Cryptography
CS 555

Week 12:

e Discrete Log Attacks + NIST Recommendations for Concrete
Security Parameters

* |dentification Schemes + Schnorr Signatures
e El Gamal

Readings: Katz and Lindell Chapter 10 & Chapter 11.1-11.2, 11.4

Homework 4 Due Thursday (4/8) at 11:59PM on Gradescope

Spring 2021



Week 12: Topic O: Discrete Log
Attacks + NIST
Recommendations for Concrete
Security Parameters



Factoring Algorithms (Summary)

e Pollard’s p-1 Algorithm
 Works when N = pg where (p-1) has only “small” prime factors
e Defense: Ensure that p (resp. q) is a strong prime (p-1) has no “small” prime factors.
* Note: A random prime is strong with high probability.

e Pollard’s Rho Algorithm
e General purpose factoring algorithm
e Core: Low Space Cycle Detection

* Time: T(N) = O(VN polylog(N))
e Naive Algorithm takes time O(W polylog(N)) to factor

e Quadratic Sieve
e Time: 20(Vlog N loglogN) — 70(Jnlogn) (sh-exponential, but not polynomial time)
e Preprocessing + Linear Algebra: find %,y € Zj such that x* = y* mod N and x # +y mod N?

|"




Discrete Log Attacks

Pohlig-Hellman Algorithm
e Given a cyclic group G of non-prime order g=| G |=rp
e Reduce discrete log problem to discrete problem(s) for subgroup(s) of order p (or smaller).
» Preference for prime order subgroups in cryptography

Baby-step/Giant-Step Algorithm
* Solve discrete logarithm in time 0(\@ polylog(q))
Pollard’s Rho Algorithm
* Solve discrete logarithm in time 0(\/6 polylog(q))
e Bonus: Constant memory!
Index Calculus Algorithm
e Similar to quadratic sieve

e Runs in sub-exponential time 20(Vlog qloglogq)
* Specific to the group Zj (e.g., attack doesn’t work against elliptic-curve groups)




Discrete Log Attacks

e Pohlig-Hellman Algorithm
e Given a cyclic group G of non-prime order g=| G |=rp
e Reduce discrete log problem to discrete problem(s) for subgroup(s) of order p (or smaller).
* Preference for prime order subgroups in cryptography

e Let G = (g) and h = g* € G be given. For simplicity assume that r is prime and r < p.

* Observe that (g") generates a subgroup of size p and that h" € (g").
* Solve discrete log problem in subgroup {(g") with input h".
e Find z such thath" = g"*= rz = rx mod p.

* Observe that (g?) generates a subgroup of size r and that hP € (gP).
* Solve discrete log problem in subgroup {(g?) with input hP.
* Find y such that h? = g¥?- pz = px modr.

 Chinese Remainder Theorem h = g* where x & (|z mod p], [y mod r])



Baby-step/Giant-Step Algorithm

* Input: G = (g) of order g, generatorgand h = g* € G
*Sett = Wﬁ]

gt




Baby-step/Giant-Step Algorithm

* Input: G = (g) of order g, generatorgand h = g* € G

e Sett = b /qJ
Precomputation: Compute and store gt °
For eachi=0to El

g’ N

g3

g




Baby-step/Giant-Step Algorithm

* Input: G = (g) of order g, generatorgand h = g* € G
*Sett = Wﬁ]

t-1 steps =2 x+(t-1)=2t-9x=t+1

' @

Example: x=t+1

st-Processing: h=g*
gZ

g

ga-




Baby-step/Giant-Step Algorithm

* Input: G = (g) of order g, generatorgandh = g* € G
e Sett = |/q]

Fori=0to H
t .
gi < g"
Sort the pairs (i,g.) by their second component
Fori=Otot .
h; < hg' hi — hgl —
if h; = g, € {90, ..., g¢} then b=
return [kt-i mod q] —n=9g



Discrete Log Attacks

e Baby-step/Giant-Step Algorithm
e Solve discrete logarithm in time 0(\/6 polylog(q))
* Requires memory 0(+/q polylog(q))

* Pollard’s Rho Algorithm

e Solve discrete logarithm in time 0(\/6 polylog (q))
e Bonus: Constant memory!

e Key Idea: Low-Space Birthday Attack (*) using our collision resistant hash
function

Hy p(xq,%,) = g*1h™*2

Hg,h(yLYZ) — Hg,h(xl, xz) — hyz_xz — gxl_yl
- h = g(xl_Jﬁ)(J’z—xz)_l

(*) A few small technical details to address



Remark: We used discrete-log problem to

D | SC rete Log Atta C kS construct collision resistant hash functions.

Security Reduction showed that attack on
collision resistant hash function yields attack

* Baby-step/Giant-Step Algorithm on discrete log.
» Solve discrete logarithm in time 0(\/6 polylog(q))
e Requires memory 0(\/5 polylog(q)) - Generic attack on collision resistant hash

e Pollard’s Rho Algorithm functions (e.g., low space birthday attack)

« Solve discrete logarithm in time O(W o yields generic attack on discrete log.

e Bonus: Constant memory!

» Key Idea: Low-Space Birthday Attack (*)
Hy p(x1,x72) = g*th*?

Hg,h(YLYZ) = Hg,h(xl;xz)
- h}’z_xz — gxl_yl
- h = g(x1—3’1)(3’2—x2)_1

(*) A few small technical details to address
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Discrete Log Attacks

e Index Calculus Algorithm
e Similar to quadratic sieve

e Runs in sub-exponential time 20(y/logploglogp )
* Specific to the group Z,, (e.g., attack doesn’t work on elliptic-curve groups)

* As before let {p,,...,p,} denote the set of prime numbers < B.
* Step 1.A: Find £ > k distinct values x4, ..., x4 such that g; = [g"/ mod p] is

B-smooth for each j. That is y
ei’-
gj = Hpi g
i=1



Discrete Log Attacks

* As before let {p,,...,p,} be set of prime numbers < B.

* Step 1.A: Find £ > k distinct values xq, ..., x4 such that g; = [g"/ mod p] is
B-smooth for each j. That is )
ei’-
gj = Hpi 7
i=1

e Step 1.B: Use linear algegra to solve the equations
Xj = Z( log, pi) X e;; mod (p — 1).
i=1

(Note: the loggpj’s are the unknowns)



Discrete Log

* As before let {p,,...,p,} be set of prime numbers < B.
e Step 1 (precomputation): Obtain y,,...,y, such that p.

e Step 2: Given discrete log challenge h=g* mod p.
* Find z such that [g?h mod p] is B-smooth

|gZ?h mod p| = np
1_[(93’1)91 — ng eiYi

= g”i mod p.



Discrete Log

* As before let {p,,...,p,} be set of prime numbers < B.
* Step 1 (precomputation): Obtain y,,...,y, such that p. = g”t mod p.

e Step 2: Given discrete log challenge h=g* mod p.
* Find z such that [g?h mod p] is B-smooth

[gZh mod p] = gZi¢Yi » h = gLi¢Vi=Z

—>x=z€i)’i—z

i
* Remark: Precomputation costs can be amortized over many discrete
log instances

* In practice, the same group G = (g) and generator g are used repeatedly.

Reference: https://www.weakdh.org/



https://www.weakdh.org/

NIST Guidelines (Concrete Security)

Best known attack against 1024 bit RSA takes time (approximately) 28°

Symmetric Key Size RSA and Diffie-Hellman Key Size Elliptic Curve Key Size
(bits) (bits) (bits)
80 1024 160
112 2048 224
128 3072 256
192 7680 384
256 15360 521

Table 1: NIST Recommended Key Sizes



NIST Guidelines (Concrete Security)

Diffie-Hellman uses subgroup of Z, size g

Symmetric Key Size RSA and Diffie-Hellman Key Size Elliptic Curve Key Size
(bits) (bits) (bits)
80 1024 160
112 2048 q=224 bits 224
128 3072 q=256 bits 256
192 7680 q=384 bits 384
256 15360 q=512 bits 521

Table 1: NIST Recommended Key Sizes
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NIST Guidelines (Concrete Security)

112 bits = 28 2 log V2224 bits (Pollard’s Rho)
Symmetric Key Size RSA and Diffie-Hellman Key Size Elliptic Curve Key Size
(bits) (bits) (bits)
80 1024 160
112 2048 q=224 bits 224
128 3072 4=256 bits 256
192 7680 q=384 bits 384
256 15360 q=512 bits 521

Table 1: NIST Recommended Key Sizes
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NIST Guidelines (Concrete Security)

112 bits ~ ,/204810og 2048 bits (Index Calculus)

Symmetric Key Size RSA and Diffie-Hellman Key Size Elliptic Curve Key Size
(bits) (bits) (bits)
80 1024 160
112 2048 q=224 bits 224
128 3072 q=256 bits 256
192 7680 q=384 bits 384
256 15360 q=512 bits 521

Table 1: NIST Recommended Key Sizes
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2014

: 2011 through 2031 and
Security Strength 2013 O Beyond
Applying Deprecated Disallowed
50 Processing Legacy use
112 ﬁppl:,.ru.ig Acceptable Acceptable Disallowed
Processing Legacy use
128 Acceptable Acceptable Acceptable
192 | Applying/Processing | Acceptable Acceptable Acceptable
256 Acceptable Acceptable Acceptable

MIST s security strength guidelines, from Specialist Publication 3P 800-57
Kecommendation for Key Manogement — Fart 1: General (Kewision 3]




Signature Length

* RSA-FDH
* 128-bit security =» log,(N) > 3072
* RSA-FDH Signatures are at least 3Kb long
* Are shorter signatures possible?

* RSA Ciphertexts/RSA KEM
* At least 3Kb long for 128-bit security
e Shorter Ciphertexts



ldentification Scheme

* Interactive protocol that allows one party to prove its identify

(authenticate itself) to another

e Two Parties: Prover and Verifier

1.

e Prover has secret key sk and Verifier has public key pk

Prover runs P,(sk) to obtain (I,st) ----initial message |, state st
e Sends | to Verifier

Verifier picks random message r from distribution (), and sends r to
Prover

Prover runs P,(sk,st,r) to obtain s and sends s to verifier
Verifier checks if V(pk,r,s)=I



ldentification Scheme

1. Prover runs P,(sk) to obtain (I,st) ---- initial message |, state st
1. Sends | to Verifier

2. Verifier picks random message r from distribution (), and sends r
to Prover

3. Prover runs P,(sk,st,r) to obtain s and sends s to verifier

4. Verifier checks if V(pk,r,s)=l
An eavesdropping attacker obtains a transcript (I,r,s) of all the message
sent.

Transcript Oracle: Trans,,(.) runs honest execution and outputs
transcript.



[dentification Game (Ident, (n))

Public Key: pk
Again
Transg;(.)

1 Again
‘ Transg, ()
I B
) r< 0,
- Again }
Transg, ()

1if V(pk,r,s) =1

Ident, ;(n) =

VPPT A 3u (negligible) s.t Pr[Ident, n(n) = 1] < u(n) .



Schnorr Identification Scheme

 Verifier knows h=g*
* Prover knows x such that h=g*

1. Prover runs P,(x) to obtain (k € Z I = k) and sends initial
message | to verifier

2. Verifier picks randomr € Z (q is order of the group) and sends r to
q
prover

3. Prover runs P,(x,k,r) to obtain s := [rx + k mod q] and sends s to
Verifier

4. Verifier checks if g * (h™1)" =1 = g~



Schnorr Identification Scheme

 Verifier knows h=g*
* Prover knows x such that h=g*

1. Prover runs P,(x) to obtain (k € Z 1 = k) and sends initial
message | to verifier

2. Verifier picks random r € Z (q is order of the group) and sends r to
prover

3. Prover runs P,(x,k,r) to obtain s := [rx + k mod q] and sends s to
Verifier

4. Verifier checks if g5 x (h™1)" =1 = g*
gs " (h—l)r — grx+k mod q g—xr — gk



Schnorr Identification Scheme

e Verifier knows h=g*
* Prover knows x such that h=g*

* Prover runs P,(x) to obtain (k eZ , I = gk)and sends initial message | to
verifier !

e Verifier picks random r € Zq (q is order of the group) and sends r to prover

e Prover runs P1(x,k,r) to obtain s := [rx + k mod q] and sends s to Verifier
* Verifier checks if g5 * (h™1)" = [ = g~

Theorem 12.11: If the discrete-logarithm problem is hard (relative to group
generator) then Schnorr identification scheme is secure.



Fiat-Shamir Transform

 |dentification Schemes can be transformed into signatures
e Sign g (m)

e First compute (l,st)= P,(sk) (as prover)
e Next compute the challenge r = H(I,m) (as verifier)
e Compute the response s = P,(sk,st,r)
e Qutput signature (r,s)
* Vrfy, (m,(r,s))
e Compute | := V(pk,r,s)
e Check that H(l,m)=r

Theorem 12.10: If the identification scheme is secure and H is a
random oracle then the above signature scheme is secure.



Schnorr Signatures via Fiat-Shamir

* Public Key: h=g* in cyclic group (g) of order q.
e Secret Key: x
* Signg,(m)

1. Selectrandomk € Z_ andset! = gk.

2. r=HU,m)
3. Returno = (r,s) wheres = |[rx + k mod q]

. Verifypk(m, o = (r, S))
e Compute g5 * (h™1)" = g5 "™ and check ifr = H(g* ™, m)



Schnorr Signhatures

* Signg,(m)
1. Select random k € Zq and set I = g*.
2. r=H(,m)
3. Returno = (r,s) where s := [rx + k mod q]

. Verifypk(m, o=(r, S))
e Compute g5 * (h™1)" = g5 ™ and check ifr = H(g®* ™, m)

Corollary (of Thms 12.10 + 12.11): If the discrete-logarithm problem is
hard (relative to group generator) then Schnorr Signatures are secure in
the random oracle model.



 |ndependent of size of
original group Depends only on
(rth residue subgroup). ~rder of the subgroup

 |ndependent of #bits to
represent group
element
(Elliptic Curve Pairs)

Advantages:

 Short Signatures ||o|| = ||7|| + ||s|| = 2[log, g] bits
e Fast and Efficient

e Patent Expired: February 2008




* Independent of size of Depends only on

original group order of the subgroup
(rth residue subgroup). q!

g~

 |ndependent of #bits to DLOG 128 bit security:
represent group BEaek!  [log, g] =~ 256

element
(Elliptic Curve Pairs)

Advantages:

 Short Signatures ||o|| = ||7|| + ||s|| = 2[log, g] bits
e Fast and Efficient

e Patent Expired: February 2008

checkif r ~ 512 bit signatures




Short Schnorr Signatures

* Signg,(m)
1. Selectrandomk € Z andsetI = g*.
2 r=HUIm) [Ir<q
3. Returno = (r,s) wheres = [rx + k mod ¢]

. Verifypk('m, o= (r5))
e Compute g5 * (h™1)" = g5 ™ and check ifr = H(g®* ™, m)

 Short Signatures ||c|| = ||7|| + ||s|| = 1. 5]log, q] bits
 New Result: Short Schnorr Signatures are also secure in Generic Group+
Random Oracle Model https://eprint.iacr.org/2019/1105.pdf
e 384 bit signatures for 128-bit security

e BLS Signatures: 256 bit signatures for 128-bit security (computational
overhead is much higher)



https://eprint.iacr.org/2019/1105.pdf

Digital Signature Algorithm (DSA)

DSA: (g) is subgroup of Z,, of order q
ECDSA: (g) is order q subgroup of elliptic curve

e Secret key is X, public key is h=g*along with generator g (of order q)

* Sign (M)
e Pickrandom (k € Z )andsetr = F(g*) € Z,
e Compute s := [k~ (xr + H(m)) mod q]
e Qutput signature (r,s)
* Vrfy, (m,(r,s)) check to make sure that
r = F(gH(m)s hTs™ )



Digital Signature Algorithm (DSA)

* Signg (m)
e Pick random (k € Z ) and setr = F(gk) [g% mod q]
e Compute s == [k 1(xr + H(m)) mod q]
e Qutput signature (r,s)

* Vrfy,(m,(r,s)) check to make sure that
r = F(gH(m)S RS~ )
— F(gH(‘m)k(xr+H(m)) 1gx7‘k(xr+H(m))—1)

_ F(g (H(m)+xr)k(xr+H(m))_1)
- P(g") =



Digital Signature Algorithm (DSA)

e Secret key is x, public key is h=gXalong with generator g (of order q)
* Sign,(m)

e Pickrandom (k € Z )andsetr = F(g*) = [g"* mod q]

« Computes == [k~ 1(xr + H(m)) mod q]

e Qutput signature (r,s)

* Vrfy,(m,(rs)) check to make sure that
r = F(gH(m)s‘lhrs‘l)

Theorem: If H and F are modeled as random oracles then DSA is secure.

Weird Assumption for F(.)?

 Theory: DSA Still lack compelling proof of security from standard crypto assumptions
* Practice: DSA has been used/studied for decades without attacks



Digital Signature Algorithm (DSA)

e Secret key is x, public key is h=g*

* Sign,(m)
e Pickrandom (k € Z )andsetr = F(g*) = [g"* mod q]
« Computes == [k~ 1(xr + H(m)) mod q]
e Qutput signature (r,s)

* Vrfy,(m,(rs)) check to make sure that
r = F(gH(m)s‘lhrs‘l)

Remark: If signer signs two messages with same random k € Z then attacker can find
secret key sk! 1

* Theory: Negligible Probability this happens
* Practice: Will happen if a weak PRG is used
e Sony PlayStation (PS3) hack in 2010.



Certificate Authority

e Trusted Authority (CA)

* Measamazon= AMazon’s public key is pk 4mazon (date,expiration, ###)”
* certcasamazon = S i.gnSKCA (m)

* Delegate Authority to other CA,

e Root CA signs m= “CA, public key is pk.41 (date,expiration, ###) can issue
certificates”

e Verifier can check entire certification chain
e Revocation List Signed Daily
e Decentralized Web of Trust (PGP)



One-Time Signature Scheme

* Weak notion of one-time secure signature schemes

 Attacker makes one query to oracle Sign,(.) and then attempts to output
forged signature for m’

* |f attacker sees two different signatures then guarantees break down

e Achievable from Hash Functions
* No number theory!
* No Random Oracles!



Lamport’s Signature Scheme (from OWFs)

X1,0 X20 X3,0
sk =

X11 X21 X31

k_[yLo Y2,0 Y3,0]
PR = yi1 Y21 Yan

x; j € {0,1}" (uniform)

yij = f(xi)

Assumption: f is a One-Way Function



Lamport’s Signature Scheme (from OWFs)

X10 X20 X3,0
sk =

X11 X21 X31

k_[yLo Y2,0 3’3,0]
PR = yi1 Y21 Yan

Sign, (011) = (X1,0» X2,1s x3,1)



Lamport’s Signature Scheme (from OWFs)

X1,0 X200 X3,0
sk =

X11 X21 X31

k—[yl’o Y2,0 3’3,0]
PX=yi1 Vo1 ¥31

Sign,(011) = (Xl,o, X2,1) x3,1)

1 iff(x)= NT(x>) = NT(xs) =
Vrfypk(Oll, (xl,lexg)) — {0 Ot];l(eri/\)liseh,o f(x3) V2,1 f(x3) V3,1

42



Lamport’s Signature Scheme

Theorem 12.16: Lamport’s Signature Scheme is a secure one-time signature scheme
(assuming f is a one-way function).

Proof Sketch: Signing a fresh message requires inverting f(xi,j) for random x; ;.

Remark: Attacker can break scheme if he can request two signatures.

How?

Request signatures of both 0" and 1".



Lamport’s Signature Scheme

Remark: Attacker can break scheme if he can request two signatures.

How?
Request signatures of both 0" and 1".

X10 X20 X3,0]
X11 X21 X31

sk = |

Signg, (000) = (10, %20, %3,0)

Signg,(111) = (x11,%51,%31)

44



Secure Signature Scheme from OWFs

Theorem 12.22: secure/stateless signature scheme from collision-resistant
hash functions.

* Collision Resistant Hash Functions do imply OWFs exist

Remark: Possible to construct signature scheme Il which is existentially
unforgeable under an adaptive chosen message attacks using the minimal
assumption that one-way functions exist.



Week 13 Topic 1: El-Gamal
Encryption



El-Gamal Encryption

» Key Generation:
 Generate cyclic group <g> of prime order q
e Pickrandom x < q and compute h = g*

e PublicKey: g, h
» Secret Key: x = dlog,(h)



El-Gamal Encryption

* Public Key: g, h

* SecretKey: x = dlog,(h)

* Enc, (m) = (g”,m - h¥) forarandomy € Z,
* Dec, (c = (c1,63)) = 1™

Decy (g”,m-h”) =m-h¥(g”)™>
= m - hy(gy)_x
=m-(g*)7(g”)™"
= m - gxyg_xy
—m



El-Gamal Encryption

* Enc, (m) = (g”,m - h”) forarandomy € Z,
* Dec, (c = (c1,63)) = coc1”

Theorem 11.18: Let 1 = (Gen, Enc, Dec) be the EI-Gamal Encryption
scheme (above) then if DDH is hard relative to G then Il is CPA-Secure.

Proof: Recall that CPA-security and eavesdropping security are
equivalent for public key crypto. Therefore, it suffices to show that for
all PPT A there is a negligible function negl such that

Pr[PubKeaV(n) = 1] + negl(n)



EFavesdropping Security (PubK3 (n))

Public Key: pk
Mo, My

¢ = Ency(m, ) ;

b)

[ ]
Random bitb /7
k,sk) = G 1 PE
(p »S ) = en(-) Ao L
* U’f [ e

VPPT A 3du (negligiblle) S. t
Pr[PubK§ (n) = 1| < >+ 1)
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El-Gamal Encryption

Theorem 11.18: Let 1 = (Gen, Enc, Dec) be the EI-Gamal Encryption
scheme (above) then if DDH is hard relative to G then Il is CPA-Secure.

Proof: First introduce an “encryption scheme’ I1 in which Enc k(m) =
(g7, m - g”)forrandomy,z € Z, (there is actually no way to do
decryption, but the experiment PubKeaV(n) is still well defined).

Claim: Pr[PubKeaV(n) = 1| =



El-Gamal Encryption

Claim: Pr|PubK$% (n) = 1| =
Proof: (using Lemma 11.15)

Pr[PubKF (n) = 1]

%Pr[PubKeaV(n) =1lb=1]+= (1 — Pr[PubK3%{ (n) = 0|b = 0])
1

1
— E + E (Pry,z<—Zq [A«gy' my - gz>) — 1] o Pryrz‘—zq [A(<gy’ Mo * gz>) - 1])

1
2
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El-Gamal Encryption

Theorem 11.18: Let 1 = (Gen, Enc, Dec) be the EI-Gamal Encryption
scheme (above) then if DDH is hard relative to G then Il is CPA-Secure.

Proof: We just showed that
Pr[PubKiF(n) = 1] =

Therefore, it suffices to show that
\Pr[PubKeaV(n) = 1] — Pr[PubK{H (n) = 1]| < negl(n)

This, will follow from DDH assumption.



El-Gamal Encryption

Theorem 11.18: Let II = (Gen, Enc, Dec) be the El-Gamal Encryption scheme
(above) then if DDH is hard relative to G then Il is CPA-Secure.

Proof: We can build B(g*, g”, Z) to break DDH assumption if IT is not CPA-Secure.
Simulate eavesdropping attacker A

1. Send attacker public key pk = (G, q,g, h = g*)
2. Receive my,,m, from A.
3. Send A the ciphertext (g¥, my, - Z).
4. Output 1 if and only if attacker outputs b’=b; otherwise output 0.
|Pr[B(g%, 9, 2) = 1|Z = g*7| - Pr[B(g%, g, 2) = 1|Z = 7|
= |Pr|[PubKgi{(n) = 1] — Pr[PubK3y(n) = 1]
= |Pr[PubK§¥(n) = 1] - 1/,



El-Gamal Encryption

* Enc, (m) = (g”,m - h”) forarandomy € Z, and h = g*,

* Dec,(c = (c1,¢3)) = coc1 ™

Fact: El-Gamal Encryption is malleable.
C = Encpk(m) = (g”,m-hY)
=(9”,2-m-h’)
Decsk(c) =2-m-hY.-g Y =2m

Hint: This observation may be relevant for homework 4.



Key Encapsulation Mechanism (KEM)

 Three Algorithms
e Gen(1", R) (Key-generation algorithm)
e Input: Random Bits R
e Output: (pk,sk) € ¥
* Encaps (1™, R)
e |nput: security parameter, random bits R
e Output: Symmetric key k € {0,1}¥™ and a ciphertext c
e Decaps,,.(c) (Deterministic algorithm)
e Input: Secret key sk € K and a ciphertex c
« Output: a symmetric key{0,1}¥™ or 1 (fail)

* Invariant: Decaps,,(c)=k whenever (c,k) = Encapspk(ln, R)



KEM CCA-Security (KEMa 17(n))

(pk,c,kb)

C1:/:C

Decapsg(cy)

Cy FC

Decaps;(cy) ]

Random bit b

VPPT A 3Ju (neghglble) .t (pksk)=Gen() |

Pr[KEMSG@ = 1] < + u(n)  (cky) = Encapsyi()
k, —{0,1}"




KEM from RSA and El-Gamal

e Recap: CCA-Secure KEM from RSA in Random Oracle Model

* El-Gamal yields CPA-Secure KEM in Random Oracle Model
. (gy,H(hy)) < Encaps,(1™; R) and Decaps(g”) = H(g*?)
e CDH assumption must hold.

e Above construction is also a CPA-Secure KEM in standard model

e Aslong as Prycg[H(x) = k] = 27* for each key k € {0,1}* and DDH holds
e Disadvantage: weaker security notion for KEM, stronger DDH assumption
e Advantage: Proof in standard model



CCA-Secure Variant in Random Oracle Model

e Key Generation (Gen(1™)):

1. Run G(1™) to obtain a cyclic group G of order q (with ||g]|| = n) and a generator g such
that< g >= G.

2. Choose arandomx € Z, and set h = g*
3. PublicKey: pk = (G, q, g, h)
4. Private Key: sk = (G, q, g, x)

* Enc,, (m) = (gy, c’,MacKM(c')) for arandomy € Z, where

Kg||Ky = H(RY) (KEM)
and
¢’ = Encg_ (m) (Encryptthen MAC)



CCA-Secure Variant in Random Oracle Model

Public Key: pk = (G, g, g, h)
Private Key: sk = (G, g, g, x)

* Enc, (m) = (gy, c',MacKM(c’)) forarandomy € Z, and KEHKM =
H(h”) and ¢’ = Encg,_ (m)

* Dec, ({c,c’,t))
1. Kg||[Ky = H(c®)
2. If Vrfyg, (c’,t) # 1 orc & Goutput 1; otherwise output Decg_(c')



CCA-Secure Variant in Random Oracle Model

Theorem: If Ency_ is CPA-secure, Macy,, is a strong MAC and a problem

called gap-CDH is hard then this a CCA-secure public key encryption
scheme in the random oracle model.

* Enc, (m) = (gy, ¢’,Macg,, (c’)) forarandomy € Z, and I{EHKM =
H(h”) and ¢’ = Encg_ (m)

* Dec, ({c,c’, t))
1. Kg||Ky = H(c®)
2. If Vrfyg, (c’,t) # 1 or ¢ € G output L; otherwise output Decg_(c')



CCA-Secure Variant in Random Oracle Model

Remark: The CCA-Secure variant is used in practice in the ISO/IEC 18033-2
standard for public-key encryption.

* Diffie-Hellman Integrated Encryption Scheme (DHIES)
e Elliptic Curve Integrated Encryption Scheme (ECIES)

* Enc, (m) = (gy c’ MaCK (c) forarandomy € Z; and KEHKM =

H(hY)and ¢’ = EDCKE ( 16
* Dec, ({c,c’,t))
1. Kg||Ky = H(c¥)
2. If Vrfyg, (c’,t) # 1 or ¢ € G output L; otherwise output Decg_ (c")
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