
Cryptography
CS 555

Week 13:
• More Plain RSA Attacks
• Secure Multi-Party Computation (Garbled Circuits)
Reminder: Quiz 5 due tonight (4/14) at 11:30PM on Brigthspace
Readings: Chapter 11.1-11.2, 11.4

1Spring 2021

Plain RSA Attacks: Related Messages

• Sender encrypts m and 𝑚𝑚 + 𝛿𝛿, where offset 𝛿𝛿 is known to attacker

• Attacker intercepts
𝑐𝑐1 = Enc𝑝𝑝𝑝𝑝 𝑚𝑚 = 𝑚𝑚𝑒𝑒 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁

and
𝑐𝑐2 = Enc𝑝𝑝𝑝𝑝 𝑚𝑚 + 𝛿𝛿 = 𝑚𝑚 + 𝛿𝛿 𝑒𝑒 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁

• Attacker defines polynomials
𝑓𝑓1 𝑥𝑥 = 𝑥𝑥𝑒𝑒 − 𝑐𝑐1𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁

and
𝑓𝑓2 𝑥𝑥 = 𝑥𝑥 + 𝛿𝛿 𝑒𝑒 − 𝑐𝑐2𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁

2

More Attacks: Encrypting Related Messages

𝑐𝑐1 = Enc𝑝𝑝𝑝𝑝 𝑚𝑚 = 𝑚𝑚𝑒𝑒 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁
𝑐𝑐2 = Enc𝑝𝑝𝑝𝑝 𝑚𝑚 + 𝛿𝛿 = 𝑚𝑚 + 𝛿𝛿 𝑒𝑒 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁

• Attacker defines polynomials
𝑓𝑓1 𝑥𝑥 = 𝑥𝑥𝑒𝑒 − 𝑐𝑐1𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁

and
𝑓𝑓2 𝑥𝑥 = 𝑥𝑥 + 𝛿𝛿 𝑒𝑒 − 𝑐𝑐2𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁

• Both polynomials have a root at x=m, thus (x-m) is a factor of both polynomials
• The GCD operation can be extended to operate over polynomials

• Polynomial time in log 𝑁𝑁 and degree e
• Attack on Plain RSA only works when e is small (often true in practice)

• GCD(𝑓𝑓1 𝑥𝑥 , 𝑓𝑓2 𝑥𝑥) reveals the common factor (x-m)
• Can easily extract m from g(x)=(x-m)= GCD(𝑓𝑓1 𝑥𝑥 , 𝑓𝑓2 𝑥𝑥)

3

Factor N given 𝜙𝜙 𝑁𝑁

4

• Suppose we are given 𝑁𝑁 = 𝑝𝑝𝑝𝑝 and 𝜙𝜙 𝑁𝑁 = 𝑝𝑝 − 1 𝑝𝑝 − 1

• Idea: Solve for p using quadratic formula!

𝜙𝜙 𝑁𝑁 = 𝑝𝑝 − 1 𝑝𝑝 − 1 = 𝑝𝑝 − 1
𝑁𝑁
𝑝𝑝
− 1

𝑝𝑝𝜙𝜙 𝑁𝑁 = 𝑝𝑝 − 1 𝑁𝑁 − 𝑝𝑝 (Multiply by p)

𝑝𝑝2 + 𝑝𝑝 𝜙𝜙 𝑁𝑁 − 1 − 𝑁𝑁 + 𝑁𝑁 = 0 (Algebra)

Factor N given 𝜙𝜙 𝑁𝑁

5

• Suppose we are given 𝑁𝑁 = 𝑝𝑝𝑝𝑝 and 𝜙𝜙 𝑁𝑁 = 𝑝𝑝 − 1 𝑝𝑝 − 1

• Idea: Solve for p using quadratic formula!
𝑝𝑝2 + 𝑝𝑝 𝜙𝜙 𝑁𝑁 − 1 − 𝑁𝑁 + 𝑁𝑁 = 0 (Algebra)

𝑝𝑝 =
− 𝜙𝜙 𝑁𝑁 − 1 − 𝑁𝑁 ± 𝜙𝜙 𝑁𝑁 − 1 − 𝑁𝑁 2 − 4𝑁𝑁

2

Quadratic Formula 𝑎𝑎 = 1, 𝑏𝑏 = 𝜙𝜙 𝑁𝑁 − 1 − 𝑁𝑁 , 𝑐𝑐 = 𝑁𝑁

Dependent Keys Part 1

6

• Suppose an organization generates N=pq and a pair (ei,di) for each
employee i subject to the constraints eidi=1 mod 𝜙𝜙 𝑁𝑁 .

• Question: Is this secure?

• Answer: No, given eidi employee i can factor N (and then recover
everyone else's secret key).

• See Theorem 8.50 in the textbook

Dependent Keys Part 2

7

• Suppose an organization generates N=pq and a pair (ei,di) for each
employee i subject to the constraints eidi=1 mod 𝜙𝜙 𝑁𝑁 .

• Suppose that each employee is trusted (so it is ok if employee i factors
N)

• Suppose that a message m is encrypted and sent to employee 1 and 2.
• Attacker intercepts c1= [𝑚𝑚𝑒𝑒1 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁] and c2= [𝑚𝑚𝑒𝑒2 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁]

Dependent Keys Part 2

8

• Suppose an organization generates N=pq and a pair (ei,di) for each
employee i subject to the constraints eidi=1 mod 𝜙𝜙 𝑁𝑁 .

• Suppose that a message m is encrypted and sent to employee 1 and 2.
• Attacker intercepts c1= [𝑚𝑚𝑒𝑒1 mod 𝑁𝑁] and c2= [𝑚𝑚𝑒𝑒2 mod 𝑁𝑁]
• If gcd(e1,e2)=1 (which is reasonably likely) then attacker can run

extended GCD algorithm to find X,Y such that Xe1+Ye2=1.
[c1

𝑋𝑋𝑐𝑐2
𝑌𝑌mod 𝑁𝑁] = [𝑚𝑚𝑋𝑋𝑒𝑒1𝑚𝑚𝑌𝑌𝑒𝑒2 mod 𝑁𝑁] = [𝑚𝑚𝑋𝑋𝑒𝑒1+𝑌𝑌𝑒𝑒2 mod 𝑁𝑁] = 𝑚𝑚

Secure Multiparty Computation

9Cryptography: What if we don’t have a trusted third party?

z
H(x,y,z)

Bob only learns G(x,y,z)
Alice only learns F(x,y,z)
Mickey only learns H(x,y,z)

Secure Multiparty Computation (Crushes)

10

Alice can infer Y from F(x,y,z) and Bob can infer X from G(x,y,z).
But Alice/Bob cannot infer anything about Z.
Mickey cannot infer y, and learns that x≠ “Mickey”

Z=“Alice”

Bob only learns G(x,y,z)
Alice only learns F(x,y,z)
Mickey only learns H(x,y,z)

Secure Multiparty Computation (Crushes)

11

Alice can infer Y from F(x,y,z) and Bob can infer X from G(x,y,z).
But Alice/Bob cannot infer anything about Z.
Mickey cannot infer y, and learns that x≠ “Mickey”

Z=“Alice”

Bob only learns G(x,y,z)
Alice only learns F(x,y,z)
Mickey only learns H(x,y,z)

Key Point: The output H(x,y,z) may
leak info about inputs. Thus, we

cannot prevent Mickey from
learning anything about x,y but

Mickey should not learn anything
else besides H(x,y,z)!

Though Question: How can we formalize this
property?

Adversary Models

• Semi-Honest (“honest, but curious”)
• All parties follow protocol instructions, but…
• dishonest parties may be curious to violate privacy of others when possible

• Fully Malicious Model
• Adversarial Parties may deviate from the protocol arbitrarily

• Quit unexpectedly
• Send different messages

• It is much harder to achieve security in the fully malicious model
• Convert Secure Semi-Honest Protocol into Secure Protocol in Fully

Malicious Mode?
• Tool: Zero-Knowledge Proofs

• Current Focus: Semi-Honest Protocols

12

Computational Indistinguishability

Definition: We say that an ensemble of distributions 𝑋𝑋𝑛𝑛 𝑛𝑛∈ℕ and
𝑌𝑌𝑛𝑛 𝑛𝑛∈ℕ are computationally indistinguishable if for all PPT

distinguishers D, there is a negligible function negl(n), such that we
have

𝐴𝐴𝑚𝑚𝐴𝐴𝐷𝐷,𝑛𝑛 = 𝑃𝑃𝑃𝑃𝑠𝑠←Xℓ
𝐷𝐷 𝑠𝑠 = 1 − 𝑃𝑃𝑃𝑃𝑠𝑠←Yℓ 𝐷𝐷 𝑠𝑠 = 1 ≤ 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(𝑛𝑛)

13

Notation: 𝑋𝑋𝑛𝑛 𝑛𝑛∈ℕ ≡𝐶𝐶 𝑌𝑌𝑛𝑛 𝑛𝑛∈ℕ means that the
ensembles are computationally indistinguishable.

Security (Semi-Honest Model)

• Let 𝐵𝐵𝑛𝑛 = 𝑡𝑡𝑃𝑃𝑎𝑎𝑛𝑛𝑠𝑠𝐵𝐵(𝑛𝑛, 𝑥𝑥,𝑦𝑦) (resp. 𝐴𝐴𝑛𝑛 = 𝑡𝑡𝑃𝑃𝑎𝑎𝑛𝑛𝑠𝑠𝐴𝐴(𝑛𝑛, 𝑥𝑥,𝑦𝑦)) be the protocol
transcript from Bob’s perspective (resp. Alice’s perspective) when his input is
y and Alice’s input is x (assuming that Alice follows the protocol).

• Security: Assuming that Alice and Bob are both semi-honest (follow the
protocol) then there exist PPT simulators 𝑆𝑆𝐴𝐴 and 𝑆𝑆𝐵𝐵 s.t.

𝐴𝐴𝑛𝑛 𝑛𝑛∈ℕ ≡𝐶𝐶 𝑆𝑆𝐴𝐴 𝑛𝑛, 𝑥𝑥, 𝑓𝑓𝐴𝐴 𝑥𝑥,𝑦𝑦 𝑛𝑛∈ℕ
𝐵𝐵𝑛𝑛 𝑛𝑛∈ℕ ≡𝐶𝐶 𝑆𝑆𝐵𝐵 𝑛𝑛,𝑦𝑦, 𝑓𝑓𝐵𝐵 𝑥𝑥,𝑦𝑦 𝑛𝑛∈ℕ

• Remark: Simulator 𝑆𝑆𝐴𝐴 is only shown Alice’s input y and Alice’s output 𝑓𝑓𝐴𝐴 𝑥𝑥,𝑦𝑦
(similarly, 𝑆𝑆𝐵𝐵 is only shown Bob’s input x and Bob’s output 𝑓𝑓𝐵𝐵 𝑥𝑥, 𝑦𝑦)

14

Building Block: Oblivious Transfer (OT)

• 1 out of 2 OT
• Alice has two messages m0 and m1
• At the end of the protocol

• Bob gets exactly one of m0 and m1

• Alice does not know which one, and Bob learns nothing about other message

• Oblivious Transfer with a Trusted Third Party

15

1 out of 2 OT

m0

m1

b

mb

Bellare-Micali 1-out-of-2-OT protocol

• Oblivious Transfer without a Trusted Third Party
• g is a generator for a prime order group Gq in which CDH problem is hard

16

m0
m1

b

c ←R Gq

c

k ←R Zq

𝑧𝑧𝑏𝑏 = 𝑛𝑛𝑝𝑝 , 𝑧𝑧1−𝑏𝑏 = 𝑐𝑐𝑛𝑛−𝑝𝑝

𝑧𝑧0, 𝑧𝑧1

𝐶𝐶0 = 𝑛𝑛𝑟𝑟0 ,𝐻𝐻 𝑧𝑧0
𝑟𝑟0 ⊕𝑚𝑚0

𝐶𝐶1 = 𝑛𝑛𝑟𝑟1 ,𝐻𝐻 𝑧𝑧1
𝑟𝑟1 ⊕𝑚𝑚1

Bob can decrypt Cb

𝑧𝑧𝑏𝑏
𝑟𝑟𝑏𝑏 = 𝑛𝑛𝑝𝑝𝑟𝑟𝑏𝑏

Bellare-Micali 1-out-of-2-OT protocol

• Oblivious Transfer without a Trusted Third Party
• g is a generator for a prime order group Gq in which CDH is Hard

17

m0
m1

b

c ←R Gq

c

k ←R Zq

𝑧𝑧𝑏𝑏 = 𝑛𝑛𝑝𝑝 , 𝑧𝑧1−𝑏𝑏 = 𝑐𝑐𝑛𝑛−𝑝𝑝
= 𝑐𝑐 𝑧𝑧𝑏𝑏 −1

𝑧𝑧0, 𝑧𝑧1

𝐶𝐶0 = 𝑛𝑛𝑟𝑟0 ,𝐻𝐻 𝑧𝑧0
𝑟𝑟0 ⊕𝑚𝑚0

𝐶𝐶1 = 𝑛𝑛𝑟𝑟1 ,𝐻𝐻 𝑧𝑧1
𝑟𝑟1 ⊕𝑚𝑚1

Bob can decrypt Cb

𝑧𝑧𝑏𝑏
𝑟𝑟𝑏𝑏 = 𝑛𝑛𝑝𝑝𝑟𝑟𝑏𝑏

Alice must check that
𝑧𝑧1 = 𝑐𝑐 𝑧𝑧0 −1

Bellare-Micali 1-out-of-2-OT protocol

• Oblivious Transfer without a Trusted Third Party
• g is a generator for a prime order group Gq in which Discrete Log Problem is Hard

18

m0
m1

b

c ←R Gq

c

k ←R Zq

𝑧𝑧𝑏𝑏 = 𝑛𝑛𝑝𝑝 , 𝑧𝑧1−𝑏𝑏 = 𝑐𝑐𝑛𝑛−𝑝𝑝
= 𝑐𝑐 𝑧𝑧𝑏𝑏 −1

𝑧𝑧0, 𝑧𝑧1

𝐶𝐶0 = 𝑛𝑛𝑟𝑟0 ,𝐻𝐻 𝑧𝑧0
𝑟𝑟0 ⊕𝑚𝑚0

𝐶𝐶1 = 𝑛𝑛𝑟𝑟1 ,𝐻𝐻 𝑧𝑧1
𝑟𝑟1 ⊕𝑚𝑚1

Bob can decrypt Cb

𝑧𝑧𝑏𝑏
𝑟𝑟𝑏𝑏 = 𝑛𝑛𝑝𝑝𝑟𝑟𝑏𝑏

Alice must check that
𝑧𝑧1 = 𝑐𝑐 𝑧𝑧0 −1

Alice does not learn b because
• 𝑧𝑧1 = 𝑐𝑐 𝑧𝑧0 −1 and
• 𝑧𝑧0 = 𝑐𝑐 𝑧𝑧1 −1 and
• 𝑧𝑧1, 𝑧𝑧0 are distributed uniformly at random

subject to these condition.

This is an information theoretic guarantee!

Bellare-Micali 1-out-of-2-OT protocol

• Oblivious Transfer without a Trusted Third Party
• g is a generator for a prime order group Gq in which Discrete Log Problem is Hard

19

m0
m1

b

c ←R Gq

c

k ←R Zq

𝑧𝑧𝑏𝑏 = 𝑛𝑛𝑝𝑝 , 𝑧𝑧1−𝑏𝑏 = 𝑐𝑐𝑛𝑛−𝑝𝑝
= 𝑐𝑐 𝑧𝑧𝑏𝑏 −1

𝑧𝑧0, 𝑧𝑧1

𝐶𝐶0 = 𝑛𝑛𝑟𝑟0 ,𝐻𝐻 𝑧𝑧0
𝑟𝑟0 ⊕𝑚𝑚0

𝐶𝐶1 = 𝑛𝑛𝑟𝑟1 ,𝐻𝐻 𝑧𝑧1
𝑟𝑟1 ⊕𝑚𝑚1

Bob can decrypt Cb

𝑧𝑧𝑏𝑏
𝑟𝑟𝑏𝑏 = 𝑛𝑛𝑝𝑝𝑟𝑟𝑏𝑏

Alice must check that
𝑧𝑧1 = 𝑐𝑐 𝑧𝑧0 −1

Bob cannot decrypt C1-b
Unless he queries random oracle at
• 𝑐𝑐𝑟𝑟1−𝑏𝑏𝑛𝑛−𝑝𝑝𝑟𝑟1−𝑏𝑏
• Given this value we can obtain 𝑐𝑐𝑟𝑟1−𝑏𝑏
• Thus, we can break CDH assumption
given random 𝒄𝒄 = 𝒈𝒈𝒎𝒎 and 𝒈𝒈𝒓𝒓𝟏𝟏−𝒃𝒃 it is hard to
find 𝒄𝒄𝒓𝒓𝟏𝟏−𝒃𝒃= 𝒈𝒈𝒎𝒎𝒓𝒓𝟏𝟏−𝒃𝒃

slide 20

Vitaly Shmatikov

CS 380S

Yao’s Protocol

slide 21
1

000

Yao’s Protocol
• Compute any function securely

• … in the semi-honest model

• First, convert the function into a boolean circuit

AND
x y

z

Truth table:

x y z

0 1 0
1 0 0

1 1 1

000
OR

x y

z

Truth table:

x y z

0 1 1
1 0 1

1 1

AND OR

AND

NOT

OR

AND

Alice’s inputs Bob’s inputs

Overview:
1. Alice prepares “garbled” version C’ of C
2. Sends “encrypted” form x’ of her input x
3. Allows Bob to obtain “encrypted” form y’ of his input y via OT
4. Bob can compute from C’,x’,y’ the “encryption” z’ of z=C(x,y)
5. Bob sends z’ to Alice and she decrypts and reveals to him z

AND OR

AND

NOT

OR

AND

Alice’s inputs Bob’s inputs

Crucial properties:
1. Bob never sees Alice’s input x in unencrypted form.
2. Bob can obtain encryption of y without Alice learning y.
3. Neither party learns intermediate values.
4. Remains secure even if parties try to cheat.

Intuition

a b

c

AND

Intuition

a b

c

AND

a

a

b

b

a b

ba

a

b

slide 25

1: Pick Random Keys For Each Wire

• Next, evaluate one gate securely
• Later, generalize to the entire circuit

• Alice picks two random keys for each wire
• One key corresponds to “0”, the other to “1”
• 6 keys in total for a gate with 2 input wires

AND
x y

zk0z, k1z

Alice Bob
k0x, k1x
k0y, k1y

slide 26

2: Encrypt Truth Table

• Alice encrypts each row of the truth table by
encrypting the output-wire key with the corresponding
pair of input-wire keys

AND
x y

z

k0z, k1z

Alice Bob
k0x, k1x
k0y, k1y

1

000
Original truth table:

x y z

0 1 0
1 0 0

1 1

Encrypted truth table:

Ek0x(Ek0y(k0z))
Ek0x(Ek1y(k0z))
Ek1x(Ek0y(k0z))
Ek1x(Ek1y(k1z))

slide 27

3: Send Garbled Truth Table

• Alice randomly permutes (“garbles”) encrypted truth
table and sends it to Bob

AND
x y

z

k0z, k1z

Alice Bob
k0x, k1x
k0y, k1y

Garbled truth table:

Ek0x(Ek0y(k0z))
Ek0x(Ek1y(k0z))
Ek1x(Ek0y(k0z))
Ek1x(Ek1y(k1z)) Ek0x(Ek0y(k0z))

Ek0x(Ek1y(k0z))
Ek1x(Ek0y(k0z))

Ek1x(Ek1y(k1z))

Does not know which row of
garbled table corresponds to
which row of original table

slide 28

4: Send Keys For Alice’s Inputs

• Alice sends the key corresponding to her input bit
• Keys are random, so Bob does not learn what this bit is

AND
x y

zk0z, k1z

Alice Bob
k0x, k1x
k0y, k1y

If Alice’s bit is 1, she
simply sends k1x to Bob;
if 0, she sends k0x

Learns Kb’x where b’
is Alice’s input bit,
but not b’ (why?)

Garbled truth table:

Ek0x(Ek0y(k0z))

Ek0x(Ek1y(k0z))
Ek1x(Ek0y(k0z))

Ek1x(Ek1y(k1z))

slide 29

5: Use OT on Keys for Bob’s Input

• Alice and Bob run oblivious transfer protocol
• Alice’s input is the two keys corresponding to Bob’s wire
• Bob’s input into OT is simply his 1-bit input on that wire

AND
x y

z

k0z, k1z

Alice Bob
k0x, k1x
k0y, k1y

Run oblivious transfer
Alice’s input: k0y, k1y
Bob’s input: his bit b
Bob learns kby
What does Alice learn?

Knows Kb’x where b’ is
Alice’s input bit and Kby

where b is his own input bit

Garbled truth table:

Ek0x(Ek0y(k0z))

Ek0x(Ek1y(k0z))
Ek1x(Ek0y(k0z))

Ek1x(Ek1y(k1z))

slide 30

6: Evaluate Garbled Gate

• Using the two keys that he learned, Bob decrypts
exactly one of the output-wire keys

• Bob does not learn if this key corresponds to 0 or 1
• Why is this important?

AND
x y

z

k0z, k1z

Alice Bob
k0x, k1x
k0y, k1y

Knows Kb’x where b’ is
Alice’s input bit and Kby

where b is his own input bit

Garbled truth table:

Ek0x(Ek0y(k0z))

Ek0x(Ek1y(k0z))
Ek1x(Ek0y(k0z))

Ek1x(Ek1y(k1z))

Suppose b’=0, b=1

This is the only row
Bob can decrypt.
He learns K0z

slide 31

• In this way, Bob evaluates entire garbled circuit
• For each wire in the circuit, Bob learns only one key
• It corresponds to 0 or 1 (Bob does not know which)

• Therefore, Bob does not learn intermediate values (why?)

• Bob tells Alice the key for the final output wire and she
tells him if it corresponds to 0 or 1

• Bob does not tell her intermediate wire keys (why?)

7: Evaluate Entire Circuit

AND OR

AND

NOT

OR

AND

Alice’s inputs Bob’s inputs

Security (Semi-Honest Model)

• Security: Assuming that Alice and Bob are both semi-honest (follow
the protocol) then there exist PPT simulators 𝑆𝑆𝐴𝐴 and 𝑆𝑆𝐵𝐵 s.t.

𝐴𝐴𝑛𝑛 𝑛𝑛∈ℕ ≡𝐶𝐶 𝑆𝑆𝐴𝐴 𝑛𝑛, 𝑥𝑥, 𝑓𝑓𝐴𝐴 𝑥𝑥,𝑦𝑦 𝑛𝑛∈ℕ
𝐵𝐵𝑛𝑛 𝑛𝑛∈ℕ ≡𝐶𝐶 𝑆𝑆𝐵𝐵 𝑛𝑛,𝑦𝑦,𝑓𝑓𝐵𝐵 𝑥𝑥,𝑦𝑦 𝑛𝑛∈ℕ

• Remark: Simulator 𝑆𝑆𝐴𝐴 is only shown Alice’s output 𝑓𝑓𝐴𝐴 𝑥𝑥,𝑦𝑦 (similarly,
𝑆𝑆𝐵𝐵 is only shown Bob’s output 𝑓𝑓𝐵𝐵 𝑥𝑥,𝑦𝑦)

Theorem (informal): If the oblivious transfer protocol is secure, and the
underlying encryption scheme is CPA-secure then Yao’s protocol is
secure in the semi-honest adversary model.

32

slide 33

Brief Discussion of Yao’s Protocol
• Function must be converted into a circuit

• For many functions, circuit will be huge

• If m gates in the circuit and n inputs from Bob, then
need 4m encryptions and n oblivious transfers

• Oblivious transfers for all inputs can be done in parallel

• Yao’s construction gives a constant-round protocol for
secure computation of any function in the semi-honest
model

• Number of rounds does not depend on the number of inputs
or the size of the circuit!

Fully Malicious Security?

1. Alice could initially garble the wrong circuit C(x,y)=y.
2. Given output of C(x,y) Alice can still send Bob the output f(x,y).
3. Can Bob detect/prevent this?
Fix: Assume Alice and Bob have both committed to their input: cA=com(x,rA)
and cB=com(y,rB).

• Alice and Bob can use zero-knowledge proofs to convince other party that they are
behaving honestly.

• Example: After sending a message A Alice proves that the message she just sent is
the same message an honest party would have sent with input x s.t. cA=com(x,rA)

• Here we assume that Alice and Bob have both committed to correct inputs (Bob
might use y which does not represent his real vote etc… but this is not a problem we
can address with cryptography)

34

Fully Malicious Security

• Assume Alice and Bob have both committed to their input: cA=com(x,rA) and
cB=com(y,rB).

• Here we assume that Alice and Bob have both committed to correct inputs (Bob might use y
which does not represent his real vote etc… but this is not a problem we can address with
cryptography)

• Alice has cB and can unlock cA
• Bob has cA and can unlock cB

1. Alice sets Cf = GarbleCircuit(f,r).
1. Alice sends to Bob.
2. Alice convinces Bob that Cf = GarbleCircuit(f,r) for some r (using a zero-knowledge proof)

2. For each original oblivious transfer if Alice’s inputs were originally x0,x1
1. Alice and Bob run OT with y0,y1 where yi=EncK(xi)
2. Bob uses a zero-knowledge proof to convince Alice that he received the correct yi (e.g.

matching his previous commitment cB)
3. Alice sends K to Bob who decrypts yi to obtain xi

35

Zero-Knowledge Proofs

36

Computational Indistinguishability

• Consider two distributions Xℓ and Yℓ (e.g., over strings of length ℓ).
• Let D be a distinguisher that attempts to guess whether a string s came from

distribution Xℓ or Yℓ.

The advantage of a distinguisher D is

𝐴𝐴𝑚𝑚𝐴𝐴𝐷𝐷,ℓ = 𝑃𝑃𝑃𝑃𝑠𝑠←Xℓ
𝐷𝐷 𝑠𝑠 = 1 − 𝑃𝑃𝑃𝑃𝑠𝑠←Yℓ 𝐷𝐷 𝑠𝑠 = 1

Definition: We say that an ensemble of distributions 𝑋𝑋𝑛𝑛 𝑛𝑛∈ℕ and 𝑌𝑌𝑛𝑛 𝑛𝑛∈ℕ are
computationally indistinguishable if for all PPT distinguishers D, there is a negligible
function negl(n), such that we have

𝐴𝐴𝑚𝑚𝐴𝐴𝐷𝐷,𝑛𝑛 ≤ 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(𝑛𝑛)

37

Computational Indistinguishability

• Consider two distributions Xℓ and Yℓ (e.g., over strings of length ℓ).
• Let D be a distinguisher that attempts to guess whether a string s came from

distribution Xℓ or Yℓ.

The advantage of a distinguisher D is

𝐴𝐴𝑚𝑚𝐴𝐴𝐷𝐷,ℓ = 𝑃𝑃𝑃𝑃𝑠𝑠←Xℓ
𝐷𝐷 𝑠𝑠 = 1 − 𝑃𝑃𝑃𝑃𝑠𝑠←Yℓ 𝐷𝐷 𝑠𝑠 = 1

Definition: We say that an ensemble of distributions 𝑋𝑋𝑛𝑛 𝑛𝑛∈ℕ and 𝑌𝑌𝑛𝑛 𝑛𝑛∈ℕ are
computationally indistinguishable if for all PPT distinguishers D, there is a negligible
function negl(n), such that we have

𝐴𝐴𝑚𝑚𝐴𝐴𝐷𝐷,𝑛𝑛 ≤ 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(𝑛𝑛)

38

Notation: 𝑋𝑋𝑛𝑛 𝑛𝑛∈ℕ ≡𝐶𝐶 𝑌𝑌𝑛𝑛 𝑛𝑛∈ℕ
means that the ensembles are

computationally indistinguishable.

P vs NP

• P problems that can be solved in polynomial time

• NP --- problems whose solutions can be verified in polynomial time
• Examples: SHORT-PATH, COMPOSITE, 3SAT, CIRCUIT-SAT, 3COLOR,
• DDH

• Input: 𝐴𝐴 = 𝑛𝑛𝑥𝑥1, B = 𝑛𝑛𝑥𝑥2 and Z
• Goal: Decide if Z = 𝑛𝑛𝑥𝑥1𝑥𝑥2 or Z ≠ 𝑛𝑛𝑥𝑥1𝑥𝑥2 .

• NP-Complete --- hardest problems in NP (e.g., all problems can be reduced to 3SAT)
• Witness

• A short (polynomial size) string which allows a verify to check for membership
• DDH Witness: x1,x2.

39

Zero-Knowledge Proof

Two parties: Prover P (PPT) and Verifier V (PPT)
(P is given witness for claim e.g.,)

• Completeness: If claim is true honest prover can always convince
honest verifier to accept.

• Soundness: If claim is false then Verifier should reject with probability
at least ½. (Even if the prover tries to cheat)

• Zero-Knowledge: Verifier doesn’t learn anything about prover’s input
from the protocol (other than that the claim is true).

• Formalizing this last statement is tricky
• Zero-Knowledge: should hold even if the attacker is dishonest!

42

Zero-Knowledge Proof
Trans(1n,V’,P,x,w,rp,rv) transcript produced when V’ and P interact
• V’ is given input X (the problem instance e.g., 𝑋𝑋 = 𝑛𝑛𝑥𝑥)
• P is given input X and w (a witness for the claim e.g., w=x)
• V’ and P use randomness rp and rv respectively
• Security parameter is n e.g., for encryption schemes, commitment schemes etc…

𝑿𝑿𝒏𝒏 = Trans(1n,V’,P,x,w) is a distribution over transcripts (over the randomness rp,rv)

(Blackbox Zero-Knowledge): There is a PPT simulator 𝑆𝑆 such that for every
V’ (possibly cheating) S, with oracle access to V’, can simulate 𝑋𝑋𝑛𝑛 without a
witness w. Formally,

𝑋𝑋𝑛𝑛 𝑛𝑛∈ℕ ≡𝐶𝐶 𝑆𝑆𝑉𝑉𝑉(.) 𝑥𝑥, 1𝑛𝑛 𝑛𝑛∈ℕ

43

Zero-Knowledge Proof
Trans(1n,V’,P,x,w,rp,rv) transcript produced when V’ and P interact
• V’ is given input x (the problem instance e.g., 𝐴𝐴 = 𝑛𝑛𝑥𝑥1, B = 𝑛𝑛𝑥𝑥2 and 𝑧𝑧𝑏𝑏)
• P is given input x and w (a witness for the claim e.g., x1 and x2)
• V’ and P’ use randomness rp and rw respectively
• Security parameter is n e.g., for encryption schemes, commitment schemes etc…

𝑿𝑿𝒏𝒏 = Trans(1n,V’,P’,x,w) is a distribution over transcripts (over the randomness rp,rw)

(Blackbox Zero-Knowledge): There is a PPT simulator 𝑆𝑆 such that for every
V’ (possibly cheating) S, with oracle access to V’, can simulate 𝑋𝑋𝑛𝑛 without a
witness w. Formally,

𝑋𝑋𝑛𝑛 𝑛𝑛∈ℕ ≡𝐶𝐶 𝑆𝑆𝑉𝑉𝑉(.) 𝑥𝑥, 1𝑛𝑛 𝑛𝑛∈ℕ

44

Simulator S is not
given witness w

Oracle V’(x,trans) will output the
next message V’ would output
given current transcript trans

Zero-Knowledge Proof for Discrete Log Solution

45

Bob (verifier);
𝐴𝐴

Alice (prover);
x s.t.
𝐴𝐴 = 𝑛𝑛𝑥𝑥,
𝐵𝐵 = 𝑛𝑛𝑦𝑦,
(random y)

𝑩𝑩 = 𝒈𝒈𝒚𝒚, 𝑪𝑪 = 𝒈𝒈𝒙𝒙+𝒚𝒚

𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒏𝒏𝒈𝒈𝒄𝒄 𝒄𝒄 ∈ 𝟎𝟎,𝟏𝟏

Response 𝒓𝒓 = � 𝒚𝒚 𝒊𝒊𝒊𝒊 𝒄𝒄 = 𝟎𝟎
𝒚𝒚 + 𝑥𝑥 𝑖𝑖𝑓𝑓 𝑐𝑐 = 1

𝑫𝑫𝒄𝒄𝒄𝒄𝒊𝒊𝑫𝑫𝒊𝒊𝑫𝑫𝒏𝒏 𝒅𝒅 = �
𝟏𝟏 𝒊𝒊𝒊𝒊 𝒄𝒄 = 𝟎𝟎 𝒄𝒄𝒏𝒏𝒅𝒅 𝑩𝑩 = 𝒈𝒈𝒓𝒓 𝒄𝒄𝒏𝒏𝒅𝒅 𝑨𝑨𝑩𝑩 = 𝑪𝑪
𝟏𝟏 𝒊𝒊𝒊𝒊 𝒄𝒄 = 𝟏𝟏 𝒄𝒄𝒏𝒏𝒅𝒅 𝑪𝑪 = 𝒈𝒈𝒓𝒓 𝑎𝑎𝑛𝑛𝑚𝑚 𝑨𝑨𝑩𝑩 = 𝑪𝑪
0 𝑚𝑚𝑡𝑡𝑜𝑛𝑛𝑃𝑃𝑜𝑜𝑖𝑖𝑠𝑠𝑛𝑛

Claim: There is some integer x such that 𝐴𝐴 = 𝑛𝑛𝑥𝑥

Zero-Knowledge Proof for Discrete Log Solution

46

Bob (verifier);
𝐴𝐴 = 𝑛𝑛𝑥𝑥,

Alice (prover);
x
𝐴𝐴 = 𝑛𝑛𝑥𝑥,
𝐵𝐵 = 𝑛𝑛𝑦𝑦,
(random y)

𝑩𝑩 = 𝒈𝒈𝒚𝒚, 𝑪𝑪 = 𝒈𝒈𝒙𝒙+𝒚𝒚

𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒏𝒏𝒈𝒈𝒄𝒄 𝒄𝒄 ∈ 𝟎𝟎,𝟏𝟏

Response 𝒓𝒓 = � 𝒚𝒚 𝒊𝒊𝒊𝒊 𝒄𝒄 = 𝟎𝟎
𝒚𝒚 + 𝑥𝑥 𝑖𝑖𝑓𝑓 𝑐𝑐 = 1

𝑫𝑫𝒄𝒄𝒄𝒄𝒊𝒊𝑫𝑫𝒊𝒊𝑫𝑫𝒏𝒏 𝒅𝒅 = �
𝟏𝟏 𝒊𝒊𝒊𝒊 𝒄𝒄 = 𝟎𝟎 𝒄𝒄𝒏𝒏𝒅𝒅 𝑩𝑩 = 𝒈𝒈𝒓𝒓 𝒄𝒄𝒏𝒏𝒅𝒅 𝑨𝑨𝑩𝑩 = 𝑪𝑪
𝟏𝟏 𝒊𝒊𝒊𝒊 𝒄𝒄 = 𝟏𝟏 𝒄𝒄𝒏𝒏𝒅𝒅 𝑪𝑪 = 𝒈𝒈𝒓𝒓 𝑎𝑎𝑛𝑛𝑚𝑚 𝑨𝑨𝑩𝑩 = 𝑪𝑪
0 𝑚𝑚𝑡𝑡𝑜𝑛𝑛𝑃𝑃𝑜𝑜𝑖𝑖𝑠𝑠𝑛𝑛

Correctness: If Alice and Bob are honest then Bob will always accept

Zero-Knowledge Proof for Discrete Log Solution

47

Bob (verifier);
𝐴𝐴 = 𝑛𝑛𝑥𝑥,

Alice (prover);
x
𝐴𝐴 = 𝑛𝑛𝑥𝑥,
𝐵𝐵 = 𝑛𝑛𝑦𝑦,
(random y)

𝑩𝑩 = 𝒈𝒈𝒚𝒚, 𝑪𝑪 = 𝒈𝒈𝒙𝒙+𝒚𝒚

𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒏𝒏𝒈𝒈𝒄𝒄 𝒄𝒄 ∈ 𝟎𝟎,𝟏𝟏

Response 𝒓𝒓 = � 𝒚𝒚 𝒊𝒊𝒊𝒊 𝒄𝒄 = 𝟎𝟎
𝒚𝒚 + 𝑥𝑥 𝑖𝑖𝑓𝑓 𝑐𝑐 = 1

𝑫𝑫𝒄𝒄𝒄𝒄𝒊𝒊𝑫𝑫𝒊𝒊𝑫𝑫𝒏𝒏 𝒅𝒅 = �
𝟏𝟏 𝒊𝒊𝒊𝒊 𝒄𝒄 = 𝟎𝟎 𝒄𝒄𝒏𝒏𝒅𝒅 𝑩𝑩 = 𝒈𝒈𝒓𝒓 𝒄𝒄𝒏𝒏𝒅𝒅 𝑨𝑨𝑩𝑩 = 𝑪𝑪
𝟏𝟏 𝒊𝒊𝒊𝒊 𝒄𝒄 = 𝟏𝟏 𝒄𝒄𝒏𝒏𝒅𝒅 𝑪𝑪 = 𝒈𝒈𝒓𝒓 𝑎𝑎𝑛𝑛𝑚𝑚 𝑨𝑨𝑩𝑩 = 𝑪𝑪
0 𝑚𝑚𝑡𝑡𝑜𝑛𝑛𝑃𝑃𝑜𝑜𝑖𝑖𝑠𝑠𝑛𝑛

Correctness: If Alice and Bob are honest then Bob will always accept

Case 1: Challenge (c=0)

Zero-Knowledge Proof for Discrete Log Solution

48

Bob (verifier);
𝐴𝐴 = 𝑛𝑛𝑥𝑥,

Alice (prover);
x
𝐴𝐴 = 𝑛𝑛𝑥𝑥,
𝐵𝐵 = 𝑛𝑛𝑦𝑦,
(random y)

𝑩𝑩 = 𝒈𝒈𝒚𝒚, 𝑪𝑪 = 𝒈𝒈𝒙𝒙+𝒚𝒚

𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒏𝒏𝒈𝒈𝒄𝒄 𝒄𝒄 ∈ 𝟎𝟎,𝟏𝟏

Response 𝒓𝒓 = � 𝒚𝒚 𝒊𝒊𝒊𝒊 𝒄𝒄 = 𝟎𝟎
𝒚𝒚 + 𝑥𝑥 𝑖𝑖𝑓𝑓 𝑐𝑐 = 1

𝑫𝑫𝒄𝒄𝒄𝒄𝒊𝒊𝑫𝑫𝒊𝒊𝑫𝑫𝒏𝒏 𝒅𝒅 = �
𝟏𝟏 𝒊𝒊𝒊𝒊 𝒄𝒄 = 𝟎𝟎 𝒄𝒄𝒏𝒏𝒅𝒅 𝑩𝑩 = 𝒈𝒈𝒓𝒓 𝒄𝒄𝒏𝒏𝒅𝒅 𝑨𝑨𝑩𝑩 = 𝑪𝑪
𝟏𝟏 𝒊𝒊𝒊𝒊 𝒄𝒄 = 𝟏𝟏 𝒄𝒄𝒏𝒏𝒅𝒅 𝑪𝑪 = 𝒈𝒈𝒓𝒓 𝑎𝑎𝑛𝑛𝑚𝑚 𝑨𝑨𝑩𝑩 = 𝑪𝑪
0 𝑚𝑚𝑡𝑡𝑜𝑛𝑛𝑃𝑃𝑜𝑜𝑖𝑖𝑠𝑠𝑛𝑛

Correctness: If Alice and Bob are honest then Bob will always accept

Case 2: Challenge (c=1)

Zero-Knowledge Proof for Discrete Log Solution

49

Bob (verifier);
𝐴𝐴 = 𝑛𝑛𝑥𝑥,

Alice (prover);
x
𝐴𝐴 = 𝑛𝑛𝑥𝑥,
𝐵𝐵 = 𝑛𝑛𝑦𝑦,
(random y)

𝑩𝑩 = 𝒈𝒈𝒚𝒚, 𝑪𝑪 = 𝒈𝒈𝒙𝒙+𝒚𝒚

𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒏𝒏𝒈𝒈𝒄𝒄 𝒄𝒄 ∈ 𝟎𝟎,𝟏𝟏

Response 𝒓𝒓 = � 𝒚𝒚 𝒊𝒊𝒊𝒊 𝒄𝒄 = 𝟎𝟎
𝒚𝒚 + 𝑥𝑥 𝑖𝑖𝑓𝑓 𝑐𝑐 = 1

𝑫𝑫𝒄𝒄𝒄𝒄𝒊𝒊𝑫𝑫𝒊𝒊𝑫𝑫𝒏𝒏 𝒅𝒅 = �
𝟏𝟏 𝒊𝒊𝒊𝒊 𝒄𝒄 = 𝟎𝟎 𝒄𝒄𝒏𝒏𝒅𝒅 𝑩𝑩 = 𝒈𝒈𝒓𝒓 𝒄𝒄𝒏𝒏𝒅𝒅 𝑨𝑨𝑩𝑩 = 𝑪𝑪
𝟏𝟏 𝒊𝒊𝒊𝒊 𝒄𝒄 = 𝟏𝟏 𝒄𝒄𝒏𝒏𝒅𝒅 𝑪𝑪 = 𝒈𝒈𝒓𝒓 𝑎𝑎𝑛𝑛𝑚𝑚 𝑨𝑨𝑩𝑩 = 𝑪𝑪
0 𝑚𝑚𝑡𝑡𝑜𝑛𝑛𝑃𝑃𝑜𝑜𝑖𝑖𝑠𝑠𝑛𝑛

Soundness: If 𝐴𝐴 ≠ 𝑛𝑛𝑥𝑥 for some x then (honest) Bob will reject w.p. ½ (even if
Alice cheats)

Zero-Knowledge Proof for Discrete Log Solution

50

Bob (verifier);
𝐴𝐴 = 𝑛𝑛𝑥𝑥,

Alice (prover);
x
𝐴𝐴 = 𝑛𝑛𝑥𝑥,
𝐵𝐵 = 𝑛𝑛𝑦𝑦,
(random y)

𝑩𝑩 = 𝒈𝒈𝒚𝒚, 𝑪𝑪 = 𝒈𝒈𝒙𝒙+𝒚𝒚

𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒏𝒏𝒈𝒈𝒄𝒄 𝒄𝒄 ∈ 𝟎𝟎,𝟏𝟏

Response 𝒓𝒓 = � 𝒚𝒚 𝒊𝒊𝒊𝒊 𝒄𝒄 = 𝟎𝟎
𝒚𝒚 + 𝑥𝑥 𝑖𝑖𝑓𝑓 𝑐𝑐 = 1

𝑫𝑫𝒄𝒄𝒄𝒄𝒊𝒊𝑫𝑫𝒊𝒊𝑫𝑫𝒏𝒏 𝒅𝒅 = �
𝟏𝟏 𝒊𝒊𝒊𝒊 𝒄𝒄 = 𝟎𝟎 𝒄𝒄𝒏𝒏𝒅𝒅 𝑩𝑩 = 𝒈𝒈𝒓𝒓 𝒄𝒄𝒏𝒏𝒅𝒅 𝑨𝑨𝑩𝑩 = 𝑪𝑪
𝟏𝟏 𝒊𝒊𝒊𝒊 𝒄𝒄 = 𝟏𝟏 𝒄𝒄𝒏𝒏𝒅𝒅 𝑪𝑪 = 𝒈𝒈𝒓𝒓 𝑎𝑎𝑛𝑛𝑚𝑚 𝑨𝑨𝑩𝑩 = 𝑪𝑪
0 𝑚𝑚𝑡𝑡𝑜𝑛𝑛𝑃𝑃𝑜𝑜𝑖𝑖𝑠𝑠𝑛𝑛

Soundness: If 𝐴𝐴 ≠ 𝑛𝑛𝑥𝑥 for some x then (honest) Bob will reject w.p. ½ (even if
Alice cheats)

Assume that AB=C, now
If 𝑩𝑩 = 𝒈𝒈𝒚𝒚 𝐚𝐚𝐚𝐚𝐚𝐚 𝑪𝑪 = 𝒈𝒈𝒙𝒙+𝒚𝒚 for
some x,y then 𝑨𝑨 = 𝒈𝒈𝒙𝒙

Zero-Knowledge Proof for Discrete Log Solution

51

Bob (verifier);
𝐴𝐴 = 𝑛𝑛𝑥𝑥,

Alice (prover);
x
𝐴𝐴 = 𝑛𝑛𝑥𝑥,
𝐵𝐵 = 𝑛𝑛𝑦𝑦,
(random y)

𝑩𝑩 = 𝒈𝒈𝒚𝒚, 𝑪𝑪 = 𝒈𝒈𝒙𝒙+𝒚𝒚

𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒏𝒏𝒈𝒈𝒄𝒄 𝒄𝒄 ∈ 𝟎𝟎,𝟏𝟏

Response 𝒓𝒓 = � 𝒚𝒚 𝒊𝒊𝒊𝒊 𝒄𝒄 = 𝟎𝟎
𝒚𝒚 + 𝑥𝑥 𝑖𝑖𝑓𝑓 𝑐𝑐 = 1

𝑫𝑫𝒄𝒄𝒄𝒄𝒊𝒊𝑫𝑫𝒊𝒊𝑫𝑫𝒏𝒏 𝒅𝒅 = �
𝟏𝟏 𝒊𝒊𝒊𝒊 𝒄𝒄 = 𝟎𝟎 𝒄𝒄𝒏𝒏𝒅𝒅 𝑩𝑩 = 𝒈𝒈𝒓𝒓 𝒄𝒄𝒏𝒏𝒅𝒅 𝑨𝑨𝑩𝑩 = 𝑪𝑪
𝟏𝟏 𝒊𝒊𝒊𝒊 𝒄𝒄 = 𝟏𝟏 𝒄𝒄𝒏𝒏𝒅𝒅 𝑪𝑪 = 𝒈𝒈𝒓𝒓 𝑎𝑎𝑛𝑛𝑚𝑚 𝑨𝑨𝑩𝑩 = 𝑪𝑪
0 𝑚𝑚𝑡𝑡𝑜𝑛𝑛𝑃𝑃𝑜𝑜𝑖𝑖𝑠𝑠𝑛𝑛

Soundness: If 𝐴𝐴 ≠ 𝑛𝑛𝑥𝑥 for some x then (honest) Bob will reject w.p. ½ (even if
Alice cheats)

Case 1: for all r 𝑩𝑩 ≠ 𝒈𝒈𝒓𝒓

→ 𝑷𝑷𝒓𝒓 𝒓𝒓𝒄𝒄𝒓𝒓𝒄𝒄𝒄𝒄𝒓𝒓 ≥ 𝑷𝑷𝒓𝒓 𝒄𝒄 = 𝟎𝟎 =
𝟏𝟏
𝟐𝟐

Assume that AB=C, now
If 𝑩𝑩 = 𝒈𝒈𝒚𝒚 𝐚𝐚𝐚𝐚𝐚𝐚 𝑪𝑪 = 𝒈𝒈𝒙𝒙+𝒚𝒚 for
some x,y then 𝑨𝑨 = 𝒈𝒈𝒙𝒙

Zero-Knowledge Proof for Discrete Log Solution

52

Bob (verifier);
𝐴𝐴 = 𝑛𝑛𝑥𝑥,

Alice (prover);
x
𝐴𝐴 = 𝑛𝑛𝑥𝑥,
𝐵𝐵 = 𝑛𝑛𝑦𝑦,
(random y)

𝑩𝑩 = 𝒈𝒈𝒚𝒚, 𝑪𝑪 = 𝒈𝒈𝒙𝒙+𝒚𝒚

𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒏𝒏𝒈𝒈𝒄𝒄 𝒄𝒄 ∈ 𝟎𝟎,𝟏𝟏

Response 𝒓𝒓 = � 𝒚𝒚 𝒊𝒊𝒊𝒊 𝒄𝒄 = 𝟎𝟎
𝒚𝒚 + 𝑥𝑥 𝑖𝑖𝑓𝑓 𝑐𝑐 = 1

𝑫𝑫𝒄𝒄𝒄𝒄𝒊𝒊𝑫𝑫𝒊𝒊𝑫𝑫𝒏𝒏 𝒅𝒅 = �
𝟏𝟏 𝒊𝒊𝒊𝒊 𝒄𝒄 = 𝟎𝟎 𝒄𝒄𝒏𝒏𝒅𝒅 𝑩𝑩 = 𝒈𝒈𝒓𝒓 𝒄𝒄𝒏𝒏𝒅𝒅 𝑨𝑨𝑩𝑩 = 𝑪𝑪
𝟏𝟏 𝒊𝒊𝒊𝒊 𝒄𝒄 = 𝟏𝟏 𝒄𝒄𝒏𝒏𝒅𝒅 𝑪𝑪 = 𝒈𝒈𝒓𝒓 𝑎𝑎𝑛𝑛𝑚𝑚 𝑨𝑨𝑩𝑩 = 𝑪𝑪
0 𝑚𝑚𝑡𝑡𝑜𝑛𝑛𝑃𝑃𝑜𝑜𝑖𝑖𝑠𝑠𝑛𝑛

Soundness: If 𝐴𝐴 ≠ 𝑛𝑛𝑥𝑥 for some x then (honest) Bob will reject w.p. ½ (even if
Alice cheats)

Case 2: for all r 𝑪𝑪 ≠ 𝒈𝒈𝒓𝒓

→ 𝑷𝑷𝒓𝒓 𝒓𝒓𝒄𝒄𝒓𝒓𝒄𝒄𝒄𝒄𝒓𝒓 ≥ 𝑷𝑷𝒓𝒓 𝒄𝒄 = 𝟏𝟏 =
𝟏𝟏
𝟐𝟐

Assume that AB=C, now
If 𝑩𝑩 = 𝒈𝒈𝒚𝒚 𝐚𝐚𝐚𝐚𝐚𝐚 𝑪𝑪 = 𝒈𝒈𝒙𝒙+𝒚𝒚 for
some x,y then 𝑨𝑨 = 𝒈𝒈𝒙𝒙

Zero-Knowledge Proof for Discrete Log Solution

53

Dishonest (verifier);
𝐴𝐴 = 𝑛𝑛𝑥𝑥,

Alice (honest);
x
𝐴𝐴 = 𝑛𝑛𝑥𝑥,
𝐵𝐵 = 𝑛𝑛𝑦𝑦,
(random y)

𝑩𝑩 = 𝒈𝒈𝒚𝒚, 𝑪𝑪 = 𝒈𝒈𝒙𝒙+𝒚𝒚

𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒏𝒏𝒈𝒈𝒄𝒄 𝒄𝒄 = 𝑽𝑽𝑽(𝑨𝑨, 𝑩𝑩,𝑪𝑪) ∈ 𝟎𝟎,𝟏𝟏

Response 𝒓𝒓 = � 𝒚𝒚 𝒊𝒊𝒊𝒊 𝒄𝒄 = 𝟎𝟎
𝒚𝒚 + 𝑥𝑥 𝑖𝑖𝑓𝑓 𝑐𝑐 = 1

𝑫𝑫𝒄𝒄𝒄𝒄𝒊𝒊𝑫𝑫𝒊𝒊𝑫𝑫𝒏𝒏 𝒅𝒅 = 𝑽𝑽𝑽(𝑨𝑨, 𝑩𝑩,𝑪𝑪 , 𝒄𝒄, 𝒓𝒓)

Transcript: 𝑽𝑽𝒊𝒊𝒄𝒄𝑽𝑽𝑽𝑽𝑉 = 𝐴𝐴, 𝐵𝐵,𝐶𝐶 , 𝑐𝑐, 𝑃𝑃,𝑚𝑚

Zero-Knowledge Proof for Discrete Log Solution

54

Dishonest (verifier);
𝐴𝐴 = 𝑛𝑛𝑥𝑥,

Alice (honest);
x
𝐴𝐴 = 𝑛𝑛𝑥𝑥,
𝐵𝐵 = 𝑛𝑛𝑦𝑦,
(random y)

𝑩𝑩 = 𝒈𝒈𝒚𝒚, 𝑪𝑪 = 𝒈𝒈𝒙𝒙+𝒚𝒚

𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒏𝒏𝒈𝒈𝒄𝒄 𝒄𝒄 = 𝑽𝑽𝑽(𝑨𝑨, 𝑩𝑩,𝑪𝑪) ∈ 𝟎𝟎,𝟏𝟏

Response 𝒓𝒓 = � 𝒚𝒚 𝒊𝒊𝒊𝒊 𝒄𝒄 = 𝟎𝟎
𝒚𝒚 + 𝑥𝑥 𝑖𝑖𝑓𝑓 𝑐𝑐 = 1

𝑫𝑫𝒄𝒄𝒄𝒄𝒊𝒊𝑫𝑫𝒊𝒊𝑫𝑫𝒏𝒏 𝒅𝒅 = 𝑽𝑽𝑽(𝑨𝑨, 𝑩𝑩,𝑪𝑪 , 𝒄𝒄, 𝒓𝒓)

Zero-Knowledge: For all PPT V’ exists PPT Sim s.t 𝑽𝑽𝒊𝒊𝒄𝒄𝑽𝑽𝑽𝑽𝑉 ≡𝐶𝐶 Sim𝑉𝑉𝑉(.) 𝐴𝐴

Zero-Knowledge Proof for Discrete Log Solution

55

Dishonest (verifier);
𝐴𝐴 = 𝑛𝑛𝑥𝑥,

Simulator
Cheat bit b,
𝐴𝐴 = 𝑛𝑛𝑥𝑥,
𝐵𝐵 = 𝑛𝑛𝑦𝑦,
(random y)

Zero-Knowledge: For all PPT V’ exists PPT Sim s.t 𝑽𝑽𝒊𝒊𝒄𝒄𝑽𝑽𝑽𝑽𝑉 ≡𝐶𝐶 Sim𝑉𝑉𝑉(.) 𝐴𝐴

�
𝑩𝑩 = 𝒈𝒈𝒚𝒚,𝑪𝑪 = 𝑨𝑨𝑩𝑩 if b=0

𝑩𝑩 =
𝐶𝐶
𝐴𝐴

,𝑪𝑪 = 𝒈𝒈𝒚𝒚 𝑫𝑫𝒓𝒓𝒄𝒄𝒄𝒄𝒓𝒓𝑽𝑽𝒊𝒊𝑫𝑫𝒄𝒄

Response 𝒓𝒓 = � 𝒚𝒚 𝒊𝒊𝒊𝒊 𝒄𝒄=𝒃𝒃
⊥ 𝑜𝑜𝑜𝑜𝑜𝑒𝑒𝑟𝑟𝑜𝑜𝑜𝑜𝑠𝑠𝑒𝑒

𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒏𝒏𝒈𝒈𝒄𝒄 𝒄𝒄 = 𝑽𝑽𝑽(𝑨𝑨, 𝑩𝑩,𝑪𝑪) ∈ 𝟎𝟎,𝟏𝟏

𝑫𝑫𝒄𝒄𝒄𝒄𝒊𝒊𝑫𝑫𝒊𝒊𝑫𝑫𝒏𝒏 𝒅𝒅 = 𝑽𝑽𝑽(𝑨𝑨, 𝑩𝑩,𝑪𝑪 , 𝒄𝒄, 𝒓𝒓)

Zero-Knowledge Proof for Discrete Log Solution

56

Dishonest (verifier);
𝐴𝐴 = 𝑛𝑛𝑥𝑥,

Simulator
Cheat bit b,
𝐴𝐴 = 𝑛𝑛𝑥𝑥,
𝐵𝐵 = 𝑛𝑛𝑦𝑦,
(random y)

�
𝑩𝑩 = 𝒈𝒈𝒚𝒚,𝑪𝑪 = 𝑨𝑨𝑩𝑩 if b=0

𝑩𝑩 =
𝐶𝐶
𝐴𝐴

,𝑪𝑪 = 𝒈𝒈𝒚𝒚 𝑫𝑫𝒓𝒓𝒄𝒄𝒄𝒄𝒓𝒓𝑽𝑽𝒊𝒊𝑫𝑫𝒄𝒄

Response 𝒓𝒓 = � 𝒚𝒚 𝒊𝒊𝒊𝒊 𝒄𝒄=𝒃𝒃
⊥ 𝑜𝑜𝑜𝑜𝑜𝑒𝑒𝑟𝑟𝑜𝑜𝑜𝑜𝑠𝑠𝑒𝑒

Zero-Knowledge: Simulator can produce identical transcripts (Repeat until 𝑃𝑃 ≠⊥)

𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒏𝒏𝒈𝒈𝒄𝒄 𝒄𝒄 = 𝑽𝑽𝑽(𝑨𝑨, 𝑩𝑩,𝑪𝑪) ∈ 𝟎𝟎,𝟏𝟏

𝑫𝑫𝒄𝒄𝒄𝒄𝒊𝒊𝑫𝑫𝒊𝒊𝑫𝑫𝒏𝒏 𝒅𝒅 = 𝑽𝑽𝑽(𝑨𝑨, 𝑩𝑩,𝑪𝑪 , 𝒄𝒄, 𝒓𝒓)

Zero-Knowledge Proof for Discrete Log Solution

57

Dishonest (verifier);
𝐴𝐴 = 𝑛𝑛𝑥𝑥,

Simulator
Cheat bit b,
𝐴𝐴 = 𝑛𝑛𝑥𝑥,
𝐵𝐵 = 𝑛𝑛𝑦𝑦,
(random y)

�
𝑩𝑩 = 𝒈𝒈𝒚𝒚,𝑪𝑪 = 𝑨𝑨𝑩𝑩 if b=0

𝑩𝑩 =
𝐶𝐶
𝐴𝐴

,𝑪𝑪 = 𝒈𝒈𝒚𝒚 𝑫𝑫𝒓𝒓𝒄𝒄𝒄𝒄𝒓𝒓𝑽𝑽𝒊𝒊𝑫𝑫𝒄𝒄

Response 𝒓𝒓 = � 𝒚𝒚 𝒊𝒊𝒊𝒊 𝒄𝒄=𝒃𝒃
⊥ 𝑜𝑜𝑜𝑜𝑜𝑒𝑒𝑟𝑟𝑜𝑜𝑜𝑜𝑠𝑠𝑒𝑒

𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒏𝒏𝒈𝒈𝒄𝒄 𝒄𝒄 = 𝑽𝑽𝑽(𝑨𝑨, 𝑩𝑩,𝑪𝑪) ∈ 𝟎𝟎,𝟏𝟏

𝑫𝑫𝒄𝒄𝒄𝒄𝒊𝒊𝑫𝑫𝒊𝒊𝑫𝑫𝒏𝒏 𝒅𝒅 = 𝑽𝑽𝑽(𝑨𝑨, 𝑩𝑩,𝑪𝑪 , 𝒄𝒄, 𝒓𝒓)

Zero-Knowledge: If 𝐴𝐴 = 𝑛𝑛𝑥𝑥 for some x then 𝑽𝑽𝒊𝒊𝒄𝒄𝑽𝑽𝑽𝑽𝑉 ≡𝐶𝐶 Sim𝑉𝑉𝑉(.) 𝐴𝐴

Zero-Knowledge Proof for Square Root mod N

58

Bob (verifier);
𝑧𝑧

Alice (prover);
X
𝑧𝑧 = 𝑥𝑥2 mod N
(random y)

𝑀𝑀 = 𝑧𝑧𝑦𝑦2 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁

𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒏𝒏𝒈𝒈𝒄𝒄 𝒄𝒄 ∈ 𝟎𝟎,𝟏𝟏

Response 𝒓𝒓 = �𝒚𝒚 𝒊𝒊𝒊𝒊 𝒄𝒄 = 𝟎𝟎
𝒚𝒚𝑥𝑥 𝑖𝑖𝑓𝑓 𝑐𝑐 = 1

𝑫𝑫𝒄𝒄𝒄𝒄𝒊𝒊𝑫𝑫𝒊𝒊𝑫𝑫𝒏𝒏 𝒅𝒅 = �
𝟏𝟏 𝒊𝒊𝒊𝒊 𝒄𝒄 = 𝟎𝟎 𝒄𝒄𝒏𝒏𝒅𝒅𝑴𝑴 = 𝒛𝒛𝒓𝒓𝟐𝟐

𝟏𝟏 𝒊𝒊𝒊𝒊 𝒄𝒄 = 𝟏𝟏 𝒄𝒄𝒏𝒏𝒅𝒅𝑴𝑴 = 𝒓𝒓𝟐𝟐 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁
0 𝑚𝑚𝑡𝑡𝑜𝑛𝑛𝑃𝑃𝑜𝑜𝑖𝑖𝑠𝑠𝑛𝑛

Completeness: If Alice knows x such 𝑧𝑧 = 𝑥𝑥2 mod N then Bob will always accept

Zero-Knowledge Proof for Square Root mod N

59

Bob (verifier);
𝑧𝑧

Alice (prover);
X
𝑧𝑧 = 𝑥𝑥2 mod N
(random y)

𝑀𝑀 = 𝑧𝑧𝑦𝑦2 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁

𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒏𝒏𝒈𝒈𝒄𝒄 𝒄𝒄 ∈ 𝟎𝟎,𝟏𝟏

Response 𝒓𝒓 = �𝒚𝒚 𝒊𝒊𝒊𝒊 𝒄𝒄 = 𝟎𝟎
𝒚𝒚𝑥𝑥 𝑖𝑖𝑓𝑓 𝑐𝑐 = 1

𝑫𝑫𝒄𝒄𝒄𝒄𝒊𝒊𝑫𝑫𝒊𝒊𝑫𝑫𝒏𝒏 𝒅𝒅 = �
𝟏𝟏 𝒊𝒊𝒊𝒊 𝒄𝒄 = 𝟎𝟎 𝒄𝒄𝒏𝒏𝒅𝒅𝑴𝑴 = 𝒛𝒛𝒓𝒓𝟐𝟐

𝟏𝟏 𝒊𝒊𝒊𝒊 𝒄𝒄 = 𝟏𝟏 𝒄𝒄𝒏𝒏𝒅𝒅𝑴𝑴 = 𝒓𝒓𝟐𝟐 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁
0 𝑚𝑚𝑡𝑡𝑜𝑛𝑛𝑃𝑃𝑜𝑜𝑖𝑖𝑠𝑠𝑛𝑛

Soundness: If 𝑧𝑧 ≠ 𝑥𝑥2 for some x then (honest) Bob will reject w.p. ½ (even if
Alice cheats)

Zero-Knowledge Proof for Square Root mod N

60

Bob (verifier);
𝑧𝑧

Alice (prover);
X
𝑧𝑧 = 𝑥𝑥2 mod N
(random y)

𝑀𝑀 = 𝑧𝑧𝑦𝑦2 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁

𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒏𝒏𝒈𝒈𝒄𝒄 𝒄𝒄 ∈ 𝟎𝟎,𝟏𝟏

Response 𝒓𝒓 = �𝒚𝒚 𝒊𝒊𝒊𝒊 𝒄𝒄 = 𝟎𝟎
𝒚𝒚𝑥𝑥 𝑖𝑖𝑓𝑓 𝑐𝑐 = 1

𝑫𝑫𝒄𝒄𝒄𝒄𝒊𝒊𝑫𝑫𝒊𝒊𝑫𝑫𝒏𝒏 𝒅𝒅 = �
𝟏𝟏 𝒊𝒊𝒊𝒊 𝒄𝒄 = 𝟎𝟎 𝒄𝒄𝒏𝒏𝒅𝒅𝑴𝑴 = 𝒛𝒛𝒓𝒓𝟐𝟐 mod N
𝟏𝟏 𝒊𝒊𝒊𝒊 𝒄𝒄 = 𝟏𝟏 𝒄𝒄𝒏𝒏𝒅𝒅𝑴𝑴 = 𝒓𝒓𝟐𝟐 mod N
0 𝑚𝑚𝑡𝑡𝑜𝑛𝑛𝑃𝑃𝑜𝑜𝑖𝑖𝑠𝑠𝑛𝑛

Zero-Knowledge: How does the simulator work?

Zero-Knowledge Proof vs. Digital Signature

• Digital Signatures are transferrable
• E.g., Alice signs a message m with her secret key and sends the signature 𝜎𝜎 to

Bob. Bob can then send (m,𝜎𝜎) to Jane who is convinced that Alice signed the
message m.

• Are Zero-Knowledge Proofs transferable?
• Suppose Alice (prover) interacts with Bob (verifier) to prove a statement (e.g.,

z has a square root modulo N) in Zero-Knowledge.
• Let 𝑽𝑽𝒊𝒊𝒄𝒄𝑽𝑽𝑽𝑽 be Bob’s view of the protocol.
• Suppose Bob sends 𝑽𝑽𝒊𝒊𝒄𝒄𝑽𝑽𝑽𝑽 to Jane.
• Should Jane be convinced of the statement (e.g., z has a square root modulo

N)>

61

Non-Interactive Zero-Knowledge Proof (NIZK)

62

Bob (verifier);
𝑧𝑧

Alice (prover);
X
𝑧𝑧 = 𝑥𝑥2 mod N
(random
𝑦𝑦1, … ,𝑦𝑦𝑦𝑦)

M1,…Mk where 𝑀𝑀𝑖𝑖 = 𝑦𝑦𝑜𝑜2𝑧𝑧 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁

𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒏𝒏𝒈𝒈𝒄𝒄𝑫𝑫 𝒄𝒄 = 𝒄𝒄𝟏𝟏, … . , 𝒄𝒄𝒄𝒄 = 𝑯𝑯(M1,…Mk)

Responses r1,…,rk where 𝒓𝒓𝒊𝒊 = � 𝒚𝒚𝒊𝒊 𝒊𝒊𝒊𝒊 𝒄𝒄𝒊𝒊 = 𝟎𝟎
𝒚𝒚𝒊𝒊𝑥𝑥 𝑖𝑖𝑓𝑓 𝑐𝑐𝑖𝑖 = 1

𝑫𝑫𝒄𝒄𝒄𝒄𝒊𝒊𝑫𝑫𝒊𝒊𝑫𝑫𝒏𝒏 𝒅𝒅 = �
𝒊𝒊

𝒅𝒅𝒊𝒊 𝑽𝑽𝒄𝒄𝒄𝒄𝒓𝒓𝒄𝒄 𝒅𝒅𝒊𝒊 = �
𝟏𝟏 𝒊𝒊𝒊𝒊 𝒄𝒄𝒊𝒊 = 𝟎𝟎 𝒄𝒄𝒏𝒏𝒅𝒅𝑴𝑴𝒊𝒊 = 𝒓𝒓𝒊𝒊𝟐𝟐𝒛𝒛 mod N
𝟏𝟏 𝒊𝒊𝒊𝒊 𝒄𝒄𝒊𝒊 = 𝟏𝟏 𝒄𝒄𝒏𝒏𝒅𝒅𝑴𝑴𝒊𝒊 = 𝒓𝒓𝒊𝒊𝟐𝟐 mod N
0 𝑚𝑚𝑡𝑡𝑜𝑛𝑛𝑃𝑃𝑜𝑜𝑖𝑖𝑠𝑠𝑛𝑛

Simulator Power: Can program the random oracle

NIZK Security (Random Oracle Model)

• Simulator is given statement to proof (e.g., 𝑧𝑧 has a square root modulo N)
• Simulator must output a proof 𝜋𝜋𝑽𝑧𝑧 and a random oracle H’

• Distinguisher D
• World 1 (Simulated): Given z, 𝜋𝜋𝑽𝑧𝑧 and oracle access to H’
• World 2 (Honest): Given z, 𝜋𝜋𝑧𝑧 (honest proof) and oracle access to H
• Advantage: ADVD = 𝑃𝑃𝑃𝑃 𝐷𝐷𝐻𝐻 z, 𝜋𝜋𝑧𝑧 = 1 − 𝑃𝑃𝑃𝑃 𝐷𝐷𝐻𝐻𝑉 z, 𝜋𝜋𝑽𝑧𝑧 = 1

• Zero-Knowledge: Any PPT distinguisher D should have negligible
advantage.

• NIZK proof 𝜋𝜋𝑧𝑧 is transferrable (contrast with interactive ZK proof)

63

Zero-Knowledge Proof for all NP

• CLIQUE
• Input: Graph G=(V,E) and integer k>0
• Question: Does G have a clique of size k?

• CLIQUE is NP-Complete
• Any problem in NP reduces to CLIQUE
• A zero-knowledge proof for CLIQUE yields proof for all of NP via reduction

• Prover:
• Knows k vertices v1,…,vk in G=(V,E) that form a clique

64

Zero-Knowledge Proof for all NP

65

A B

C D

E G
F

H

IJ

K
L

𝜎𝜎 𝐺𝐺

Adjacency matrix 𝐴𝐴𝜎𝜎 𝐺𝐺

0 ⋯ 1
⋮ ⋱ ⋮
1 ⋯ 0

A L

L

A

Commitment to 𝐴𝐴𝜎𝜎 𝐺𝐺

𝐶𝐶𝑚𝑚𝑚𝑚 0, 𝑃𝑃𝐴𝐴,𝐴𝐴 ⋯ 𝐶𝐶𝑚𝑚𝑚𝑚 1, 𝑃𝑃𝐴𝐴,𝐿𝐿
⋮ ⋱ ⋮

𝐶𝐶𝑚𝑚𝑚𝑚 1, 𝑃𝑃𝐿𝐿,𝐴𝐴 ⋯ 𝐶𝐶𝑚𝑚𝑚𝑚 0, 𝑃𝑃𝐿𝐿,𝐿𝐿

A L

L

A

Zero-Knowledge Proof for all NP

• Prover:
• Knows k vertices v1,…,vk in G=(V,E) that for a clique

1. Prover commits to a permutation 𝜎𝜎 over V
2. Prover commits to the adjacency matrix 𝐴𝐴𝜎𝜎 𝐺𝐺 of 𝜎𝜎(G)
3. Verifier sends challenge c (either 1 or 0)
4. If c=0 then prover reveals 𝜎𝜎 and adjacency matrix 𝐴𝐴𝜎𝜎 𝐺𝐺

1. Verifier confirms that adjacency matrix is correct for 𝜎𝜎(G)
5. If c=1 then prover reveals the submatrix formed by first

rows/columns of 𝐴𝐴𝜎𝜎 𝐺𝐺 corresponding to 𝜎𝜎 𝐴𝐴1 , … ,𝜎𝜎 𝐴𝐴𝑝𝑝
1. Verifier confirms that the submatrix forms a clique.

66

A B

C D

E G
F

H

IJ

K
L

Zero-Knowledge Proof for all NP

• Completeness: Honest prover can always make honest verifier accept
• Soundness: If prover commits to adjacency matrix 𝐴𝐴𝜎𝜎 𝐺𝐺 of 𝜎𝜎(G) and

can reveal a clique in submatrix of 𝐴𝐴𝜎𝜎 𝐺𝐺 then G itself contains a k-
clique. Proof invokes binding property of commitment scheme.

• Zero-Knowledge: Simulator cheats and either commits to wrong
adjacency matrix or cannot reveal clique. Repeat until we produce a
successful transcript. Indistinguishability of transcripts follows from
hiding property of commitment scheme.

67

Secure Multiparty Computation (Adversary
Models)
• Semi-Honest (“honest, but curious”)

• All parties follow protocol instructions, but…
• dishonest parties may be curious to violate privacy of others when possible

• Fully Malicious Model
• Adversarial Parties may deviate from the protocol arbitrarily

• Quit unexpectedly
• Send different messages

• It is much harder to achieve security in the fully malicious model
• Convert Secure Semi-Honest Protocol into Secure Protocol in Fully

Malicious Mode?
• Tool: Zero-Knowledge Proofs
• Prove: My behavior in the protocol is consistent with honest party

68

	Cryptography�CS 555
	Plain RSA Attacks: Related Messages
	More Attacks: Encrypting Related Messages
	Factor N given 𝜙 𝑁
	Factor N given 𝜙 𝑁
	Dependent Keys Part 1
	Dependent Keys Part 2
	Dependent Keys Part 2
	Secure Multiparty Computation
	Secure Multiparty Computation (Crushes)
	Secure Multiparty Computation (Crushes)
	Adversary Models
	Computational Indistinguishability
	Security (Semi-Honest Model)
	Building Block: Oblivious Transfer (OT)
	Bellare-Micali 1-out-of-2-OT protocol
	Bellare-Micali 1-out-of-2-OT protocol
	Bellare-Micali 1-out-of-2-OT protocol
	Bellare-Micali 1-out-of-2-OT protocol
	Yao’s Protocol
	Yao’s Protocol
	Slide Number 22
	Intuition
	Intuition
	1: Pick Random Keys For Each Wire
	2: Encrypt Truth Table
	3: Send Garbled Truth Table
	4: Send Keys For Alice’s Inputs
	5: Use OT on Keys for Bob’s Input
	6: Evaluate Garbled Gate
	7: Evaluate Entire Circuit
	Security (Semi-Honest Model)
	Brief Discussion of Yao’s Protocol
	Fully Malicious Security?
	Fully Malicious Security
	Zero-Knowledge Proofs
	Computational Indistinguishability
	Computational Indistinguishability
	P vs NP
	Zero-Knowledge Proof
	Zero-Knowledge Proof
	Zero-Knowledge Proof
	Zero-Knowledge Proof for Discrete Log Solution
	Zero-Knowledge Proof for Discrete Log Solution
	Zero-Knowledge Proof for Discrete Log Solution
	Zero-Knowledge Proof for Discrete Log Solution
	Zero-Knowledge Proof for Discrete Log Solution
	Zero-Knowledge Proof for Discrete Log Solution
	Zero-Knowledge Proof for Discrete Log Solution
	Zero-Knowledge Proof for Discrete Log Solution
	Zero-Knowledge Proof for Discrete Log Solution
	Zero-Knowledge Proof for Discrete Log Solution
	Zero-Knowledge Proof for Discrete Log Solution
	Zero-Knowledge Proof for Discrete Log Solution
	Zero-Knowledge Proof for Discrete Log Solution
	Zero-Knowledge Proof for Square Root mod N
	Zero-Knowledge Proof for Square Root mod N
	Zero-Knowledge Proof for Square Root mod N
	Zero-Knowledge Proof vs. Digital Signature
	Non-Interactive Zero-Knowledge Proof (NIZK)
	NIZK Security (Random Oracle Model)
	Zero-Knowledge Proof for all NP
	Zero-Knowledge Proof for all NP
	Zero-Knowledge Proof for all NP
	Zero-Knowledge Proof for all NP
	Secure Multiparty Computation (Adversary Models)

