Cryptography CS 555

Week 13:

- More Plain RSA Attacks
- Secure Multi-Party Computation (Garbled Circuits)
 Reminder: Quiz 5 due tonight (4/14) at 11:30PM on Brigthspace
 Readings: Chapter 11.1-11.2, 11.4

Plain RSA Attacks: Related Messages

- Sender encrypts m and $m + \delta$, where offset δ is known to attacker
- Attacker intercepts

$$c_1 = \operatorname{Enc}_{pk}(m) = m^e \mod N$$

and

$$c_2 = \operatorname{Enc}_{pk}(m+\delta) = (m+\delta)^e \mod N$$

• Attacker defines polynomials

$$f_1(x) = x^e - c_1 \mod N$$

and

$$f_2(x) = (x + \delta)^e - c_2 \mod N$$

More Attacks: Encrypting Related Messages

$$c_1 = \operatorname{Enc}_{pk}(m) = m^e \mod N$$
$$c_2 = \operatorname{Enc}_{pk}(m+\delta) = (m+\delta)^e \mod N$$

• Attacker defines polynomials

$$f_1(x) = x^e - c_1 \mod N$$

and

$$f_2(x) = (x + \delta)^e - c_2 \mod N$$

- Both polynomials have a root at x=m, thus (x-m) is a factor of both polynomials
- The GCD operation can be extended to operate over polynomials ③
 - Polynomial time in log *N* and degree e
 - Attack on Plain RSA only works when e is small (often true in practice)
- $GCD(f_1(x), f_2(x))$ reveals the common factor (x-m)
 - Can easily extract m from $g(x)=(x-m)=GCD(f_1(x), f_2(x))$

Factor N given
$$\phi(N)$$

- Suppose we are given N = pq and $\phi(N) = (p-1)(q-1)$
- Idea: Solve for p using quadratic formula! $\phi(N) = (p-1)(q-1) = (p-1)\left(\frac{N}{p} - 1\right)$

 $p\phi(N) = (p-1)(N-p)$ (Multiply by p) $p^2 + p(\phi(N) - 1 - N) + N = 0$ (Algebra)

Factor N given
$$\phi(N)$$

- Suppose we are given N = pq and $\phi(N) = (p-1)(q-1)$
- Idea: Solve for p using quadratic formula! $p^2 + p(\phi(N) - 1 - N) + N = 0$ (Algebra)

$$p = \frac{-(\phi(N) - 1 - N) \pm \sqrt{(\phi(N) - 1 - N)^2 - 4N}}{2}$$

(Quadratic Formula) $a = 1, b = (\phi(N) - 1 - N), c = N$

Dependent Keys Part 1

- Suppose an organization generates N=pq and a pair (e_i,d_i) for each employee i subject to the constraints $e_id_i=1 \mod \phi(N)$.
- Question: Is this secure?
- Answer: No, given $e_i d_i$ employee i can factor N (and then recover everyone else's secret key).
- See Theorem 8.50 in the textbook

Dependent Keys Part 2

- Suppose an organization generates N=pq and a pair (e_i, d_i) for each employee i subject to the constraints $e_i d_i = 1 \mod \phi(N)$.
- Suppose that each employee is trusted (so it is ok if employee i factors N)
- Suppose that a message m is encrypted and sent to employee 1 and 2.
- Attacker intercepts $c_1 = [m^{e_1} \mod N]$ and $c_2 = [m^{e_2} \mod N]$

Dependent Keys Part 2

- Suppose an organization generates N=pq and a pair (e_i, d_i) for each employee i subject to the constraints $e_i d_i = 1 \mod \phi(N)$.
- Suppose that a message m is encrypted and sent to employee 1 and 2.
- Attacker intercepts $c_1 = [m^{e_1} \mod N]$ and $c_2 = [m^{e_2} \mod N]$
- If $gcd(e_1,e_2)=1$ (which is reasonably likely) then attacker can run extended GCD algorithm to find X,Y such that $Xe_1+Ye_2=1$. $[c_1^{X}c_2^{Y} \mod N] = [m^{Xe_1}m^{Ye_2} \mod N] = [m^{Xe_1+Ye_2} \mod N] = m$

Secure Multiparty Computation (Cruchoc)

Micke

Key Point: The output H(x,y,z) may leak info about inputs. Thus, we cannot prevent Mickey from Flxivi2]="match Bg learning anything about x,y but Mickey should not learn anything else besides H(x,y,z)!

11

Though Question: How can we formalize this property? Mickey cannot infer y, and learns that $x \neq$ "Mickey"

Adversary Models

- Semi-Honest ("honest, but curious")
 - All parties follow protocol instructions, but...
 - dishonest parties may be curious to violate privacy of others when possible
- Fully Malicious Model
 - Adversarial Parties may deviate from the protocol arbitrarily
 - Quit unexpectedly
 - Send different messages
 - It is much harder to achieve security in the fully malicious model
- Convert Secure Semi-Honest Protocol into Secure Protocol in Fully Malicious Mode?
 - Tool: Zero-Knowledge Proofs
- Current Focus: Semi-Honest Protocols

Computational Indistinguishability

Definition: We say that an ensemble of distributions $\{X_n\}_{n \in \mathbb{N}}$ and $\{Y_n\}_{n \in \mathbb{N}}$ are <u>computationally indistinguishable</u> if for all PPT distinguishers D, there is a negligible function negl(n), such that we have

$$Adv_{D,n} = \left| Pr_{s \leftarrow \mathsf{X}_{\ell}}[D(s) = 1] - Pr_{s \leftarrow \mathsf{Y}_{\ell}}[D(s) = 1] \right| \le negl(n)$$

Notation: $\{X_n\}_{n \in \mathbb{N}} \equiv_C \{Y_n\}_{n \in \mathbb{N}}$ means that the ensembles are computationally indistinguishable.

Security (Semi-Honest Model)

- Let $B_n = trans_B(n, x, y)$ (resp. $A_n = trans_A(n, x, y)$) be the protocol transcript from Bob's perspective (resp. Alice's perspective) when his input is y and Alice's input is x (assuming that Alice follows the protocol).
- Security: Assuming that Alice and Bob are both semi-honest (follow the protocol) then there exist PPT simulators S_A and S_B s.t. $\{A_n\}_{n\in\mathbb{N}} \equiv_C \{S_A(n, x, f_A(x, y))\}_{n\in\mathbb{N}}$ $\{B_n\}_{n\in\mathbb{N}} \equiv_C \{S_B(n, y, f_B(x, y))\}_{n\in\mathbb{N}}$
- **Remark**: Simulator S_A is only shown Alice's input y and Alice's output $f_A(x, y)$ (similarly, S_B is only shown Bob's input x and Bob's output $f_B(x, y)$)

Building Block: Oblivious Transfer (OT)

• 1 out of 2 OT

- Alice has two messages m₀ and m₁
- At the end of the protocol
 - Bob gets exactly one of m₀ and m₁
 - Alice does not know which one, and Bob learns nothing about other message
- Oblivious Transfer with a Trusted Third Party

Oblivious Transfer without a Trusted Third Party

• g is a generator for a prime order group G_{α} in which CDH problem is hard

• Oblivious Transfer without a Trusted Third Party

• g is a generator for a prime order group G_a in which CDH is Hard

• Oblivious Transfer withou Alice does not learn b because

$$z_1 = c(z_0)^{-1}$$
 and
 $z_0 = c(z_1)^{-1}$ and
 z_1, z_0 are distributed uniformly at random
subject to these condition

This is an information theoretic guarantee!

Alice must check that $z_1 = c(z_0)^{-1}$

Bob can decrypt C_b $z_b^{r_b} = g^{kr_b}$

$$z_b = g^k, z_{1-b} = cg^{-k}$$

= $c(z_b)^{-1}$

Alice must check that $z_1 = c(z_0)^{-1}$

Bob can decrypt C_b $z_b^{\prime b} = g^{kr_b}$

Yao's Protocol

Vitaly Shmatikov

Yao's Protocol

- Compute any function securely
 - ... in the semi-honest model
- First, convert the function into a boolean circuit

Overview:

- 1. Alice prepares "garbled" version C' of C
- 2. Sends "encrypted" form **x'** of her input **x**
- 3. Allows Bob to obtain "encrypted" form y' of his input y via OT
- 4. Bob can compute from C', x', y' the "encryption" z' of z=C(x,y)
- 5. Bob sends z' to Alice and she decrypts and reveals to him z

Crucial properties:

- 1. Bob never sees Alice's input x in unencrypted form.
- 2. Bob can obtain encryption of y without Alice learning y.
- 3. Neither party learns intermediate values.
- 4. Remains secure even if parties try to cheat.

Intuition

Intuition

1: Pick Random Keys For Each Wire

- Next, evaluate <u>one gate</u> securely
 - Later, generalize to the entire circuit
- Alice picks two random keys for each wire
 - One key corresponds to "0", the other to "1"
 - 6 keys in total for a gate with 2 input wires

2: Encrypt Truth Table

 Alice encrypts each row of the truth table by encrypting the output-wire key with the corresponding pair of input-wire keys

3: Send Garbled Truth Table

• Alice randomly permutes ("garbles") encrypted truth table and sends it to Bob

4: Send Keys For Alice's Inputs

- Alice sends the key corresponding to her input bit
 - Keys are random, so Bob does not learn what this bit is

5: Use OT on Keys for Bob's Input

- Alice and Bob run oblivious transfer protocol
 - Alice's input is the two keys corresponding to Bob's wire
 - Bob's input into OT is simply his 1-bit input on that wire

6: Evaluate Garbled Gate

- Using the two keys that he learned, Bob decrypts exactly one of the output-wire keys
 - Bob does not learn if this key corresponds to 0 or 1
 - Why is this important?

7: Evaluate Entire Circuit

- In this way, Bob evaluates entire garbled circuit
 - For each wire in the circuit, Bob learns only one key
 - It corresponds to 0 or 1 (Bob does not know which)
 - Therefore, Bob does not learn intermediate values (why?)

• Bob does not tell her intermediate wire keys (why?)

Security (Semi-Honest Model)

- Security: Assuming that Alice and Bob are both semi-honest (follow the protocol) then there exist PPT simulators S_A and S_B s.t. $\{A_n\}_{n\in\mathbb{N}} \equiv_C \{S_A(n, x, f_A(x, y))\}_{n\in\mathbb{N}}$ $\{B_n\}_{n\in\mathbb{N}} \equiv_C \{S_B(n, y, f_B(x, y))\}_{n\in\mathbb{N}}$
- **Remark**: Simulator S_A is only shown Alice's output $f_A(x, y)$ (similarly, S_B is only shown Bob's output $f_B(x, y)$)

Theorem (informal): If the oblivious transfer protocol is secure, and the underlying encryption scheme is CPA-secure then Yao's protocol is secure in the semi-honest adversary model.

Brief Discussion of Yao's Protocol

- Function must be converted into a circuit
 - For many functions, circuit will be huge
- If m gates in the circuit and n inputs from Bob, then need 4m encryptions and n oblivious transfers
 - Oblivious transfers for all inputs can be done in parallel
- Yao's construction gives a <u>constant-round</u> protocol for secure computation of <u>any</u> function in the semi-honest model
 - Number of rounds does not depend on the number of inputs or the size of the circuit!

Fully Malicious Security?

- 1. Alice could initially garble the wrong circuit C(x,y)=y.
- 2. Given output of C(x,y) Alice can still send Bob the output f(x,y).
- 3. Can Bob detect/prevent this?

Fix: Assume Alice and Bob have both committed to their input: $c_A = com(x, r_A)$ and $c_B = com(y, r_B)$.

- Alice and Bob can use zero-knowledge proofs to convince other party that they are behaving honestly.
- **Example**: After sending a message A Alice proves that the message she just sent is the same message an honest party would have sent with input x s.t. c_A=com(x,r_A)
- Here we assume that Alice and Bob have both committed to correct inputs (Bob might use y which does not represent his real vote etc... but this is not a problem we can address with cryptography)

Fully Malicious Security

- Assume Alice and Bob have both committed to their input: c_A=com(x,r_A) and c_B=com(y,r_B).
 - Here we assume that Alice and Bob have both committed to correct inputs (Bob might use y which does not represent his real vote etc... but this is not a problem we can address with cryptography)
 - Alice has c_B and can unlock c_A
 - Bob has c_A and can unlock c_B
- 1. Alice sets C_f = GarbleCircuit(f,r).
 - 1. Alice sends to Bob.
 - 2. Alice convinces Bob that C_f = GarbleCircuit(f,r) for some r (using a zero-knowledge proof)
- 2. For each original oblivious transfer if Alice's inputs were originally x_0, x_1
 - 1. Alice and Bob run OT with y_0, y_1 where $y_i = Enc_k(x_i)$
 - 2. Bob uses a zero-knowledge proof to convince Alice that he received the correct y_i (e.g. matching his previous commitment c_B)
 - 3. Alice sends K to Bob who decrypts y_i to obtain x_i

Zero-Knowledge Proofs

Computational Indistinguishability

- Consider two distributions X_{ℓ} and Y_{ℓ} (e.g., over strings of length ℓ).
- Let D be a distinguisher that attempts to guess whether a string s came from distribution X_ℓ or $Y_\ell.$

The advantage of a distinguisher D is

$$Adv_{D,\ell} = \left| Pr_{s \leftarrow \mathsf{X}_{\ell}}[D(s) = 1] - Pr_{s \leftarrow \mathsf{Y}_{\ell}}[D(s) = 1] \right|$$

Definition: We say that an ensemble of distributions $\{X_n\}_{n \in \mathbb{N}}$ and $\{Y_n\}_{n \in \mathbb{N}}$ are <u>computationally indistinguishable</u> if for all PPT distinguishers D, there is a negligible function negl(n), such that we have

 $Adv_{D,n} \leq negl(n)$

Computational Indictinguishability

- Consider two d
- Let D be a distinuition X_l

Notation: $\{X_n\}_{n \in \mathbb{N}} \equiv_C \{Y_n\}_{n \in \mathbb{N}}$ means that the ensembles are computationally indistinguishable.

ℓ). came from

The advantage of a distinguisher D is

$$Adv_{D,\ell} = \left| Pr_{s \leftarrow \mathsf{X}_{\ell}}[D(s) = 1] - Pr_{s \leftarrow \mathsf{Y}_{\ell}}[D(s) = 1] \right|$$

Definition: We say that an ensemble of distributions $\{X_n\}_{n \in \mathbb{N}}$ and $\{Y_n\}_{n \in \mathbb{N}}$ are <u>computationally indistinguishable</u> if for all PPT distinguishers D, there is a negligible function negl(n), such that we have

 $Adv_{D,n} \leq negl(n)$

P vs NP

- P problems that can be solved in polynomial time
- NP --- problems whose solutions can be verified in polynomial time
 - Examples: SHORT-PATH, COMPOSITE, 3SAT, CIRCUIT-SAT, 3COLOR,
 - DDH
 - Input: $A = g^{x_1}$, $B = g^{x_2}$ and Z
 - **Goal:** Decide if $Z = g^{x_1x_2}$ or $Z \neq g^{x_1x_2}$.
 - NP-Complete --- hardest problems in NP (e.g., all problems can be reduced to 3SAT)
- Witness
 - A short (polynomial size) string which allows a verify to check for membership
 - DDH Witness: x₁,x₂.

Zero-Knowledge Proof

Two parties: Prover P (PPT) and Verifier V (PPT)

(P is given witness for claim e.g.,)

- **Completeness:** If claim is true honest prover can always convince honest verifier to accept.
- Soundness: If claim is false then Verifier should reject with probability at least ½. (Even if the prover tries to cheat)
- Zero-Knowledge: Verifier doesn't learn anything about prover's input from the protocol (other than that the claim is true).
- Formalizing this last statement is tricky
- Zero-Knowledge: should hold even if the attacker is dishonest!

Zero-Knowledge Proof

Trans(1ⁿ,V',P,x,w,r_p,r_v) transcript produced when V' and P interact

- V' is given input X (the problem instance e.g., $X = g^{x}$)
- P is given input X and w (a witness for the claim e.g., w=x)
- V' and P use randomness r_p and r_v respectively
- Security parameter is n e.g., for encryption schemes, commitment schemes etc...

 $X_n = \text{Trans}(1^n, V', P, x, w)$ is a distribution over transcripts (over the randomness r_p, r_v)

(Blackbox Zero-Knowledge): There is a PPT simulator S such that for every V' (possibly cheating) S, with oracle access to V', can simulate X_n without a witness w. Formally,

$$\{X_n\}_{n\in\mathbb{N}}\equiv_C \{S^{V'(.)}(x,1^n)\}_{n\in\mathbb{N}}$$

Zero-Knowledge Proof

Trans(1ⁿ,V',P,x,w,r_p,r_v) transcript produced when V' and P interact

• V' is given input x (the problem instance e.g., $A = g^{x_1}$, $B = g^{x_2}$ and z_b)

P
 V
 Se
 Se X_n Simulator S is not given witness w X_n Se Se</l

(Blackbox Zero-Knowledge): There is a PPT simulator S such that for every V' (possibly cheating) S, with oracle access to V', can simulate X_n without a witness w. Formally,

$$\{X_n\}_{n\in\mathbb{N}}\equiv_C \{S^{V'(.)}(x,1^n)\}_{n\in\mathbb{N}}$$

Claim: There is some integer x such that $A = g^x$

Correctness: If Alice and Bob are honest then Bob will always accept

Correctness: If Alice and Bob are honest then Bob will always accept

Correctness: If Alice and Bob are honest then Bob will always accept

49

Zero-Knowledge Proof fc Assume that AB=C, now If $B = g^y$ and $C = g^{x+y}$ for some x,y then $A = g^x$

(random y) Soundness: If $A \neq g^x$ for some x then (honest) Bob will reject w.p. ½ (even if Alice cheats)

(random y) **Soundness**: If $A \neq g^x$ for some x then (honest) Bob will reject w.p. ½ (even if Alice cheats) $\rightarrow Pr[reject] \ge Pr[c=1] = \frac{1}{2} \text{ for some x w the conditions of } for$ $B = q^{y}, C = q^{x+y}$ challenge $c \in \{0, 1\}$ **Response** $r = \begin{cases} y & if \ c = 0 \\ y + x & if \ c = 1 \end{cases}$ Alice (prover); **Bob** (verifier); $Decision d = \begin{cases} 1 & if c = 0 and B = g^r and AB = C \\ 1 & if c = 1 and C = g^r and AB = C \\ 0 & otherwise \end{cases}$ $A = g^{\chi}$, X $A = g^{\chi}$, $B = q^{\mathcal{Y}},$

(random y) **Soundness**: If $A \neq g^x$ for some x then (honest) Bob will reject w.p. ½ (even if Alice cheats)

Transcript: $View_{V'} = (A, (B, C), c, r, d)$

	$\begin{cases} \boldsymbol{B} = \boldsymbol{g}^{\boldsymbol{y}}, \boldsymbol{C} = \boldsymbol{A}\boldsymbol{B} & \text{if b=0} \\ \boldsymbol{B} = \frac{\boldsymbol{C}}{\boldsymbol{A}}, \boldsymbol{C} = \boldsymbol{g}^{\boldsymbol{y}} & \boldsymbol{otherwise} \end{cases}$	
	<i>challenge</i> $c = V'(A, (B, C)) \in \{0, 1\}$	
	Response $r = egin{cases} y & if c = b \ ot & otherwise \end{cases}$	Simulator
Dishonest (verifier); $A = g^x$,	Decision $d = V'(A, (B, C), c, r)$	<i>Cheat bit b,</i> $A = g^{x}$, $B = a^{y}$
Zero-Knowledge:	For all PPT V' exists PPT Sim s.t $View_{V'} \equiv_C S$	V = g', (random y) Sim ^{V'(.)} (A)

	$\begin{cases} B = g^{y}, C = AB & \text{if b=0} \\ B = \frac{C}{A}, C = g^{y} \text{ otherwise} \end{cases}$	
	<i>challenge</i> $c = V'(A, (B, C)) \in \{0, 1\}$	
	Response $r = \begin{cases} y & if c = b \\ \bot & otherwise \end{cases}$	Simulator
Dishonest (verifier); $A = g^x$,	Decision $d = V'(A, (B, C), c, r)$	$Cheat bit b,$ $A = g^{x},$
		$B = g^{\mathcal{Y}}$, (random y)

Zero-Knowledge: Simulator can produce identical transcripts (Repeat until $r \neq \perp$)

	$\begin{cases} B = g^{y}, C = AB & \text{if b=0} \\ B = \frac{C}{A}, C = g^{y} \text{ otherwise} \end{cases}$	
	<i>challenge</i> $c = V'(A, (B, C)) \in \{0, 1\}$	
	Response $r = \begin{cases} y & if c = b \\ \bot & otherwise \end{cases}$	Simulator
Dishonest (verifier); $A = g^x$,	Decision $d = V'(A, (B, C), c, r)$	$Cheat bit b,$ $A = g^{x},$ $B = g^{y},$ (random y)

Zero-Knowledge: If $A = g^{\chi}$ for some χ then $View_{V'} \equiv_C Sim^{V'(.)}(A)$

Zero-Knowledge Proof for Square Root mod N

Completeness: If Alice knows x such $z = x^2 \mod N$ then Bob will always accept

Zero-Knowledge Proof for Square Root mod N

Soundness: If $z \neq x^2$ for some x then (honest) Bob will reject w.p. ½ (even if Alice cheats) ⁵⁹

Zero-Knowledge Proof for Square Root mod N

Zero-Knowledge: How does the simulator work?

Zero-Knowledge Proof vs. Digital Signature

- Digital Signatures are transferrable
 - E.g., Alice signs a message m with her secret key and sends the signature σ to Bob. Bob can then send (m, σ) to Jane who is convinced that Alice signed the message m.
- Are Zero-Knowledge Proofs transferable?
 - Suppose Alice (prover) interacts with Bob (verifier) to prove a statement (e.g., z has a square root modulo N) in Zero-Knowledge.
 - Let $View_V$ be Bob's view of the protocol.
 - Suppose Bob sends *View_V* to Jane.
 - Should Jane be convinced of the statement (e.g., z has a square root modulo N)>

Non-Interactive Zero-Knowledge Proof (NIZK)

NIZK Security (Random Oracle Model)

- Simulator is given statement to proof (e.g., z has a square root modulo N)
- Simulator must output a proof π'_z and a random oracle H'
- Distinguisher D
 - World 1 (Simulated): Given z, π'_z and oracle access to H'
 - World 2 (Honest): Given z, π_z (honest proof) and oracle access to H
 - Advantage: $ADV_D = |Pr[D^H(z, \pi_z) = 1] Pr[D^{H'}(z, \pi'_z) = 1]|$
- Zero-Knowledge: Any PPT distinguisher D should have negligible advantage.
- NIZK proof π_z is transferrable (contrast with interactive ZK proof)

- CLIQUE
 - Input: Graph G=(V,E) and integer k>0
 - Question: Does G have a clique of size k?
- CLIQUE is NP-Complete
 - Any problem in NP reduces to CLIQUE
 - A zero-knowledge proof for CLIQUE yields proof for all of NP via reduction
- Prover:
 - Knows k vertices $v_1, ..., v_k$ in G=(V,E) that form a clique

- Prover:
 - Knows k vertices $v_1, ..., v_k$ in G=(V,E) that for a clique
- 1. Prover commits to a permutation σ over V
- 2. Prover commits to the adjacency matrix $A_{\sigma(G)}$ of $\sigma(G)$
- 3. Verifier sends challenge c (either 1 or 0)
- 4. If c=0 then prover reveals σ and adjacency matrix $A_{\sigma(G)}$
 - 1. Verifier confirms that adjacency matrix is correct for $\sigma(G)$
- 5. If c=1 then prover reveals the submatrix formed by first rows/columns of $A_{\sigma(G)}$ corresponding to $\sigma(v_1), \dots, \sigma(v_k)$
 - 1. Verifier confirms that the submatrix forms a clique.

- Completeness: Honest prover can always make honest verifier accept
- **Soundness**: If prover commits to adjacency matrix $A_{\sigma(G)}$ of $\sigma(G)$ and can reveal a clique in submatrix of $A_{\sigma(G)}$ then G itself contains a k-clique. Proof invokes binding property of commitment scheme.
- Zero-Knowledge: Simulator cheats and either commits to wrong adjacency matrix or cannot reveal clique. Repeat until we produce a successful transcript. Indistinguishability of transcripts follows from hiding property of commitment scheme.

Secure Multiparty Computation (Adversary Models)

- Semi-Honest ("honest, but curious")
 - All parties follow protocol instructions, but...
 - dishonest parties may be curious to violate privacy of others when possible
- Fully Malicious Model
 - Adversarial Parties may deviate from the protocol arbitrarily
 - Quit unexpectedly
 - Send different messages
 - It is much harder to achieve security in the fully malicious model
- Convert Secure Semi-Honest Protocol into Secure Protocol in Fully Malicious Mode?
 - Tool: Zero-Knowledge Proofs
 - Prove: My behavior in the protocol is consistent with honest party