Cryptography
 CS 555

Week 12:

- Discrete Log Attacks + NIST Recommendations for Concrete Security Parameters
- Identification Schemes + Schnorr Signatures
- El Gamal

Readings: Katz and Lindell Chapter 10 \& Chapter 11.1-11.2, 11.4

Homework 4 Due Thursday (4/8) at 11:59PM on Gradescope

Week 12: Topic 0: Discrete Log Attacks + NIST
 Recommendations for Concrete Security Parameters

Factoring Algorithms (Summary)

- Pollard's p-1 Algorithm
- Works when $N=p q$ where ($p-1$) has only "small" prime factors
- Defense: Ensure that p (resp. q) is a strong prime ($p-1$) has no "small" prime factors.
- Note: A random prime is strong with high probability.
- Pollard's Rho Algorithm
- General purpose factoring algorithm
- Core: Low Space Cycle Detection
- Time: $\mathrm{T}(\mathrm{N})=O(\sqrt[4]{N} \operatorname{polylog}(N))$
- Naïve Algorithm takes time $O(\sqrt{N}$ polylog $(N))$ to factor
- Quadratic Sieve
- Time: $2^{O(\sqrt{\log N \log \log N})}=2^{O(\sqrt{n \log n})}$ (sub-exponential, but not polynomial time)
- Preprocessing + Linear Algebra: find $\mathrm{x}, \mathrm{y} \in \mathbb{Z}_{N}^{*}$ such that $x^{2}=y^{2} \bmod N$ and $x \neq \pm y \bmod N$?

Discrete Log Attacks

- Pohlig-Hellman Algorithm
- Given a cyclic group \mathbb{G} of non-prime order $q=|\mathbb{G}|=r p$
- Reduce discrete log problem to discrete problem(s) for subgroup(s) of order p (or smaller).
- Preference for prime order subgroups in cryptography
- Baby-step/Giant-Step Algorithm
- Solve discrete logarithm in time $O(\sqrt{q} \operatorname{polylog}(q))$
- Pollard's Rho Algorithm
- Solve discrete logarithm in time $O(\sqrt{q} \operatorname{poly} \log (q))$
- Bonus: Constant memory!
- Index Calculus Algorithm
- Similar to quadratic sieve
- Runs in sub-exponential time $2^{O(\sqrt{\log q \log \log q})}$
- Specific to the group \mathbb{Z}_{q}^{*} (e.g., attack doesn't work against elliptic-curve groups)

Discrete Log Attacks

- Pohlig-Hellman Algorithm

- Given a cyclic group \mathbb{G} of non-prime order $q=|\mathbb{G}|=r p$
- Reduce discrete log problem to discrete problem(s) for subgroup(s) of order p (or smaller).
- Preference for prime order subgroups in cryptography
- Let $\mathbb{G}=\langle g\rangle$ and $\mathrm{h}=g^{x} \in \mathbb{G}$ be given. For simplicity assume that r is prime and $\mathrm{r}<\mathrm{p}$.
- Observe that $\left\langle g^{r}\right\rangle$ generates a subgroup of size p and that $\mathrm{h}^{\mathrm{r}} \in\left\langle g^{r}\right\rangle$.
- Solve discrete log problem in subgroup $\left\langle g^{r}\right\rangle$ with input h^{r}.
- Find z such that $h^{r}=g^{r z} \rightarrow r z=r x \bmod p$.
- Observe that $\left\langle g^{p}\right\rangle$ generates a subgroup of size r and that $h^{p} \in\left\langle g^{p}\right\rangle$.
- Solve discrete log problem in subgroup $\left\langle g^{p}\right\rangle$ with input h^{p}.
- Find y such that $\mathrm{h}^{\mathrm{p}}=g^{y p} \rightarrow \mathrm{p} z=p x \bmod \mathrm{r}$.
- Chinese Remainder Theorem $\mathrm{h}=g^{x}$ where $\mathrm{x} \leftrightarrow([z \bmod p],[y \bmod r])$

Baby-step/Giant-Step Algorithm

- Input: $\mathbb{G}=\langle g\rangle$ of order q , generator g and $\mathrm{h}=g^{x} \in \mathbb{G}$
- Set $t=\lfloor\sqrt{q}\rfloor$

Baby-step/Giant-Step Algorithm

- Input: $\mathbb{G}=\langle g\rangle$ of order q , generator g and $\mathrm{h}=g^{x} \in \mathbb{G}$
- Set $t=\lfloor\sqrt{q}\rfloor$

Baby-step/Giant-Step Algorithm

- Input: $\mathbb{G}=\langle g\rangle$ of order q , generator g and $\mathrm{h}=g^{x} \in \mathbb{G}$
- Set $t=\lfloor\sqrt{q}\rfloor$

Baby-step/Giant-Step Algorithm

- Input: $\mathbb{G}=\langle g\rangle$ of order q , generator g and $\mathrm{h}=g^{x} \in \mathbb{G}$
- Set $t=\lfloor\sqrt{q}\rfloor$

For $\mathrm{i}=0$ to $\left\lfloor\frac{q}{t}\right\rfloor$

$$
g_{i} \leftarrow g^{i t}
$$

Sort the pairs ($\mathrm{i}, \mathrm{g}_{\mathrm{j}}$) by their second component
For $\mathrm{i}=0$ to t
$h_{i} \leftarrow h g^{i}$
if $h_{i}=g_{k} \in\left\{g_{0}, \ldots, g_{t}\right\}$ then return [kt-i mod q]

$$
\begin{aligned}
h_{i} & =h g^{i}=g^{k t} \\
& \rightarrow h=g^{k t-i}
\end{aligned}
$$

Discrete Log Attacks

- Baby-step/Giant-Step Algorithm
- Solve discrete logarithm in time $O(\sqrt{q}$ polylog $(q))$
- Requires memory $O(\sqrt{q}$ polylog $(q))$
- Pollard's Rho Algorithm
- Solve discrete logarithm in time $O(\sqrt{q}$ polylog $(q))$
- Bonus: Constant memory!
- Key Idea: Low-Space Birthday Attack (*) using our collision resistant hash function

$$
\begin{gathered}
H_{g, h}\left(x_{1}, x_{2}\right)=g^{x_{1}} h^{x_{2}} \\
H_{g, h}\left(y_{1}, y_{2}\right) \stackrel{H_{g, h}\left(x_{1}, x_{2}\right) \rightarrow h^{y_{2}-x_{2}}=g^{x_{1}-y_{1}}}{\rightarrow h=g^{\left(x_{1}-y_{1}\right)\left(y_{2}-x_{2}\right)^{-1}}}
\end{gathered}
$$

$\left.{ }^{*}\right)$ A few small technical details to address

Discrete Log Attacks

Remark: We used discrete-log problem to construct collision resistant hash functions.

Security Reduction showed that attack on collision resistant hash function yields attack on discrete log.

- Baby-step/Giant-Step Algorithm
- Solve discrete logarithm in time $O(\sqrt{q}$ polylog $(q))$
- Requires memory $O(\sqrt{q} \operatorname{polylog}(q))$
- Pollard's Rho Algorithm
- Solve discrete logarithm in time $O\left(\sqrt{q} p^{l}\right.$
- Bonus: Constant memory!
- Key Idea: Low-Space Birthday Attack (*)

$$
\begin{gathered}
H_{g, h}\left(x_{1}, x_{2}\right)=g^{x_{1}} h^{x_{2}} \\
H_{g, h}\left(y_{1}, y_{2}\right)=H_{g, h}\left(x_{1}, x_{2}\right) \\
\rightarrow h^{y_{2}-x_{2}}=g^{x_{1}-y_{1}} \\
\rightarrow h=g^{\left(x_{1}-y_{1}\right)\left(y_{2}-x_{2}\right)^{-1}}
\end{gathered}
$$

${ }^{*}$) A few small technical details to address

Discrete Log Attacks

- Index Calculus Algorithm
- Similar to quadratic sieve
- Runs in sub-exponential time $2^{O(\sqrt{\log p \log \log p})}$
- Specific to the group \mathbb{Z}_{p}^{*} (e.g., attack doesn't work on elliptic-curve groups)
- As before let $\left\{\mathrm{p}_{1}, \ldots, \mathrm{p}_{\mathrm{k}}\right\}$ denote the set of prime numbers $<\mathrm{B}$.
- Step 1.A: Find $\ell>k$ distinct values x_{1}, \ldots, x_{k} such that $g_{j}=\left[g^{x_{j}} \bmod p\right]$ is B-smooth for each j. That is

$$
g_{j}=\prod_{i=1}^{k} p_{i}^{e_{i, j}}
$$

Discrete Log Attacks

- As before let $\left\{\mathrm{p}_{1}, \ldots, \mathrm{p}_{k}\right\}$ be set of prime numbers < B.
- Step 1.A: Find $\ell>k$ distinct values x_{1}, \ldots, x_{k} such that $g_{j}=\left[g^{x_{j}} \bmod p\right]$ is B-smooth for each j. That is

$$
g_{j}=\prod_{i=1}^{k} p_{i}^{e_{i, j}} .
$$

- Step 1.B: Use linear algebra to solve the equations

$$
x_{j}=\sum_{i=1}^{k}\left(\log _{\mathbf{g}} \mathbf{p}_{\mathbf{i}}\right) \times e_{i, j} \bmod (p-1)
$$

(Note: the $\log _{\mathbf{g}} \mathbf{p}_{\mathbf{i}}$'s are the unknowns)

Discrete Log

- As before let $\left\{p_{1}, \ldots, p_{k}\right\}$ be set of prime numbers < B.
- Step 1 (precomputation): Obtain $\mathrm{y}_{1}, \ldots, \mathrm{y}_{\mathrm{k}}$ such that $\mathrm{p}_{\mathrm{i}}=g^{y_{i}} \bmod p$.
- Step 2: Given discrete log challenge $h=g^{x} \bmod p$.
- Find z such that $\left[g^{z} \mathrm{~h} \bmod \mathrm{p}\right]$ is B -smooth

$$
\begin{aligned}
& {\left[g^{z} \mathrm{~h} \bmod \mathrm{p}\right]=\prod_{i=1}^{k} p_{i}^{e_{i}}} \\
& =\prod_{i=1}^{k}\left(g^{y_{i}}\right)^{e_{i}}=g^{\sum_{i} e_{i} y_{i}}
\end{aligned}
$$

Discrete Log

- As before let $\left\{p_{1}, \ldots, p_{k}\right\}$ be set of prime numbers < B.
- Step 1 (precomputation): Obtain $\mathrm{y}_{1}, \ldots, \mathrm{y}_{\mathrm{k}}$ such that $\mathrm{p}_{\mathrm{i}}=g^{y_{i}} \bmod p$.
- Step 2: Given discrete log challenge $h=g^{x} \bmod p$.
- Find z such that $\left[g^{z} \mathrm{~h} \bmod \mathrm{p}\right]$ is B-smooth

$$
\begin{aligned}
{\left[g^{z} \mathrm{~h} \bmod \mathrm{p}\right] } & =g^{\sum_{i} e_{i} y_{i}} \rightarrow h=g^{\sum_{i} e_{i} y_{i}-z} \\
& \rightarrow x=\sum_{i} e_{i} y_{i}-z
\end{aligned}
$$

- Remark: Precomputation costs can be amortized over many discrete log instances
- In practice, the same group $\mathbb{G}=\langle g\rangle$ and generator g are used repeatedly.

NIST Guidelines (Concrete Security)

Best known attack against 1024 bit RSA takes time (approximately) 2^{80}

Symmetric Key Size (bits)	RSA and Diffie-Hellman Key Size (bits)	Elliptic Curve Key Size (bits)
80	1024	160
112	2048	224
128	3072	256
192	7680	384
256	15360	521

Table 1: NIST Recommended Key Sizes

NIST Guidelines (Concrete Security)

Diffie-Hellman uses subgroup of \mathbb{Z}_{p}^{*} size q

Symmetric Key Size (bits)	RSA and Diffie-Hellman Key Size (bits)	Elliptic Curve Key Size (bits)	
80	1024		160
112	2048	$\mathbf{q}=224$ bits	224
128	3072	$\mathbf{q}=256$ bits	256
192	7680	$\mathbf{q = 3 8 4}$ bits	384
256	15360	$\mathbf{q}=512$ bits	521

Table 1: NIST Recommended Key Sizes

NIST Guidelines (Concrete Security)

$$
112 \text { bits }=\frac{\log 2^{224}}{2}=\log \sqrt{2^{224}} \text { bits (Pollard's Rho) }
$$

Symmetric Key Size (bits)	RSA and Diffie-Hellman Key Size (bits)	Elliptic Curve Key Size (bits)	
80	1024		160
112	2048	$\mathbf{q = 2 2 4}$ bits	224
128	3072	$\mathbf{q = 2 5 6}$ bits	256
192	7680	$\mathbf{q = 3 8 4}$ bits	384
256	15360	$\mathbf{q}=512$ bits	521

Table 1: NIST Recommended Key Sizes

NIST Guidelines (Concrete Security)

112 bits $\approx \sqrt{2048 \log 2048}$ bits (Index Calculus)

Symmetric Key Size (bits)	RSA and Diffie-Hellman Key Size (bits)	Elliptic Curve Key Size (bits)	
80	1024		160
112	2048	$\mathbf{q}=224$ bits	224
128	3072	$\mathbf{q}=256$ bits	256
192	7680	$\mathbf{q}=384$ bits	384
256	15360	$\mathbf{q}=512$ bits	521

Table 1: NIST Recommended Key Sizes

Security Strength		2011 through 2013	2014 through 2030	2031 and Beyond
80	Applying	Deprecated	Disallowed	
	Processing		Legacy use	
112	Applying	Acceptable	Acceptable	Disallowed
	Processing			
128		Acceptable	Acceptable	Acceptable
192	Applying/Processing	Acceptable	Acceptable	Acceptable
		Acceptable	Acceptable	Acceptable

NIST's security strength guidelines, from Specialist Publication SP 800-57
Recommendation for Key Management - Part 1: General (Revision 3)

Signature Length

- RSA-FDH
- 128-bit security $\rightarrow \log _{2}(N)>3072$
- RSA-FDH Signatures are at least 3 Kb long
- Are shorter signatures possible?
- RSA Ciphertexts/RSA KEM
- At least 3 Kb long for 128-bit security
- Shorter Ciphertexts

Identification Scheme

- Interactive protocol that allows one party to prove its identify (authenticate itself) to another
- Two Parties: Prover and Verifier
- Prover has secret key sk and Verifier has public key pk

1. Prover runs $P_{1}(s k)$ to obtain ($I, s t$) ---- initial message I, state st

- Sends I to Verifier

2. Verifier picks random message r from distribution $\Omega_{p k}$ and sends r to Prover
3. Prover runs $P_{2}(s k, s t, r)$ to obtain s and sends s to verifier
4. Verifier checks if $\mathrm{V}(\mathrm{pk}, \mathrm{r}, \mathrm{s})=\mathrm{I}$

Identification Scheme

1. Prover runs $P_{1}(s k)$ to obtain ($I, s t$) ---- initial message I, state st 1. Sends I to Verifier
2. Verifier picks random message r from distribution $\Omega_{p k}$ and sends r to Prover
3. Prover runs $P_{2}(s k, s t, r)$ to obtain s and sends s to verifier
4. Verifier checks if $\mathrm{V}(\mathrm{pk}, \mathrm{r}, \mathrm{s})=\mathrm{I}$

An eavesdropping attacker obtains a transcript (l,r,s) of all the message sent.
Transcript Oracle: Trans $_{\text {sk }}($.$) runs honest execution and outputs$ transcript.

Identification Game ($\operatorname{Ident}_{\mathrm{A}, \Pi}(\mathrm{n})$)

Public Key: pk

$\forall P P T A \exists \mu$ (negligible) s.t $\operatorname{Pr}\left[\operatorname{Ident}_{\mathrm{A}, \Pi}(\mathrm{n})=1\right] \leq \mu(n)_{24}$

Schnorr Identification Scheme

- Verifier knows $h=g^{x}$
- Prover knows x such that $\mathrm{h}=\mathrm{g}^{\mathrm{x}}$

1. Prover runs $\mathrm{P}_{1}(\mathrm{x})$ to obtain $\left(k \in \mathbb{Z}_{\mathrm{q}}, I=g^{k}\right)$ and sends initial message I to verifier
2. Verifier picks random $r \in \mathbb{Z}_{q}$ (q is order of the group) and sends r to prover
3. Prover runs $\mathrm{P}_{2}(\mathrm{x}, \mathrm{k}, \mathrm{r})$ to obtain $\mathrm{s}:=[r x+k \bmod q]$ and sends s to Verifier
4. Verifier checks if $g^{s} *\left(h^{-1}\right)^{r}=I=g^{k}$

Schnorr Identification Scheme

- Verifier knows $\mathrm{h}=\mathrm{g}^{\mathrm{x}}$
- Prover knows x such that $\mathrm{h}=\mathrm{g}^{\mathrm{x}}$

1. Prover runs $\mathrm{P}_{1}(\mathrm{x})$ to obtain $\left(k \in \mathbb{Z}_{\mathrm{q}}, I=g^{k}\right)$ and sends initial message I to verifier
2. Verifier picks random $r \in \mathbb{Z}_{q}$ (q is order of the group) and sends r to prover
3. Prover runs $\mathrm{P}_{2}(x, \mathrm{k}, \mathrm{r})$ to obtain $\mathrm{s}:=[r x+k \bmod q]$ and sends s to Verifier
4. Verifier checks if $g^{s} *\left(h^{-1}\right)^{r}=I=g^{k}$

$$
g^{s} *\left(h^{-1}\right)^{r}=g^{r x+k \bmod q} * g^{-x r}=g^{k}
$$

Schnorr Identification Scheme

- Verifier knows $\mathrm{h}=\mathrm{g}^{\mathrm{x}}$
- Prover knows x such that $h=g^{x}$
- Prover runs $\mathrm{P}_{1}(\mathrm{x})$ to obtain $\left(k \in \mathbb{Z}_{\mathrm{q}}, I=g^{k}\right)$ and sends initial message I to verifier
- Verifier picks random $r \in \mathbb{Z}_{q}$ (q is order of the group) and sends r to prover
- Prover runs P1(x,k,r) to obtain $\mathrm{s}:=[r x+k \bmod q]$ and sends s to Verifier
- Verifier checks if $g^{s} *\left(h^{-1}\right)^{r}=I=g^{k}$

Theorem 12.11: If the discrete-logarithm problem is hard (relative to group generator) then Schnorr identification scheme is secure.

Fiat-Shamir Transform

- Identification Schemes can be transformed into signatures
- $\operatorname{Sign}_{\text {sk }}(\mathrm{m})$
- First compute (I, st) $=\mathrm{P}_{1}(\mathrm{sk})$ (as prover)
- Next compute the challenge $\boldsymbol{r}=\boldsymbol{H}(\mathbf{I}, \boldsymbol{m})$ (as verifier)
- Compute the response $s=P_{2}(s k, s t, r)$
- Output signature (r, s)
- $\mathrm{Vrfy}_{\mathrm{pk}}(\mathrm{m},(\mathrm{r}, \mathrm{s}))$
- Compute I := V(pk,r,s)
- Check that $\mathrm{H}(\mathrm{I}, \mathrm{m})=\mathrm{r}$

Theorem 12.10: If the identification scheme is secure and H is a random oracle then the above signature scheme is secure.

Schnorr Signatures via Fiat-Shamir

- Public Key: $\mathrm{h}=\mathrm{g}^{\mathrm{x}}$ in cyclic group $\langle g\rangle$ of order q .
- Secret Key: x
- $\operatorname{Sign}_{s k}(m)$

1. Select random $k \in \mathbb{Z}_{\mathrm{q}}$ and set $I=g^{k}$.
2. $r=H(I, m)$
3. Return $\sigma=(r, s)$ where $\mathrm{s}:=[r x+k \bmod q]$

- $\operatorname{Verify}_{p k}(m, \sigma=(r, s))$
- Compute $g^{s} *\left(h^{-1}\right)^{r}=g^{s-r x}$ and check if $\mathrm{r}=H\left(g^{s-r x}, m\right)$

Schnorr Signatures

- $\operatorname{Sign}_{s k}(m)$

1. Select random $k \in \mathbb{Z}_{\mathrm{q}}$ and set $I=g^{k}$.
2. $r=H(I, m)$
3. Return $\sigma=(r, s)$ where $\mathrm{s}:=[r x+k \bmod q]$

- $\operatorname{Verify}_{p k}(m, \sigma=(r, s))$
- Compute $g^{s} *\left(h^{-1}\right)^{r}=g^{s-r x}$ and check if $\mathrm{r}=H\left(g^{s-r x}, m\right)$

Corollary (of Thms 12.10 + 12.11): If the discrete-logarithm problem is hard (relative to group generator) then Schnorr Signatures are secure in the random oracle model.

- Independent of size of original group
(rth residue subgroup).
- Independent of \#bits to represent group

element

(Elliptic Curve Pairs)

Advantages:

- Short Signatures $\|\sigma\|=\|r\|+\|s\|=2\left\lceil\log _{2} q\right\rceil$ bits
- Fast and Efficient
- Patent Expired: February 2008
- Independent of size of original group ($\mathrm{r}^{\text {th }}$ residue subgroup).

Depends only on order of the subgroup
q!

Independent of \#bits to represent group element

(Elliptic Curve Pairs)

Advantages:

- Short Signatures $\|\sigma\|=\|r\|+\|s\|=2\left\lceil\log _{2} q\right\rceil$ bits
- Fast and Efficient
- Patent Expired: February 2008

Short Schnorr Signatures

- $\operatorname{Sign}_{s k}(m)$

1. Select random $k \in \mathbb{Z}$ and set $I=g^{k}$.
2. $r=H(I, m) \quad / / r \leq \sqrt{q}$
3. Return $\sigma=(r, s)$ where $\mathrm{s}:=[r x+k \bmod q]$

- $\operatorname{Verify}_{p k}(m, \sigma=(r, s))$
- Compute $g^{s} *\left(h^{-1}\right)^{r}=g^{s-r x}$ and check if $\mathrm{r}=H\left(g^{s-r x}, m\right)$
- Short Signatures $\|\sigma\|=\|r\|+\|s\|=1.5\left[\log _{2} q\right\rceil$ bits
- New Result: Short Schnorr Signatures are also secure in Generic Group+ Random Oracle Model https://eprint.iacr.org/2019/1105.pdf
- 384 bit signatures for 128-bit security
- BLS Signatures: 256 bit signatures for 128-bit security (computational overhead is much higher)

Digital Signature Algorithm (DSA)

DSA: $\langle\boldsymbol{g}\rangle$ is subgroup of \mathbb{Z}_{p}^{*} of order q
ECDSA: $\langle\boldsymbol{g}\rangle$ is order q subgroup of elliptic curve

- Secret key is x , public key is $\mathrm{h}=\mathrm{g}^{\mathrm{x}}$ along with generator g (of order q)
- $\operatorname{Sign}_{\mathrm{sk}}(\mathrm{m})$
- Pick random $\left(k \in \mathbb{Z}_{q}\right)$ and set $r=F\left(g^{k}\right) \in \mathbb{Z}_{q}$
- Compute s $:=\left[k^{-1}(x r+H(m)) \bmod q\right]$
- Output signature (r, s)
- $\mathrm{Vrfy}_{\mathrm{pk}}(\mathrm{m},(\mathrm{r}, \mathrm{s}))$ check to make sure that

$$
r=F\left(g^{H(m) s^{-1}} h^{r s^{-1}}\right)
$$

Digital Signature Algorithm (DSA)

- $\operatorname{Sign}_{\text {sk }}(\mathrm{m})$
- Pick random $(k \in \mathbb{Z})$ and set $r=F\left(g^{k}\right)=\left[g^{k} \bmod q\right]$
- Compute $\mathrm{s}:=\left[k^{-1}(x r+H(m)) \bmod q\right]$
- Output signature (r,s)
- $\mathrm{Vrfy}_{\mathrm{pk}}(\mathrm{m},(\mathrm{r}, \mathrm{s}))$ check to make sure that

$$
\begin{gathered}
r=F\left(g^{H(m) s^{-1}} h^{r s^{-1}}\right) \\
=F\left(g^{H(m) k(x r+H(m))^{-1}} g^{x r k(x r+H(m))^{-1}}\right) \\
=F\left(g^{(H(m)+x r) k(x r+H(m))^{-1}}\right) \\
=F\left(g^{k}\right):=r
\end{gathered}
$$

Digital Signature Algorithm (DSA)

- Secret key is x , public key is $\mathrm{h}=\mathrm{g}^{\mathrm{x}}$ along with generator g (of order q)
- $\mathrm{Sign}_{\mathrm{sk}}(\mathrm{m})$
- Pick random $(k \in \mathbb{Z})$ and set $r=F\left(g^{k}\right)=\left[g^{k} \bmod q\right]$
- Compute s $:=\left[k^{-1}(x r+H(m)) \bmod q\right]$
- Output signature (r, s)
- $\mathrm{Vrfy}_{\mathrm{pk}}(\mathrm{m},(\mathrm{r}, \mathrm{s}))$ check to make sure that

$$
r=F\left(g^{H(m) s^{-1}} h^{r s^{-1}}\right)
$$

Theorem: If H and F are modeled as random oracles then DSA is secure.
Weird Assumption for F(.)?

- Theory: DSA Still lack compelling proof of security from standard crypto assumptions
- Practice: DSA has been used/studied for decades without attacks

Digital Signature Algorithm (DSA)

- Secret key is x , public key is $\mathrm{h}=\mathrm{g}^{\mathrm{x}}$
- $\mathrm{Sign}_{\mathrm{sk}}(\mathrm{m})$
- Pick random $(k \in \mathbb{Z})$ and set $r=F\left(g^{k}\right)=\left[g^{k} \bmod q\right]$
- Compute s $:=\left[k^{-1}(x r+H(m)) \bmod q\right]$
- Output signature (r, s)
- $\mathrm{Vrfy}_{\mathrm{pk}}(\mathrm{m},(\mathrm{r}, \mathrm{s}))$ check to make sure that

$$
r=F\left(g^{H(m) s^{-1}} h^{r s^{-1}}\right)
$$

Remark: If signer signs two messages with same random $k \in \mathbb{Z}_{q}$ then attacker can find secret key sk!

- Theory: Negligible Probability this happens
- Practice: Will happen if a weak PRG is used
- Sony PlayStation (PS3) hack in 2010.

Certificate Authority

- Trusted Authority (CA)
- $m_{C A \rightarrow A m a z o n}=$ "Amazon's public key is $p k_{\text {Amazon }}$ (date,expiration,\#\#\#)"
- cert $_{C A \rightarrow A m a z o n}=\operatorname{Sign}_{S K_{C A}}(m)$
- Delegate Authority to other CA_{1}
- Root CA signs $m=$ " $C A_{1}$ public key is $p k_{C A 1}$ (date,expiration,\#\#\#) can issue certificates"
- Verifier can check entire certification chain
- Revocation List Signed Daily
- Decentralized Web of Trust (PGP)

One-Time Signature Scheme

- Weak notion of one-time secure signature schemes
- Attacker makes one query to oracle $\operatorname{Sign}_{\text {sk }}($.$) and then attempts to output$ forged signature for m^{\prime}
- If attacker sees two different signatures then guarantees break down
- Achievable from Hash Functions
- No number theory!
- No Random Oracles!

Lamport's Signature Scheme (from OWFs)

$$
\begin{gathered}
s k=\left[\begin{array}{lll}
x_{1,0} & x_{2,0} & x_{3,0} \\
x_{1,1} & x_{2,1} & x_{3,1}
\end{array}\right] \\
p k=\left[\begin{array}{lll}
y_{1,0} & y_{2,0} & y_{3,0} \\
y_{1,1} & y_{2,1} & y_{3,1}
\end{array}\right] \\
x_{i, j} \in\{0,1\}^{n}(\text { uniform }) \\
y_{i, j}=f\left(x_{i, j}\right)
\end{gathered}
$$

Assumption: f is a One-Way Function

Lamport's Signature Scheme (from OWFs)

$$
\begin{aligned}
& s k=\left[\begin{array}{lll}
x_{1,0} & x_{2,0} & x_{3,0} \\
x_{1,1} & x_{2,1} & x_{3,1}
\end{array}\right] \\
& p k=\left[\begin{array}{lll}
y_{1,0} & y_{2,0} & y_{3,0} \\
y_{1,1} & y_{2,1} & y_{3,1}
\end{array}\right]
\end{aligned}
$$

$\operatorname{Sign}_{s k}(011)=\left(x_{1,0}, x_{2,1}, x_{3,1}\right)$

Lamport's Signature Scheme (from OWFs)

$$
\begin{gathered}
s k=\left[\begin{array}{lll}
x_{1,0} & x_{2,0} & x_{3,0} \\
x_{1,1} & x_{2,1} & x_{3,1}
\end{array}\right] \\
p k=\left[\begin{array}{lll}
y_{1,0} & y_{2,0} & y_{3,0} \\
y_{1,1} & y_{2,1} & y_{3,1}
\end{array}\right] \\
\operatorname{Sign}_{s k}(011)=\left(x_{1,0}, x_{2,1}, x_{3,1}\right) \\
\operatorname{Vrfy}_{p k}\left(011,\left(x_{1}, x_{2}, x_{3}\right)\right)=\left\{\begin{array}{cc}
1 & \text { if } f\left(x_{1}\right)=y_{1,0} \wedge f\left(x_{2}\right)=y_{2,1} \wedge f\left(x_{3}\right)=y_{3,1} \\
0 & \text { otherwise }
\end{array}\right.
\end{gathered}
$$

Lamport's Signature Scheme

Theorem 12.16: Lamport's Signature Scheme is a secure one-time signature scheme (assuming f is a one-way function).

Proof Sketch: Signing a fresh message requires inverting $f\left(x_{i, j}\right)$ for random $x_{i, j}$.

Remark: Attacker can break scheme if he can request two signatures.

$$
\begin{aligned}
& \text { How? } \\
& \quad \text { Request signatures of both } 0^{n} \text { and } 1^{n} \text {. }
\end{aligned}
$$

Lamport's Signature Scheme

Remark: Attacker can break scheme if he can request two signatures.
How?
Request signatures of both 0^{n} and 1^{n}.

$$
\begin{gathered}
s k=\left[\begin{array}{lll}
x_{1,0} & x_{2,0} & x_{3,0} \\
x_{1,1} & x_{2,1} & x_{3,1}
\end{array}\right] \\
\operatorname{Sign}_{s k}(000)=\left(x_{1,0}, x_{2,0}, x_{3,0}\right) \\
\operatorname{Sign}_{s k}(111)=\left(x_{1,1}, x_{2,1}, x_{3,1}\right)
\end{gathered}
$$

Secure Signature Scheme from OWFs

Theorem 12.22: secure/stateless signature scheme from collision-resistant hash functions.

- Collision Resistant Hash Functions do imply OWFs exist

Remark: Possible to construct signature scheme Π which is existentially unforgeable under an adaptive chosen message attacks using the minimal assumption that one-way functions exist.

Week 13 Topic 1: El-Gamal Encryption

El-Gamal Encryption

- Key Generation:
- Generate cyclic group $<\mathrm{g}>$ of prime order q
- Pick random $x \leq q$ and compute $h=g^{x}$
- Public Key: g, h
- Secret Key: $x=\operatorname{dlog}_{g}(h)$

El-Gamal Encryption

- Public Key: g, h
- Secret Key: $x=\operatorname{dlog}_{g}(h)$
- $\operatorname{Enc}_{\mathrm{pk}}(m)=\left\langle g^{y}, m \cdot h^{y}\right\rangle$ for a random $\mathrm{y} \in \mathbb{Z}_{q}$
- $\operatorname{Dec}_{\mathrm{sk}}\left(c=\left(c_{1}, c_{2}\right)\right)=c_{2} c_{1}^{-x}$

$$
\begin{gathered}
\operatorname{Dec}_{\mathrm{sk}}\left(g^{y}, m \cdot h^{y}\right)=m \cdot h^{y}\left(g^{y}\right)^{-x} \\
=m \cdot h^{y}\left(g^{y}\right)^{-x} \\
=m \cdot\left(g^{x}\right)^{y}\left(g^{y}\right)^{-x} \\
=m \cdot g^{x y} g^{-x y} \\
=m
\end{gathered}
$$

El-Gamal Encryption

- $\operatorname{Enc}_{\mathrm{pk}}(m)=\left\langle g^{y}, m \cdot h^{y}\right\rangle$ for a random $\mathrm{y} \in \mathbb{Z}_{q}$
- $\operatorname{Dec}_{\mathrm{sk}}\left(c=\left(c_{1}, c_{2}\right)\right)=c_{2} c_{1}^{-x}$

Theorem 11.18: Let $\Pi=$ (Gen, Enc, Dec) be the El-Gamal Encryption scheme (above) then if DDH is hard relative to \mathcal{G} then Π is CPA-Secure. Proof: Recall that CPA-security and eavesdropping security are equivalent for public key crypto. Therefore, it suffices to show that for all PPT A there is a negligible function negl such that

$$
\operatorname{Pr}\left[\operatorname{PubK}_{\mathrm{A}, \Pi}^{\mathrm{eav}}(\mathrm{n})=1\right] \leq \frac{1}{2}+\operatorname{neg}(\mathrm{n})
$$

Eavesdropping Security (PubK ${ }_{A, \Pi}^{\text {eav }}(\mathrm{n})$)
Public Key: pk

Random bit b (pk,sk) = Gen(.)
$\forall P P T A \exists \mu$ (negligible) s.t $\operatorname{Pr}\left[\operatorname{PubK}_{\mathrm{A}, \Pi}^{\mathrm{eav}}(\mathrm{n})=1\right] \leq \frac{1}{2}+\mu(n)$

El-Gamal Encryption

Theorem 11.18: Let $\Pi=$ (Gen, Enc, Dec) be the El-Gamal Encryption scheme (above) then if DDH is hard relative to \mathcal{G} then Π is CPA-Secure. Proof: First introduce an `encryption scheme' $\widetilde{\Pi}$ in which $\overline{\text { Enc }_{\mathrm{pk}}}(m)=$ $\left\langle g^{y}, m \cdot g^{z}\right\rangle$ for random $\mathrm{y}, \mathrm{z} \in \mathbb{Z}_{q}$ (there is actually no way to do decryption, but the experiment $\operatorname{PubK}_{\mathrm{A}, \bar{\Pi}}^{\text {eav }}(\mathrm{n})$ is still well defined).

Claim: $\operatorname{Pr}\left[\operatorname{PubK}_{\mathrm{A}, \widetilde{\Pi}}^{\text {eav }}(\mathrm{n})=1\right]=\frac{1}{2}$

El-Gamal Encryption

Claim: $\operatorname{Pr}\left[\operatorname{PubK}_{\mathrm{A}, \bar{\Pi}}^{\text {eav }}(\mathrm{n})=1\right]=\frac{1}{2}$
Proof: (using Lemma 11.15)

$$
\begin{aligned}
& \operatorname{Pr}\left[\operatorname{PubK}_{\mathrm{A}, \widetilde{\Pi}}^{\text {eav }}(\mathrm{n})=1\right] \\
&= \frac{1}{2} \operatorname{Pr}\left[\operatorname{PubK}_{\mathrm{A}, \tilde{\Pi}}^{\text {eav }}(\mathrm{n})=1 \mid b=1\right] \\
&=\frac{1}{2}+\frac{1}{2}\left(1-\operatorname{Pr}\left[\operatorname{PubK}_{\mathrm{A}, \tilde{\Pi}}^{\text {eav }}(\mathrm{n})=0 \mid b=0\right]\right) \\
&\left.\left.=\frac{\operatorname{Pr}_{\mathrm{y}, \mathbb{Z}_{q}}\left[A\left(\left\langle g^{y}, m_{1} \cdot g^{z}\right\rangle\right)\right.}{}=1\right]-\operatorname{Pr}_{\mathrm{y}, \mathrm{z} \leftarrow \mathbb{Z}_{q}}\left[A\left(\left\langle g^{y}, m_{0} \cdot g^{z}\right\rangle\right)=1\right]\right) \\
&=\frac{1}{2}
\end{aligned}
$$

El-Gamal Encryption

Theorem 11.18: Let $\Pi=$ (Gen, Enc, Dec) be the El-Gamal Encryption scheme (above) then if DDH is hard relative to \mathcal{G} then Π is CPA-Secure.
Proof: We just showed that

$$
\operatorname{Pr}\left[\operatorname{PubK}_{\mathrm{A}, \bar{\Pi}}^{\mathrm{eav}}(\mathrm{n})=1\right]=\frac{1}{2}
$$

Therefore, it suffices to show that

$$
\left|\operatorname{Pr}\left[\operatorname{PubK}_{\mathrm{A}, \Pi}^{\mathrm{eav}}(\mathrm{n})=1\right]-\operatorname{Pr}\left[\operatorname{PubK}_{\mathrm{A}, \tilde{\Pi}}^{\mathrm{eav}}(\mathrm{n})=1\right]\right| \leq \operatorname{negl}(n)
$$

This, will follow from DDH assumption.

El-Gamal Encryption

Theorem 11.18: Let $\Pi=$ (Gen, Enc, $D e c$) be the El-Gamal Encryption scheme (above) then if DDH is hard relative to \mathcal{G} then Π is CPA-Secure.
Proof: We can build $B\left(g^{x}, g^{y}, Z\right)$ to break DDH assumption if Π is not CPA-Secure. Simulate eavesdropping attacker A

1. Send attacker public key $\mathrm{pk}=\left\langle\mathbb{G}, q, g, h=g^{x}\right\rangle$
2. Receive m_{0}, m_{1} from A.
3. Send A the ciphertext $\left\langle g^{y}, m_{b} \cdot Z\right\rangle$.
4. Output 1 if and only if attacker outputs $\mathrm{b}^{\prime}=\mathrm{b}$; otherwise output 0 .

$$
\begin{gathered}
\left|\operatorname{Pr}\left[B\left(g^{x}, g^{y}, Z\right)=1 \mid Z=g^{x y}\right]-\operatorname{Pr}\left[B\left(g^{x}, g^{y}, Z\right)=1 \mid Z=g^{z}\right]\right| \\
=\left|\operatorname{Pr}\left[\operatorname{PubK}_{\mathrm{A}, \Pi}^{\mathrm{eav}}(\mathrm{n})=1\right]-\operatorname{Pr}\left[\operatorname{PubK}_{\mathrm{A}, \Pi}^{\mathrm{eav}}(\mathrm{n})=1\right]\right| \\
=\left|\operatorname{Pr}\left[\operatorname{PubK}_{\mathrm{A}, \Pi}^{\text {eav }}(\mathrm{n})=1\right]-1 / 2\right|
\end{gathered}
$$

El-Gamal Encryption

- $\operatorname{Enc}_{\mathrm{pk}}(m)=\left\langle g^{y}, m \cdot h^{y}\right\rangle$ for a random $\mathrm{y} \in \mathbb{Z}_{q}$ and $h=g^{x}$,
- $\operatorname{Dec}_{\mathrm{sk}}\left(c=\left(c_{1}, c_{2}\right)\right)=c_{2} c_{1}^{-x}$

Fact: El-Gamal Encryption is malleable.

$$
\begin{gathered}
\mathrm{c}=\operatorname{Enc}_{\mathrm{pk}}(m)=\left\langle g^{y}, m \cdot h^{y}\right\rangle \\
c^{\prime}=\left\langle g^{y}, 2 \cdot m \cdot h^{y}\right\rangle \\
\operatorname{Dec}_{\mathrm{sk}}\left(c^{\prime}\right)=2 \cdot m \cdot h^{y} \cdot g^{-x y}=2 m
\end{gathered}
$$

Hint: This observation may be relevant for homework 4.

Key Encapsulation Mechanism (KEM)

- Three Algorithms
- Gen $\left(1^{n}, R\right)$ (Key-generation algorithm)
- Input: Random Bits R
- Output: $(\boldsymbol{p} \boldsymbol{k}, \boldsymbol{s k}) \in \mathcal{K}$
- Encaps ${ }_{\mathrm{pk}}\left(1^{n}, R\right)$
- Input: security parameter, random bits R
- Output: Symmetric key $\mathrm{k} \in\{0,1\}^{\ell(n)}$ and a ciphertext c
- $\operatorname{Decaps}_{\mathrm{sk}}(c)$ (Deterministic algorithm)
- Input: Secret key sk $\in \mathcal{K}$ and a ciphertex c
- Output: a symmetric $\operatorname{key}\{0,1\}^{\ell(n)}$ or \perp (fail)
- Invariant: $\operatorname{Decaps}_{\mathrm{sk}}(\mathrm{c})=\mathrm{k}$ whenever $(\mathrm{c}, \mathrm{k})=\operatorname{Encaps}_{\mathrm{pk}}\left(1^{n}, R\right)$

KEM CCA-Security ($\operatorname{KEM}_{\mathrm{A}, \Pi}^{\mathrm{cca}}(\mathrm{n})$)

KEM from RSA and El-Gamal

- Recap: CCA-Secure KEM from RSA in Random Oracle Model
- El-Gamal yields CPA-Secure KEM in Random Oracle Model
- $\left(\boldsymbol{g}^{y}, \boldsymbol{H}\left(\boldsymbol{h}^{y}\right)\right) \leftarrow \operatorname{Encaps}_{\mathrm{pk}}\left(\mathbf{1}^{\boldsymbol{n}} ; \boldsymbol{R}\right)$ and $\operatorname{Decaps}_{\mathrm{sk}}\left(\boldsymbol{g}^{y}\right)=\boldsymbol{H}\left(\boldsymbol{g}^{\boldsymbol{x y}}\right)$
- CDH assumption must hold.
- Above construction is also a CPA-Secure KEM in standard model
- As long as $P r_{x \in \mathbb{G}}[H(x)=k] \approx 2^{-\ell}$ for each key $k \in\{0,1\}^{\ell}$ and $\boldsymbol{D D H}$ holds
- Disadvantage: weaker security notion for KEM, stronger DDH assumption
- Advantage: Proof in standard model

CCA-Secure Variant in Random Oracle Model

- Key Generation (Gen(1 $\left.1^{n}\right)$):

1. Run $\mathcal{G}\left(1^{n}\right)$ to obtain a cyclic group \mathbb{G} of order $\mathrm{q}($ with $\|q\|=n)$ and a generator g such that $\langle\mathrm{g}\rangle=\mathbb{G}$.
2. Choose a random $\mathrm{x} \in \mathbb{Z}_{q}$ and set $h=g^{x}$
3. Public Key: $\mathrm{pk}=\langle\mathbb{G}, q, g, h\rangle$
4. Private Key: sk $=\langle\mathbb{G}, q, g, x\rangle$

- $\operatorname{Enc}_{\mathrm{pk}}(m)=\left\langle g^{y}, c^{\prime}, \operatorname{Mac}_{K_{M}}\left(c^{\prime}\right)\right\rangle$ for a random $\mathrm{y} \in \mathbb{Z}_{q}$ where

$$
K_{E} \| K_{M}=H\left(h^{y}\right) \quad \text { (KEM) }
$$

and

$$
c^{\prime}=\operatorname{Enc}_{\mathrm{K}_{\mathrm{E}}}^{\prime}(m) \quad(\text { Encrypt then MAC })
$$

CCA-Secure Variant in Random Oracle Model

Public Key: pk $=\langle\mathbb{G}, q, g, h\rangle$
Private Key: sk $=\langle\mathbb{G}, q, g, x\rangle$

- $\operatorname{Enc}_{\mathrm{pk}}(m)=\left\langle g^{y}, c^{\prime}, M a c_{K_{M}}\left(c^{\prime}\right)\right\rangle$ for a random $\mathrm{y} \in \mathbb{Z}_{q}$ and $K_{E} \| K_{M}=$ $H\left(h^{y}\right)$ and $c^{\prime}=\operatorname{Enc}_{\mathrm{K}_{\mathrm{E}}}^{\prime}(m)$
- $\operatorname{Dec}_{\text {sk }}\left(\left\langle c, c^{\prime}, t\right\rangle\right)$

1. $K_{E} \| K_{M}=H\left(c^{x}\right)$
2. If $\operatorname{Vrfy}_{\mathrm{K}_{\mathrm{M}}}\left(c^{\prime}, t\right) \neq 1$ or $c \notin \mathbb{G}$ output \perp; otherwise output $\operatorname{Dec}_{\mathrm{K}_{\mathrm{E}}}^{\prime}\left(c^{\prime}\right)$

CCA-Secure Variant in Random Oracle Model

Theorem: If $\mathrm{Enc}_{\mathrm{K}_{\mathrm{E}}}^{\prime}$ is CPA-secure, $\mathrm{Mac}_{\mathrm{K}_{\mathrm{M}}}$ is a strong MAC and a problem called gap-CDH is hard then this a CCA-secure public key encryption scheme in the random oracle model.

- $\operatorname{Enc}_{\mathrm{pk}}(m)=\left\langle g^{y}, c^{\prime}, \operatorname{Mac}_{\mathrm{K}_{\mathrm{M}}}\left(c^{\prime}\right)\right\rangle$ for a random $\mathrm{y} \in \mathbb{Z}_{q}$ and $K_{E} \| K_{M}=$ $H\left(h^{y}\right)$ and $c^{\prime}=\operatorname{Enc}_{\mathrm{K}_{\mathrm{E}}}^{\prime}(m)$
- $\operatorname{Dec}_{\text {sk }}\left(\left\langle c, c^{\prime}, t\right\rangle\right)$

1. $K_{E} \| K_{M}=H\left(c^{x}\right)$
2. If $\operatorname{Vrfy}_{\mathrm{K}_{\mathrm{M}}}\left(c^{\prime}, t\right) \neq 1$ or $c \notin \mathbb{G}$ output \perp; otherwise output $\operatorname{Dec}_{\mathrm{K}_{\mathrm{E}}}^{\prime}\left(c^{\prime}\right)$

CCA-Secure Variant in Random Oracle Model

Remark: The CCA-Secure variant is used in practice in the ISO/IEC 18033-2 standard for public-key encryption.

- Diffie-Hellman Integrated Encryption Scheme (DHIES)
- Elliptic Curve Integrated Encryption Scheme (ECIES)
- $\mathrm{Enc}_{\mathrm{pk}}(m)=\left\langle g^{y}, c^{\prime}, \operatorname{Mac}_{\mathrm{K}_{\mathrm{M}}}\left(c^{\prime}\right)\right\rangle$ for a random $\mathrm{y} \in \mathbb{Z}_{q}$ and $K_{E} \| K_{M}=$ $H\left(h^{y}\right)$ and $c^{\prime}=\operatorname{Enc}_{\mathrm{K}_{\mathrm{E}}}^{\prime}(m)$
- $\operatorname{Dec}_{\text {sk }}\left(\left\langle c, c^{\prime}, t\right\rangle\right)$

1. $K_{E} \| K_{M}=H\left(c^{x}\right)$
2. If $\operatorname{Vrfy}_{\mathrm{K}_{\mathrm{M}}}\left(c^{\prime}, t\right) \neq 1$ or $c \notin \mathbb{G}$ output \perp; otherwise output $\operatorname{Dec}_{\mathrm{K}_{\mathrm{E}}}^{\prime}\left(c^{\prime}\right)$
