Cryptography
CS 555

Week 13:
e More Plain RSA Attacks

e Secure Multi-Party Computation (Garbled Circuits)

Reminder: Quiz 5 due tonight (4/14) at 11:30PM on Brigthspace
Readings: Chapter 11.1-11.2, 11.4

Spring 2021

Plain RSA Attacks: Related Messages

e Sender encrypts m and m + 9, where offset 6 is known to attacker

e Attacker intercepts
¢; = Enc,,(m) = m® mod N
and
¢, = Enc,y(m + 6) = (m + 6)° mod N
e Attacker defines polynomials
f1(x) =x®—c,mod N

and
fo(x) =(x+68)°—c,mod N

More Attacks: Encrypting Related Messages

¢; = Enc,,(m) = m® mod N
¢, = Enc,y(m + 6) = (m + 6)° mod N
e Attacker defines polynomials
f1(x) =x® —c,mod N
and
fo(x) =(x+6)¢—c,modN
e Both polynomials have a root at x=m, thus (x-m) is a factor of both polynomials

e The GCD operation can be extended to operate over polynomials ©
e Polynomial time in log N and degree e
e Attack on Plain RSA only works when e is small (often true in practice)

* GCD(f{(x), f,(x)) reveals the common factor (x-m)
 Can easily extract m from g(x)=(x-m)= GCD(f,(x), f,(x))

Factor N given ¢ (N)

e Suppose we aregiven N =pgand p(N) =(p —1)(g — 1)

* |dea: Solve for p using quadratic formula!

¢<N>=<p_1)(q_1)=<p_1)(g_1)

pdp(N) = (p— 1N —p) (Multiply by p)

p2 +p(@p(N)—1—N)+N=0 (Algebra)

Factor N given ¢ (N)

e Suppose we aregiven N =pgand p(N) =(p —1)(g — 1)

* |dea: Solve for p using quadratic formula!
p? +p(@p(N)—1—N)+N =0 (Algebra)

_—@WN)—1-N)+(@N) —1-N)*> - 4N
2

p

(Quadratic Formula) a=1,b=(¢p(N)—1—N),c=N

Dependent Keys Part 1

e Suppose an organization generates N=pq and a pair (e, d.) for each
employee i subject to the constraints e.d.=1 mod ¢(N).

e Question: Is this secure?

* Answer: No, given e;d,employee i can factor N (and then recover
everyone else's secret key).

e See Theorem 8.50 in the textbook

Dependent Keys Part 2

e Suppose an organization generates N=pq and a pair (e, d.) for each
employee i subject to the constraints e.d.=1 mod ¢(N).

e Suppose that each employee is trusted (so it is ok if employee i factors
N)

e Suppose that a message m is encrypted and sent to employee 1 and 2.
* Attacker intercepts ¢,= [m® mod N] and c,= [m®2 mod N]

Dependent Keys Part 2

e Suppose an organization generates N=pq and a pair (e, d.) for each
employee i subject to the constraints e.d.=1 mod ¢(N).

e Suppose that a message m is encrypted and sent to employee 1 and 2.
* Attacker intercepts ¢,= [m® mod N] and c,= [m®2 mod N]

e [f gcd(e,,e,)=1 (which is reasonably likely) then attacker can run
extended GCD algorithm to find X,Y such that Xe,+Ye,=1.
[c,¥c,”mod N] = [m*é1mY® mod N] = [m*¢1tY¢ mod N] = m

Bob only learns G(x,y,z)
Alice only learns F(x,y,z)
Mickey only learns H(x,y,z)

Cryptography: What if we don’t have a trusted third party? 5

Secure Multiparty Computation (Crushes)
7="Alice” ~Qf

Bob only learns G(x,y,z)

@
/[{g?* Alice only learns F(x,y,z)

Mickey only learns H(x,y,z)
K\,)
| ﬁ Alice can infer Y from F(x,y,z) and Bob can infer X from G(x,y,z).
/ >\ But Alice/Bob cannot infer anything about Z.
~ Mickey cannot infer y, and learns that x# “Mickey”

Secure Multipan .

Key Point: The output H(x,y,z) may }
leak info about inputs. Thus, we
cannot prevent Mickey from
learning anything about x,y but
Mickey should not learn anything

' |
it else besides H(x,y,z)!

Micke

Though Question: How can we formalize this
property?

VIICKey cannot InTer y, and learns that X

Viickey

Adversary Models

 Semi-Honest (“honest, but curious”)
e All parties follow protocol instructions, but...
e dishonest parties may be curious to violate privacy of others when possible

e Fully Malicious Model

e Adversarial Parties may deviate from the protocol arbitrarily
e Quit unexpectedly
e Send different messages

It is much harder to achieve security in the fully malicious model

e Convert Secure Semi-Honest Protocol into Secure Protocol in Fully
Malicious Mode?

e Tool: Zero-Knowledge Proofs
e Current Focus: Semi-Honest Protocols

Computational Indistinguishability

Definition: We say that an ensemble of distributions {X ,},,ey and
Y, }nen are computationally indistinguishable if for all PPT
distinguishers D, there is a negligible function negl(n), such that we
have

Advp , = ‘Pry_xg[D(s) = 1] = Prsey [D(s) = 1]| < negl(n)

Notation: {X },en =c 1Y, }neny means that the

ensembles are computationally indistinguishable.

13

Security (Semi-Honest Model)

e Let B, = transg(n,x,y) (resp. A,, = trans,(n,x,y)) be the protocol
transcript from Bob’s perspective (resp. Alice’s perspective) when his input is
y and Alice’s input is x (assuming that Alice follows the protocol).

e Security: Assuming that Alice and Bob are both semi-honest (follow the
protocol) then there exist PPT simulators S, and Sp s.t.

{An}nEN =c {SA(Tl, X, fA(x; y))}nEN
Bolnen =c {SB (n, v, [(x, J’))}neN

e Remark: Simulator S, is only shown Alice’s input y and Alice’s output f,(x,y)
(similarly, Sg is only shown Bob’s input x and Bob’s output fz(x,y))

Building Block: Oblivious Transfer (OT)

e 1 outof20OT

* Alice has two messages myand m,

e At the end of the protocol
e Bob gets exactly one of myand m,
e Alice does not know which one, and Bob learns nothing about other message

e Oblivious Transfer with a Trusted Third Party

v

A

1 outof 2 OT

v

v

15

Bellare-Micali 1-out-of-2-OT protocol

e Oblivious Transfer without a Trusted Third Party

C

Zy, Zq

CO — [grO,H(Z;()) EB mo]
Ci = g™ H(z") ®m]

Bob can decrypt C,

'y _ _kr
Zb — g b 16

Bellare-Micali 1-out-of-2-OT protocol

e Oblivious Transfer without a Trusted Third Party

* gis a generator for a prime order group G, in which CDH is Hard
m, £
/N C
(&

Zy, Zq

CO — [grO,H(Z;()) EB mo]
Ci = g™ H(z") ®m]

Alice must check that

Bob can decrypt C,

-1
7, = ¢(2) s _ krp

Bellare-Micali 1-out-of-2-OT protocol

e Oblivious Transfer withoul A= 661k aleid (SEfgl o) sl=iez b=

e gisagenerator for a prime and

and
, aredistributed uniformly at random §
subject to these condition.

Bl This is an information theoretic guarantee!

_ kK _ .k
Bob can decrypt C, =9 A _ ??Zb)—l

'y _ _kr
Zb - g b 18

Alice must check that

1
z1 = ¢(zp)

Bellare-Micali 1-out-of-2-OT protocol

Bob cannot decrypt C,

Unless he queries random oracle at
° Crl—bg_krl—b

e Oblivious Transfer withou
e gisagenerator for a prime

e Given this value we can obtain ¢"1-b
e Thus, we can break CDH assumption
given random ¢ = g™ and g"1-? it is hard to |

_ kK _ .k
Bob can decrypt C, =9 A _ ??Zb)—l

'y _ _kr
Zb - g b 19

Alice must check that

1
z1 = ¢(zp)

CS 380S

Yao’s Protocol

Vitaly Shmatikov

slide 20

Yao’s Protocol

e Compute any function securely
e ...inthe semi-honest model

e First, convert the function into a boolean circuit

Alice’s inputs Bob’s inputs

Truth table: Truth table:

HI—‘OOX

I—\OI—\O<

I—‘OOON
HI—‘OOX

y X y

R ok o«
PRk |lol N

A S

> Wb

Alice’s inputs Bob’s inputs

| AND R R |
| | | I

Alice prepares “garbled” version C’ of C

Sends “encrypted” form x’ of her input x
Allows Bob to obtain “encrypted” form y’ of his input y via OT
Bob can compute from C’,x’,y’ the “encryption” z’ of z=C(x,y)

Bob sends z’ to Alice and she decrypts and reveals to him z

Bob never sees Alice’s input X in unencrypted form.
Bob can obtain encryption of y without Alice learning .
Neither party learns intermediate values.

Remains secure even if parties try to cheat.

Intuition

Intuition

3

1: Pick Random Keys For Each Wire

* Next, evaluate one gate securely
e Later, generalize to the entire circuit

* Alice picks two random keys for each wire
* One key corresponds to “0”, the other to “1”
e 6 keys in total for a gate with 2 input wires

ka’ k1z z

AND

Alice 1y Bob
Koxr Ki, /
Koy K

2: Encrypt Truth Table

* Alice encrypts each row of the truth table by
encrypting the output-wire key with the corresponding
pair of input-wire keys

ka’ klz
Alice Bob
kOx’ klx
Ko, K
ny ;y Z EkOX(EkOy(ka))
12+ Encrypted truth table: EkOX(Ekly(koz))
Original truth table: ‘1) (1) 8 - Ele(Ekoy(koz))
11111

Eklx(Ekly(klz))

3: Send Garbled Truth Table

e Alice randomly permutes (“garbles”) encrypted truth
table and sends it to Bob

Does not know which row of
garbled table corresponds to
which row of original table

Ve

Alice Bob

E o B, (Koo) Eklx(EkOy(EOz))
Fr0x(Biay (K02)) Garbled truth table: ko kly(02))
Eklx(Ekoy(ka)) Ele(Ekly(klz))
Eklx(Ekly(klz)) EkOX(Ekoy(koz))

4: Send Keys For Alice’s Inputs

* Alice sends the key corresponding to her input bit
e Keys are random, so Bob does not learn what this bit is

K K 7 Learns K, where b’
0z ™1z is Alice’s input bit,
but not b’ (why?)

| A
Alice Bob
Ko Ka If Alice’s bit is 1, she
Koy» K1y simply sends k. to Bob;
If O, she sendslléOX
By, (Bioy (Koo))
Garbled truth table: Exg(Exy, (Koz))
Eklx(Ekly(klz))

Ekox(Ekoy(kOZ))

5: Use OT on Keys for Bob’s Input

e Alice and Bob run oblivious transfer protocol
e Alice’s input is the two keys corresponding to Bob’s wire
e Bob’s input into OT is simply his 1-bit input on that wire

Z Knows K, where b’ is
ka’ klz Alice’s _inpt_Jt bit apd Kby _
where b is his own input bit
Alice xIy Bob<
I(Ox’ k1x //7 i
k. < Run oblivious transfer
Oyr Py Alice’s input: K, K,
EMXEEKO EEOB Bob’s input: his bItE)
Garbled truth table: kg \Fk 0z
Eki (Eki) Bob Iearns Kpy
X What does Alice learn?

EkOX(Ekoy(kOZ))

6: Evaluate Garbled Gate

* Using the two keys that he learned, Bob decrypts
exactly one of the output-wire keys

* Bob does not learn if this key correspondsto O or 1
e Why is this important?

Knows K, where b’ is
Alice’s input bit and K,
where b is his own input bit

BobV

Suppose b'=0, b=1

kO , kl B Piplis This is the only row
y y Garbled truth table. Bob can decrypt.

= iy (K1) Helearns K,
Eron By (Kor))

/: Evaluate Entire Circuit

* |In this way, Bob evaluates entire garbled circuit
e For each wire in the circuit, Bob learns only one key

e |t corresponds to O or 1 (Bob does not know which)
* Therefore, Bob does not learn intermediate values (why?)

[\
Alice’s inputs AN Bob’s inputs

H‘ AND R

e Bob tells Alice the keyTort

e fimaloutput wire and she

tells him if it corresponds toO or 1
 Bob does not tell her intermediate wire keys (why?)

Security (Semi-Honest Model)

e Security: Assuming that Alice and Bob are both semi-honest (follow
the protocol) then there exist PPT simulators S, and Sp s.t.

{An}nEN =c {SA(TL, X, fA(xi y))}nEN
{Bninen =c {SB(nr v, [(x, Y))}neN

e Remark: Simulator S, is only shown Alice’s output f,(x, y) (similarly,
S is only shown Bob’s output fz(x,y))

Theorem (informal): If the oblivious transfer protocol is secure, and the
underlying encryption scheme is CPA-secure then Yao’s protocol is
secure in the semi-honest adversary model.

Brief Discussion of Yao’s Protocol

* Function must be converted into a circuit
e For many functions, circuit will be huge

 If m gates in the circuit and n inputs from Bob, then
need 4m encryptions and n oblivious transfers

e Oblivious transfers for all inputs can be done in parallel

* Yao’s construction gives a constant-round protocol for
secure computation of any function in the semi-honest
model

* Number of rounds does not depend on the number of inputs
or the size of the circuit!

Fully Malicious Security?

1. Alice could initially garble the wrong circuit C(x,y)=y.
2. Given output of C(x,y) Alice can still send Bob the output f(x,y).
3. Can Bob detect/prevent this?

Fix: Assume Alice and Bob have both committed to their input: c,=com(x,r,)
and cy=com(y,r;).
e Alice and Bob can use zero-knowledge proofs to convince other party that they are
behaving honestly.

 Example: After sending a message A Alice proves that the message she just sent is
the same message an honest party would have sent with input x s.t. c,=com(x,r,)

 Here we assume that Alice and Bob have both committed to correct inputs (Bob
might use y which does not represent his real vote etc... but this is not a problem we
can address with cryptography)

Fully Malicious Security

e Assume Alice and Bob have both committed to their input: c,=com(x,r,) and
cg=com(y,rg).

* Here we assume that Alice and Bob have both committed to correct inputs (Bob might use y
which does not represent his real vote etc... but this is not a problem we can address with

cryptography)
* Alice has cg and can unlock c,
* Bob has c,and can unlock cg

1. Alice sets C; = GarbleCircuit(f,r).
1. Alice sends to Bob.
2. Alice convinces Bob that C; = GarbleCircuit(f,r) for some r (using a zero-knowledge proof)

2. For each original oblivious transfer if Alice’s inputs were originally x,,x;
1. Alice and Bob run OT with y,,y, where y.=Enc,(x;)

2. Bob uses a zero-knowledge proof to convince Alice that he received the correct y, (e.g.
matching his previous commitment c;)

3. Alice sends K to Bob who decrypts y; to obtain x;

/ero-Knowledge Proofs

Computational Indistinguishability

 Consider two distributions X, and Y, (e.g., over strings of length £).

e Let D be a distinguisher that attempts to guess whether a string s came from
distribution X, or Y,.

The advantage of a distinguisher D is
Advp e = |Prs x [D(s) = 1] = Prscy,[D(s) = 1]|

Definition: We say that an ensemble of distributions {Xn%neN and {Y_ },,ey are
computationally indistinguishable if for all PPT distinguishers D, there is a negligible
function negl(n), such that we have

Advp , < negl(n)

Computa

. d Notation: {X }.en =c V. nen
onsider two ¢ means that the ensembles are
e Let D be a disti

SN computationally indistinguishable.

).

came from

The advantage of a distinguisher D is
Advpp = |Prs_x [D(s) = 1] = Prycy [D(s) = 1]|

Definition: We say that an ensemble of distributions {Xn%nEN and {Y_ },,en are
computationally indistinguishable if for all PPT distinguishers D, there is a negligible
function negl(n), such that we have

Advp , < negl(n)

38

Pvs NP

e P problems that can be solved in polynomial time

NP --- problems whose solutions can be verified in polynomial time
e Examples: SHORT-PATH, COMPOQOSITE, 3SAT, CIRCUIT-SAT, 3COLOR,

« DDH
e Input: 4 = g*1,B=g*2andZ
e Goal: Decide if Z = g*1*2 or Z # g*1*2,
 NP-Complete --- hardest problems in NP (e.g., all problems can be reduced to 3SAT)

e Withess

e Ashort (polynomial size) string which allows a verify to check for membership
* DDH Witness: x,,X,.

/ero-Knowledge Proof

Two parties: Prover P (PPT) and Verifier V (PPT)
(P is given witness for claim e.g.,)

 Completeness: If claim is true honest prover can always convince
honest verifier to accept.

e Soundness: If claim is false then Verifier should reject with probability
at least %. (Even if the prover tries to cheat)

e Zero-Knowledge: Verifier doesn’t learn anything about prover’s input
from the protocol (other than that the claim is true).

* Formalizing this last statement is tricky
e Zero-Knowledge: should hold even if the attacker is dishonest!

/ero-Knowledge Proof

Trans(l“,V’,P,x,w,rp,rv) transcript produced when V’ and P interact

* V'is given input X (the problem instance e.g., X = g*)

e Pisgiveninput X and w (a witness for the claim e.g., w=x)

* V" and P use randomness r, and r, respectively

e Security parameter is n e.g., for encryption schemes, commitment schemes etc...

X,, =Trans(1",V’,P,x,w) is a distribution over transcripts (over the randomness rp,rv)

(Blackbox Zero-Knowledge): There is a PPT simulator S such that for every
V’ (possibly cheating) S, with oracle access to V’, can simulate X, without a

withess w. Formally,
X, nen =c {SV'(') (x, 1n)}neN

/ero-Knowledge Proof

Trans(1“,V’,P,x,w,rp,rv) transcript produced when V’ and P interact
e V’is given input x (the problem instance e.g., A = g*1, B = g*2 and z,)
e P the claim e.g.,

A Simulator Sis hot Szl Oracle V’(x,trans) will output the

" given witness w SRURRLRES? ot message V' would output
given current transcript trans

X

n over transcript

(Blackbox Zero-Knowledge): There is a/PPT simulator S such that for every
V’ (possibly cheating) S, with oracle access to V’, can simulate X, without a

witness w. Formally,
{Xn}nEN =C {SV’() X 1n)}nEN

44

/ero-Knowledge Proof for Discrete Log Solution

B=gY C=g*

@~

{ \
-/
J

challenge c € {0,1}

. —0
Responser = { Y i c

y+x ifc=1
Bob (verifier); : Alice (prover);
A 1 ifc=0and B =g" and AB =C X S.t.
Decisiond =4 1 ifc=1and C=g" and AB =C A= g*
0 otherwise =~ 9
B = g7,
(random vy)

Claim: There is some integer x such that A = g* as

/ero-Knowledge Proof for Discrete Log Solution

B=gY C=g*

challenge c € {0,1}

|y ifc=0
Responser—{y+x ifc=1

Bob (verifier);
A = g*, 1 ifc=0and B =g" and AB=C X
Decisiond =4 1 ifc=1and C=g" and AB =C A= g*
0 otherwise g
B = g7,
(random y)

46

Correctness: If Alice and Bob are honest then Bob will always accept

Zero-Knowledge Proof for Dis

B=g%,C=g""

challenge c € {0,1}

My ifc=0
Responser—{y+x ifc=1

<

Bob (verifier);

Alice (prover);

A= g*, 1 ifc=0andB=g" and AB =C X
Decisiond =1 1 ifc=1andC=g" and AB=C A= g*
0 otherwise — 9
> B — gy'
(random vy)

Correctness: If Alice and Bob are honest then Bob will always accept 4

Zero-Knowledge Proof for Discrete Log Solution

B =gy’k'= gx'l'y

challenge c € {0,1}

-

Case 2: Challenge (c=1)

(¥ _ifc=0
Response r = <~y+x ifc=1
Bob (verifier);) Alice (prover);
A=gx, 1 ifc=0and B =g" and AB =C X
Decisiond =1 1 ifc=1and|C=g" and AB=C A= qg*
0 otherwise g
P> B = gy'
(random y)

Correctness: If Alice and Bob are honest then Bob will always accept "

/ero-Knowledge Proof for Discrete Log Solution

B — gy’C — gx+y

challenge c € {0,1}

_(y ifc=0
Responser = {y+x ifc=1
Bob (verifier);
A = g*, 1 ifc=0and B =g" and AB=C X
Decisiond =4 1 ifc=1and C=g" and AB =C — X
. A=g",
0 otherwise
B = g7,

s Yand0n1v)
Soundness: If A # g* for some x then (honest) Bob will reject w.p. % (even if

Alice cheats) 49

Assume that AB=C, now
Zero-Knowledge Proof taii:— pd iitile = ied o)

some X,y then A = g*

B=gY C=g*

challenge c € {0,1}

_(y ifc=0
Responser—{y+x ifc=1
Bob (verifier);) Alice (prover);
A= g*, 1 ifc=0and B=g" and AB=C X
Decisiond =1 1 ifc=1andC=g" and AB=C A=gx
0 otherwise !
5> B = gy'

_ . &random y)
Soundness: If A # g* for some x then (honest) Bob will reject w.p. % (even if

Alice cheats) 50

Casel:forallr B+ g" Assume that AB=C, now

1 [l61f B = g” and C = g**7Y for

— Pr|reject| = Pr|c = 0] = > W some x,y then 4 = g*

B=g%C=g*"

challenge c € {0,1}

|y ifc=0
Response r = {y 1y if c =1
Bob (verifier);) Alice (prover);
A = g~ 1 iffc=0and B = g" land AB = C X
Decisiond =1 1 ifc=1andC=g" and AB=C A=gx
0 otherwise ’
> B — gy'

_ _ %random y)
Soundness: If A # g* for some x then (honest) Bob will reject w.p. % (even if

Alice cheats) 51

Case 2:forallr C + g" Assume that AB=C, now

1 [l61f B = g” and C = g**7Y for

— Pr|reject]| = Pr|c = 1] = > W some x,y then 4 = g*

B=g%C=g*"

challenge c € {0,1}

Response r = {y)jl- X lfl.;c 201
Bob (verifier);) Alice (prover);
A= g~ {1 ifc=0andB = g" and AB=C o
Decisiond =1 1 ifc=1andC=g" and AB=C A= g*
0 otherwise — 9
> B — gy'

_ _ %random y)
Soundness: If A # g* for some x then (honest) Bob will reject w.p. % (even if

Alice cheats) 52

/ero-Knowledge Proof for Discrete Log Solution

B = gy,C — gx+y

challenge c =V'(A, (B,(C)) € {0,1}

Responser = {y)jl- X lfl; c==0 1
Dishonest (verifier);
A= gx, Decisiond =V'(A,(B,C),c,1) X
- A = gx’
B =g’,
(random vy)

Transcript: Viewy, = (4, (B,C),c,1,d)

53

/ero-Knowledge Proof for Discrete Log Solution

B = gy’C — gx+y

challenge c =V'(A, (B,(C)) € {0,1}

y ifc=0

Responser={y+x ifc=1

Dishonest (verifier);

Ae gt Decision d = V'(4, (B, €),c,) Y
A=g~,
B =g,
(randomvy)

Zero-Knowledge: For all PPT V’ exists PPT Sim s.t Viewy, =, Sim"’) (4)

54

/ero-Knowledge Proof for Discrete Log Solution
(B=g7,C=AB ifb=0

B =—,C = g’ otherwise
L A

challenge c =V'(A, (B,(C)) € {0,1}

_ 1y if c=b
Response I” {J_ otherwise

i N Simulator
Dishonest (verifier); .
A= g%, Decisiond =V'(A,(B,C),c, 1) i Cheat bit b,
A= g7,
B = g7,
(randomy)

Zero-Knowledge: For all PPT V’ exists PPT Sim s.t Viewy, =, Sim"’) (4)

55

/ero-Knowledge Proof for Discrete Log Solution

(B=gY,C=AB ifb=0

B =—,C = g’ otherwise
L A

challenge c =V'(A,(B,(C)) € {0,1}

_ 1y if c=b
Response T {J_ otherwise

Dishonest (verifier);
A = g*, Decisiond =V'(A,(B,C),c,T1)

Simulator

Cheat bit b,
A= g7,

(random vy)

Zero-Knowledge: Simulator can produce identical transcripts (Repeat until 7 #.1)

56

/ero-Knowledge Proof for Discrete Log Solution
(B=g7,C=AB ifb=0

B =—,C = g’ otherwise
L A

challenge c =V'(A,(B,(C)) € {0,1}

if c=b

—)y
Response T {J_ otherwise

. NG Simulator
Dishonest (verifier); Ch bith
A= g*, Decisiond = V'(4, (B, C),c,1) eat pit b,
> A — gx’
B = g7,
(random vy)

Zero-Knowledge: If A = g* for some x then Viewy, =, Sim"'®)(4)

57

/ero-Knowledge Proof for Square Root mod N

M = zy? mod N

challenge c € {0,1}

|y ifc=0
Responser = {yx ifc=1
Bob (verifier);

Alice (prover);

Z 1 if c=0and M = zr? X
Decisiond =< 1 ifc=1and M = r* mod N Z =x%*modN
0 otherwise

(random vy)

Completeness: If Alice knows x such z = x? mod N then Bob will always accept

58

/ero-Knowledge Proof for Square Root mod N

M = zy? mod N

challenge c € {0,1}

|y ifc=0
Responser = {yx ifc=1
Bob (verifier);

Z 1 if c=0and M = zr?
Decisiond = 4 1 if c=1and M = r?> mod N
0 otherwise

Alice (prover);
X

z = x* mod N
(random vy)

Soundness: If z # x? for some x then (honest) Bob will reject w.p. % (even if

Alice cheats)

59

/ero-Knowledge Proof for Square Root mod N

M = zy? mod N

@ -

{ J
=/
,)

challenge c € {0,1}

|y ifc=0
Responser = {yx ifc=1
Bob (verifier);

Alice (prover);

Z 1 ifc=0and M = zr> mod N X
Decisiond =4 1 ifc=1and M = r> mod N 7= x2 modN
0 otherwise

(random vy)

Zero-Knowledge: How does the simulator work?

60

/ero-Knowledge Proof vs. Digital Signature

 Digital Signatures are transferrable

e E.g., Alice signs a message m with her secret key and sends the signature o to
Bob. Bob can then send (m, o) to Jane who is convinced that Alice signed the
message m.

e Are Zero-Knowledge Proofs transferable?

e Suppose Alice (prover) interacts with Bob (verifier) to prove a statement (e.g.,
z has a square root modulo N) in Zero-Knowledge.

e Let Viewy be Bob’s view of the protocol.
e Suppose Bob sends Viewy to Jane.

e Should Jane be convinced of the statement (e.g., z has a square root modulo
N)>

Non-Interactive Zero-Knowledge Proof (NIZK)

@~

o’

L4

)

M,,..M, where M, = y?>z mod N /

challenges c = (¢4,,ck) = H(M,,...Mk) h

kﬁ

Alice (prover);
ifci=0and M, =r?zmodN X

ifci=1land M;=r*modN 7z = x2 mod N
otherwise

. ifci=0
Responsesr,,...,r, where r; = { ;' lx {; =1
; —

Bob (verifier);)
Z

1
Decisiond = l_[d; wheredi =1 1
i 0

. (random

y e, YK
Simulator Power: Can program the random oracle Vi VK)

62

NIZK Security (Random Oracle Model)

e Simulator is given statement to proof (e.g., z has a square root modulo N)

 Simulator must output a proof ', and a random oracle H’

 Distinguisher D
» World 1 (Simulated): Given z, ', and oracle access to H’

e World 2 (Honest): Given z, T, (honest proof) and oracle access to H
e Advantage: ADV, = |Pr[D"(z,) = 1] — Pr[D"'(z, ') = 1]|

e Zero-Knowledge: Any PPT distinguisher D should have negligible
advantage.

* NIZK proof 1, is transferrable (contrast with interactive ZK proof)

/ero-Knowledge Proof for all NP

e CLIQUE
e Input: Graph G=(V,E) and integer k>0
e Question: Does G have a clique of size k?

e CLIQUE is NP-Complete
e Any problem in NP reduces to CLIQUE
e A zero-knowledge proof for CLIQUE yields proof for all of NP via reduction

* Prover:
* Knows k vertices v,,...,v, in G=(V,E) that form a clique

/ero-Knowledge Proof for all NP

L
Com(O () A) ' Com(l'rA,L)>

Com(l rLA) .. Com(&),rﬂ)

x-

/ero-Knowledge Proof for all NP

* Prover:
* Knows k vertices v,,...,v, in G=(V,E) that for a clique

Prover commits to a permutation o over V

1

2. Prover commits to the adjacency matrix A4 (s) of o(G)
3. Verifier sends challenge c (either 1 or 0)
4

If c=0 then prover reveals o and adjacency matrix 4,¢)
1. Verifier confirms that adjacency matrix is correct for o (G)

5. If c=1 then prover reveals the submatrix formed by first
rows/columns of A,) corresponding to o(vy), ..., (V)
1. Verifier confirms that the submatrix forms a clique.

/ero-Knowledge Proof for all NP

 Completeness: Honest prover can always make honest verifier accept

* Soundness: If prover commits to adjacency matrix 4,4 of 0(G) and
can reveal a clique in submatrix of A,) then G itself contains a k-
cliqgue. Proof invokes binding property of commitment scheme.

e Zero-Knowledge: Simulator cheats and either commits to wrong
adjacency matrix or cannot reveal cligue. Repeat until we produce a
successful transcript. Indistinguishability of transcripts follows from
hiding property of commitment scheme.

Secure Multiparty Computation (Adversary
Models)

 Semi-Honest (“honest, but curious”)
e All parties follow protocol instructions, but...
e dishonest parties may be curious to violate privacy of others when possible

e Fully Malicious Model

e Adversarial Parties may deviate from the protocol arbitrarily
e Quit unexpectedly
e Send different messages

It is much harder to achieve security in the fully malicious model

e Convert Secure Semi-Honest Protocol into Secure Protocol in Fully
Malicious Mode?
e Tool: Zero-Knowledge Proofs
* Prove: My behavior in the protocol is consistent with honest party

	Cryptography�CS 555
	Plain RSA Attacks: Related Messages
	More Attacks: Encrypting Related Messages
	Factor N given 𝜙 𝑁
	Factor N given 𝜙 𝑁
	Dependent Keys Part 1
	Dependent Keys Part 2
	Dependent Keys Part 2
	Secure Multiparty Computation
	Secure Multiparty Computation (Crushes)
	Secure Multiparty Computation (Crushes)
	Adversary Models
	Computational Indistinguishability
	Security (Semi-Honest Model)
	Building Block: Oblivious Transfer (OT)
	Bellare-Micali 1-out-of-2-OT protocol
	Bellare-Micali 1-out-of-2-OT protocol
	Bellare-Micali 1-out-of-2-OT protocol
	Bellare-Micali 1-out-of-2-OT protocol
	Yao’s Protocol
	Yao’s Protocol
	Slide Number 22
	Intuition
	Intuition
	1: Pick Random Keys For Each Wire
	2: Encrypt Truth Table
	3: Send Garbled Truth Table
	4: Send Keys For Alice’s Inputs
	5: Use OT on Keys for Bob’s Input
	6: Evaluate Garbled Gate
	7: Evaluate Entire Circuit
	Security (Semi-Honest Model)
	Brief Discussion of Yao’s Protocol
	Fully Malicious Security?
	Fully Malicious Security
	Zero-Knowledge Proofs
	Computational Indistinguishability
	Computational Indistinguishability
	P vs NP
	Zero-Knowledge Proof
	Zero-Knowledge Proof
	Zero-Knowledge Proof
	Zero-Knowledge Proof for Discrete Log Solution
	Zero-Knowledge Proof for Discrete Log Solution
	Zero-Knowledge Proof for Discrete Log Solution
	Zero-Knowledge Proof for Discrete Log Solution
	Zero-Knowledge Proof for Discrete Log Solution
	Zero-Knowledge Proof for Discrete Log Solution
	Zero-Knowledge Proof for Discrete Log Solution
	Zero-Knowledge Proof for Discrete Log Solution
	Zero-Knowledge Proof for Discrete Log Solution
	Zero-Knowledge Proof for Discrete Log Solution
	Zero-Knowledge Proof for Discrete Log Solution
	Zero-Knowledge Proof for Discrete Log Solution
	Zero-Knowledge Proof for Discrete Log Solution
	Zero-Knowledge Proof for Square Root mod N
	Zero-Knowledge Proof for Square Root mod N
	Zero-Knowledge Proof for Square Root mod N
	Zero-Knowledge Proof vs. Digital Signature
	Non-Interactive Zero-Knowledge Proof (NIZK)
	NIZK Security (Random Oracle Model)
	Zero-Knowledge Proof for all NP
	Zero-Knowledge Proof for all NP
	Zero-Knowledge Proof for all NP
	Zero-Knowledge Proof for all NP
	Secure Multiparty Computation (Adversary Models)

