𝑬𝒄𝒄𝑲𝑲𝒆𝒆,𝟏𝟏 𝑬𝑬𝑬𝑬𝒄𝒄𝑲𝑲𝒇𝒇,𝟎𝟎 𝑲𝑲𝒈𝒈,𝟏𝟏

𝒄𝒄𝒈𝒈,𝟎𝟎,𝟏𝟏 = 𝑬𝑬𝑬𝑬𝒄𝒄𝑲𝑲𝒆𝒆,𝟎𝟎 𝑬𝑬𝑬𝑬𝒄𝒄𝑲𝑲𝒇𝒇,𝟏𝟏 𝑲𝑲𝒈𝒈,𝟏𝟏

33

a b

𝑒𝑒 = 𝑎𝑎 ∧ 𝑏𝑏

AND

c d

𝑓𝑓 = 𝑐𝑐 ∧ 𝑑𝑑

𝑔𝑔 = 𝑒𝑒 ∨ 𝑓𝑓

AND

OR

Example
Alice’s Input: a,b
Bob’s Input: c,d
𝑓𝑓 𝑎𝑎, 𝑏𝑏, 𝑐𝑐,𝑑𝑑 = 𝑎𝑎 ∧ 𝑏𝑏 ∨ 𝑐𝑐 ∧ 𝑑𝑑
Step 2: Alice garbles each gate (gate f)

𝒄𝒄𝒇𝒇,𝟎𝟎,𝟎𝟎 = 𝑬𝑬𝑬𝑬𝒄𝒄𝑲𝑲𝒄𝒄,𝟎𝟎 𝑬𝑬𝑬𝑬𝒄𝒄𝑲𝑲𝒅𝒅,𝟎𝟎 𝑲𝑲𝒇𝒇,𝟎𝟎

𝒄𝒄𝒇𝒇,𝟎𝟎,𝟏𝟏 = 𝑬𝑬𝑬𝑬𝒄𝒄𝑲𝑲𝒄𝒄,𝟎𝟎 𝑬𝑬𝑬𝑬𝒄𝒄𝑲𝑲𝒅𝒅,𝟏𝟏 𝑲𝑲𝒇𝒇,𝟎𝟎

𝒄𝒄𝒇𝒇,𝟏𝟏,𝟎𝟎 = 𝑬𝑬𝑬𝑬𝒄𝒄𝑲𝑲𝒄𝒄,𝟏𝟏 𝑬𝑬𝑬𝑬𝒄𝒄𝑲𝑲𝒅𝒅,𝟎𝟎 𝑲𝑲𝒇𝒇,𝟎𝟎

𝒄𝒄𝒇𝒇,𝟏𝟏,𝟏𝟏 = 𝑬𝑬𝑬𝑬𝒄𝒄𝑲𝑲𝒄𝒄,𝟏𝟏 𝑬𝑬𝑬𝑬𝒄𝒄𝑲𝑲𝒅𝒅,𝟏𝟏 𝑲𝑲𝒇𝒇,𝟏𝟏

34

a b

𝑒𝑒 = 𝑎𝑎 ∧ 𝑏𝑏

AND

c d

𝑓𝑓 = 𝑐𝑐 ∧ 𝑑𝑑

𝑔𝑔 = 𝑒𝑒 ∨ 𝑓𝑓

AND

OR

Example
Alice’s Input: a,b
Bob’s Input: c,d
𝑓𝑓 𝑎𝑎, 𝑏𝑏, 𝑐𝑐,𝑑𝑑 = 𝑎𝑎 ∧ 𝑏𝑏 ∨ 𝑐𝑐 ∧ 𝑑𝑑
Step 2: Alice garbles each gate (+shuffle)

𝒄𝒄𝒇𝒇,𝟏𝟏,𝟎𝟎 = 𝑬𝑬𝑬𝑬𝒄𝒄𝑲𝑲𝒄𝒄,𝟏𝟏 𝑬𝑬𝑬𝑬𝒄𝒄𝑲𝑲𝒅𝒅,𝟎𝟎 𝑲𝑲𝒇𝒇,𝟎𝟎

𝒄𝒄𝒇𝒇,𝟏𝟏,𝟏𝟏 = 𝑬𝑬𝑬𝑬𝒄𝒄𝑲𝑲𝒄𝒄,𝟏𝟏 𝑬𝑬𝑬𝑬𝒄𝒄𝑲𝑲𝒅𝒅,𝟏𝟏 𝑲𝑲𝒇𝒇,𝟏𝟏

𝒄𝒄𝒇𝒇,𝟎𝟎,𝟎𝟎 = 𝑬𝑬𝑬𝑬𝒄𝒄𝑲𝑲𝒄𝒄,𝟎𝟎 𝑬𝑬𝑬𝑬𝒄𝒄𝑲𝑲𝒅𝒅,𝟎𝟎 𝑲𝑲𝒇𝒇,𝟎𝟎

𝒄𝒄𝒇𝒇,𝟎𝟎,𝟏𝟏 = 𝑬𝑬𝑬𝑬𝒄𝒄𝑲𝑲𝒄𝒄,𝟎𝟎 𝑬𝑬𝑬𝑬𝒄𝒄𝑲𝑲𝒅𝒅,𝟏𝟏 𝑲𝑲𝒇𝒇,𝟎𝟎

35

a b

𝑒𝑒 = 𝑎𝑎 ∧ 𝑏𝑏

AND

c d

𝑓𝑓 = 𝑐𝑐 ∧ 𝑑𝑑

𝑔𝑔 = 𝑒𝑒 ∨ 𝑓𝑓

AND

OR

Example
Alice’s Input: a,b
Bob’s Input: c,d
𝑓𝑓 𝑎𝑎, 𝑏𝑏, 𝑐𝑐,𝑑𝑑 = 𝑎𝑎 ∧ 𝑏𝑏 ∨ 𝑐𝑐 ∧ 𝑑𝑑
Step 3: Alice sends garbled circuit to Bob

Gate e: 𝑐𝑐𝑒𝑒,0,0, 𝑐𝑐𝑒𝑒,0,1,𝑐𝑐𝑒𝑒,1,0, 𝑐𝑐𝑒𝑒,1,1
Gate f: 𝑐𝑐𝑓𝑓,1,0, 𝑐𝑐𝑓𝑓,1,1, 𝑐𝑐𝑓𝑓,0,0, 𝑐𝑐𝑓𝑓,0,1
Gate g: 𝑐𝑐𝑔𝑔,0,0, 𝑐𝑐𝑔𝑔,1,1, 𝑐𝑐𝑔𝑔,1,0, 𝑐𝑐𝑔𝑔,0,1

Step 4: Alice sends keys corresponding to
her inputs

Example: a=0, b=1
Alice sends Bob 𝑲𝑲𝒂𝒂,𝟎𝟎 and 𝑲𝑲𝒃𝒃,𝟏𝟏

36

a b

𝑒𝑒 = 𝑎𝑎 ∧ 𝑏𝑏

AND

c d

𝑓𝑓 = 𝑐𝑐 ∧ 𝑑𝑑

𝑔𝑔 = 𝑒𝑒 ∨ 𝑓𝑓

AND

OR

Example
Alice’s Input: a,b
Bob’s Input: c,d
𝑓𝑓 𝑎𝑎, 𝑏𝑏, 𝑐𝑐,𝑑𝑑 = 𝑎𝑎 ∧ 𝑏𝑏 ∨ 𝑐𝑐 ∧ 𝑑𝑑

Step 5: Alice and Bob run OT for each of
Bob’s input wires

Wire C OT:
Bob’s Input: 1 if c=1; 0 otherwise
Alice’s Input: 𝑲𝑲𝒄𝒄,𝟎𝟎 and 𝑲𝑲𝒄𝒄,𝟏𝟏
Bob’s Output: 𝑲𝑲𝒄𝒄,𝟎𝟎 if c=0; otherwise 𝑲𝑲𝒄𝒄,𝟏𝟏
Alice’s Output: Nothing

37

a b

𝑒𝑒 = 𝑎𝑎 ∧ 𝑏𝑏

AND

c d

𝑓𝑓 = 𝑐𝑐 ∧ 𝑑𝑑

𝑔𝑔 = 𝑒𝑒 ∨ 𝑓𝑓

AND

OR

Example
Alice’s Input: a,b
Bob’s Input: c,d
𝑓𝑓 𝑎𝑎, 𝑏𝑏, 𝑐𝑐,𝑑𝑑 = 𝑎𝑎 ∧ 𝑏𝑏 ∨ 𝑐𝑐 ∧ 𝑑𝑑

Step 5: Alice and Bob run OT for each of
Bob’s input wires

Wire D OT:
Bob’s Input: 1 if d=1; 0 otherwise
Alice’s Input: 𝑲𝑲𝒅𝒅,𝟎𝟎 and 𝑲𝑲𝒅𝒅,𝟏𝟏
Bob’s Output: 𝑲𝑲𝒅𝒅,𝟎𝟎 if d=0; otherwise 𝑲𝑲𝒅𝒅,𝟏𝟏
Alice’s Output: Nothing

38

a b

𝑒𝑒 = 𝑎𝑎 ∧ 𝑏𝑏

AND

c d

𝑓𝑓 = 𝑐𝑐 ∧ 𝑑𝑑

𝑔𝑔 = 𝑒𝑒 ∨ 𝑓𝑓

AND

OR

Example
Alice’s Input: a,b
Bob’s Input: c,d
𝑓𝑓 𝑎𝑎, 𝑏𝑏, 𝑐𝑐,𝑑𝑑 = 𝑎𝑎 ∧ 𝑏𝑏 ∨ 𝑐𝑐 ∧ 𝑑𝑑

Step 6: Bob evaluates the garbled circuit
Example: a=0, b=1, c=1,d=1

Alice sent Bob 𝑲𝑲𝒂𝒂,𝟎𝟎 and 𝑲𝑲𝒃𝒃,𝟏𝟏

Bob obtains 𝑲𝑲𝒄𝒄,𝟏𝟏 and 𝑲𝑲𝒅𝒅,𝟏𝟏 from OTs

39

a b

𝑒𝑒 = 𝑎𝑎 ∧ 𝑏𝑏

AND

c d

𝑓𝑓 = 𝑐𝑐 ∧ 𝑑𝑑

𝑔𝑔 = 𝑒𝑒 ∨ 𝑓𝑓

AND

OR

Example
Alice’s Input: a,b
Bob’s Input: c,d
𝑓𝑓 𝑎𝑎, 𝑏𝑏, 𝑐𝑐, 𝑑𝑑 = 𝑎𝑎 ∧ 𝑏𝑏 ∨ 𝑐𝑐 ∧ 𝑑𝑑

Step 6: Bob evaluates the garbled circuit
Example: a=0, b=1, c=1,d=1

Alice sent Bob 𝑲𝑲𝒂𝒂,𝟎𝟎 and 𝑲𝑲𝒃𝒃,𝟏𝟏

Bob obtains 𝑲𝑲𝒄𝒄,𝟏𝟏 and 𝑲𝑲𝒅𝒅,𝟏𝟏 from OTs
Bob uses 𝑲𝑲𝒂𝒂,𝟎𝟎 and 𝑲𝑲𝒃𝒃,𝟏𝟏 to obtain

𝑲𝑲𝒆𝒆,𝟎𝟎 = 𝑫𝑫𝒆𝒆𝒄𝒄𝑲𝑲𝒃𝒃,𝟏𝟏 𝑫𝑫𝒆𝒆𝒄𝒄𝑲𝑲𝒂𝒂,𝟎𝟎 𝒄𝒄𝒆𝒆,𝟎𝟎,𝟏𝟏

Note 1: 𝒄𝒄𝒆𝒆,𝟎𝟎,𝟏𝟏 = 𝑬𝑬𝑬𝑬𝒄𝒄𝑲𝑲𝒂𝒂,𝟎𝟎 𝑬𝑬𝑬𝑬𝒄𝒄𝑲𝑲𝒃𝒃,𝟏𝟏 𝑲𝑲𝒆𝒆,𝟎𝟎 so

𝑫𝑫𝒆𝒆𝒄𝒄𝑲𝑲𝒃𝒃,𝟏𝟏 𝑫𝑫𝒆𝒆𝒄𝒄𝑲𝑲𝒂𝒂,𝟎𝟎 𝒄𝒄𝒆𝒆,𝟎𝟎,𝟏𝟏 = 𝑫𝑫𝒆𝒆𝒄𝒄𝑲𝑲𝒃𝒃,𝟏𝟏 𝑫𝑫𝒆𝒆𝒄𝒄𝑲𝑲𝒂𝒂,𝟎𝟎 𝑬𝑬𝑬𝑬𝒄𝒄𝑲𝑲𝒂𝒂,𝟎𝟎 𝑬𝑬𝑬𝑬𝒄𝒄𝑲𝑲𝒃𝒃,𝟏𝟏 𝑲𝑲𝒆𝒆,𝟎𝟎 = 𝑲𝑲𝒆𝒆,𝟎𝟎

40

a b

𝑒𝑒 = 𝑎𝑎 ∧ 𝑏𝑏

AND

c d

𝑓𝑓 = 𝑐𝑐 ∧ 𝑑𝑑

𝑔𝑔 = 𝑒𝑒 ∨ 𝑓𝑓

AND

OR

Example
Alice’s Input: a,b
Bob’s Input: c,d
𝑓𝑓 𝑎𝑎, 𝑏𝑏, 𝑐𝑐, 𝑑𝑑 = 𝑎𝑎 ∧ 𝑏𝑏 ∨ 𝑐𝑐 ∧ 𝑑𝑑

Step 6: Bob evaluates the garbled circuit
Example: a=0, b=1, c=1,d=1

Alice sent Bob 𝑲𝑲𝒂𝒂,𝟎𝟎 and 𝑲𝑲𝒃𝒃,𝟏𝟏

Bob obtains 𝑲𝑲𝒄𝒄,𝟏𝟏 and 𝑲𝑲𝒅𝒅,𝟏𝟏 from OTs
Bob uses 𝑲𝑲𝒂𝒂,𝟎𝟎 and 𝑲𝑲𝒃𝒃,𝟏𝟏 to obtain

𝑲𝑲𝒆𝒆,𝟎𝟎 = 𝑫𝑫𝒆𝒆𝒄𝒄𝑲𝑲𝒃𝒃,𝟏𝟏 𝑫𝑫𝒆𝒆𝒄𝒄𝑲𝑲𝒂𝒂,𝟎𝟎 𝒄𝒄𝒆𝒆,𝟎𝟎,𝟏𝟏

Note 2: 𝒄𝒄𝒆𝒆,𝟏𝟏,𝟏𝟏 = 𝑬𝑬𝑬𝑬𝒄𝒄𝑲𝑲𝒂𝒂,𝟏𝟏 𝑬𝑬𝑬𝑬𝒄𝒄𝑲𝑲𝒃𝒃,𝟏𝟏 𝑲𝑲𝒆𝒆,𝟏𝟏 so

𝑫𝑫𝒆𝒆𝒄𝒄𝑲𝑲𝒃𝒃,𝟏𝟏 𝑫𝑫𝒆𝒆𝒄𝒄𝑲𝑲𝒂𝒂,𝟎𝟎 𝒄𝒄𝒆𝒆,𝟏𝟏,𝟏𝟏 = 𝑫𝑫𝒆𝒆𝒄𝒄𝑲𝑲𝒃𝒃,𝟏𝟏 𝑫𝑫𝒆𝒆𝒄𝒄𝑲𝑲𝒂𝒂,𝟎𝟎 𝑬𝑬𝑬𝑬𝒄𝒄𝑲𝑲𝒂𝒂,𝟏𝟏 𝑬𝑬𝑬𝑬𝒄𝒄𝑲𝑲𝒃𝒃,𝟏𝟏 𝑲𝑲𝒆𝒆,𝟏𝟏 =⊥

41

a b

𝑒𝑒 = 𝑎𝑎 ∧ 𝑏𝑏

AND

c d

𝑓𝑓 = 𝑐𝑐 ∧ 𝑑𝑑

𝑔𝑔 = 𝑒𝑒 ∨ 𝑓𝑓

AND

OR

Example
Alice’s Input: a,b
Bob’s Input: c,d
𝑓𝑓 𝑎𝑎, 𝑏𝑏, 𝑐𝑐,𝑑𝑑 = 𝑎𝑎 ∧ 𝑏𝑏 ∨ 𝑐𝑐 ∧ 𝑑𝑑

Step 6: Bob evaluates the garbled circuit
Example: a=0, b=1, c=1,d=1

Alice sent Bob 𝑲𝑲𝒂𝒂,𝟎𝟎 and 𝑲𝑲𝒃𝒃,𝟏𝟏
Bob obtains 𝑲𝑲𝒄𝒄,𝟏𝟏 and 𝑲𝑲𝒅𝒅,𝟏𝟏 from OTs
Bob uses 𝑲𝑲𝒅𝒅,𝟏𝟏 and 𝑲𝑲𝒄𝒄,𝟏𝟏 to obtain

𝑲𝑲𝒇𝒇,𝟏𝟏 = 𝑫𝑫𝒆𝒆𝒄𝒄𝑲𝑲𝒅𝒅,𝟏𝟏 𝑫𝑫𝒆𝒆𝒄𝒄𝑲𝑲𝒄𝒄,𝟏𝟏 𝒄𝒄𝒇𝒇,𝟏𝟏,𝟏𝟏

42

a b

𝑒𝑒 = 𝑎𝑎 ∧ 𝑏𝑏

AND

c d

𝑓𝑓 = 𝑐𝑐 ∧ 𝑑𝑑

𝑔𝑔 = 𝑒𝑒 ∨ 𝑓𝑓

AND

OR

Example
Alice’s Input: a,b
Bob’s Input: c,d
𝑓𝑓 𝑎𝑎, 𝑏𝑏, 𝑐𝑐,𝑑𝑑 = 𝑎𝑎 ∧ 𝑏𝑏 ∨ 𝑐𝑐 ∧ 𝑑𝑑

Step 6: Bob evaluates the garbled circuit
Example: a=0, b=1, c=1,d=1

Alice sent Bob 𝑲𝑲𝒂𝒂,𝟎𝟎 and 𝑲𝑲𝒃𝒃,𝟏𝟏
Bob obtains 𝑲𝑲𝒄𝒄,𝟏𝟏 and 𝑲𝑲𝒅𝒅,𝟏𝟏 from OTs
Bob uses 𝑲𝑲𝒆𝒆,𝟎𝟎 and 𝑲𝑲𝒇𝒇,𝟏𝟏 to obtain

𝑲𝑲𝒈𝒈,𝟏𝟏 = 𝑫𝑫𝒆𝒆𝒄𝒄𝑲𝑲𝒇𝒇,𝟏𝟏 𝑫𝑫𝒆𝒆𝒄𝒄𝑲𝑲𝒆𝒆,𝟎𝟎 𝒄𝒄𝒈𝒈,𝟎𝟎,𝟏𝟏

43

a b

𝑒𝑒 = 𝑎𝑎 ∧ 𝑏𝑏

AND

c d

𝑓𝑓 = 𝑐𝑐 ∧ 𝑑𝑑

𝑔𝑔 = 𝑒𝑒 ∨ 𝑓𝑓

AND

OR

Example
Alice’s Input: a,b
Bob’s Input: c,d
𝑓𝑓 𝑎𝑎, 𝑏𝑏, 𝑐𝑐,𝑑𝑑 = 𝑎𝑎 ∧ 𝑏𝑏 ∨ 𝑐𝑐 ∧ 𝑑𝑑

Step 6: BobAlices: output key(s) 𝑲𝑲𝒈𝒈,𝟏𝟏

Step 7: Alice knows the output is g=1
(since she picked 𝑲𝑲𝒈𝒈,𝟎𝟎 and 𝑲𝑲𝒈𝒈,𝟏𝟏)
Alice sends the output bit (g=1) back to Bob

44

a b

𝑒𝑒 = 𝑎𝑎 ∧ 𝑏𝑏

AND

c d

𝑓𝑓 = 𝑐𝑐 ∧ 𝑑𝑑

𝑔𝑔 = 𝑒𝑒 ∨ 𝑓𝑓

AND

OR

slide 45

Brief Discussion of Yao’s Protocol
• Function must be converted into a circuit

• For many functions, circuit will be huge

• If m gates in the circuit and n inputs from Bob, then
need 4m encryptions and n oblivious transfers

• Oblivious transfers for all inputs can be done in parallel

• Yao’s construction gives a constant-round protocol for
secure computation of any function in the semi-honest
model

• Number of rounds does not depend on the number of inputs
or the size of the circuit!

Security (Semi-Honest Model)

• Security: Assuming that Alice and Bob are both semi-honest (follow
the protocol) then there exist PPT simulators 𝑆𝑆𝐴𝐴 and 𝑆𝑆𝐵𝐵 s.t.

𝐴𝐴𝑛𝑛 𝑛𝑛∈ℕ ≡𝐶𝐶 𝑆𝑆𝐴𝐴 𝑛𝑛, 𝑥𝑥, 𝑓𝑓 𝑥𝑥,𝑦𝑦 𝑛𝑛∈ℕ
𝐵𝐵𝑛𝑛 𝑛𝑛∈ℕ ≡𝐶𝐶 𝑆𝑆𝐵𝐵 𝑛𝑛,𝑦𝑦, 𝑓𝑓 𝑥𝑥,𝑦𝑦 𝑛𝑛∈ℕ

• Remark: Simulator 𝑆𝑆𝐴𝐴 is not given Bob’s input (similarly, 𝑆𝑆𝐵𝐵 is not
given Alices’s output 𝑓𝑓𝐵𝐵 𝑥𝑥,𝑦𝑦)

Theorem (informal): If the oblivious transfer protocol is secure, and the
underlying encryption scheme is CPA-secure then Yao’s protocol is
secure in the semi-honest adversary model.

46

Alice’s Transcript
Bob’s Transcript

Bob’s Simulator

• Simulator Inputs: 𝑏𝑏1, … , 𝑏𝑏𝑚𝑚 and 𝑓𝑓 𝑎𝑎1, … , 𝑎𝑎𝑚𝑚, 𝑏𝑏1, … , 𝑏𝑏𝑛𝑛
• Step 1: Simulator picks keys 𝐾𝐾𝑤𝑤,0 and 𝐾𝐾𝑤𝑤,1 for each wire in circuit 𝐶𝐶𝑓𝑓
• Step 2: Simulator garbles circuit and outputs (honest) garbled circuit
• Step 3: Simulator outputs keys 𝐾𝐾𝑎𝑎1,0,…, 𝐾𝐾𝑎𝑎𝑚𝑚,0

• this is what Bob would see in real protocol if Alice’s input bits are 0’s
• Intuition: Distinguisher cannot tell the difference between 𝐾𝐾𝑎𝑎1,0 and 𝐾𝐾𝑎𝑎1,1

since both keys are picked randomly
• Step 4: Simulator runs OT protocols for each 𝑖𝑖 ≤ 𝑛𝑛

• Sender’s (Alice) Inputs: 𝐾𝐾𝑎𝑎𝑖𝑖,0 and 𝐾𝐾𝑎𝑎𝑖𝑖,1 (known to simulator)
• Receiver’s (Bob) Inputs: 𝑏𝑏𝑖𝑖

47

Bob’s Simulator

• Simulator Inputs: 𝑏𝑏1, … , 𝑏𝑏𝑚𝑚 and 𝑓𝑓 𝑎𝑎1, … ,𝑎𝑎𝑚𝑚, 𝑏𝑏1, … , 𝑏𝑏𝑛𝑛
• …
• Step 4: Simulator runs OT protocols for each 𝑖𝑖 ≤ 𝑛𝑛

• Sender’s (Alice) Inputs: 𝐾𝐾𝑎𝑎𝑖𝑖,0 and 𝐾𝐾𝑎𝑎𝑖𝑖,1 (known to simulator)
• Receiver’s (Bob) Inputs: 𝑏𝑏𝑖𝑖
• Simulator Outputs Bob’s transcript from each OT protocol

• Step 5:
• Let gi denote value of ith output wire 𝑜𝑜𝑖𝑖 when evaluating 𝐶𝐶𝑓𝑓 0, … , 0, 𝑏𝑏1, … , 𝑏𝑏𝑛𝑛
• Simulator outputs the key 𝐾𝐾𝑜𝑜𝑖𝑖,𝑔𝑔𝑖𝑖 for each output wire
• Note: evaluating garbled circuit with given input keys yields key 𝐾𝐾𝑜𝑜𝑖𝑖,𝑔𝑔𝑖𝑖 for each output bit 𝑖𝑖

• Step 6: Simulator announces output bits 𝑓𝑓 𝑎𝑎1, … ,𝑎𝑎𝑚𝑚, 𝑏𝑏1, … , 𝑏𝑏𝑛𝑛
• Note: These output bits are different than 𝐶𝐶𝑓𝑓 0, … , 0, 𝑏𝑏1, … , 𝑏𝑏𝑛𝑛
• Distinguisher cannot tell the difference since the keys 𝐾𝐾𝑜𝑜𝑖𝑖,1−𝑔𝑔𝑖𝑖 remains hidden (encrypted)
• 𝐾𝐾𝑜𝑜𝑖𝑖,1−𝑔𝑔𝑖𝑖 and 𝐾𝐾𝑜𝑜𝑖𝑖,𝑔𝑔𝑖𝑖 are just random strings

48

Course Feedback

• Your feedback is valuable to me! What did you like about the course? What
could be improved? Let me know! I carefully read through any comments
after the semester is over.

• Your feedback is anonymous and will not impact your grade (I cannot view
your feedback until after grades are entered).

49

Course Summary
Course Code Course Title Survey Start Date Survey End Date Report Access Start Response Rate
wl.202120.CS.55500.
FNY.18101 Cryptography 4/19/2021 9:00 AM 5/2/2021 11:59 PM 5/12/2021 12:00 AM 0.00% (0/8)

Recap: Yao’s Garbled Circuits

• Alice Garbles circuit C to get C’
• 𝐾𝐾𝑤𝑤,1 and 𝐾𝐾𝑤𝑤,0: True/False Key for Each wire w in C
• Encrypted/Permuted Truth Table for each logical gate in C

• Example for AND gate: f=c AND d
• Given true key 𝑲𝑲𝒄𝒄,𝟏𝟏 for wire c and false key 𝑲𝑲𝒅𝒅,𝟎𝟎 for wire d should be able to recover

false key 𝑲𝑲𝒇𝒇,𝟎𝟎 for wire f
𝒄𝒄𝒇𝒇,𝟏𝟏,𝟎𝟎 = 𝑬𝑬𝑬𝑬𝒄𝒄𝑲𝑲𝒄𝒄,𝟏𝟏 𝑬𝑬𝑬𝑬𝒄𝒄𝑲𝑲𝒅𝒅,𝟎𝟎 𝑲𝑲𝒇𝒇,𝟎𝟎

50

Recap: Yao’s Garbled Circuits

• Alice Garbles circuit C to get C’
• 𝐾𝐾𝑤𝑤,1 and 𝐾𝐾𝑤𝑤,0: True/False Key for Each wire w in C
• Encrypted/Permuted Truth Table for each logical gate in C

• Example for AND gate: f=c AND d
• Given true key 𝑲𝑲𝒄𝒄,𝟏𝟏 for wire c and false key 𝑲𝑲𝒅𝒅,𝟎𝟎 for wire d should be able to recover false key 𝑲𝑲𝒇𝒇,𝟎𝟎 for wire f

𝒄𝒄𝒇𝒇,𝟏𝟏,𝟎𝟎 = 𝑬𝑬𝑬𝑬𝒄𝒄𝑲𝑲𝒄𝒄,𝟏𝟏 𝑬𝑬𝑬𝑬𝒄𝒄𝑲𝑲𝒅𝒅,𝟎𝟎 𝑲𝑲𝒇𝒇,𝟎𝟎

• Alice directly sends Bob the relevant key for each of her input wires
• Alice/Bob use Oblivious Transfer so that Bob can learn the relevant keys for his input

wires without revealing his inputs to Alice
• Bob can evaluate garbled circuit C’ to obtain relevant keys for output wires and send

them to Alice
• Alice can determine if each output key corresponds to true/false and send the final

output back to Bob
• Protocol is secure in the semi-honest model of computation

51

Fully Malicious Security?

There is not much Bob can do besides following the protocol i.e., he obtains
the garbled circuits + input keys and can only obtain one output key per wire.

What if Alice is malicious and does not follow the protocol?
1. Lie about the output bit(s) in the last step
2. Garble a different circuit C’

Example: C(x,y)= x AND y while C’(x,y)= x XOR y
Given C’(x,y) Alice learns Bob’s input (y) directly
Alice could send back C(x,y), C’(x,y) or something entirely unrelated

52

Fully Malicious Security?

1. Alice could initially garble the wrong circuit C(x,y)=y.
1. Example: Change OR gate to an XOR gate

2. Given output of C(x,y) Alice can still send Bob the output f(x,y).
3. Can Bob detect/prevent this?
Fix: Assume Alice and Bob have both committed to their inputs (x and y
respectively) and the random coins (RA and RB respectively) they will use during the
protocol:
Let cA=com(x,RA;rA) be Alice’s commitment to x, RA and cB=com(y, RB;rB).
• Alice and Bob can use a tool called zero-knowledge proofs to convince the other

party that they are behaving honestly.
• Here we assume that Alice and Bob have both committed to correct inputs (Bob

might use y which does not represent his real vote etc… but this is not a problem
we can address with cryptography)

53

Fully Malicious Security?

Fix: Assume Alice and Bob have both committed to their inputs (x and y
respectively) and random coins (RA and RB respectively):
Let cA=com(x,RA;rA) be Alice’s commitment to x, RA and cB=com(y, RB;rB).
• Alice and Bob can use a tool called zero-knowledge proofs to convince the

other party that they are behaving honestly.
• Example: After sending a her first message (A) Alice proves that the message m she

just sent is the same message an honest party would have sent
• Alice wants to convince Bob that there exists x, RA and rA s.t. 1) cA=com(x,RA;rA) and

2) m is the message that would be produced if Alice is honest and runs with inputs x
and RA

• Alice also does not want to reveal x or RA to Bob!
• Is this possible?
• Yes! Tool = Zero-Knowledge Proofs!

54

Fully Malicious Security

• Assume Alice and Bob have both committed to their input: cA=com(x,RA;rA) and
cB=com(y,RB;rB).

• Here we assume that Alice and Bob have both committed to correct inputs (Bob might use y
which does not represent his real vote etc… but this is not a problem we can address with
cryptography)

• Alice has cB and can unlock cA
• Bob has cA and can unlock cB

1. Alice sets C’f = GarbleCircuit(Cf; RA).
1. Alice sends C’f to Bob.
2. Alice convinces Bob that C’f = GarbleCircuit(Cf, ; RA) (using a zero-knowledge proof)

2. Similarly, Bob/Alice can convince each-other that the OT protocols are run
honestly (additional ZK proofs)

3. Alice can convince Bob that the final output bit(s) correspond to the keys that
Alice sent (additional ZK proofs)

55

CS 555:Week 15: Zero-
Knowledge Proofs

56

Computational Indistinguishability

• Consider two distributions Xℓ and Yℓ (e.g., over strings of length ℓ).
• Let D be a distinguisher that attempts to guess whether a string s came from

distribution Xℓ or Yℓ.

The advantage of a distinguisher D is

𝐴𝐴𝑑𝑑𝐴𝐴𝐷𝐷,ℓ = 𝑃𝑃𝑃𝑃𝑠𝑠←Xℓ
𝐷𝐷 𝑠𝑠 = 1 − 𝑃𝑃𝑃𝑃𝑠𝑠←Yℓ 𝐷𝐷 𝑠𝑠 = 1

Definition: We say that an ensemble of distributions 𝑋𝑋𝑛𝑛 𝑛𝑛∈ℕ and 𝑌𝑌𝑛𝑛 𝑛𝑛∈ℕ are
computationally indistinguishable if for all PPT distinguishers D, there is a negligible
function negl(n), such that we have

𝐴𝐴𝑑𝑑𝐴𝐴𝐷𝐷,𝑛𝑛 ≤ 𝑛𝑛𝑒𝑒𝑔𝑔𝑛𝑛(𝑛𝑛)

57

Computational Indistinguishability

• Consider two distributions Xℓ and Yℓ (e.g., over strings of length ℓ).
• Let D be a distinguisher that attempts to guess whether a string s came from

distribution Xℓ or Yℓ.

The advantage of a distinguisher D is

𝐴𝐴𝑑𝑑𝐴𝐴𝐷𝐷,ℓ = 𝑃𝑃𝑃𝑃𝑠𝑠←Xℓ
𝐷𝐷 𝑠𝑠 = 1 − 𝑃𝑃𝑃𝑃𝑠𝑠←Yℓ 𝐷𝐷 𝑠𝑠 = 1

Definition: We say that an ensemble of distributions 𝑋𝑋𝑛𝑛 𝑛𝑛∈ℕ and 𝑌𝑌𝑛𝑛 𝑛𝑛∈ℕ are
computationally indistinguishable if for all PPT distinguishers D, there is a negligible
function negl(n), such that we have

𝐴𝐴𝑑𝑑𝐴𝐴𝐷𝐷,𝑛𝑛 ≤ 𝑛𝑛𝑒𝑒𝑔𝑔𝑛𝑛(𝑛𝑛)

58

Notation: 𝑋𝑋𝑛𝑛 𝑛𝑛∈ℕ ≡𝐶𝐶 𝑌𝑌𝑛𝑛 𝑛𝑛∈ℕ
means that the ensembles are

computationally indistinguishable.

P vs NP

• P decision problems that can be solved in polynomial time

• NP --- decision problems whose solutions can be verified in polynomial time
• Examples: SHORT-PATH, COMPOSITE, 3SAT, CIRCUIT-SAT, 3COLOR,
• DDH

• Input: 𝐴𝐴 = 𝑔𝑔𝑥𝑥1, B = 𝑔𝑔𝑥𝑥2 and Z
• Goal: Decide if Z = 𝑔𝑔𝑥𝑥1𝑥𝑥2 or Z ≠ 𝑔𝑔𝑥𝑥1𝑥𝑥2 .

• NP-Complete --- hardest problems in NP (e.g., all problems can be reduced to 3SAT)
• Witness

• A short (polynomial size) string which allows a verify to check for membership
• DDH Witness: x1,x2.

59

Zero-Knowledge Proof

Two parties: Prover P (PPT) and Verifier V (PPT)
(P is given witness for claim e.g., w=(x1,x2) is a witness that 𝐴𝐴 = 𝑔𝑔𝑥𝑥1, B =

𝑔𝑔𝑥𝑥2 and Z = 𝑔𝑔𝑥𝑥1𝑥𝑥2 is a DDH tuple)
• Completeness: If claim is true honest prover can always convince honest

verifier to accept the proof.
• Soundness: If claim is false then Verifier should reject with probability at

least ½. (Even if the prover tries to cheat)
• Zero-Knowledge: Verifier doesn’t learn anything about prover’s input from

the protocol (other than that the claim is true).
• Formalizing this last statement is tricky
• Zero-Knowledge: should hold even if the attacker is dishonest!

62

Zero-Knowledge Proof
Trans(1n,V’,P,x,w,rp,rv) transcript produced when V’ and P interact
• V’ is given input X (the problem instance e.g., 𝑋𝑋 = 𝑔𝑔𝑥𝑥)
• P is given input X and w (a witness for the claim e.g., w=x)
• V’ and P use randomness rp and rv respectively
• Security parameter is n e.g., for encryption schemes, commitment schemes etc…

𝑿𝑿𝑬𝑬 = Trans(1n,V’,P,x,w) is a distribution over transcripts (over the randomness rp,rv)

(Blackbox Zero-Knowledge): There is a PPT simulator 𝑆𝑆 such that for every
V’ (possibly cheating) S, with oracle access to V’, can simulate 𝑋𝑋𝑛𝑛 without a
witness w. Formally,

𝑋𝑋𝑛𝑛 𝑛𝑛∈ℕ ≡𝐶𝐶 𝑆𝑆𝑉𝑉𝑉(.) 𝑥𝑥, 1𝑛𝑛 𝑛𝑛∈ℕ

63

Zero-Knowledge Proof
Trans(1n,V’,P,x,w,rp,rv) transcript produced when V’ and P interact
• V’ is given input x (the problem instance e.g., 𝐴𝐴 = 𝑔𝑔𝑥𝑥1, B = 𝑔𝑔𝑥𝑥2 and 𝑧𝑧𝑏𝑏)
• P is given input x and w (a witness for the claim e.g., x1 and x2)
• V’ and P’ use randomness rp and rw respectively
• Security parameter is n e.g., for encryption schemes, commitment schemes etc…

𝑿𝑿𝑬𝑬 = Trans(1n,V’,P’,x,w) is a distribution over transcripts (over the randomness rp,rw)

(Blackbox Zero-Knowledge): There is a PPT simulator 𝑆𝑆 such that for every
V’ (possibly cheating) S, with oracle access to V’, can simulate 𝑋𝑋𝑛𝑛 without a
witness w. Formally,

𝑋𝑋𝑛𝑛 𝑛𝑛∈ℕ ≡𝐶𝐶 𝑆𝑆𝑉𝑉𝑉(.) 𝑥𝑥, 1𝑛𝑛 𝑛𝑛∈ℕ

64

Simulator S is not
given witness w

Oracle V’(x,trans) will output the
next message V’ would output
given current transcript trans

Zero-Knowledge Proof for Discrete Log Solution

65

Bob (verifier);
𝐴𝐴

Alice (prover);
x s.t.
𝐴𝐴 = 𝑔𝑔𝑥𝑥,
𝐵𝐵 = 𝑔𝑔𝑦𝑦,
(random y)

𝑩𝑩 = 𝒈𝒈𝒚𝒚, 𝑪𝑪 = 𝒈𝒈𝒙𝒙+𝒚𝒚

𝒄𝒄𝒄𝒄𝒂𝒂𝒄𝒄𝒄𝒄𝒆𝒆𝑬𝑬𝒈𝒈𝒆𝒆 𝒄𝒄 ∈ 𝟎𝟎,𝟏𝟏

Response 𝒓𝒓 = � 𝒚𝒚 𝒊𝒊𝒇𝒇 𝒄𝒄 = 𝟎𝟎
𝒚𝒚 + 𝑥𝑥 𝑖𝑖𝑓𝑓 𝑐𝑐 = 1

𝑫𝑫𝒆𝒆𝒄𝒄𝒊𝒊𝑫𝑫𝒊𝒊𝑫𝑫𝑬𝑬 𝒅𝒅 = �
𝟏𝟏 𝒊𝒊𝒇𝒇 𝒄𝒄 = 𝟎𝟎 𝒂𝒂𝑬𝑬𝒅𝒅 𝑩𝑩 = 𝒈𝒈𝒓𝒓 𝒂𝒂𝑬𝑬𝒅𝒅 𝑨𝑨𝑩𝑩 = 𝑪𝑪
𝟏𝟏 𝒊𝒊𝒇𝒇 𝒄𝒄 = 𝟏𝟏 𝒂𝒂𝑬𝑬𝒅𝒅 𝑪𝑪 = 𝒈𝒈𝒓𝒓 𝑎𝑎𝑛𝑛𝑑𝑑 𝑨𝑨𝑩𝑩 = 𝑪𝑪
0 𝑜𝑜𝑜𝑜𝑜𝑒𝑒𝑃𝑃𝑜𝑜𝑖𝑖𝑠𝑠𝑒𝑒

Claim: There is some integer x such that 𝐴𝐴 = 𝑔𝑔𝑥𝑥

Zero-Knowledge Proof for Discrete Log Solution

66

Bob (verifier);
𝐴𝐴 = 𝑔𝑔𝑥𝑥,

Alice (prover);
x
𝐴𝐴 = 𝑔𝑔𝑥𝑥,
𝐵𝐵 = 𝑔𝑔𝑦𝑦,
(random y)

𝑩𝑩 = 𝒈𝒈𝒚𝒚, 𝑪𝑪 = 𝒈𝒈𝒙𝒙+𝒚𝒚

𝒄𝒄𝒄𝒄𝒂𝒂𝒄𝒄𝒄𝒄𝒆𝒆𝑬𝑬𝒈𝒈𝒆𝒆 𝒄𝒄 ∈ 𝟎𝟎,𝟏𝟏

Response 𝒓𝒓 = � 𝒚𝒚 𝒊𝒊𝒇𝒇 𝒄𝒄 = 𝟎𝟎
𝒚𝒚 + 𝑥𝑥 𝑖𝑖𝑓𝑓 𝑐𝑐 = 1

𝑫𝑫𝒆𝒆𝒄𝒄𝒊𝒊𝑫𝑫𝒊𝒊𝑫𝑫𝑬𝑬 𝒅𝒅 = �
𝟏𝟏 𝒊𝒊𝒇𝒇 𝒄𝒄 = 𝟎𝟎 𝒂𝒂𝑬𝑬𝒅𝒅 𝑩𝑩 = 𝒈𝒈𝒓𝒓 𝒂𝒂𝑬𝑬𝒅𝒅 𝑨𝑨𝑩𝑩 = 𝑪𝑪
𝟏𝟏 𝒊𝒊𝒇𝒇 𝒄𝒄 = 𝟏𝟏 𝒂𝒂𝑬𝑬𝒅𝒅 𝑪𝑪 = 𝒈𝒈𝒓𝒓 𝑎𝑎𝑛𝑛𝑑𝑑 𝑨𝑨𝑩𝑩 = 𝑪𝑪
0 𝑜𝑜𝑜𝑜𝑜𝑒𝑒𝑃𝑃𝑜𝑜𝑖𝑖𝑠𝑠𝑒𝑒

Correctness: If Alice and Bob are honest then Bob will always accept

Zero-Knowledge Proof for Discrete Log Solution

67

Bob (verifier);
𝐴𝐴 = 𝑔𝑔𝑥𝑥,

Alice (prover);
x
𝐴𝐴 = 𝑔𝑔𝑥𝑥,
𝐵𝐵 = 𝑔𝑔𝑦𝑦,
(random y)

𝑩𝑩 = 𝒈𝒈𝒚𝒚, 𝑪𝑪 = 𝒈𝒈𝒙𝒙+𝒚𝒚

𝒄𝒄𝒄𝒄𝒂𝒂𝒄𝒄𝒄𝒄𝒆𝒆𝑬𝑬𝒈𝒈𝒆𝒆 𝒄𝒄 ∈ 𝟎𝟎,𝟏𝟏

Response 𝒓𝒓 = � 𝒚𝒚 𝒊𝒊𝒇𝒇 𝒄𝒄 = 𝟎𝟎
𝒚𝒚 + 𝑥𝑥 𝑖𝑖𝑓𝑓 𝑐𝑐 = 1

𝑫𝑫𝒆𝒆𝒄𝒄𝒊𝒊𝑫𝑫𝒊𝒊𝑫𝑫𝑬𝑬 𝒅𝒅 = �
𝟏𝟏 𝒊𝒊𝒇𝒇 𝒄𝒄 = 𝟎𝟎 𝒂𝒂𝑬𝑬𝒅𝒅 𝑩𝑩 = 𝒈𝒈𝒓𝒓 𝒂𝒂𝑬𝑬𝒅𝒅 𝑨𝑨𝑩𝑩 = 𝑪𝑪
𝟏𝟏 𝒊𝒊𝒇𝒇 𝒄𝒄 = 𝟏𝟏 𝒂𝒂𝑬𝑬𝒅𝒅 𝑪𝑪 = 𝒈𝒈𝒓𝒓 𝑎𝑎𝑛𝑛𝑑𝑑 𝑨𝑨𝑩𝑩 = 𝑪𝑪
0 𝑜𝑜𝑜𝑜𝑜𝑒𝑒𝑃𝑃𝑜𝑜𝑖𝑖𝑠𝑠𝑒𝑒

Correctness: If Alice and Bob are honest then Bob will always accept

Case 1: Challenge (c=0)

Zero-Knowledge Proof for Discrete Log Solution

68

Bob (verifier);
𝐴𝐴 = 𝑔𝑔𝑥𝑥,

Alice (prover);
x
𝐴𝐴 = 𝑔𝑔𝑥𝑥,
𝐵𝐵 = 𝑔𝑔𝑦𝑦,
(random y)

𝑩𝑩 = 𝒈𝒈𝒚𝒚, 𝑪𝑪 = 𝒈𝒈𝒙𝒙+𝒚𝒚

𝒄𝒄𝒄𝒄𝒂𝒂𝒄𝒄𝒄𝒄𝒆𝒆𝑬𝑬𝒈𝒈𝒆𝒆 𝒄𝒄 ∈ 𝟎𝟎,𝟏𝟏

Response 𝒓𝒓 = � 𝒚𝒚 𝒊𝒊𝒇𝒇 𝒄𝒄 = 𝟎𝟎
𝒚𝒚 + 𝑥𝑥 𝑖𝑖𝑓𝑓 𝑐𝑐 = 1

𝑫𝑫𝒆𝒆𝒄𝒄𝒊𝒊𝑫𝑫𝒊𝒊𝑫𝑫𝑬𝑬 𝒅𝒅 = �
𝟏𝟏 𝒊𝒊𝒇𝒇 𝒄𝒄 = 𝟎𝟎 𝒂𝒂𝑬𝑬𝒅𝒅 𝑩𝑩 = 𝒈𝒈𝒓𝒓 𝒂𝒂𝑬𝑬𝒅𝒅 𝑨𝑨𝑩𝑩 = 𝑪𝑪
𝟏𝟏 𝒊𝒊𝒇𝒇 𝒄𝒄 = 𝟏𝟏 𝒂𝒂𝑬𝑬𝒅𝒅 𝑪𝑪 = 𝒈𝒈𝒓𝒓 𝑎𝑎𝑛𝑛𝑑𝑑 𝑨𝑨𝑩𝑩 = 𝑪𝑪
0 𝑜𝑜𝑜𝑜𝑜𝑒𝑒𝑃𝑃𝑜𝑜𝑖𝑖𝑠𝑠𝑒𝑒

Correctness: If Alice and Bob are honest then Bob will always accept

Case 2: Challenge (c=1)

Zero-Knowledge Proof for Discrete Log Solution

69

Bob (verifier);
𝐴𝐴 = 𝑔𝑔𝑥𝑥,

Alice (prover);
x
𝐴𝐴 = 𝑔𝑔𝑥𝑥,
𝐵𝐵 = 𝑔𝑔𝑦𝑦,
(random y)

𝑩𝑩 = 𝒈𝒈𝒚𝒚, 𝑪𝑪 = 𝒈𝒈𝒙𝒙+𝒚𝒚

𝒄𝒄𝒄𝒄𝒂𝒂𝒄𝒄𝒄𝒄𝒆𝒆𝑬𝑬𝒈𝒈𝒆𝒆 𝒄𝒄 ∈ 𝟎𝟎,𝟏𝟏

Response 𝒓𝒓 = � 𝒚𝒚 𝒊𝒊𝒇𝒇 𝒄𝒄 = 𝟎𝟎
𝒚𝒚 + 𝑥𝑥 𝑖𝑖𝑓𝑓 𝑐𝑐 = 1

𝑫𝑫𝒆𝒆𝒄𝒄𝒊𝒊𝑫𝑫𝒊𝒊𝑫𝑫𝑬𝑬 𝒅𝒅 = �
𝟏𝟏 𝒊𝒊𝒇𝒇 𝒄𝒄 = 𝟎𝟎 𝒂𝒂𝑬𝑬𝒅𝒅 𝑩𝑩 = 𝒈𝒈𝒓𝒓 𝒂𝒂𝑬𝑬𝒅𝒅 𝑨𝑨𝑩𝑩 = 𝑪𝑪
𝟏𝟏 𝒊𝒊𝒇𝒇 𝒄𝒄 = 𝟏𝟏 𝒂𝒂𝑬𝑬𝒅𝒅 𝑪𝑪 = 𝒈𝒈𝒓𝒓 𝑎𝑎𝑛𝑛𝑑𝑑 𝑨𝑨𝑩𝑩 = 𝑪𝑪
0 𝑜𝑜𝑜𝑜𝑜𝑒𝑒𝑃𝑃𝑜𝑜𝑖𝑖𝑠𝑠𝑒𝑒

Soundness: If 𝐴𝐴 ≠ 𝑔𝑔𝑥𝑥 for some x then (honest) Bob will reject w.p. ½ (even if
Alice cheats)

Zero-Knowledge Proof for Discrete Log Solution

70

Bob (verifier);
𝐴𝐴 = 𝑔𝑔𝑥𝑥,

Alice (prover);
x
𝐴𝐴 = 𝑔𝑔𝑥𝑥,
𝐵𝐵 = 𝑔𝑔𝑦𝑦,
(random y)

𝑩𝑩 = 𝒈𝒈𝒚𝒚, 𝑪𝑪 = 𝒈𝒈𝒙𝒙+𝒚𝒚

𝒄𝒄𝒄𝒄𝒂𝒂𝒄𝒄𝒄𝒄𝒆𝒆𝑬𝑬𝒈𝒈𝒆𝒆 𝒄𝒄 ∈ 𝟎𝟎,𝟏𝟏

Response 𝒓𝒓 = � 𝒚𝒚 𝒊𝒊𝒇𝒇 𝒄𝒄 = 𝟎𝟎
𝒚𝒚 + 𝑥𝑥 𝑖𝑖𝑓𝑓 𝑐𝑐 = 1

𝑫𝑫𝒆𝒆𝒄𝒄𝒊𝒊𝑫𝑫𝒊𝒊𝑫𝑫𝑬𝑬 𝒅𝒅 = �
𝟏𝟏 𝒊𝒊𝒇𝒇 𝒄𝒄 = 𝟎𝟎 𝒂𝒂𝑬𝑬𝒅𝒅 𝑩𝑩 = 𝒈𝒈𝒓𝒓 𝒂𝒂𝑬𝑬𝒅𝒅 𝑨𝑨𝑩𝑩 = 𝑪𝑪
𝟏𝟏 𝒊𝒊𝒇𝒇 𝒄𝒄 = 𝟏𝟏 𝒂𝒂𝑬𝑬𝒅𝒅 𝑪𝑪 = 𝒈𝒈𝒓𝒓 𝑎𝑎𝑛𝑛𝑑𝑑 𝑨𝑨𝑩𝑩 = 𝑪𝑪
0 𝑜𝑜𝑜𝑜𝑜𝑒𝑒𝑃𝑃𝑜𝑜𝑖𝑖𝑠𝑠𝑒𝑒

Soundness: If 𝐴𝐴 ≠ 𝑔𝑔𝑥𝑥 for some x then (honest) Bob will reject w.p. ½ (even if
Alice cheats)

Assume that AB=C, now
If 𝑩𝑩 = 𝒈𝒈𝒚𝒚 𝐚𝐚𝐚𝐚𝐚𝐚 𝑪𝑪 = 𝒈𝒈𝒙𝒙+𝒚𝒚 for
some x,y then 𝑨𝑨 = 𝒈𝒈𝒙𝒙

Zero-Knowledge Proof for Discrete Log Solution

71

Bob (verifier);
𝐴𝐴 = 𝑔𝑔𝑥𝑥,

Alice (prover);
x
𝐴𝐴 = 𝑔𝑔𝑥𝑥,
𝐵𝐵 = 𝑔𝑔𝑦𝑦,
(random y)

𝑩𝑩 = 𝒈𝒈𝒚𝒚, 𝑪𝑪 = 𝒈𝒈𝒙𝒙+𝒚𝒚

𝒄𝒄𝒄𝒄𝒂𝒂𝒄𝒄𝒄𝒄𝒆𝒆𝑬𝑬𝒈𝒈𝒆𝒆 𝒄𝒄 ∈ 𝟎𝟎,𝟏𝟏

Response 𝒓𝒓 = � 𝒚𝒚 𝒊𝒊𝒇𝒇 𝒄𝒄 = 𝟎𝟎
𝒚𝒚 + 𝑥𝑥 𝑖𝑖𝑓𝑓 𝑐𝑐 = 1

𝑫𝑫𝒆𝒆𝒄𝒄𝒊𝒊𝑫𝑫𝒊𝒊𝑫𝑫𝑬𝑬 𝒅𝒅 = �
𝟏𝟏 𝒊𝒊𝒇𝒇 𝒄𝒄 = 𝟎𝟎 𝒂𝒂𝑬𝑬𝒅𝒅 𝑩𝑩 = 𝒈𝒈𝒓𝒓 𝒂𝒂𝑬𝑬𝒅𝒅 𝑨𝑨𝑩𝑩 = 𝑪𝑪
𝟏𝟏 𝒊𝒊𝒇𝒇 𝒄𝒄 = 𝟏𝟏 𝒂𝒂𝑬𝑬𝒅𝒅 𝑪𝑪 = 𝒈𝒈𝒓𝒓 𝑎𝑎𝑛𝑛𝑑𝑑 𝑨𝑨𝑩𝑩 = 𝑪𝑪
0 𝑜𝑜𝑜𝑜𝑜𝑒𝑒𝑃𝑃𝑜𝑜𝑖𝑖𝑠𝑠𝑒𝑒

Soundness: If 𝐴𝐴 ≠ 𝑔𝑔𝑥𝑥 for some x then (honest) Bob will reject w.p. ½ (even if
Alice cheats)

Case 1: for all r 𝑩𝑩 ≠ 𝒈𝒈𝒓𝒓

→ 𝑷𝑷𝒓𝒓 𝒓𝒓𝒆𝒆𝒓𝒓𝒆𝒆𝒄𝒄𝒓𝒓 ≥ 𝑷𝑷𝒓𝒓 𝒄𝒄 = 𝟎𝟎 =
𝟏𝟏
𝟐𝟐

Assume that AB=C, now
If 𝑩𝑩 = 𝒈𝒈𝒚𝒚 𝐚𝐚𝐚𝐚𝐚𝐚 𝑪𝑪 = 𝒈𝒈𝒙𝒙+𝒚𝒚 for
some x,y then 𝑨𝑨 = 𝒈𝒈𝒙𝒙

Zero-Knowledge Proof for Discrete Log Solution

72

Bob (verifier);
𝐴𝐴 = 𝑔𝑔𝑥𝑥,

Alice (prover);
x
𝐴𝐴 = 𝑔𝑔𝑥𝑥,
𝐵𝐵 = 𝑔𝑔𝑦𝑦,
(random y)

𝑩𝑩 = 𝒈𝒈𝒚𝒚, 𝑪𝑪 = 𝒈𝒈𝒙𝒙+𝒚𝒚

𝒄𝒄𝒄𝒄𝒂𝒂𝒄𝒄𝒄𝒄𝒆𝒆𝑬𝑬𝒈𝒈𝒆𝒆 𝒄𝒄 ∈ 𝟎𝟎,𝟏𝟏

Response 𝒓𝒓 = � 𝒚𝒚 𝒊𝒊𝒇𝒇 𝒄𝒄 = 𝟎𝟎
𝒚𝒚 + 𝑥𝑥 𝑖𝑖𝑓𝑓 𝑐𝑐 = 1

𝑫𝑫𝒆𝒆𝒄𝒄𝒊𝒊𝑫𝑫𝒊𝒊𝑫𝑫𝑬𝑬 𝒅𝒅 = �
𝟏𝟏 𝒊𝒊𝒇𝒇 𝒄𝒄 = 𝟎𝟎 𝒂𝒂𝑬𝑬𝒅𝒅 𝑩𝑩 = 𝒈𝒈𝒓𝒓 𝒂𝒂𝑬𝑬𝒅𝒅 𝑨𝑨𝑩𝑩 = 𝑪𝑪
𝟏𝟏 𝒊𝒊𝒇𝒇 𝒄𝒄 = 𝟏𝟏 𝒂𝒂𝑬𝑬𝒅𝒅 𝑪𝑪 = 𝒈𝒈𝒓𝒓 𝑎𝑎𝑛𝑛𝑑𝑑 𝑨𝑨𝑩𝑩 = 𝑪𝑪
0 𝑜𝑜𝑜𝑜𝑜𝑒𝑒𝑃𝑃𝑜𝑜𝑖𝑖𝑠𝑠𝑒𝑒

Soundness: If 𝐴𝐴 ≠ 𝑔𝑔𝑥𝑥 for some x then (honest) Bob will reject w.p. ½ (even if
Alice cheats)

Case 2: for all r 𝑪𝑪 ≠ 𝒈𝒈𝒓𝒓

→ 𝑷𝑷𝒓𝒓 𝒓𝒓𝒆𝒆𝒓𝒓𝒆𝒆𝒄𝒄𝒓𝒓 ≥ 𝑷𝑷𝒓𝒓 𝒄𝒄 = 𝟏𝟏 =
𝟏𝟏
𝟐𝟐

Assume that AB=C, now
If 𝑩𝑩 = 𝒈𝒈𝒚𝒚 𝐚𝐚𝐚𝐚𝐚𝐚 𝑪𝑪 = 𝒈𝒈𝒙𝒙+𝒚𝒚 for
some x,y then 𝑨𝑨 = 𝒈𝒈𝒙𝒙

Zero-Knowledge Proof for Discrete Log Solution

73

Dishonest (verifier);
𝐴𝐴 = 𝑔𝑔𝑥𝑥,

Alice (honest);
x
𝐴𝐴 = 𝑔𝑔𝑥𝑥,
𝐵𝐵 = 𝑔𝑔𝑦𝑦,
(random y)

𝑩𝑩 = 𝒈𝒈𝒚𝒚, 𝑪𝑪 = 𝒈𝒈𝒙𝒙+𝒚𝒚

𝒄𝒄𝒄𝒄𝒂𝒂𝒄𝒄𝒄𝒄𝒆𝒆𝑬𝑬𝒈𝒈𝒆𝒆 𝒄𝒄 = 𝑽𝑽𝑽(𝑨𝑨, 𝑩𝑩,𝑪𝑪) ∈ 𝟎𝟎,𝟏𝟏

Response 𝒓𝒓 = � 𝒚𝒚 𝒊𝒊𝒇𝒇 𝒄𝒄 = 𝟎𝟎
𝒚𝒚 + 𝑥𝑥 𝑖𝑖𝑓𝑓 𝑐𝑐 = 1

𝑫𝑫𝒆𝒆𝒄𝒄𝒊𝒊𝑫𝑫𝒊𝒊𝑫𝑫𝑬𝑬 𝒅𝒅 = 𝑽𝑽𝑽(𝑨𝑨, 𝑩𝑩,𝑪𝑪 , 𝒄𝒄, 𝒓𝒓)

Transcript: 𝑽𝑽𝒊𝒊𝒆𝒆𝑽𝑽𝑽𝑽𝑉 = 𝐴𝐴, 𝐵𝐵,𝐶𝐶 , 𝑐𝑐, 𝑃𝑃,𝑑𝑑

Zero-Knowledge Proof for Discrete Log Solution

74

Dishonest (verifier);
𝐴𝐴 = 𝑔𝑔𝑥𝑥,

Alice (honest);
x
𝐴𝐴 = 𝑔𝑔𝑥𝑥,
𝐵𝐵 = 𝑔𝑔𝑦𝑦,
(random y)

𝑩𝑩 = 𝒈𝒈𝒚𝒚, 𝑪𝑪 = 𝒈𝒈𝒙𝒙+𝒚𝒚

𝒄𝒄𝒄𝒄𝒂𝒂𝒄𝒄𝒄𝒄𝒆𝒆𝑬𝑬𝒈𝒈𝒆𝒆 𝒄𝒄 = 𝑽𝑽𝑽(𝑨𝑨, 𝑩𝑩,𝑪𝑪) ∈ 𝟎𝟎,𝟏𝟏

Response 𝒓𝒓 = � 𝒚𝒚 𝒊𝒊𝒇𝒇 𝒄𝒄 = 𝟎𝟎
𝒚𝒚 + 𝑥𝑥 𝑖𝑖𝑓𝑓 𝑐𝑐 = 1

𝑫𝑫𝒆𝒆𝒄𝒄𝒊𝒊𝑫𝑫𝒊𝒊𝑫𝑫𝑬𝑬 𝒅𝒅 = 𝑽𝑽𝑽(𝑨𝑨, 𝑩𝑩,𝑪𝑪 , 𝒄𝒄, 𝒓𝒓)

Zero-Knowledge: For all PPT V’ exists PPT Sim s.t 𝑽𝑽𝒊𝒊𝒆𝒆𝑽𝑽𝑽𝑽𝑉 ≡𝐶𝐶 Sim𝑉𝑉𝑉(.) 𝐴𝐴

Zero-Knowledge Proof for Discrete Log Solution

75

Dishonest (verifier);
𝐴𝐴 = 𝑔𝑔𝑥𝑥,

Simulator
Cheat bit b,
𝐴𝐴 = 𝑔𝑔𝑥𝑥,
𝐵𝐵 = 𝑔𝑔𝑦𝑦,
(random y)

Zero-Knowledge: For all PPT V’ exists PPT Sim s.t 𝑽𝑽𝒊𝒊𝒆𝒆𝑽𝑽𝑽𝑽𝑉 ≡𝐶𝐶 Sim𝑉𝑉𝑉(.) 𝐴𝐴

�
𝑩𝑩 = 𝒈𝒈𝒚𝒚,𝑪𝑪 = 𝑨𝑨𝑩𝑩 if b=0

𝑩𝑩 =
𝐶𝐶
𝐴𝐴

,𝑪𝑪 = 𝒈𝒈𝒚𝒚 𝑫𝑫𝒓𝒓𝒄𝒄𝒆𝒆𝒓𝒓𝑽𝑽𝒊𝒊𝑫𝑫𝒆𝒆

Response 𝒓𝒓 = � 𝒚𝒚 𝒊𝒊𝒇𝒇 𝒄𝒄=𝒃𝒃
⊥ 𝑜𝑜𝑜𝑜𝑜𝑒𝑒𝑜𝑜𝑤𝑤𝑖𝑖𝑠𝑠𝑒𝑒

𝒄𝒄𝒄𝒄𝒂𝒂𝒄𝒄𝒄𝒄𝒆𝒆𝑬𝑬𝒈𝒈𝒆𝒆 𝒄𝒄 = 𝑽𝑽𝑽(𝑨𝑨, 𝑩𝑩,𝑪𝑪) ∈ 𝟎𝟎,𝟏𝟏

𝑫𝑫𝒆𝒆𝒄𝒄𝒊𝒊𝑫𝑫𝒊𝒊𝑫𝑫𝑬𝑬 𝒅𝒅 = 𝑽𝑽𝑽(𝑨𝑨, 𝑩𝑩,𝑪𝑪 , 𝒄𝒄, 𝒓𝒓)

Zero-Knowledge Proof for Discrete Log Solution

76

Dishonest (verifier);
𝐴𝐴 = 𝑔𝑔𝑥𝑥,

Simulator
Cheat bit b,
𝐴𝐴 = 𝑔𝑔𝑥𝑥,
𝐵𝐵 = 𝑔𝑔𝑦𝑦,
(random y)

�
𝑩𝑩 = 𝒈𝒈𝒚𝒚,𝑪𝑪 = 𝑨𝑨𝑩𝑩 if b=0

𝑩𝑩 =
𝐶𝐶
𝐴𝐴

,𝑪𝑪 = 𝒈𝒈𝒚𝒚 𝑫𝑫𝒓𝒓𝒄𝒄𝒆𝒆𝒓𝒓𝑽𝑽𝒊𝒊𝑫𝑫𝒆𝒆

Response 𝒓𝒓 = � 𝒚𝒚 𝒊𝒊𝒇𝒇 𝒄𝒄=𝒃𝒃
⊥ 𝑜𝑜𝑜𝑜𝑜𝑒𝑒𝑜𝑜𝑤𝑤𝑖𝑖𝑠𝑠𝑒𝑒

Zero-Knowledge: Simulator can produce identical transcripts (Repeat until 𝑃𝑃 ≠⊥)

𝒄𝒄𝒄𝒄𝒂𝒂𝒄𝒄𝒄𝒄𝒆𝒆𝑬𝑬𝒈𝒈𝒆𝒆 𝒄𝒄 = 𝑽𝑽𝑽(𝑨𝑨, 𝑩𝑩,𝑪𝑪) ∈ 𝟎𝟎,𝟏𝟏

𝑫𝑫𝒆𝒆𝒄𝒄𝒊𝒊𝑫𝑫𝒊𝒊𝑫𝑫𝑬𝑬 𝒅𝒅 = 𝑽𝑽𝑽(𝑨𝑨, 𝑩𝑩,𝑪𝑪 , 𝒄𝒄, 𝒓𝒓)

Zero-Knowledge Proof for Discrete Log Solution

77

Dishonest (verifier);
𝐴𝐴 = 𝑔𝑔𝑥𝑥,

Simulator
Cheat bit b,
𝐴𝐴 = 𝑔𝑔𝑥𝑥,
𝐵𝐵 = 𝑔𝑔𝑦𝑦,
(random y)

�
𝑩𝑩 = 𝒈𝒈𝒚𝒚,𝑪𝑪 = 𝑨𝑨𝑩𝑩 if b=0

𝑩𝑩 =
𝐶𝐶
𝐴𝐴

,𝑪𝑪 = 𝒈𝒈𝒚𝒚 𝑫𝑫𝒓𝒓𝒄𝒄𝒆𝒆𝒓𝒓𝑽𝑽𝒊𝒊𝑫𝑫𝒆𝒆

Response 𝒓𝒓 = � 𝒚𝒚 𝒊𝒊𝒇𝒇 𝒄𝒄=𝒃𝒃
⊥ 𝑜𝑜𝑜𝑜𝑜𝑒𝑒𝑜𝑜𝑤𝑤𝑖𝑖𝑠𝑠𝑒𝑒

𝒄𝒄𝒄𝒄𝒂𝒂𝒄𝒄𝒄𝒄𝒆𝒆𝑬𝑬𝒈𝒈𝒆𝒆 𝒄𝒄 = 𝑽𝑽𝑽(𝑨𝑨, 𝑩𝑩,𝑪𝑪) ∈ 𝟎𝟎,𝟏𝟏

𝑫𝑫𝒆𝒆𝒄𝒄𝒊𝒊𝑫𝑫𝒊𝒊𝑫𝑫𝑬𝑬 𝒅𝒅 = 𝑽𝑽𝑽(𝑨𝑨, 𝑩𝑩,𝑪𝑪 , 𝒄𝒄, 𝒓𝒓)

Zero-Knowledge: If 𝐴𝐴 = 𝑔𝑔𝑥𝑥 for some x then 𝑽𝑽𝒊𝒊𝒆𝒆𝑽𝑽𝑽𝑽𝑉 ≡𝐶𝐶 Sim𝑉𝑉𝑉(.) 𝐴𝐴

Zero-Knowledge Proof for Square Root mod N

78

Bob (verifier);
𝑧𝑧

Alice (prover);
X
𝑧𝑧 = 𝑥𝑥2 mod N
(random y)

𝑀𝑀 = 𝑧𝑧𝑦𝑦2 𝑚𝑚𝑜𝑜𝑑𝑑 𝑁𝑁

𝒄𝒄𝒄𝒄𝒂𝒂𝒄𝒄𝒄𝒄𝒆𝒆𝑬𝑬𝒈𝒈𝒆𝒆 𝒄𝒄 ∈ 𝟎𝟎,𝟏𝟏

Response 𝒓𝒓 = �𝒚𝒚 𝒊𝒊𝒇𝒇 𝒄𝒄 = 𝟎𝟎
𝒚𝒚𝑥𝑥 𝑖𝑖𝑓𝑓 𝑐𝑐 = 1

𝑫𝑫𝒆𝒆𝒄𝒄𝒊𝒊𝑫𝑫𝒊𝒊𝑫𝑫𝑬𝑬 𝒅𝒅 = �
𝟏𝟏 𝒊𝒊𝒇𝒇 𝒄𝒄 = 𝟎𝟎 𝒂𝒂𝑬𝑬𝒅𝒅𝑴𝑴 = 𝒛𝒛𝒓𝒓𝟐𝟐

𝟏𝟏 𝒊𝒊𝒇𝒇 𝒄𝒄 = 𝟏𝟏 𝒂𝒂𝑬𝑬𝒅𝒅𝑴𝑴 = 𝒓𝒓𝟐𝟐 𝑚𝑚𝑜𝑜𝑑𝑑 𝑁𝑁
0 𝑜𝑜𝑜𝑜𝑜𝑒𝑒𝑃𝑃𝑜𝑜𝑖𝑖𝑠𝑠𝑒𝑒

Completeness: If Alice knows x such 𝑧𝑧 = 𝑥𝑥2 mod N then Bob will always accept

Zero-Knowledge Proof for Square Root mod N

79

Bob (verifier);
𝑧𝑧

Alice (prover);
X
𝑧𝑧 = 𝑥𝑥2 mod N
(random y)

𝑀𝑀 = 𝑧𝑧𝑦𝑦2 𝑚𝑚𝑜𝑜𝑑𝑑 𝑁𝑁

𝒄𝒄𝒄𝒄𝒂𝒂𝒄𝒄𝒄𝒄𝒆𝒆𝑬𝑬𝒈𝒈𝒆𝒆 𝒄𝒄 ∈ 𝟎𝟎,𝟏𝟏

Response 𝒓𝒓 = �𝒚𝒚 𝒊𝒊𝒇𝒇 𝒄𝒄 = 𝟎𝟎
𝒚𝒚𝑥𝑥 𝑖𝑖𝑓𝑓 𝑐𝑐 = 1

𝑫𝑫𝒆𝒆𝒄𝒄𝒊𝒊𝑫𝑫𝒊𝒊𝑫𝑫𝑬𝑬 𝒅𝒅 = �
𝟏𝟏 𝒊𝒊𝒇𝒇 𝒄𝒄 = 𝟎𝟎 𝒂𝒂𝑬𝑬𝒅𝒅𝑴𝑴 = 𝒛𝒛𝒓𝒓𝟐𝟐

𝟏𝟏 𝒊𝒊𝒇𝒇 𝒄𝒄 = 𝟏𝟏 𝒂𝒂𝑬𝑬𝒅𝒅𝑴𝑴 = 𝒓𝒓𝟐𝟐 𝑚𝑚𝑜𝑜𝑑𝑑 𝑁𝑁
0 𝑜𝑜𝑜𝑜𝑜𝑒𝑒𝑃𝑃𝑜𝑜𝑖𝑖𝑠𝑠𝑒𝑒

Soundness: If 𝑧𝑧 ≠ 𝑥𝑥2 for some x then (honest) Bob will reject w.p. ½ (even if
Alice cheats)

Zero-Knowledge Proof for Square Root mod N

80

Bob (verifier);
𝑧𝑧

Alice (prover);
X
𝑧𝑧 = 𝑥𝑥2 mod N
(random y)

𝑀𝑀 = 𝑧𝑧𝑦𝑦2 𝑚𝑚𝑜𝑜𝑑𝑑 𝑁𝑁

𝒄𝒄𝒄𝒄𝒂𝒂𝒄𝒄𝒄𝒄𝒆𝒆𝑬𝑬𝒈𝒈𝒆𝒆 𝒄𝒄 ∈ 𝟎𝟎,𝟏𝟏

Response 𝒓𝒓 = �𝒚𝒚 𝒊𝒊𝒇𝒇 𝒄𝒄 = 𝟎𝟎
𝒚𝒚𝑥𝑥 𝑖𝑖𝑓𝑓 𝑐𝑐 = 1

𝑫𝑫𝒆𝒆𝒄𝒄𝒊𝒊𝑫𝑫𝒊𝒊𝑫𝑫𝑬𝑬 𝒅𝒅 = �
𝟏𝟏 𝒊𝒊𝒇𝒇 𝒄𝒄 = 𝟎𝟎 𝒂𝒂𝑬𝑬𝒅𝒅𝑴𝑴 = 𝒛𝒛𝒓𝒓𝟐𝟐 mod N
𝟏𝟏 𝒊𝒊𝒇𝒇 𝒄𝒄 = 𝟏𝟏 𝒂𝒂𝑬𝑬𝒅𝒅𝑴𝑴 = 𝒓𝒓𝟐𝟐 mod N
0 𝑜𝑜𝑜𝑜𝑜𝑒𝑒𝑃𝑃𝑜𝑜𝑖𝑖𝑠𝑠𝑒𝑒

Zero-Knowledge: How does the simulator work?

Zero-Knowledge Proof vs. Digital Signature

• Digital Signatures are transferrable
• E.g., Alice signs a message m with her secret key and sends the signature 𝜎𝜎 to

Bob. Bob can then send (m,𝜎𝜎) to Jane who is convinced that Alice signed the
message m.

• Are Zero-Knowledge Proofs transferable?
• Suppose Alice (prover) interacts with Bob (verifier) to prove a statement (e.g.,

z has a square root modulo N) in Zero-Knowledge.
• Let 𝑽𝑽𝒊𝒊𝒆𝒆𝑽𝑽𝑽𝑽 be Bob’s view of the protocol.
• Suppose Bob sends 𝑽𝑽𝒊𝒊𝒆𝒆𝑽𝑽𝑽𝑽 to Jane.
• Should Jane be convinced of the statement (e.g., z has a square root modulo

N)>

81

Non-Interactive Zero-Knowledge Proof (NIZK)

82

Bob (verifier);
𝑧𝑧

Alice (prover);
X
𝑧𝑧 = 𝑥𝑥2 mod N
(random
𝑦𝑦1, … ,𝑦𝑦𝑘𝑘)

M1,…Mk where 𝑀𝑀𝑖𝑖 = 𝑦𝑦𝑖𝑖2𝑧𝑧 𝑚𝑚𝑜𝑜𝑑𝑑 𝑁𝑁

𝒄𝒄𝒄𝒄𝒂𝒂𝒄𝒄𝒄𝒄𝒆𝒆𝑬𝑬𝒈𝒈𝒆𝒆𝑫𝑫 𝒄𝒄 = 𝒄𝒄𝟏𝟏, … . , 𝒄𝒄𝒌𝒌 = 𝑯𝑯(M1,…Mk)

Responses r1,…,rk where 𝒓𝒓𝒊𝒊 = � 𝒚𝒚𝒊𝒊 𝒊𝒊𝒇𝒇 𝒄𝒄𝒊𝒊 = 𝟎𝟎
𝒚𝒚𝒊𝒊𝑥𝑥 𝑖𝑖𝑓𝑓 𝑐𝑐𝑖𝑖 = 1

𝑫𝑫𝒆𝒆𝒄𝒄𝒊𝒊𝑫𝑫𝒊𝒊𝑫𝑫𝑬𝑬 𝒅𝒅 = �
𝒊𝒊

𝒅𝒅𝒊𝒊 𝑽𝑽𝒄𝒄𝒆𝒆𝒓𝒓𝒆𝒆 𝒅𝒅𝒊𝒊 = �
𝟏𝟏 𝒊𝒊𝒇𝒇 𝒄𝒄𝒊𝒊 = 𝟎𝟎 𝒂𝒂𝑬𝑬𝒅𝒅𝑴𝑴𝒊𝒊 = 𝒓𝒓𝒊𝒊𝟐𝟐𝒛𝒛 mod N
𝟏𝟏 𝒊𝒊𝒇𝒇 𝒄𝒄𝒊𝒊 = 𝟏𝟏 𝒂𝒂𝑬𝑬𝒅𝒅𝑴𝑴𝒊𝒊 = 𝒓𝒓𝒊𝒊𝟐𝟐 mod N
0 𝑜𝑜𝑜𝑜𝑜𝑒𝑒𝑃𝑃𝑜𝑜𝑖𝑖𝑠𝑠𝑒𝑒

Simulator Power: Can program the random oracle

NIZK Security (Random Oracle Model)

• Simulator is given statement to proof (e.g., 𝑧𝑧 has a square root modulo N)
• Simulator must output a proof 𝜋𝜋𝑽𝑧𝑧 and a random oracle H’

• Distinguisher D
• World 1 (Simulated): Given z, 𝜋𝜋𝑽𝑧𝑧 and oracle access to H’
• World 2 (Honest): Given z, 𝜋𝜋𝑧𝑧 (honest proof) and oracle access to H
• Advantage: ADVD = 𝑃𝑃𝑃𝑃 𝐷𝐷𝐻𝐻 z, 𝜋𝜋𝑧𝑧 = 1 − 𝑃𝑃𝑃𝑃 𝐷𝐷𝐻𝐻𝑉 z, 𝜋𝜋𝑽𝑧𝑧 = 1

• Zero-Knowledge: Any PPT distinguisher D should have negligible
advantage.

• NIZK proof 𝜋𝜋𝑧𝑧 is transferrable (contrast with interactive ZK proof)

83

Σ-Protocols

• Prover Input: instance/claim x and witness w

• Verifier Input: Instance x

• Σ-Protocols: three-message structure
• Prover sends first message m=P1(x,w; r1)
• Verifier responds with random challenge c
• Prover sends response R=P2(x,w,r1,c; r2)
• Verifier outputs decision V(x,m,c,R)
• Completeness: If w is a valid witness for instance x then Pr[V(x,c,R)=1]=1
• Soundness: If the claim x is false then V(x,c,R)=0 with probability at least ½
• Zero-Knowledge: Simulator can produce computationally indistinguishable transcript

84

Σ-Protocols and Fiat-Shamir Transform

• Convert Σ-Protocols into Non-Interactive ZK Proof
• Prover Input: instance/claim x and witness w
• Verifier Input: Instance x
• Step 1: Prover generates first messages for n instances of the protocol

• mi = P1(x,w; ri) for each i=1 to n

• Step 2: Prover uses random oracle to extract random coins zj=H(x,j, m1,….,mn) for
j=1 to n

• Prover samples challenges c1,…,cn using random strings z1,…,zn i.e., ci=SampleChallenge(zi)

• Step 3: Prover computes responses R1,…,Rn
• RiP2(x,w,ri,ci)

• Step 4: Prover outputs the proof 𝑚𝑚𝑖𝑖 , 𝑐𝑐𝑖𝑖 , 𝑧𝑧𝑖𝑖 𝑖𝑖≤𝑛𝑛

85

Σ-Protocols and Fiat-Shamir Transform

• Step 1: Prover generates first messages for n instances of the protocol
• mi = P1(x,w; ri) for each i=1 to n

• Step 2: Prover uses random oracle to extract random coins zi=H(x,i, m1,….,mn) for i=1 to
n

• Prover samples challenges c1,…,cn using random strings z1,…,zn i.e., ci=SampleChallenge(zi)
• Step 3: Prover computes responses R1,…,Rn

• RiP2(x,w,ri,ci)
• Step 4: Prover outputs the proof 𝜋𝜋 = 𝑚𝑚𝑖𝑖 , 𝑐𝑐𝑖𝑖 ,𝑅𝑅𝑖𝑖 𝑖𝑖≤𝑛𝑛
Verifier: VNI(x,𝜋𝜋) check that for all 𝑖𝑖 ≤ 𝑛𝑛

1. V(x, 𝑚𝑚𝑖𝑖 , 𝑐𝑐𝑖𝑖 ,𝑅𝑅𝑖𝑖)=1 and
2. ci=SampleChallenge(zi) where zi=H(x,i, m1,….,mn)

86

Σ-Protocols and Fiat-Shamir Transform

• Step 1: Prover generates first messages for n instances of the protocol
• mi = P1(x,w; ri) for each i=1 to n

• Step 2: Prover uses random oracle to extract random coins zi=H(x,i, m1,….,mn) for i=1 to
n

• Prover samples challenges c1,…,cn using random strings z1,…,zn i.e., ci=SampleChallenge(zi)
• Step 3: Prover computes responses R1,…,Rn

• RiP2(x,w,ri,ci)
• Step 4: Prover outputs the proof 𝜋𝜋 = 𝑚𝑚𝑖𝑖 , 𝑐𝑐𝑖𝑖 ,𝑅𝑅𝑖𝑖 𝑖𝑖≤𝑛𝑛
Zero-Knowledge (Idea):
Step 1: Run simulator for Σ n-times to obtain n transcripts 𝑚𝑚𝑖𝑖 , 𝑐𝑐𝑖𝑖 ,𝑅𝑅𝑖𝑖 for each 𝑖𝑖 ≤ 𝑛𝑛.
Step 2: Program the random oracle so that H(x,i, m1,….,mn)=zi where
ci=SampleChallenge(zi)

87

Zero-Knowledge Proof for all NP

• CLIQUE
• Input: Graph G=(V,E) and integer k>0
• Question: Does G have a clique of size k?

• CLIQUE is NP-Complete
• Any problem in NP reduces to CLIQUE
• A zero-knowledge proof for CLIQUE yields proof for all of NP via reduction

• Prover:
• Knows k vertices v1,…,vk in G=(V,E) that form a clique

88

Zero-Knowledge Proof for all NP

89

A B

C D

E G
F

H

IJ

K
L

𝜎𝜎 𝐺𝐺

Adjacency matrix 𝐴𝐴𝜎𝜎 𝐺𝐺

0 ⋯ 1
⋮ ⋱ ⋮
1 ⋯ 0

A L

L

A

Commitment to 𝐴𝐴𝜎𝜎 𝐺𝐺

𝐶𝐶𝑜𝑜𝑚𝑚 0, 𝑃𝑃𝐴𝐴,𝐴𝐴 ⋯ 𝐶𝐶𝑜𝑜𝑚𝑚 1, 𝑃𝑃𝐴𝐴,𝐿𝐿
⋮ ⋱ ⋮

𝐶𝐶𝑜𝑜𝑚𝑚 1, 𝑃𝑃𝐿𝐿,𝐴𝐴 ⋯ 𝐶𝐶𝑜𝑜𝑚𝑚 0, 𝑃𝑃𝐿𝐿,𝐿𝐿

A L

L

A

Zero-Knowledge Proof for all NP

• Prover:
• Knows k vertices v1,…,vk in G=(V,E) that for a clique

1. Prover commits to a permutation 𝜎𝜎 over V
2. Prover commits to the adjacency matrix 𝐴𝐴𝜎𝜎 𝐺𝐺 of 𝜎𝜎(G)
3. Verifier sends challenge c (either 1 or 0)
4. If c=0 then prover reveals 𝜎𝜎 and adjacency matrix 𝐴𝐴𝜎𝜎 𝐺𝐺

1. Verifier confirms that adjacency matrix is correct for 𝜎𝜎(G)
5. If c=1 then prover reveals the submatrix formed by first

rows/columns of 𝐴𝐴𝜎𝜎 𝐺𝐺 corresponding to 𝜎𝜎 𝐴𝐴1 , … ,𝜎𝜎 𝐴𝐴𝑘𝑘
1. Verifier confirms that the submatrix forms a clique.

90

A B

C D

E G
F

H

IJ

K
L

Zero-Knowledge Proof for all NP

• Completeness: Honest prover can always make honest verifier accept
• Soundness: If prover commits to adjacency matrix 𝐴𝐴𝜎𝜎 𝐺𝐺 of 𝜎𝜎(G) and

can reveal a clique in submatrix of 𝐴𝐴𝜎𝜎 𝐺𝐺 then G itself contains a k-
clique. Proof invokes binding property of commitment scheme.

• Zero-Knowledge: Simulator cheats and either commits to wrong
adjacency matrix or cannot reveal clique. Repeat until we produce a
successful transcript. Indistinguishability of transcripts follows from
hiding property of commitment scheme.

91

Secure Multiparty Computation (Adversary
Models)
• Semi-Honest (“honest, but curious”)

• All parties follow protocol instructions, but…
• dishonest parties may be curious to violate privacy of others when possible

• Fully Malicious Model
• Adversarial Parties may deviate from the protocol arbitrarily

• Quit unexpectedly
• Send different messages

• It is much harder to achieve security in the fully malicious model
• Convert Secure Semi-Honest Protocol into Secure Protocol in Fully

Malicious Mode?
• Tool: Zero-Knowledge Proofs
• Prove: My behavior in the protocol is consistent with honest party

92

	Course Feedback
	Cryptography�CS 555
	Recap: Oblivious Transfer (OT)
	Yao’s Garbled Circuits
	Yao’s Garbled Circuits
	Yao’s Protocol
	Yao’s Protocol
	Slide Number 18
	Intuition
	Intuition
	1: Pick Random Keys For Each Wire
	2: Encrypt Truth Table
	3: Send Garbled Truth Table
	4: Send Keys For Alice’s Inputs
	5: Use OT on Keys for Bob’s Input
	6: Evaluate Garbled Gate
	7: Evaluate Entire Circuit
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Brief Discussion of Yao’s Protocol
	Security (Semi-Honest Model)
	Bob’s Simulator
	Bob’s Simulator
	Course Feedback
	Recap: Yao’s Garbled Circuits	
	Recap: Yao’s Garbled Circuits	
	Fully Malicious Security?
	Fully Malicious Security?
	Fully Malicious Security?
	Fully Malicious Security
	CS 555:Week 15: Zero-Knowledge Proofs
	Computational Indistinguishability
	Computational Indistinguishability
	P vs NP
	Zero-Knowledge Proof
	Zero-Knowledge Proof
	Zero-Knowledge Proof
	Zero-Knowledge Proof for Discrete Log Solution
	Zero-Knowledge Proof for Discrete Log Solution
	Zero-Knowledge Proof for Discrete Log Solution
	Zero-Knowledge Proof for Discrete Log Solution
	Zero-Knowledge Proof for Discrete Log Solution
	Zero-Knowledge Proof for Discrete Log Solution
	Zero-Knowledge Proof for Discrete Log Solution
	Zero-Knowledge Proof for Discrete Log Solution
	Zero-Knowledge Proof for Discrete Log Solution
	Zero-Knowledge Proof for Discrete Log Solution
	Zero-Knowledge Proof for Discrete Log Solution
	Zero-Knowledge Proof for Discrete Log Solution
	Zero-Knowledge Proof for Discrete Log Solution
	Zero-Knowledge Proof for Square Root mod N
	Zero-Knowledge Proof for Square Root mod N
	Zero-Knowledge Proof for Square Root mod N
	Zero-Knowledge Proof vs. Digital Signature
	Non-Interactive Zero-Knowledge Proof (NIZK)
	NIZK Security (Random Oracle Model)
	Σ-Protocols
	Σ-Protocols and Fiat-Shamir Transform
	Σ-Protocols and Fiat-Shamir Transform
	Σ-Protocols and Fiat-Shamir Transform
	Zero-Knowledge Proof for all NP
	Zero-Knowledge Proof for all NP
	Zero-Knowledge Proof for all NP
	Zero-Knowledge Proof for all NP
	Secure Multiparty Computation (Adversary Models)

