# Cryptography CS 555

#### Week 12:

- Discrete Log Attacks + NIST Recommendations for Concrete Security Parameters
- Identification Schemes + Schnorr Signatures
- El Gamal

**Readings:** Katz and Lindell Chapter 10 & Chapter 11.1-11.2, 11.4

Homework 4 Due Thursday (4/8) at 11:59PM on Gradescope

Week 12: Topic 0: Discrete Log Attacks + NIST Recommendations for Concrete Security Parameters

# Factoring Algorithms (Summary)

- Pollard's p-1 Algorithm
  - Works when N = pq where (p-1) has only "small" prime factors
  - **Defense**: Ensure that p (resp. q) is a strong prime (p-1) has no "small" prime factors.
  - Note: A random prime is strong with high probability.
- Pollard's Rho Algorithm
  - General purpose factoring algorithm
  - Core: Low Space Cycle Detection
  - Time:  $T(N) = O(\sqrt[4]{N} \operatorname{polylog}(N))$
  - Naïve Algorithm takes time  $O(\sqrt{N} \operatorname{pol} y \log(N))$  to factor
- Quadratic Sieve
  - Time:  $2^{O(\sqrt{\log N} \log \log N)} = 2^{O(\sqrt{n \log n})}$  (sub-exponential, but not polynomial time)
  - Preprocessing + Linear Algebra: find x,  $y \in \mathbb{Z}_N^*$  such that  $x^2 = y^2 \mod N$  and  $x \neq \pm y \mod N$ ?

- Pohlig-Hellman Algorithm
  - Given a cyclic group G of non-prime order q=| G |=rp
  - Reduce discrete log problem to discrete problem(s) for subgroup(s) of order p (or smaller).
  - Preference for prime order subgroups in cryptography
- Baby-step/Giant-Step Algorithm
  - Solve discrete logarithm in time  $O(\sqrt{q} polylog(q))$
- Pollard's Rho Algorithm
  - Solve discrete logarithm in time  $O(\sqrt{q} \ polylog(q))$
  - Bonus: Constant memory!
- Index Calculus Algorithm
  - Similar to quadratic sieve
  - Runs in sub-exponential time  $2^{O(\sqrt{\log q \log \log q})}$
  - Specific to the group  $\mathbb{Z}_q^*$  (e.g., attack doesn't work against elliptic-curve groups)

#### • Pohlig-Hellman Algorithm

- Given a cyclic group  $\mathbb G$  of non-prime order q=|  $\mathbb G$  |=rp
- Reduce discrete log problem to discrete problem(s) for subgroup(s) of order p (or smaller).
- Preference for prime order subgroups in cryptography
- Let  $\mathbb{G} = \langle g \rangle$  and  $h = g^x \in \mathbb{G}$  be given. For simplicity assume that r is prime and r < p.
- Observe that  $\langle g^r \rangle$  generates a subgroup of size p and that  $h^r \in \langle g^r \rangle$ .
  - Solve discrete log problem in subgroup  $\langle g^r \rangle$  with input h<sup>r</sup>.
  - Find z such that  $h^r = g^{rz} \rightarrow rz = rx \mod p$ .
- Observe that  $\langle g^p \rangle$  generates a subgroup of size r and that  $h^p \in \langle g^p \rangle$ .
  - Solve discrete log problem in subgroup  $\langle g^p \rangle$  with input h<sup>p</sup>.
  - Find y such that  $h^p = g^{yp} \rightarrow pz = px \mod r$ .
- Chinese Remainder Theorem  $h = g^x$  where  $x \leftrightarrow ([z \mod p], [y \mod r])$

• Input:  $\mathbb{G} = \langle g \rangle$  of order q, generator g and  $h = g^x \in \mathbb{G}$ 



• Input:  $\mathbb{G} = \langle g \rangle$  of order q, generator g and  $h = g^x \in \mathbb{G}$ 



• Input:  $\mathbb{G} = \langle g \rangle$  of order q, generator g and  $h = g^{\chi} \in \mathbb{G}$ 



- Input:  $\mathbb{G} = \langle g \rangle$  of order q, generator g and  $h = g^x \in \mathbb{G}$
- Set  $t = \lfloor \sqrt{q} \rfloor$ For i =0 to  $\lfloor \frac{q}{t} \rfloor$

$$g_i \leftarrow g^{it}$$

**Sort** the pairs (i,g<sub>i</sub>) by their second component **For** i =0 to t

$$h_i \leftarrow hg^i$$
  
if  $h_i = g_k \in \{g_0, \dots, g_t\}$  then  
return [kt-i mod q]

$$h_i = hg^i = g^{kt}$$
$$\rightarrow h = g^{kt-i}$$

- Baby-step/Giant-Step Algorithm
  - Solve discrete logarithm in time  $O(\sqrt{q} polylog(q))$
  - Requires memory  $O(\sqrt{q} \ polylog(q))$
- Pollard's Rho Algorithm
  - Solve discrete logarithm in time  $O(\sqrt{q} polylog(q))$
  - Bonus: Constant memory!
- Key Idea: Low-Space Birthday Attack (\*) using our collision resistant hash function

$$H_{g,h}(x_1, x_2) = g^{x_1} h^{x_2}$$
  

$$H_{g,h}(y_1, y_2) = H_{g,h}(x_1, x_2) \rightarrow h^{y_2 - x_2} = g^{x_1 - y_1}$$
  

$$\rightarrow h = g^{(x_1 - y_1)(y_2 - x_2)^{-1}}$$

(\*) A few small technical details to address

- Baby-step/Giant-Step Algorithm
  - Solve discrete logarithm in time  $O(\sqrt{q} polylog(q))$
  - Requires memory  $O(\sqrt{q} \ polylog(q))$
- Pollard's Rho Algorithm
  - Solve discrete logarithm in time  $O(\sqrt{q} p o^{k})$
  - Bonus: Constant memory!
- Key Idea: Low-Space Birthday Attack (\*)

$$H_{g,h}(x_1, x_2) = g^{x_1} h^{x_2}$$
  
$$H_{g,h}(y_1, y_2) = H_{g,h}(x_1, x_2)$$

$$\rightarrow h^{y_2 - x_2} = g^{x_1 - y_1} \rightarrow h = g^{(x_1 - y_1)(y_2 - x_2)^{-1}}$$

(\*) A few small technical details to address

**Remark**: We used discrete-log problem to construct collision resistant hash functions.

Security Reduction showed that attack on collision resistant hash function yields attack on discrete log.

→Generic attack on collision resistant hash functions (e.g., low space birthday attack) yields generic attack on discrete log.

- Index Calculus Algorithm
  - Similar to quadratic sieve
  - Runs in sub-exponential time  $2^{O(\sqrt{\log p \log \log p})}$
  - Specific to the group  $\mathbb{Z}_p^*$  (e.g., attack doesn't work on elliptic-curve groups)
- As before let {p<sub>1</sub>,...,p<sub>k</sub>} denote the set of prime numbers < B.
- Step 1.A: Find  $\ell > k$  distinct values  $x_1, \dots, x_k$  such that  $g_j = [g^{x_j} \mod p]$  is B-smooth for each j. That is

$$g_j = \prod_{i=1}^{\kappa} p_i^{e_{i,j}}.$$

- As before let {p<sub>1</sub>,...,p<sub>k</sub>} be set of prime numbers < B.
- Step 1.A: Find  $\ell > k$  distinct values  $x_1, \dots, x_k$  such that  $g_j = [g^{x_j} \mod p]$  is B-smooth for each j. That is

$$g_j = \prod_{i=1}^k p_i^{e_{i,j}}.$$

• Step 1.B: Use linear algebra to solve the equations  $x_j = \sum_{i=1}^k (\log_g \mathbf{p}_i) \times e_{i,j} \mod (p-1).$ 

(Note: the  $log_g p_i$ 's are the unknowns)

#### Discrete Log

- As before let {p<sub>1</sub>,...,p<sub>k</sub>} be set of prime numbers < B.
- Step 1 (precomputation): Obtain  $y_1, ..., y_k$  such that  $p_i = g^{y_i} \mod p$ .
- Step 2: Given discrete log challenge h=g<sup>x</sup> mod p.
  - Find z such that  $[g^{z}h \mod p]$  is B-smooth

$$[g^{z} h \mod p] = \prod_{i=1}^{k} p_{i}^{e_{i}}$$
$$= \prod_{i=1}^{k} (g^{y_{i}})^{e_{i}} = g^{\sum_{i} e_{i}y_{i}}$$

#### Discrete Log

- As before let  $\{p_1, ..., p_k\}$  be set of prime numbers < B.
- Step 1 (precomputation): Obtain  $y_1, ..., y_k$  such that  $p_i = g^{y_i} \mod p$ .
- Step 2: Given discrete log challenge h=g<sup>x</sup> mod p.
  - Find z such that  $[g^{z}h \mod p]$  is B-smooth  $[g^{z}h \mod p] = g^{\sum_{i} e_{i}y_{i}} \rightarrow h = g^{\sum_{i} e_{i}y_{i}-z}$  $\rightarrow x = \sum_{i} e_{i}y_{i} - z$
- **Remark:** Precomputation costs can be amortized over many discrete log instances
  - In practice, the same group  $\mathbb{G} = \langle g \rangle$  and generator g are used repeatedly.

# NIST Guidelines (Concrete Security)

Best known attack against 1024 bit RSA takes time (approximately) 2<sup>80</sup>

| Symmetric Key Size<br>(bits) | RSA and Diffie-Hellman Key Size<br>(bits) | Elliptic Curve Key Size<br>(bits) |
|------------------------------|-------------------------------------------|-----------------------------------|
| 80                           | 1024                                      | 160                               |
| 112                          | 2048                                      | 224                               |
| 128                          | 3072                                      | 256                               |
| 192                          | 7680                                      | 384                               |
| 256                          | 15360                                     | 521                               |
|                              | Table 1: NIST Recommended Key Sizes       |                                   |

#### NIST Guidelines (Concrete Security)

Diffie-Hellman uses subgroup of  $\mathbb{Z}_p^*$  size q

| Symmetric Key Size<br>(bits) | RSA and Diffie-Hellman Key Size<br>(bits) |                | Elliptic Curve Key Size<br>(bits) |  |
|------------------------------|-------------------------------------------|----------------|-----------------------------------|--|
| 80                           | 1024                                      |                | 160                               |  |
| 112                          | 2048                                      | q=224 bits     | 224                               |  |
| 128                          | 3072                                      | q=256 bits     | 256                               |  |
| 192                          | 7680                                      | q=384 bits     | 384                               |  |
| 256                          | 15360                                     | q=512 bits     | 521                               |  |
|                              | Table 1: NIST Recomme                     | nded Key Sizes |                                   |  |

| NIST Guidel                   | ines (Concret                                  | e Secur       | rity)                   |
|-------------------------------|------------------------------------------------|---------------|-------------------------|
| 112 bits = $\frac{\log 1}{2}$ | $\frac{2^{224}}{2} = \log \sqrt{2^{224}}$ bits | s (Pollard's  | Rho)                    |
| Symmetric Key Size            | <b>RSA and Diffie-Hellma</b>                   | n Key Size    | Elliptic Curve Key Size |
| (bits)                        | (bits)                                         |               | (bits)                  |
| 80                            | 1024                                           |               | 160                     |
| 112                           | 2048                                           | q=224 bits    | 224                     |
| 128                           | 3072                                           | q=256 bits    | 256                     |
| 192                           | 7680                                           | q=384 bits    | 384                     |
| 256                           | 15360                                          | q=512 bits    | 521                     |
|                               | Table 1: NIST Recommer                         | ded Key Sizes |                         |

# NIST Guidelines (Concrete Security)

112 bits  $\approx \sqrt{2048 \log 2048}$  bits (Index Calculus)

| Symmetric Key Size | RSA and Diffie-Hellman Key Size |                | Elliptic Curve Key Size |
|--------------------|---------------------------------|----------------|-------------------------|
| (bits)             | (bits)                          |                | (bits)                  |
| 80                 | 1024                            |                | 160                     |
| 112                | 2048                            | q=224 bits     | 224                     |
| 128                | 3072                            | q=256 bits     | 256                     |
| 192                | 7680                            | q=384 bits     | 384                     |
| 256                | 15360                           | q=512 bits     | 521                     |
|                    | Table 1: NIST Recommer          | nded Key Sizes |                         |

| Se  | curity Strength     | 2011 through<br>2013 | 2014<br>through<br>2030 | 2031 and<br>Beyond |
|-----|---------------------|----------------------|-------------------------|--------------------|
| 80  | Applying            | Deprecated           | Disallowed              |                    |
| 00  | Processing          | Legacy use           |                         |                    |
| 112 | Applying            | Acceptable           | eptable Acceptable      | Disallowed         |
| 112 | Processing          | Acceptable           |                         | Legacy use         |
| 128 |                     | Acceptable           | Acceptable              | Acceptable         |
| 192 | Applying/Processing | Acceptable           | Acceptable              | Acceptable         |
| 256 |                     | Acceptable           | Acceptable              | Acceptable         |

NIST's security strength guidelines, from Specialist Publication SP 800-57 Recommendation for Key Management – Part 1: General (Revision 3)

# Signature Length

- RSA-FDH
  - 128-bit security  $\rightarrow \log_2(N) > 3072$
  - RSA-FDH Signatures are at least 3Kb long
  - Are shorter signatures possible?
- RSA Ciphertexts/RSA KEM
  - At least 3Kb long for 128-bit security
  - Shorter Ciphertexts

# Identification Scheme

- Interactive protocol that allows one party to prove its identify (authenticate itself) to another
- Two Parties: Prover and Verifier
  - Prover has secret key sk and Verifier has public key pk
- 1. Prover runs P<sub>1</sub>(sk) to obtain (I,st) ---- initial message I, state st
  - Sends I to Verifier
- 2. Verifier picks random message r from distribution  $\Omega_{pk}$  and sends r to Prover
- 3. Prover runs  $P_2(sk,st,r)$  to obtain s and sends s to verifier
- 4. Verifier checks if V(pk,r,s)=I

# Identification Scheme

- 1. Prover runs P<sub>1</sub>(sk) to obtain (I,st) ---- initial message I, state st
  - 1. Sends I to Verifier
- 2. Verifier picks random message r from distribution  $\Omega_{pk}$  and sends r to Prover
- 3. Prover runs  $P_2(sk,st,r)$  to obtain s and sends s to verifier
- 4. Verifier checks if V(pk,r,s)=I

An eavesdropping attacker obtains a transcript (I,r,s) of all the message sent.

**Transcript Oracle:** Trans<sub>sk</sub>(.) runs honest execution and outputs transcript.

# Identification Game (Ident<sub>A, $\Pi$ </sub>(n))



 $\forall PPT \ A \ \exists \mu \ (negligible) \ s.t \ Pr[Ident_{A,\Pi}(n) = 1] \leq \mu(n)_{24}$ 

# Schnorr Identification Scheme

- Verifier knows h=g<sup>x</sup>
- Prover knows x such that h=g<sup>x</sup>
- 1. Prover runs  $P_1(x)$  to obtain  $(k \in \mathbb{Z}_q, I = g^k)$  and sends initial message I to verifier
- 2. Verifier picks random  $r \in \mathbb{Z}_q$  (q is order of the group) and sends r to prover
- 3. Prover runs  $P_2(x,k,r)$  to obtain  $s \coloneqq [rx + k \mod q]$  and sends s to Verifier
- 4. Verifier checks if  $g^s * (h^{-1})^r = I = g^k$

# Schnorr Identification Scheme

- Verifier knows h=g<sup>x</sup>
- Prover knows x such that h=g<sup>x</sup>
- 1. Prover runs  $P_1(x)$  to obtain  $(k \in \mathbb{Z}_q, I = g^k)$  and sends initial message I to verifier
- 2. Verifier picks random  $r \in \mathbb{Z}_{q}$  (q is order of the group) and sends r to prover
- 3. Prover runs  $P_2(x,k,r)$  to obtain  $s \coloneqq [rx + k \mod q]$  and sends s to Verifier

4. Verifier checks if 
$$g^{s} * (h^{-1})^{r} = I = g^{k}$$
  
 $g^{s} * (h^{-1})^{r} = g^{rx+k \mod q} * g^{-xr} = g^{k}$ 

# Schnorr Identification Scheme

- Verifier knows h=g<sup>x</sup>
- Prover knows x such that h=g<sup>x</sup>
- Prover runs  $P_1(x)$  to obtain  $(k \in \mathbb{Z}_q, I = g^k)$  and sends initial message I to verifier
- Verifier picks random  $r \in \mathbb{Z}_{a}$  (q is order of the group) and sends r to prover
- Prover runs P1(x,k,r) to obtain  $s \coloneqq [rx + k \mod q]$  and sends s to Verifier
- Verifier checks if  $g^s * (h^{-1})^r = I = g^k$

**Theorem 12.11:** If the discrete-logarithm problem is hard (relative to group generator) then Schnorr identification scheme is secure.

# Fiat-Shamir Transform

- Identification Schemes can be transformed into signatures
- Sign<sub>sk</sub>(m)
  - First compute (I,st)= P<sub>1</sub>(sk) (as prover)
  - Next compute the challenge r = H(I, m) (as verifier)
  - Compute the response s = P<sub>2</sub>(sk,st,r)
  - Output signature (r,s)
- Vrfy<sub>pk</sub>(m,(r,s))
  - Compute I := V(pk,r,s)
  - Check that H(I,m)=r

**Theorem 12.10:** If the identification scheme is secure and H is a random oracle then the above signature scheme is secure.

### Schnorr Signatures via Fiat-Shamir

- Public Key:  $h=g^{x}$  in cyclic group  $\langle g \rangle$  of order q.
- Secret Key: x
- $Sign_{sk}(m)$ 
  - 1. Select random  $k \in \mathbb{Z}_{a}$  and set  $I = g^{k}$ .
  - **2.** r = H(I, m)
  - 3. Return  $\sigma = (r, s)$  where  $s \coloneqq [rx + k \mod q]$
- $Verify_{pk}(m, \sigma = (r, s))$ 
  - Compute  $g^s * (h^{-1})^r = g^{s-rx}$  and check if  $r = H(g^{s-rx}, m)$

# Schnorr Signatures

- $Sign_{sk}(m)$ 
  - 1. Select random  $k \in \mathbb{Z}_{a}$  and set  $I = g^{k}$ .

*2.* r = H(I, m)

3. Return  $\sigma = (r, s)$  where  $s \coloneqq [rx + k \mod q]$ 

• 
$$Verify_{pk}(m, \sigma = (r, s))$$

• Compute  $g^s * (h^{-1})^r = g^{s-rx}$  and check if  $r = H(g^{s-rx}, m)$ 

**Corollary (of Thms 12.10 + 12.11):** If the discrete-logarithm problem is hard (relative to group generator) then Schnorr Signatures are secure in the random oracle model.

 Independent of size of original group (r<sup>th</sup> residue subgroup).

#### Depends only on order of the <u>subgroup</u>

q!

 Independent of #bits to represent group element (Elliptic Curve Pairs)

 $\frac{+k \mod q}{DLOG 128 \text{ bit security:}}$   $\frac{\log_2 q}{\cos^2 q} \approx 256$ 

Advantages:

• Short Signatures  $||\sigma|| = ||r|| + ||s|| = 2[\log_2 q]$  bits

 $g^k$ .

- Fast and Efficient
- Patent Expired: February 2008

 Independent of size of original group (r<sup>th</sup> residue subgroup).

#### Depends only on order of the <u>subgroup</u> q!

 Independent of #bits to represent group element (Elliptic Curve Pairs)

+  $k \mod q$  [log<sub>2</sub> q]  $\approx 256$ check if r =  $\approx 512$  bit signatures

Advantages:

• Short Signatures  $||\sigma|| = ||r|| + ||s|| = 2[\log_2 q]$  bits

 $g^k$ .

- Fast and Efficient
- Patent Expired: February 2008

# Short Schnorr Signatures

•  $Sign_{sk}(m)$ 1. Select random  $k \in \mathbb{Z}$  and set  $I = g^k$ . 2.  $r = H(I,m) //r \leq \sqrt{q}$ 3. Return  $\sigma = (r,s)$  where  $s \coloneqq [rx + k \mod q]$ 

• 
$$Verify_{pk}(m, \sigma = (r, s))$$

- Compute  $g^s * (h^{-1})^r = g^{s-rx}$  and check if  $r = H(g^{s-rx}, m)$
- Short Signatures  $||\sigma|| = ||r|| + ||s|| = 1.5[\log_2 q]$  bits
  - New Result: Short Schnorr Signatures are also secure in Generic Group+ Random Oracle Model <u>https://eprint.iacr.org/2019/1105.pdf</u>
  - 384 bit signatures for 128-bit security
  - BLS Signatures: 256 bit signatures for 128-bit security (computational overhead is much higher)

**DSA:**  $\langle g \rangle$  is subgroup of  $\mathbb{Z}_p^*$  of order q **ECDSA:**  $\langle g \rangle$  is order q subgroup of elliptic curve

- Secret key is x, public key is h=g<sup>x</sup> along with generator g (of order q)
- Sign<sub>sk</sub>(m)
  - Pick random  $(k \in \mathbb{Z}_q)$  and set  $r = F(g^k) \in \mathbb{Z}_q$
  - Compute  $s \coloneqq [k^{-1}(xr + H(m)) \mod q]$
  - Output signature (r,s)
- Vrfy<sub>pk</sub>(m,(r,s)) check to make sure that

$$r = F(g^{H(m)s^{-1}}h^{rs^{-1}})$$

- Sign<sub>sk</sub>(m)
  - Pick random  $(k \in \mathbb{Z}_{q})$  and set  $r = F(g^k) = [g^k \mod q]$
  - Compute  $s \coloneqq [k^{-1}(xr + H(m)) \mod q]$
  - Output signature (r,s)
- Vrfy<sub>pk</sub>(m,(r,s)) check to make sure that

$$r = F(g^{H(m)s^{-1}}h^{rs^{-1}})$$
  
=  $F(g^{H(m)k(xr+H(m))^{-1}}g^{xrk(xr+H(m))^{-1}})$   
=  $F(g^{(H(m)+xr)k(xr+H(m))^{-1}})$   
=  $F(g^k) \coloneqq r$ 

- Secret key is x, public key is h=g<sup>x</sup> along with generator g (of order q)
- Sign<sub>sk</sub>(m)
  - Pick random  $(k \in \mathbb{Z}_{q})$  and set  $r = F(g^{k}) = [g^{k} \mod q]$
  - Compute  $s \coloneqq [k^{-1}(xr + H(m)) \mod q]$
  - Output signature (r,s)
- Vrfy<sub>pk</sub>(m,(r,s)) check to make sure that

$$r = F(g^{H(m)s^{-1}}h^{rs^{-1}})$$

**Theorem:** If H and F are modeled as random oracles then DSA is secure. Weird Assumption for F(.)?

- Theory: DSA Still lack compelling proof of security from standard crypto assumptions
- **Practice:** DSA has been used/studied for decades without attacks

- Secret key is x, public key is h=g<sup>x</sup>
- Sign<sub>sk</sub>(m)
  - Pick random  $(k \in \mathbb{Z}_{q})$  and set  $r = F(g^{k}) = [g^{k} \mod q]$
  - Compute  $s \coloneqq [k^{-1}(xr + H(m)) \mod q]$
  - Output signature (r,s)
- Vrfy<sub>pk</sub>(m,(r,s)) check to make sure that

$$r = F(g^{H(m)s^{-1}}h^{rs^{-1}})$$

**Remark:** If signer signs two messages with same random  $k \in \mathbb{Z}_q$  then attacker can find secret key sk!

- **Theory:** Negligible Probability this happens
- **Practice:** Will happen if a weak PRG is used
- Sony PlayStation (PS3) hack in 2010.

# Certificate Authority

- Trusted Authority (CA)
  - $m_{CA \rightarrow Amazon}$ ="Amazon's public key is  $pk_{Amazon}$  (date, expiration, ###)"
  - $cert_{CA \rightarrow Amazon} = Sign_{SK_{CA}}(m)$
- Delegate Authority to other CA<sub>1</sub>
  - Root CA signs m= "CA<sub>1</sub> public key is pk<sub>CA1</sub> (date,expiration,###) can issue certificates"
  - Verifier can check entire certification chain
- Revocation List Signed Daily
- Decentralized Web of Trust (PGP)

# **One-Time Signature Scheme**

- Weak notion of one-time secure signature schemes
  - Attacker makes one query to oracle Sign<sub>sk</sub>(.) and then attempts to output forged signature for m'
  - If attacker sees two different signatures then guarantees break down
- Achievable from Hash Functions
  - No number theory!
  - No Random Oracles!

#### Lamport's Signature Scheme (from OWFs)

$$sk = \begin{bmatrix} x_{1,0} & x_{2,0} & x_{3,0} \\ x_{1,1} & x_{2,1} & x_{3,1} \end{bmatrix}$$

$$pk = \begin{bmatrix} y_{1,0} & y_{2,0} & y_{3,0} \\ y_{1,1} & y_{2,1} & y_{3,1} \end{bmatrix}$$

$$x_{i,j} \in \{0,1\}^n (uniform)$$
$$y_{i,j} = f(x_{i,j})$$

**Assumption:** f is a One-Way Function

#### Lamport's Signature Scheme (from OWFs)

$$sk = \begin{bmatrix} x_{1,0} & x_{2,0} & x_{3,0} \\ x_{1,1} & x_{2,1} & x_{3,1} \end{bmatrix}$$

$$pk = \begin{bmatrix} y_{1,0} & y_{2,0} & y_{3,0} \\ y_{1,1} & y_{2,1} & y_{3,1} \end{bmatrix}$$

$$Sign_{sk}(011) = (x_{1,0}, x_{2,1}, x_{3,1})$$

#### Lamport's Signature Scheme (from OWFs)

$$sk = \begin{bmatrix} x_{1,0} & x_{2,0} & x_{3,0} \\ x_{1,1} & x_{2,1} & x_{3,1} \end{bmatrix}$$

$$pk = \begin{bmatrix} y_{1,0} & y_{2,0} & y_{3,0} \\ y_{1,1} & y_{2,1} & y_{3,1} \end{bmatrix}$$

$$Sign_{sk}(011) = (x_{1,0}, x_{2,1}, x_{3,1})$$
  
Vrfy<sub>pk</sub>(011, (x<sub>1</sub>, x<sub>2</sub>, x<sub>3</sub>)) = 
$$\begin{cases} 1 & \text{if } f(x_1) = y_{1,0} \land f(x_2) = y_{2,1} \land f(x_3) = y_{3,1} \\ 0 & \text{otherwise} \end{cases}$$

#### Lamport's Signature Scheme

**Theorem 12.16:** Lamport's Signature Scheme is a secure one-time signature scheme (assuming f is a one-way function).

**Proof Sketch:** Signing a fresh message requires inverting  $f(x_{i,j})$  for random  $x_{i,j}$ .

**Remark:** Attacker can break scheme if he can request two signatures.

How?

Request signatures of both 0<sup>n</sup> and 1<sup>n</sup>.

#### Lamport's Signature Scheme

**Remark:** Attacker can break scheme if he can request two signatures.

How?

Request signatures of both 0<sup>n</sup> and 1<sup>n</sup>.

$$sk = \begin{bmatrix} x_{1,0} & x_{2,0} & x_{3,0} \\ x_{1,1} & x_{2,1} & x_{3,1} \end{bmatrix}$$
$$Sign_{sk}(000) = (x_{1,0}, x_{2,0}, x_{3,0})$$
$$Sign_{sk}(111) = (x_{1,1}, x_{2,1}, x_{3,1})$$

#### Secure Signature Scheme from OWFs

**Theorem 12.22**: secure/stateless signature scheme from collision-resistant hash functions.

• Collision Resistant Hash Functions do imply OWFs exist

**Remark:** Possible to construct signature scheme Π which is existentially unforgeable under an adaptive chosen message attacks using the minimal assumption that one-way functions exist.

# Week 13 Topic 1: El-Gamal Encryption

- Key Generation:
  - Generate cyclic group <g> of prime order q
  - Pick random  $x \le q$  and compute  $h = g^x$
- Public Key: g, h
- Secret Key:  $x = dlog_g(h)$

- Public Key: *g*, *h*
- Secret Key:  $x = dlog_g(h)$
- $\operatorname{Enc}_{\operatorname{pk}}(m) = \langle g^{\mathcal{Y}}, m \cdot h^{\mathcal{Y}} \rangle$  for a random  $y \in \mathbb{Z}_q$
- $\operatorname{Dec}_{\mathbf{sk}}(c = (c_1, c_2)) = c_2 c_1^{-x}$

$$Dec_{sk}(g^{y}, m \cdot h^{y}) = m \cdot h^{y}(g^{y})^{-x}$$
  
=  $m \cdot h^{y}(g^{y})^{-x}$   
=  $m \cdot (g^{x})^{y}(g^{y})^{-x}$   
=  $m \cdot g^{xy}g^{-xy}$   
=  $m$ 

- $\operatorname{Enc}_{pk}(m) = \langle g^{\mathcal{Y}}, m \cdot h^{\mathcal{Y}} \rangle$  for a random  $y \in \mathbb{Z}_q$
- $\operatorname{Dec}_{\mathrm{sk}}(c = (c_1, c_2)) = c_2 c_1^{-x}$

**Theorem 11.18:** Let  $\Pi = (Gen, Enc, Dec)$  be the El-Gamal Encryption scheme (above) then if DDH is hard relative to G then  $\Pi$  is CPA-Secure.

**Proof:** Recall that CPA-security and eavesdropping security are equivalent for public key crypto. Therefore, it suffices to show that for all PPT A there is a negligible function **negl** such that

$$\Pr\left[\operatorname{PubK}_{A,\Pi}^{eav}(n) = 1\right] \le \frac{1}{2} + \operatorname{negl}(n)$$

# Eavesdropping Security (PubK<sup>eav</sup><sub>A, $\Pi$ </sub>(n))



Random bit b (pk,sk) = Gen(.)



 $\forall PPT \ A \ \exists \mu \text{ (negligible) s.t}$  $\Pr[\text{PubK}_{A,\Pi}^{\text{eav}}(n) = 1] \leq \frac{1}{2} + \mu(n)$ 

**Theorem 11.18:** Let  $\Pi = (Gen, Enc, Dec)$  be the El-Gamal Encryption scheme (above) then if DDH is hard relative to G then  $\Pi$  is CPA-Secure.

**Proof:** First introduce an `encryption scheme'  $\widetilde{\Pi}$  in which  $\widetilde{Enc_{pk}}(m) = \langle g^y, m \cdot g^z \rangle$  for random  $y, z \in \mathbb{Z}_q$  (there is actually no way to do decryption, but the experiment  $\operatorname{PubK}_{A,\widetilde{\Pi}}^{eav}(n)$  is still well defined).

**Claim:**  $\Pr[\operatorname{PubK}_{A,\widetilde{\Pi}}^{eav}(n) = 1] = \frac{1}{2}$ 

Claim: 
$$Pr[PubK_{A,\widetilde{\Pi}}^{eav}(n) = 1] = \frac{1}{2}$$
  
Proof: (using Lemma 11.15)

$$\begin{aligned} &\Pr[\text{PubK}_{A,\widetilde{\Pi}}^{\text{eav}}(n) = 1] \\ &= \frac{1}{2} \Pr[\text{PubK}_{A,\widetilde{\Pi}}^{\text{eav}}(n) = 1 | b = 1] + \frac{1}{2} \left( 1 - \Pr[\text{PubK}_{A,\widetilde{\Pi}}^{\text{eav}}(n) = 0 | b = 0] \right) \\ &= \frac{1}{2} + \frac{1}{2} \left( \Pr_{y,z \leftarrow \mathbb{Z}_q} \left[ A(\langle g^y, m_1 \cdot g^z \rangle) = 1 \right] - \Pr_{y,z \leftarrow \mathbb{Z}_q} \left[ A(\langle g^y, m_0 \cdot g^z \rangle) = 1 \right] \right) \\ &= \frac{1}{2} \end{aligned}$$

**Theorem 11.18:** Let  $\Pi = (Gen, Enc, Dec)$  be the El-Gamal Encryption scheme (above) then if DDH is hard relative to G then  $\Pi$  is CPA-Secure. **Proof:** We just showed that

$$\Pr[\operatorname{PubK}_{A,\widetilde{\Pi}}^{eav}(n) = 1] = \frac{1}{2}$$

Therefore, it suffices to show that  $\left|\Pr\left[\operatorname{PubK}_{A,\Pi}^{eav}(n) = 1\right] - \Pr\left[\operatorname{PubK}_{A,\widetilde{\Pi}}^{eav}(n) = 1\right]\right| \le \operatorname{negl}(n)$ 

This, will follow from DDH assumption.

**Theorem 11.18:** Let  $\Pi = (Gen, Enc, Dec)$  be the El-Gamal Encryption scheme (above) then if DDH is hard relative to G then  $\Pi$  is CPA-Secure.

**Proof:** We can build  $B(g^x, g^y, Z)$  to break DDH assumption if  $\Pi$  is not CPA-Secure. Simulate eavesdropping attacker A

- 1. Send attacker public key  $pk = \langle \mathbb{G}, q, g, h = g^x \rangle$
- 2. Receive  $m_0, m_1$  from A.
- 3. Send A the ciphertext  $\langle g^{\gamma}, m_b \cdot Z \rangle$ .

4. Output 1 if and only if attacker outputs b'=b; otherwise output 0.

$$\begin{aligned} \Pr[B(g^{x}, g^{y}, Z) &= 1 | Z = g^{xy}] - \Pr[B(g^{x}, g^{y}, Z) = 1 | Z = g^{z}] | \\ &= \left| \Pr[\operatorname{PubK}_{A,\Pi}^{eav}(n) = 1] - \Pr[\operatorname{PubK}_{A,\widetilde{\Pi}}^{eav}(n) = 1] \right| \\ &= \left| \Pr[\operatorname{PubK}_{A,\Pi}^{eav}(n) = 1] - \frac{1}{2} \right| \end{aligned}$$

•  $\operatorname{Enc}_{\operatorname{pk}}(m) = \langle g^{\mathcal{Y}}, m \cdot h^{\mathcal{Y}} \rangle$  for a random  $\mathbf{y} \in \mathbb{Z}_q$  and  $h = g^{\mathcal{X}}$ ,

• 
$$\operatorname{Dec}_{\mathbf{sk}}(c = (c_1, c_2)) = c_2 c_1^{-x}$$

Fact: El-Gamal Encryption is malleable.

$$c = \text{Enc}_{pk}(m) = \langle g^{y}, m \cdot h^{y} \rangle$$
$$c' = \langle g^{y}, 2 \cdot m \cdot h^{y} \rangle$$
$$\text{Dec}_{sk}(c') = 2 \cdot m \cdot h^{y} \cdot g^{-xy} = 2m$$

Hint: This observation may be relevant for homework 4.

# Key Encapsulation Mechanism (KEM)

- Three Algorithms
  - Gen(1<sup>n</sup>, R) (Key-generation algorithm)
    - Input: Random Bits R
    - Output:  $(pk, sk) \in \mathcal{K}$
  - Encaps<sub>pk</sub> $(1^n, R)$ 
    - Input: security parameter, random bits R
    - Output: Symmetric key  $\mathbf{k} \in \{0,1\}^{\ell(n)}$  and a ciphertext c
  - Decaps<sub>sk</sub>(c) (Deterministic algorithm)
    - Input: Secret key  $\underline{sk} \in \mathcal{K}$  and a ciphertex c
    - Output: a symmetric key $\{0,1\}^{\ell(n)}$  or  $\perp$  (fail)

• Invariant: Decaps<sub>sk</sub>(c)=k whenever (c,k) = Encaps<sub>pk</sub>(1<sup>n</sup>, R)

# KEM CCA-Security ( $KEM_{A,\Pi}^{cca}(n)$ )



Random bit b t (pk,sk) = Gen(.)



 $(c, k_0) = \operatorname{Encaps}_{pk}(.)$  $k_1 \leftarrow \{0, 1\}_{58}^n$ 

$$\forall PPT \ A \ \exists \mu \ (negligible) \ s.t$$
  
 $\Pr[KEM_{A,\Pi}^{cca} = 1] \le \frac{1}{2} + \mu(n)$ 

#### KEM from RSA and El-Gamal

- Recap: CCA-Secure KEM from RSA in Random Oracle Model
- El-Gamal yields CPA-Secure KEM in Random Oracle Model
  - $(g^{y}, H(h^{y})) \leftarrow \text{Encaps}_{pk}(1^{n}; R) \text{ and } \text{Decaps}_{sk}(g^{y}) = H(g^{xy})$
  - CDH assumption must hold.
- Above construction is also a CPA-Secure KEM in standard model
  - As long as  $Pr_{x\in\mathbb{G}}[H(x)=k]\approx 2^{-\ell}$  for each key  $k\in\{0,1\}^{\ell}$  and **DDH** holds
  - **Disadvantage:** weaker security notion for KEM, stronger DDH assumption
  - Advantage: Proof in standard model

- Key Generation ( $Gen(1^n)$ ):
  - 1. Run  $\mathcal{G}(1^n)$  to obtain a cyclic group  $\mathbb{G}$  of order q (with ||q|| = n) and a generator g such that  $\langle g \rangle = \mathbb{G}$ .
  - 2. Choose a random  $x \in \mathbb{Z}_q$  and set  $h = g^x$
  - 3. Public Key:  $pk = \langle \mathbb{G}, q, g, h \rangle$
  - 4. Private Key:  $sk = \langle \mathbb{G}, q, g, x \rangle$
- $\operatorname{Enc}_{pk}(m) = \langle g^{y}, c', Mac_{K_{M}}(c') \rangle$  for a random  $y \in \mathbb{Z}_{q}$  where

$$K_E \| K_M = H(h^y)$$
 (KEM)

and

$$c' = \operatorname{Enc}'_{K_{E}}(m)$$
 (Encrypt then MAC)

Public Key:  $pk = \langle \mathbb{G}, q, g, h \rangle$ Private Key:  $sk = \langle \mathbb{G}, q, g, x \rangle$ 

- $\operatorname{Enc}_{pk}(m) = \langle g^{y}, c', Mac_{K_{M}}(c') \rangle$  for a random  $y \in \mathbb{Z}_{q}$  and  $K_{E} || K_{M} = H(h^{y})$  and  $c' = \operatorname{Enc}'_{K_{E}}(m)$
- $\operatorname{Dec}_{sk}(\langle c, c', t \rangle)$
- $1. K_E \| K_M = H(c^x)$
- 2. If  $\operatorname{Vrfy}_{K_M}(c', t) \neq 1$  or  $c \notin \mathbb{G}$  output  $\perp$ ; otherwise output  $\operatorname{Dec}'_{K_E}(c')$

**Theorem**: If  $Enc'_{K_E}$  is CPA-secure,  $Mac_{K_M}$  is a strong MAC and a problem called gap-CDH is hard then this a CCA-secure public key encryption scheme in the random oracle model.

- $\operatorname{Enc}_{pk}(m) = \langle g^{y}, c', \operatorname{Mac}_{K_{M}}(c') \rangle$  for a random  $y \in \mathbb{Z}_{q}$  and  $K_{E} || K_{M} = H(h^{y})$  and  $c' = \operatorname{Enc}'_{K_{E}}(m)$
- $\operatorname{Dec}_{\mathrm{sk}}(\langle c, c', t \rangle)$
- $1. K_E \| K_M = H(c^x)$
- 2. If  $\operatorname{Vrfy}_{K_{M}}(c',t) \neq 1$  or  $c \notin \mathbb{G}$  output  $\bot$ ; otherwise output  $\operatorname{Dec}'_{K_{E}}(c')$

**Remark**: The CCA-Secure variant is used in practice in the ISO/IEC 18033-2 standard for public-key encryption.

- Diffie-Hellman Integrated Encryption Scheme (DHIES)
- Elliptic Curve Integrated Encryption Scheme (ECIES)
- $\operatorname{Enc}_{\operatorname{pk}}(m) = \langle g^{y}, c', \operatorname{Mac}_{K_{M}}(c') \rangle$  for a random  $y \in \mathbb{Z}_{q}$  and  $K_{E} || K_{M} = H(h^{y})$  and  $c' = \operatorname{Enc}'_{K_{E}}(m)$
- $\operatorname{Dec}_{sk}(\langle c, c', t \rangle)$
- $1. K_E \| K_M = H(c^x)$
- 2. If  $\operatorname{Vrfy}_{K_M}(c',t) \neq 1$  or  $c \notin \mathbb{G}$  output  $\bot$ ; otherwise output  $\operatorname{Dec}'_{K_E}(c')$