
Cryptography
CS 555

Week 12: 
• Discrete Log Attacks + NIST Recommendations for Concrete 

Security Parameters
• Identification Schemes + Schnorr Signatures
• El Gamal
Readings: Katz and Lindell Chapter 10 & Chapter 11.1-11.2, 11.4

1Spring 2021

Homework 4 Due Thursday (4/8) at 11:59PM on Gradescope



Week 12: Topic 0: Discrete Log 
Attacks + NIST 

Recommendations for Concrete 
Security Parameters
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Factoring Algorithms (Summary)

• Pollard’s p-1 Algorithm
• Works when 𝑁𝑁 = 𝑝𝑝𝑝𝑝 where (p-1) has only “small” prime factors
• Defense: Ensure that p (resp. q) is a strong prime (p-1) has no “small” prime factors.
• Note: A random prime is strong with high probability.

• Pollard’s Rho Algorithm 
• General purpose factoring algorithm
• Core: Low Space Cycle Detection
• Time: T(N) = 𝑂𝑂 4 𝑁𝑁 pol𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦(𝑁𝑁)
• Naïve Algorithm takes time 𝑂𝑂 𝑁𝑁 pol𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦(𝑁𝑁) to factor

• Quadratic Sieve
• Time: 2𝑂𝑂 log 𝑁𝑁 log log 𝑁𝑁 = 2𝑂𝑂 𝑛𝑛 log 𝑛𝑛 (sub-exponential, but not polynomial time)
• Preprocessing + Linear Algebra: find x, y ∈ ℤ𝑁𝑁∗ such that 𝑥𝑥2 = 𝑦𝑦2 mod 𝑁𝑁 and 𝑥𝑥 ≠ ±𝑦𝑦 mod 𝑁𝑁?
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Discrete Log Attacks

• Pohlig-Hellman Algorithm
• Given a cyclic group 𝔾𝔾 of non-prime order q=| 𝔾𝔾 |=rp
• Reduce discrete log problem to discrete problem(s) for subgroup(s) of order p (or smaller).
• Preference for prime order subgroups in cryptography

• Baby-step/Giant-Step Algorithm
• Solve discrete logarithm in time 𝑂𝑂 𝑞𝑞 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑞𝑞)

• Pollard’s Rho Algorithm
• Solve discrete logarithm in time 𝑂𝑂 𝑞𝑞 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑞𝑞)
• Bonus: Constant memory!

• Index Calculus Algorithm
• Similar to quadratic sieve
• Runs in sub-exponential time 2𝑂𝑂 log 𝑞𝑞 log log 𝑞𝑞

• Specific to the group ℤ𝑞𝑞∗ (e.g., attack doesn’t work against elliptic-curve groups)
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Discrete Log Attacks

• Pohlig-Hellman Algorithm
• Given a cyclic group 𝔾𝔾 of non-prime order q=| 𝔾𝔾 |=rp
• Reduce discrete log problem to discrete problem(s) for subgroup(s) of order p (or smaller).
• Preference for prime order subgroups in cryptography

• Let 𝔾𝔾 = 𝑔𝑔 and h = 𝑔𝑔𝑥𝑥 ∈ 𝔾𝔾 be given. For simplicity assume that r is prime and r < p. 
• Observe that 𝑔𝑔𝑟𝑟 generates a subgroup of size p and that hr ∈ 𝑔𝑔𝑟𝑟 .

• Solve discrete log problem in subgroup 𝑔𝑔𝑟𝑟 with input hr. 
• Find z such that hr = 𝑔𝑔𝑟𝑟𝑧𝑧 𝑟𝑟𝑟𝑟 = 𝑟𝑟𝑟𝑟 mod p.

• Observe that 𝑔𝑔𝑝𝑝 generates a subgroup of size r and that hp ∈ 𝑔𝑔𝑝𝑝 .
• Solve discrete log problem in subgroup 𝑔𝑔𝑝𝑝 with input hp. 
• Find y such that hp = 𝑔𝑔𝑦𝑦𝑦𝑦 p𝑧𝑧 = 𝑝𝑝𝑥𝑥 mod r.

• Chinese Remainder Theorem h = 𝑔𝑔𝑥𝑥 where x ↔ 𝑧𝑧 mod 𝑝𝑝 , [𝑦𝑦 mod 𝑟𝑟]
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Baby-step/Giant-Step Algorithm

• Input: 𝔾𝔾 = 𝑔𝑔 of order q, generator g and h = 𝑔𝑔𝑥𝑥 ∈ 𝔾𝔾
• Set 𝑡𝑡 = 𝑞𝑞
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Baby-step/Giant-Step Algorithm

• Input: 𝔾𝔾 = 𝑔𝑔 of order q, generator g and h = 𝑔𝑔𝑥𝑥 ∈ 𝔾𝔾
• Set 𝑡𝑡 = 𝑞𝑞
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Baby-step/Giant-Step Algorithm

• Input: 𝔾𝔾 = 𝑔𝑔 of order q, generator g and h = 𝑔𝑔𝑥𝑥 ∈ 𝔾𝔾
• Set 𝑡𝑡 = 𝑞𝑞
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Baby-step/Giant-Step Algorithm

• Input: 𝔾𝔾 = 𝑔𝑔 of order q, generator g and h = 𝑔𝑔𝑥𝑥 ∈ 𝔾𝔾
• Set 𝑡𝑡 = 𝑞𝑞
For i =0 to 𝑞𝑞

𝑡𝑡
𝑔𝑔𝑖𝑖 ← 𝑔𝑔𝑖𝑖𝑖𝑖

Sort the pairs (i,gi) by their second component
For i =0 to 𝑡𝑡

ℎ𝑖𝑖 ← ℎ𝑔𝑔𝑖𝑖

if ℎ𝑖𝑖 = 𝑔𝑔𝑘𝑘 ∈ 𝑔𝑔0, … ,𝑔𝑔𝑡𝑡 then 
return [kt-i mod q]

9

ℎ𝑖𝑖 = ℎ𝑔𝑔𝑖𝑖 = 𝑔𝑔𝑘𝑘𝑘𝑘

→ ℎ = 𝑔𝑔𝑘𝑘𝑘𝑘−𝑖𝑖



Discrete Log Attacks

• Baby-step/Giant-Step Algorithm
• Solve discrete logarithm in time 𝑂𝑂 𝑞𝑞 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑞𝑞)
• Requires memory 𝑂𝑂 𝑞𝑞 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑞𝑞)

• Pollard’s Rho Algorithm
• Solve discrete logarithm in time 𝑂𝑂 𝑞𝑞 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑞𝑞)
• Bonus: Constant memory!

• Key Idea: Low-Space Birthday Attack (*) using our collision resistant hash 
function

𝐻𝐻𝑔𝑔,ℎ 𝑥𝑥1, 𝑥𝑥2 = 𝑔𝑔𝑥𝑥1ℎ𝑥𝑥2
𝐻𝐻𝑔𝑔,ℎ 𝑦𝑦1,𝑦𝑦2 = 𝐻𝐻𝑔𝑔,ℎ 𝑥𝑥1, 𝑥𝑥2 → ℎ𝑦𝑦2−𝑥𝑥2 = 𝑔𝑔𝑥𝑥1−𝑦𝑦1

→ ℎ = 𝑔𝑔 𝑥𝑥1−𝑦𝑦1 𝑦𝑦2−𝑥𝑥2 −1

(*) A few small technical details to address
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Discrete Log Attacks

• Baby-step/Giant-Step Algorithm
• Solve discrete logarithm in time 𝑂𝑂 𝑞𝑞 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑞𝑞)
• Requires memory 𝑂𝑂 𝑞𝑞 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑞𝑞)

• Pollard’s Rho Algorithm
• Solve discrete logarithm in time 𝑂𝑂 𝑞𝑞 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑞𝑞)
• Bonus: Constant memory!

• Key Idea: Low-Space Birthday Attack (*)
𝐻𝐻𝑔𝑔,ℎ 𝑥𝑥1, 𝑥𝑥2 = 𝑔𝑔𝑥𝑥1ℎ𝑥𝑥2

𝐻𝐻𝑔𝑔,ℎ 𝑦𝑦1,𝑦𝑦2 = 𝐻𝐻𝑔𝑔,ℎ 𝑥𝑥1, 𝑥𝑥2

→ ℎ𝑦𝑦2−𝑥𝑥2 = 𝑔𝑔𝑥𝑥1−𝑦𝑦1
→ ℎ = 𝑔𝑔 𝑥𝑥1−𝑦𝑦1 𝑦𝑦2−𝑥𝑥2 −1

(*) A few small technical details to address
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Remark: We used discrete-log problem to 
construct collision resistant hash functions.

Security Reduction showed that attack on 
collision resistant hash function yields attack 

on discrete log.

Generic attack on collision resistant hash 
functions (e.g., low space birthday attack) 

yields generic attack on discrete log.



Discrete Log Attacks

• Index Calculus Algorithm
• Similar to quadratic sieve
• Runs in sub-exponential time 2𝑂𝑂 log 𝑝𝑝 log log 𝑝𝑝

• Specific to the group ℤ𝑝𝑝∗ (e.g., attack doesn’t work on elliptic-curve groups)

• As before let {p1,…,pk} denote the set of prime numbers < B.
• Step 1.A: Find ℓ > 𝑘𝑘 distinct values 𝑥𝑥1, … , 𝑥𝑥𝑘𝑘 such that 𝑔𝑔𝑗𝑗 = 𝑔𝑔𝑥𝑥𝑗𝑗 𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝 is 

B-smooth for each j. That is 

𝑔𝑔𝑗𝑗 = �
𝑖𝑖=1

𝑘𝑘

𝑝𝑝𝑖𝑖
𝑒𝑒𝑖𝑖,𝑗𝑗 .
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Discrete Log Attacks

• As before let {p1,…,pk} be set of prime numbers < B.
• Step 1.A: Find ℓ > 𝑘𝑘 distinct values 𝑥𝑥1, … , 𝑥𝑥𝑘𝑘 such that 𝑔𝑔𝑗𝑗 = 𝑔𝑔𝑥𝑥𝑗𝑗 𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝 is 

B-smooth for each j. That is 

𝑔𝑔𝑗𝑗 = �
𝑖𝑖=1

𝑘𝑘

𝑝𝑝𝑖𝑖
𝑒𝑒𝑖𝑖,𝑗𝑗 .

• Step 1.B: Use linear algebra to solve the equations 

𝑥𝑥𝑗𝑗 = �
𝑖𝑖=1

𝑘𝑘

𝐥𝐥𝐥𝐥𝐥𝐥𝐠𝐠 𝐩𝐩𝐢𝐢 × 𝑒𝑒𝑖𝑖,𝑗𝑗 mod (𝑝𝑝 − 1).

(Note: the 𝐥𝐥𝐥𝐥𝐥𝐥𝐠𝐠𝐩𝐩𝐢𝐢’s are the unknowns)
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Discrete Log

• As before let {p1,…,pk} be set of prime numbers < B.
• Step 1 (precomputation): Obtain y1,…,yk such that pi = 𝑔𝑔𝑦𝑦𝑖𝑖 𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝.
• Step 2: Given discrete log challenge h=gx mod p.

• Find z such that 𝑔𝑔𝑧𝑧h mod p is B-smooth

𝑔𝑔𝑧𝑧h mod p = �
𝑖𝑖=1

𝑘𝑘

𝑝𝑝𝑖𝑖
𝑒𝑒𝑖𝑖

= �
𝑖𝑖=1

𝑘𝑘

𝑔𝑔𝑦𝑦𝑖𝑖 𝑒𝑒𝑖𝑖 = 𝑔𝑔∑𝑖𝑖 𝑒𝑒𝑖𝑖𝑦𝑦𝑖𝑖
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Discrete Log

• As before let {p1,…,pk} be set of prime numbers < B.
• Step 1 (precomputation): Obtain y1,…,yk such that  pi = 𝑔𝑔𝑦𝑦𝑖𝑖 𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝.
• Step 2: Given discrete log challenge h=gx mod p.

• Find z such that 𝑔𝑔𝑧𝑧h mod p is B-smooth
𝑔𝑔𝑧𝑧h mod p = 𝑔𝑔∑𝑖𝑖 𝑒𝑒𝑖𝑖𝑦𝑦𝑖𝑖 → ℎ = 𝑔𝑔∑𝑖𝑖 𝑒𝑒𝑖𝑖𝑦𝑦𝑖𝑖−𝑧𝑧

→ 𝑥𝑥 = �
𝑖𝑖

𝑒𝑒𝑖𝑖𝑦𝑦𝑖𝑖 − 𝑧𝑧

• Remark: Precomputation costs can be amortized over many discrete 
log instances 

• In practice, the same group 𝔾𝔾 = 𝑔𝑔 and generator g are used repeatedly.

15Reference: https://www.weakdh.org/

https://www.weakdh.org/


NIST Guidelines (Concrete Security)
Best known attack against 1024 bit RSA takes time (approximately) 280
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NIST Guidelines (Concrete Security)
Diffie-Hellman uses subgroup of ℤ𝑝𝑝∗ size q 

17

q=224 bits

q=256 bits

q=384 bits

q=512 bits



NIST Guidelines (Concrete Security)
112 bits = log 2224

2
= log 2224 bits (Pollard’s Rho)
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q=224 bits

q=256 bits

q=384 bits

q=512 bits



NIST Guidelines (Concrete Security)
112 bits ≈ 2048 log 2048 bits (Index Calculus)
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q=224 bits

q=256 bits

q=384 bits

q=512 bits
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Signature Length

• RSA-FDH
• 128-bit security  log2(N) > 3072
• RSA-FDH Signatures are at least 3Kb long
• Are shorter signatures possible?

• RSA Ciphertexts/RSA KEM
• At least 3Kb long for 128-bit security
• Shorter Ciphertexts
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Identification Scheme

• Interactive protocol that allows one party to prove its identify 
(authenticate itself) to another

• Two Parties: Prover and Verifier
• Prover has secret key sk and Verifier has public key pk

1. Prover runs P1(sk) to obtain (I,st)   ---- initial message I, state st
• Sends I to Verifier

2. Verifier picks random message r from distribution Ω𝑝𝑝𝑝𝑝 and sends r to 
Prover

3. Prover runs P2(sk,st,r) to obtain s and sends s to verifier
4. Verifier checks if V(pk,r,s)=I
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Identification Scheme

1. Prover runs P1(sk) to obtain (I,st)   ---- initial message I, state st
1. Sends I to Verifier

2. Verifier picks random message r from distribution Ω𝑝𝑝𝑝𝑝 and sends r 
to Prover

3. Prover runs P2(sk,st,r) to obtain s and sends s to verifier
4. Verifier checks if V(pk,r,s)=I
An eavesdropping attacker obtains a transcript (I,r,s) of all the message 
sent.
Transcript Oracle: Transsk(.) runs honest execution and outputs 
transcript. 
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Identification Game (IdentA,Π n )

24

𝐴𝐴𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔

(pk,sk) = Gen(.)

𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝒔𝒔𝒌𝒌 .

𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝒔𝒔𝒌𝒌 .
𝐼𝐼

…

∀𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴 ∃𝜇𝜇 (negligible) s. t Pr IdentA,Π n = 1 ≤ 𝜇𝜇(𝑛𝑛)

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴

Public Key: pk

𝒓𝒓 ← 𝜴𝜴𝒑𝒑𝒑𝒑

𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝒔𝒔𝒌𝒌 .
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴

𝑠𝑠

𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝐀𝐀,𝚷𝚷 𝐧𝐧 = �𝟏𝟏 𝒊𝒊𝒊𝒊 𝑽𝑽 𝒑𝒑𝒑𝒑, 𝒓𝒓, 𝒔𝒔 = 𝑰𝑰
𝟎𝟎 𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐



Schnorr Identification Scheme

• Verifier knows h=gx

• Prover knows x such that h=gx

1. Prover runs P1(x) to obtain 𝑘𝑘 ∈ ℤ
q

, 𝐼𝐼 = 𝑔𝑔𝑘𝑘 and sends initial 
message I to verifier

2. Verifier picks random 𝑟𝑟 ∈ ℤ
q

(q is order of the group) and sends r to 
prover

3. Prover runs P2(x,k,r) to obtain s ≔ 𝑟𝑟𝑟𝑟 + 𝑘𝑘 𝑚𝑚𝑚𝑚𝑚𝑚 𝑞𝑞 and sends s to 
Verifier

4. Verifier checks if 𝑔𝑔𝑠𝑠 ∗ ℎ−1 𝑟𝑟 = 𝐼𝐼 = 𝑔𝑔𝑘𝑘
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Schnorr Identification Scheme

• Verifier knows h=gx

• Prover knows x such that h=gx

1. Prover runs P1(x) to obtain 𝑘𝑘 ∈ ℤ
q

, 𝐼𝐼 = 𝑔𝑔𝑘𝑘 and sends initial 
message I to verifier

2. Verifier picks random 𝑟𝑟 ∈ ℤ
q

(q is order of the group) and sends r to 
prover

3. Prover runs P2(x,k,r) to obtain s ≔ 𝑟𝑟𝑟𝑟 + 𝑘𝑘 𝑚𝑚𝑚𝑚𝑚𝑚 𝑞𝑞 and sends s to 
Verifier

4. Verifier checks if 𝑔𝑔𝑠𝑠 ∗ ℎ−1 𝑟𝑟 = 𝐼𝐼 = 𝑔𝑔𝑘𝑘
𝑔𝑔𝑠𝑠 ∗ ℎ−1 𝑟𝑟 = 𝑔𝑔𝑟𝑟𝑟𝑟+𝑘𝑘 𝑚𝑚𝑚𝑚𝑚𝑚 𝑞𝑞 ∗ 𝑔𝑔−𝑥𝑥𝑥𝑥 = 𝑔𝑔𝑘𝑘
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Schnorr Identification Scheme

• Verifier knows h=gx

• Prover knows x such that h=gx

• Prover runs P1(x) to obtain 𝑘𝑘 ∈ ℤ
q

, 𝐼𝐼 = 𝑔𝑔𝑘𝑘 and sends initial message I to 
verifier

• Verifier picks random 𝑟𝑟 ∈ ℤ
q

(q is order of the group) and sends r to prover
• Prover runs P1(x,k,r) to obtain s ≔ 𝑟𝑟𝑟𝑟 + 𝑘𝑘 mod 𝑞𝑞 and sends s to Verifier
• Verifier checks if 𝑔𝑔𝑠𝑠 ∗ ℎ−1 𝑟𝑟 = 𝐼𝐼 = 𝑔𝑔𝑘𝑘

Theorem 12.11: If the discrete-logarithm problem is hard (relative to group 
generator) then Schnorr identification scheme is secure.
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Fiat-Shamir Transform

• Identification Schemes can be transformed into signatures
• Signsk(m)

• First compute (I,st)= P1(sk)   (as prover)
• Next compute the challenge  𝒓𝒓 = 𝑯𝑯(𝑰𝑰,𝒎𝒎) (as verifier)
• Compute the response s = P2(sk,st,r)
• Output signature (r,s)

• Vrfypk(m,(r,s))
• Compute I := V(pk,r,s)
• Check that H(I,m)=r

Theorem 12.10: If the identification scheme is secure and H is a 
random oracle then the above signature scheme is secure.
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Schnorr Signatures via Fiat-Shamir

• Public Key: h=gx in cyclic group 𝑔𝑔 of order q.
• Secret Key: x
• 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠𝑠𝑠 𝑚𝑚

1. Select random 𝑘𝑘 ∈ ℤ
q

and set 𝐼𝐼 = 𝑔𝑔𝑘𝑘.
2. 𝒓𝒓 = 𝑯𝑯 𝑰𝑰,𝒎𝒎
3. Return σ = 𝑟𝑟, 𝑠𝑠 where s ≔ 𝑟𝑟𝑟𝑟 + 𝑘𝑘 𝑚𝑚𝑚𝑚𝑚𝑚 𝑞𝑞

• 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑝𝑝𝑝𝑝 𝑚𝑚,σ = 𝑟𝑟, 𝑠𝑠
• Compute 𝑔𝑔𝑠𝑠 ∗ ℎ−1 𝑟𝑟 = 𝑔𝑔𝑠𝑠−𝑟𝑟𝑟𝑟 and check if r = 𝐻𝐻 𝑔𝑔𝑠𝑠−𝑟𝑟𝑟𝑟 ,𝑚𝑚
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Schnorr Signatures

• 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠𝑠𝑠 𝑚𝑚
1. Select random 𝑘𝑘 ∈ ℤ

q
and set 𝐼𝐼 = 𝑔𝑔𝑘𝑘.

2. 𝒓𝒓 = 𝑯𝑯 𝑰𝑰,𝒎𝒎
3. Return σ = 𝑟𝑟, 𝑠𝑠 where s ≔ 𝑟𝑟𝑟𝑟 + 𝑘𝑘 𝑚𝑚𝑚𝑚𝑚𝑚 𝑞𝑞

• 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑝𝑝𝑝𝑝 𝑚𝑚,σ = 𝑟𝑟, 𝑠𝑠
• Compute 𝑔𝑔𝑠𝑠 ∗ ℎ−1 𝑟𝑟 = 𝑔𝑔𝑠𝑠−𝑟𝑟𝑟𝑟 and check if r = 𝐻𝐻 𝑔𝑔𝑠𝑠−𝑟𝑟𝑟𝑟 ,𝑚𝑚

Corollary (of Thms 12.10 + 12.11): If the discrete-logarithm problem is 
hard (relative to group generator) then Schnorr Signatures are secure in 
the random oracle model. 
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Schnorr Signatures

• 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠𝑠𝑠 𝑚𝑚
1. Select random 𝑘𝑘 ∈ ℤ

q
and set 𝐼𝐼 = 𝑔𝑔𝑘𝑘.

2. 𝒓𝒓 = 𝑯𝑯 𝑰𝑰,𝒎𝒎
3. Return σ = 𝑟𝑟, 𝑠𝑠 where s ≔ 𝑟𝑟𝑟𝑟 + 𝑘𝑘 𝑚𝑚𝑚𝑚𝑚𝑚 𝑞𝑞

• 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑝𝑝𝑝𝑝 𝑚𝑚,σ = 𝑟𝑟, 𝑠𝑠
• Compute 𝑔𝑔𝑠𝑠 ∗ ℎ−1 𝑟𝑟 = 𝑔𝑔𝑠𝑠−𝑟𝑟𝑟𝑟 and check if r = 𝐻𝐻 𝑔𝑔𝑠𝑠−𝑟𝑟𝑟𝑟 ,𝑚𝑚

Advantages:
• Short Signatures  σ = 𝑟𝑟 + 𝑠𝑠 = 2 log2 𝑞𝑞 bits  
• Fast and Efficient
• Patent Expired: February 2008
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Schnorr Signatures

• 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠𝑠𝑠 𝑚𝑚
1. Select random 𝑘𝑘 ∈ ℤ

q
and set 𝐼𝐼 = 𝑔𝑔𝑘𝑘.

2. 𝒓𝒓 = 𝑯𝑯 𝑰𝑰,𝒎𝒎
3. Return σ = 𝑟𝑟, 𝑠𝑠 where s ≔ 𝑟𝑟𝑟𝑟 + 𝑘𝑘 𝑚𝑚𝑚𝑚𝑚𝑚 𝑞𝑞

• 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑝𝑝𝑝𝑝 𝑚𝑚,σ = 𝑟𝑟, 𝑠𝑠
• Compute 𝑔𝑔𝑠𝑠 ∗ ℎ−1 𝑟𝑟 = 𝑔𝑔𝑠𝑠−𝑟𝑟𝑟𝑟 and check if r = 𝐻𝐻 𝑔𝑔𝑠𝑠−𝑟𝑟𝑟𝑟 ,𝑚𝑚

Advantages:
• Short Signatures  σ = 𝑟𝑟 + 𝑠𝑠 = 2 log2 𝑞𝑞 bits  
• Fast and Efficient
• Patent Expired: February 2008

32

Depends only on 
order of the subgroup
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DLOG 128 bit security:
log2 𝑞𝑞 ≈ 256

≈ 512 bit signatures

• Independent of size of 
original group 

(rth residue subgroup).
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Short Schnorr Signatures

• 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠𝑠𝑠 𝑚𝑚
1. Select random 𝑘𝑘 ∈ ℤ

q
and set 𝐼𝐼 = 𝑔𝑔𝑘𝑘.

2. 𝒓𝒓 = 𝑯𝑯 𝑰𝑰,𝒎𝒎 // 𝒓𝒓 ≤ 𝒒𝒒
3. Return σ = 𝑟𝑟, 𝑠𝑠 where s ≔ 𝑟𝑟𝑟𝑟 + 𝑘𝑘 𝑚𝑚𝑚𝑚𝑚𝑚 𝑞𝑞

• 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑝𝑝𝑝𝑝 𝑚𝑚,σ = 𝑟𝑟, 𝑠𝑠
• Compute 𝑔𝑔𝑠𝑠 ∗ ℎ−1 𝑟𝑟 = 𝑔𝑔𝑠𝑠−𝑟𝑟𝑟𝑟 and check if r = 𝐻𝐻 𝑔𝑔𝑠𝑠−𝑟𝑟𝑟𝑟 ,𝑚𝑚

• Short Signatures  σ = 𝑟𝑟 + 𝑠𝑠 = 𝟏𝟏.𝟓𝟓 log2 𝑞𝑞 bits  
• New Result: Short Schnorr Signatures are also secure in Generic Group+ 

Random Oracle Model https://eprint.iacr.org/2019/1105.pdf
• 384 bit signatures for 128-bit security
• BLS Signatures: 256 bit signatures for 128-bit security (computational 

overhead is much higher) 33
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Digital Signature Algorithm (DSA)

DSA: 𝒈𝒈 is subgroup of ℤ𝑝𝑝∗ of order q
ECDSA: 𝒈𝒈 is order q subgroup of elliptic curve

• Secret key is x, public key is h=gx along with generator g (of order q)
• Signsk(m)

• Pick random 𝑘𝑘 ∈ ℤ
q

and set 𝑟𝑟 = 𝐹𝐹 𝑔𝑔𝑘𝑘 ∈ ℤ𝑞𝑞
• Compute s ≔ 𝑘𝑘−1 𝑥𝑥𝑥𝑥 + 𝐻𝐻(𝑚𝑚) 𝑚𝑚𝑚𝑚𝑚𝑚 𝑞𝑞
• Output signature (r,s)

• Vrfypk(m,(r,s)) check to make sure that
𝑟𝑟 = 𝐹𝐹 𝑔𝑔𝐻𝐻(𝑚𝑚)𝑠𝑠−1ℎ𝑟𝑟𝑠𝑠−1
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Digital Signature Algorithm (DSA)

• Signsk(m)
• Pick random 𝑘𝑘 ∈ ℤ

q
and set 𝑟𝑟 = 𝐹𝐹 𝑔𝑔𝑘𝑘 = 𝑔𝑔𝑘𝑘 𝑚𝑚𝑚𝑚𝑚𝑚 𝑞𝑞

• Compute s ≔ 𝑘𝑘−1 𝑥𝑥𝑥𝑥 + 𝐻𝐻(𝑚𝑚) 𝑚𝑚𝑚𝑚𝑚𝑚 𝑞𝑞
• Output signature (r,s)

• Vrfypk(m,(r,s)) check to make sure that
𝑟𝑟 = 𝐹𝐹 𝑔𝑔𝐻𝐻(𝑚𝑚)𝑠𝑠−1ℎ𝑟𝑟𝑠𝑠−1

= 𝐹𝐹 𝑔𝑔𝐻𝐻 𝑚𝑚 𝑘𝑘 𝑥𝑥𝑥𝑥+𝐻𝐻(𝑚𝑚) −1𝑔𝑔𝑥𝑥𝑟𝑟𝑘𝑘 𝑥𝑥𝑥𝑥+𝐻𝐻(𝑚𝑚) −1

= 𝐹𝐹 𝑔𝑔(𝐻𝐻 𝑚𝑚 +𝑥𝑥𝑥𝑥)𝑘𝑘 𝑥𝑥𝑥𝑥+𝐻𝐻(𝑚𝑚) −1

= 𝐹𝐹 𝑔𝑔𝑘𝑘 ≔ 𝑟𝑟
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Digital Signature Algorithm (DSA)

• Secret key is x, public key is h=gx along with generator g (of order q)
• Signsk(m)

• Pick random 𝑘𝑘 ∈ ℤ
q

and set 𝑟𝑟 = 𝐹𝐹 𝑔𝑔𝑘𝑘 = 𝑔𝑔𝑘𝑘 𝑚𝑚𝑚𝑚𝑚𝑚 𝑞𝑞
• Compute s ≔ 𝑘𝑘−1 𝑥𝑥𝑥𝑥 + 𝐻𝐻(𝑚𝑚) 𝑚𝑚𝑚𝑚𝑚𝑚 𝑞𝑞
• Output signature (r,s)

• Vrfypk(m,(r,s)) check to make sure that
𝑟𝑟 = 𝐹𝐹 𝑔𝑔𝐻𝐻(𝑚𝑚)𝑠𝑠−1ℎ𝑟𝑟𝑠𝑠−1

Theorem: If H and F are modeled as random oracles then DSA is secure.
Weird Assumption for F(.)?
• Theory: DSA Still lack compelling proof of security from standard crypto assumptions
• Practice: DSA has been used/studied for decades without attacks
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Digital Signature Algorithm (DSA)

• Secret key is x, public key is h=gx

• Signsk(m)
• Pick random 𝑘𝑘 ∈ ℤ

q
and set 𝑟𝑟 = 𝐹𝐹 𝑔𝑔𝑘𝑘 = 𝑔𝑔𝑘𝑘 𝑚𝑚𝑚𝑚𝑚𝑚 𝑞𝑞

• Compute s ≔ 𝑘𝑘−1 𝑥𝑥𝑥𝑥 + 𝐻𝐻(𝑚𝑚) 𝑚𝑚𝑚𝑚𝑚𝑚 𝑞𝑞
• Output signature (r,s)

• Vrfypk(m,(r,s)) check to make sure that
𝑟𝑟 = 𝐹𝐹 𝑔𝑔𝐻𝐻(𝑚𝑚)𝑠𝑠−1ℎ𝑟𝑟𝑠𝑠−1

Remark: If signer signs two messages with same random 𝑘𝑘 ∈ ℤ
q

then attacker can find 
secret key sk!
• Theory: Negligible Probability this happens
• Practice: Will happen if a weak PRG is used
• Sony PlayStation (PS3) hack in 2010.
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Certificate Authority

• Trusted Authority (CA)
• 𝑚𝑚𝐶𝐶𝐶𝐶→𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚=“Amazon’s public key is 𝑝𝑝𝑝𝑝𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 (date,expiration,###)”
• 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝐶𝐶𝐶𝐶→𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶 𝑚𝑚

• Delegate Authority to other CA1
• Root CA signs m= “CA1 public key is 𝑝𝑝𝑝𝑝𝐶𝐶𝐶𝐶𝐶 (date,expiration,###) can issue 

certificates”
• Verifier can check entire certification chain

• Revocation List Signed Daily
• Decentralized Web of Trust (PGP)
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One-Time Signature Scheme

• Weak notion of one-time secure signature schemes
• Attacker makes one query to oracle Signsk(.) and then attempts to output 

forged signature for m’
• If attacker sees two different signatures then guarantees break down

• Achievable from Hash Functions 
• No number theory!
• No Random Oracles!
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Lamport’s Signature Scheme (from OWFs) 

𝑠𝑠𝑠𝑠 =
𝑥𝑥1,0 𝑥𝑥2,0 𝑥𝑥3,0
𝑥𝑥1,1 𝑥𝑥2,1 𝑥𝑥3,1

𝑝𝑝𝑘𝑘 =
𝑦𝑦1,0 𝑦𝑦2,0 𝑦𝑦3,0
𝑦𝑦1,1 𝑦𝑦2,1 𝑦𝑦3,1

𝑥𝑥𝑖𝑖,𝑗𝑗 ∈ 0,1 𝑛𝑛 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢
𝑦𝑦𝑖𝑖,𝑗𝑗 = 𝑓𝑓 𝑥𝑥𝑖𝑖,𝑗𝑗

Assumption: f is a One-Way Function
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Lamport’s Signature Scheme (from OWFs) 

𝑠𝑠𝑠𝑠 =
𝑥𝑥1,0 𝑥𝑥2,0 𝑥𝑥3,0
𝑥𝑥1,1 𝑥𝑥2,1 𝑥𝑥3,1

𝑝𝑝𝑘𝑘 =
𝑦𝑦1,0 𝑦𝑦2,0 𝑦𝑦3,0
𝑦𝑦1,1 𝑦𝑦2,1 𝑦𝑦3,1

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠𝑠𝑠 011 = 𝑥𝑥1,0, 𝑥𝑥2,1, 𝑥𝑥3,1
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Lamport’s Signature Scheme (from OWFs)

𝑠𝑠𝑠𝑠 =
𝑥𝑥1,0 𝑥𝑥2,0 𝑥𝑥3,0
𝑥𝑥1,1 𝑥𝑥2,1 𝑥𝑥3,1

𝑝𝑝𝑘𝑘 =
𝑦𝑦1,0 𝑦𝑦2,0 𝑦𝑦3,0
𝑦𝑦1,1 𝑦𝑦2,1 𝑦𝑦3,1

𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 011 = 𝑥𝑥1,0, 𝑥𝑥2,1, 𝑥𝑥3,1

Vrfy𝑝𝑝𝑝𝑝 011, 𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3 = � 1 if 𝑓𝑓 𝑥𝑥1 = 𝑦𝑦1,0 ∧ 𝑓𝑓 𝑥𝑥2 = 𝑦𝑦2,1 ∧ 𝑓𝑓 𝑥𝑥3 = 𝑦𝑦3,1
0 otherwise
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Lamport’s Signature Scheme 

Theorem 12.16: Lamport’s Signature Scheme is a secure one-time signature scheme 
(assuming f is a one-way function).

Proof Sketch: Signing a fresh message requires inverting 𝑓𝑓 𝑥𝑥𝑖𝑖,𝑗𝑗 for random 𝑥𝑥𝑖𝑖,𝑗𝑗.

Remark: Attacker can break scheme if he can request two signatures.

How?
Request signatures of both 0n and 1n.
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Lamport’s Signature Scheme 

Remark: Attacker can break scheme if he can request two signatures.

How?
Request signatures of both 0n and 1n.

𝑠𝑠𝑠𝑠 =
𝑥𝑥1,0 𝑥𝑥2,0 𝑥𝑥3,0
𝑥𝑥1,1 𝑥𝑥2,1 𝑥𝑥3,1

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠𝑠𝑠 000 = 𝑥𝑥1,0, 𝑥𝑥2,0, 𝑥𝑥3,0

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠𝑠𝑠 111 = 𝑥𝑥1,1, 𝑥𝑥2,1, 𝑥𝑥3,1
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Secure Signature Scheme from OWFs

Theorem 12.22: secure/stateless signature scheme from collision-resistant 
hash functions.
• Collision Resistant Hash Functions do imply OWFs exist

Remark: Possible to construct signature scheme Π which is existentially 
unforgeable under an adaptive chosen message attacks using the minimal 
assumption that one-way functions exist.
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Week 13 Topic 1: El-Gamal 
Encryption
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El-Gamal Encryption

• Key Generation:  
• Generate cyclic group <g> of prime order q
• Pick random 𝑥𝑥 ≤ 𝑞𝑞 and compute ℎ = 𝑔𝑔𝑥𝑥

• Public Key: 𝑔𝑔,ℎ
• Secret Key: 𝑥𝑥 = dlog𝑔𝑔 ℎ
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El-Gamal Encryption

• Public Key: 𝑔𝑔,ℎ
• Secret Key: 𝑥𝑥 = dlog𝑔𝑔 ℎ
• Encpk(𝑚𝑚) = 𝑔𝑔𝑦𝑦,𝑚𝑚 � ℎ𝑦𝑦 for a random y ∈ ℤ𝑞𝑞
• Decsk(𝑐𝑐 = 𝑐𝑐1, 𝑐𝑐2 ) = 𝑐𝑐2𝑐𝑐1−𝑥𝑥

Decsk(𝑔𝑔𝑦𝑦,𝑚𝑚 � ℎ𝑦𝑦) = 𝑚𝑚 � ℎ𝑦𝑦 𝑔𝑔𝑦𝑦 −𝑥𝑥

= 𝑚𝑚 � ℎ𝑦𝑦 𝑔𝑔𝑦𝑦 −𝑥𝑥

= 𝑚𝑚 � 𝑔𝑔𝑥𝑥 𝑦𝑦 𝑔𝑔𝑦𝑦 −𝑥𝑥

= 𝑚𝑚 � 𝑔𝑔𝑥𝑥𝑥𝑥𝑔𝑔−𝑥𝑥𝑥𝑥
= 𝑚𝑚
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El-Gamal Encryption

• Encpk(𝑚𝑚) = 𝑔𝑔𝑦𝑦,𝑚𝑚 � ℎ𝑦𝑦 for a random y ∈ ℤ𝑞𝑞
• Decsk(𝑐𝑐 = 𝑐𝑐1, 𝑐𝑐2 ) = 𝑐𝑐2𝑐𝑐1−𝑥𝑥

Theorem 11.18: Let Π = 𝐺𝐺𝐺𝐺𝐺𝐺,𝐸𝐸𝐸𝐸𝐸𝐸,𝐷𝐷𝐷𝐷𝐷𝐷 be the El-Gamal Encryption 
scheme (above) then if DDH is hard relative to 𝒢𝒢 then Π is  CPA-Secure.
Proof: Recall that CPA-security and eavesdropping security are 
equivalent for public key crypto. Therefore, it suffices to show that for 
all PPT A there is a negligible function negl such that

Pr PubKA,Π
eav n = 1 ≤

1
2

+ negl(n)
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Eavesdropping Security (PubKA,Π
eav n )

51

𝑚𝑚0 ,𝑚𝑚1

Random bit b
(pk,sk) = Gen(.)

𝒄𝒄𝟏𝟏 = 𝐄𝐄𝐄𝐄𝐄𝐄𝒑𝒑𝒑𝒑 𝒎𝒎𝒃𝒃

b’

∀𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴 ∃𝜇𝜇 (negligible) s. t
Pr PubKA,Π

eav n = 1 ≤
1
2

+ 𝜇𝜇(𝑛𝑛)

Public Key: pk



El-Gamal Encryption

Theorem 11.18: Let Π = 𝐺𝐺𝐺𝐺𝐺𝐺,𝐸𝐸𝐸𝐸𝐸𝐸,𝐷𝐷𝐷𝐷𝐷𝐷 be the El-Gamal Encryption 
scheme (above) then if DDH is hard relative to 𝒢𝒢 then Π is  CPA-Secure.
Proof: First introduce an `encryption scheme’ �Π in which �Encpk 𝑚𝑚 =
𝑔𝑔𝑦𝑦,𝑚𝑚 � 𝑔𝑔𝑧𝑧 for random y, z ∈ ℤ𝑞𝑞 (there is actually no way to do 

decryption, but the experiment PubKA,�Π
eav n is still well defined). 

Claim: Pr PubKA,�Π
eav n = 1 = 1

2
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El-Gamal Encryption

Claim: Pr PubKA,�Π
eav n = 1 = 1

2
Proof: (using Lemma 11.15)

Pr PubKA,�Π
eav n = 1

=
1
2

Pr PubKA,�Π
eav n = 1|𝑏𝑏 = 1 +

1
2

1 − Pr PubKA,�Π
eav n = 0|𝑏𝑏 = 0

=
1
2

+
1
2

Pry,z←ℤ𝑞𝑞 𝐴𝐴 𝑔𝑔𝑦𝑦,𝑚𝑚1 � 𝑔𝑔𝑧𝑧 = 1 − Pry,z←ℤ𝑞𝑞 𝐴𝐴 𝑔𝑔𝑦𝑦,𝑚𝑚0 � 𝑔𝑔𝑧𝑧 = 1

=
1
2

53



El-Gamal Encryption

Theorem 11.18: Let Π = 𝐺𝐺𝐺𝐺𝐺𝐺,𝐸𝐸𝐸𝐸𝐸𝐸,𝐷𝐷𝐷𝐷𝐷𝐷 be the El-Gamal Encryption 
scheme (above) then if DDH is hard relative to 𝒢𝒢 then Π is  CPA-Secure.
Proof: We just showed that  

Pr PubKA,�Π
eav n = 1 =

1
2

Therefore, it suffices to show that 
Pr PubKA,Π

eav n = 1 − Pr PubKA,�Π
eav n = 1 ≤ 𝐧𝐧𝐧𝐧𝐧𝐧𝐧𝐧(𝑛𝑛)

This, will follow from DDH assumption.
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El-Gamal Encryption

Theorem 11.18: Let Π = 𝐺𝐺𝐺𝐺𝐺𝐺,𝐸𝐸𝐸𝐸𝐸𝐸,𝐷𝐷𝐷𝐷𝐷𝐷 be the El-Gamal Encryption scheme 
(above) then if DDH is hard relative to 𝒢𝒢 then Π is  CPA-Secure.
Proof: We can build 𝐵𝐵 𝑔𝑔𝑥𝑥 ,𝑔𝑔𝑦𝑦,𝑍𝑍 to break DDH assumption if Π is not CPA-Secure. 
Simulate eavesdropping attacker A 
1. Send attacker public key pk = 𝔾𝔾, 𝑞𝑞,𝑔𝑔, ℎ = 𝑔𝑔𝑥𝑥
2. Receive m0,m1 from A. 
3. Send A the ciphertext 𝑔𝑔𝑦𝑦,𝑚𝑚𝑏𝑏 � 𝑍𝑍 . 
4. Output 1 if and only if attacker outputs b’=b; otherwise output 0.

Pr 𝐵𝐵 𝑔𝑔𝑥𝑥 ,𝑔𝑔𝑦𝑦,𝑍𝑍 = 1�𝑍𝑍 = 𝑔𝑔𝑥𝑥𝑥𝑥 − Pr 𝐵𝐵 𝑔𝑔𝑥𝑥 ,𝑔𝑔𝑦𝑦,𝑍𝑍 = 1�𝑍𝑍 = 𝑔𝑔𝑧𝑧
= Pr PubKA,Π

eav n = 1 − Pr PubKA,�Π
eav n = 1

= Pr PubKA,Π
eav n = 1 − �1

2
55



El-Gamal Encryption

• Encpk(𝑚𝑚) = 𝑔𝑔𝑦𝑦,𝑚𝑚 � ℎ𝑦𝑦 for a random y ∈ ℤ𝑞𝑞 and ℎ = 𝑔𝑔𝑥𝑥,
• Decsk(𝑐𝑐 = 𝑐𝑐1, 𝑐𝑐2 ) = 𝑐𝑐2𝑐𝑐1−𝑥𝑥

Fact: El-Gamal Encryption is malleable.
c = Encpk(𝑚𝑚) = 𝑔𝑔𝑦𝑦,𝑚𝑚 � ℎ𝑦𝑦

𝑐𝑐𝑐 = 𝑔𝑔𝑦𝑦, 2 � 𝑚𝑚 � ℎ𝑦𝑦
Decsk(𝑐𝑐′) = 2 � 𝑚𝑚 � ℎ𝑦𝑦 � 𝑔𝑔−𝑥𝑥𝑥𝑥 = 2𝑚𝑚

Hint: This observation may be relevant for homework 4.
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Key Encapsulation Mechanism (KEM)

• Three Algorithms
• Gen(1𝑛𝑛,𝑅𝑅) (Key-generation algorithm)

• Input: Random Bits R
• Output: 𝒑𝒑𝒑𝒑, 𝒔𝒔𝒔𝒔 ∈ 𝓚𝓚

• Encapspk(1𝑛𝑛,𝑅𝑅)
• Input: security parameter, random bits R
• Output: Symmetric key k ∈ 0,1 ℓ 𝑛𝑛 and a ciphertext c

• Decapssk(𝑐𝑐) (Deterministic algorithm)
• Input: Secret key sk ∈ 𝒦𝒦 and a ciphertex c
• Output: a symmetric key 0,1 ℓ 𝑛𝑛 or ⊥ (fail)

• Invariant: Decapssk(c)=k whenever (c,k) = Encapspk(1𝑛𝑛,𝑅𝑅)
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KEM CCA-Security (KEMA,Π
cca n )

58

𝒄𝒄𝟏𝟏 ≠ 𝒄𝒄

Random bit b
(pk,sk) = Gen(.)

𝒄𝒄,𝒌𝒌𝟎𝟎 = 𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝒑𝒑𝒑𝒑 .
𝒌𝒌𝟏𝟏 ⟵ 𝟎𝟎,𝟏𝟏 𝒏𝒏

b’

𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝒔𝒔𝒌𝒌 𝒄𝒄𝟏𝟏

…

∀𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴 ∃𝜇𝜇 (negligible) s. t
Pr KEMA,Π

cca = 1 ≤
1
2

+ 𝜇𝜇(𝑛𝑛)

…

𝒄𝒄𝟐𝟐 ≠ 𝒄𝒄
𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝒔𝒔𝒔𝒔 𝒄𝒄𝟐𝟐

𝒑𝒑𝒑𝒑, 𝒄𝒄,𝒌𝒌𝒌𝒌



KEM from RSA and El-Gamal

• Recap: CCA-Secure KEM from RSA in Random Oracle Model

• El-Gamal yields CPA-Secure KEM in Random Oracle Model
• 𝒈𝒈𝒚𝒚,𝑯𝑯 𝒉𝒉𝒚𝒚 ← 𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐩𝐩𝐩𝐩 𝟏𝟏𝒏𝒏;𝑹𝑹 and 𝐃𝐃𝐃𝐃𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐬𝐬𝐤𝐤 𝒈𝒈𝒚𝒚 = 𝑯𝑯 𝒈𝒈𝒙𝒙𝒚𝒚

• CDH assumption must hold.

• Above construction is also a CPA-Secure KEM in standard model
• As long as 𝑃𝑃𝑃𝑃𝑥𝑥∈𝔾𝔾 𝐻𝐻 𝑥𝑥 = 𝑘𝑘 ≈ 2−ℓ for each key 𝑘𝑘 ∈ 0,1 ℓ and DDH holds
• Disadvantage: weaker security notion for KEM, stronger DDH assumption
• Advantage: Proof in standard model
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CCA-Secure Variant in Random Oracle Model

• Key Generation (Gen(1𝑛𝑛)): 
1. Run 𝒢𝒢 1𝑛𝑛 to obtain a cyclic group 𝔾𝔾 of order q (with 𝑞𝑞 = 𝑛𝑛) and a generator g such 

that < g >= 𝔾𝔾.
2. Choose a random x ∈ ℤ𝑞𝑞 and set ℎ = 𝑔𝑔𝑥𝑥
3. Public Key: pk = 𝔾𝔾, 𝑞𝑞,𝑔𝑔,ℎ
4. Private Key: sk = 𝔾𝔾, 𝑞𝑞,𝑔𝑔, 𝑥𝑥

• Encpk(𝑚𝑚) = 𝑔𝑔𝑦𝑦, 𝑐𝑐′,𝑀𝑀𝑀𝑀𝑀𝑀𝐾𝐾𝑀𝑀 𝑐𝑐𝑐 for a random y ∈ ℤ𝑞𝑞 where

𝐾𝐾𝐸𝐸�𝐾𝐾𝑀𝑀 = 𝐻𝐻 ℎ𝑦𝑦 (KEM)
and 

𝑐𝑐′ = EncKE
′ 𝑚𝑚 (Encrypt then MAC)
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CCA-Secure Variant in Random Oracle Model

Public Key: pk = 𝔾𝔾, 𝑞𝑞,𝑔𝑔,ℎ
Private Key: sk = 𝔾𝔾, 𝑞𝑞,𝑔𝑔, 𝑥𝑥

• Encpk(𝑚𝑚) = 𝑔𝑔𝑦𝑦, 𝑐𝑐′,𝑀𝑀𝑀𝑀𝑀𝑀𝐾𝐾𝑀𝑀 𝑐𝑐𝑐 for a random y ∈ ℤ𝑞𝑞 and 𝐾𝐾𝐸𝐸�𝐾𝐾𝑀𝑀 =
𝐻𝐻 ℎ𝑦𝑦 and 𝑐𝑐′ = EncKE

′ 𝑚𝑚
• Decsk( 𝑐𝑐, 𝑐𝑐′, 𝑡𝑡 )
1. 𝐾𝐾𝐸𝐸�𝐾𝐾𝑀𝑀 = 𝐻𝐻 𝑐𝑐𝑥𝑥

2. If VrfyKM 𝑐𝑐′, 𝑡𝑡 ≠ 1 or 𝑐𝑐 ∉ 𝔾𝔾 output ⊥; otherwise output DecKE
′ 𝑐𝑐′
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CCA-Secure Variant in Random Oracle Model

Theorem: If EncKE
′ is CPA-secure, MacKM is a strong MAC and a problem 

called gap-CDH is hard then this a CCA-secure public key encryption 
scheme in the random oracle model.

• Encpk(𝑚𝑚) = 𝑔𝑔𝑦𝑦, 𝑐𝑐′, MacKM 𝑐𝑐𝑐 for a random y ∈ ℤ𝑞𝑞 and 𝐾𝐾𝐸𝐸�𝐾𝐾𝑀𝑀 =
𝐻𝐻 ℎ𝑦𝑦 and 𝑐𝑐′ = EncKE

′ 𝑚𝑚
• Decsk( 𝑐𝑐, 𝑐𝑐′, 𝑡𝑡 )
1. 𝐾𝐾𝐸𝐸�𝐾𝐾𝑀𝑀 = 𝐻𝐻 𝑐𝑐𝑥𝑥

2. If VrfyKM 𝑐𝑐′, 𝑡𝑡 ≠ 1 or 𝑐𝑐 ∉ 𝔾𝔾 output ⊥; otherwise output DecKE
′ 𝑐𝑐′
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CCA-Secure Variant in Random Oracle Model

Remark: The CCA-Secure variant is used in practice in the ISO/IEC 18033-2 
standard for public-key encryption.
• Diffie-Hellman Integrated Encryption Scheme (DHIES)
• Elliptic Curve Integrated Encryption Scheme (ECIES)
• Encpk(𝑚𝑚) = 𝑔𝑔𝑦𝑦, 𝑐𝑐′, MacKM 𝑐𝑐𝑐 for a random y ∈ ℤ𝑞𝑞 and 𝐾𝐾𝐸𝐸�𝐾𝐾𝑀𝑀 =
𝐻𝐻 ℎ𝑦𝑦 and 𝑐𝑐′ = EncKE

′ 𝑚𝑚
• Decsk( 𝑐𝑐, 𝑐𝑐′, 𝑡𝑡 )
1. 𝐾𝐾𝐸𝐸�𝐾𝐾𝑀𝑀 = 𝐻𝐻 𝑐𝑐𝑥𝑥

2. If VrfyKM 𝑐𝑐′, 𝑡𝑡 ≠ 1 or 𝑐𝑐 ∉ 𝔾𝔾 output ⊥; otherwise output DecKE
′ 𝑐𝑐′
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