
Cryptography
CS 555

Week 12:
• Discrete Log Attacks + NIST Recommendations for Concrete

Security Parameters
• Identification Schemes + Schnorr Signatures
• El Gamal
Readings: Katz and Lindell Chapter 10 & Chapter 11.1-11.2, 11.4

1Spring 2021

Homework 4 Due Thursday (4/8) at 11:59PM on Gradescope

Week 12: Topic 0: Discrete Log
Attacks + NIST

Recommendations for Concrete
Security Parameters

2

Factoring Algorithms (Summary)

• Pollard’s p-1 Algorithm
• Works when 𝑁𝑁 = 𝑝𝑝𝑝𝑝 where (p-1) has only “small” prime factors
• Defense: Ensure that p (resp. q) is a strong prime (p-1) has no “small” prime factors.
• Note: A random prime is strong with high probability.

• Pollard’s Rho Algorithm
• General purpose factoring algorithm
• Core: Low Space Cycle Detection
• Time: T(N) = 𝑂𝑂 4 𝑁𝑁 pol𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦(𝑁𝑁)
• Naïve Algorithm takes time 𝑂𝑂 𝑁𝑁 pol𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦(𝑁𝑁) to factor

• Quadratic Sieve
• Time: 2𝑂𝑂 log 𝑁𝑁 log log 𝑁𝑁 = 2𝑂𝑂 𝑛𝑛 log 𝑛𝑛 (sub-exponential, but not polynomial time)
• Preprocessing + Linear Algebra: find x, y ∈ ℤ𝑁𝑁∗ such that 𝑥𝑥2 = 𝑦𝑦2 mod 𝑁𝑁 and 𝑥𝑥 ≠ ±𝑦𝑦 mod 𝑁𝑁?

3

Discrete Log Attacks

• Pohlig-Hellman Algorithm
• Given a cyclic group 𝔾𝔾 of non-prime order q=| 𝔾𝔾 |=rp
• Reduce discrete log problem to discrete problem(s) for subgroup(s) of order p (or smaller).
• Preference for prime order subgroups in cryptography

• Baby-step/Giant-Step Algorithm
• Solve discrete logarithm in time 𝑂𝑂 𝑞𝑞 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑞𝑞)

• Pollard’s Rho Algorithm
• Solve discrete logarithm in time 𝑂𝑂 𝑞𝑞 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑞𝑞)
• Bonus: Constant memory!

• Index Calculus Algorithm
• Similar to quadratic sieve
• Runs in sub-exponential time 2𝑂𝑂 log 𝑞𝑞 log log 𝑞𝑞

• Specific to the group ℤ𝑞𝑞∗ (e.g., attack doesn’t work against elliptic-curve groups)

4

Discrete Log Attacks

• Pohlig-Hellman Algorithm
• Given a cyclic group 𝔾𝔾 of non-prime order q=| 𝔾𝔾 |=rp
• Reduce discrete log problem to discrete problem(s) for subgroup(s) of order p (or smaller).
• Preference for prime order subgroups in cryptography

• Let 𝔾𝔾 = 𝑔𝑔 and h = 𝑔𝑔𝑥𝑥 ∈ 𝔾𝔾 be given. For simplicity assume that r is prime and r < p.
• Observe that 𝑔𝑔𝑟𝑟 generates a subgroup of size p and that hr ∈ 𝑔𝑔𝑟𝑟 .

• Solve discrete log problem in subgroup 𝑔𝑔𝑟𝑟 with input hr.
• Find z such that hr = 𝑔𝑔𝑟𝑟𝑧𝑧 𝑟𝑟𝑟𝑟 = 𝑟𝑟𝑟𝑟 mod p.

• Observe that 𝑔𝑔𝑝𝑝 generates a subgroup of size r and that hp ∈ 𝑔𝑔𝑝𝑝 .
• Solve discrete log problem in subgroup 𝑔𝑔𝑝𝑝 with input hp.
• Find y such that hp = 𝑔𝑔𝑦𝑦𝑦𝑦 p𝑧𝑧 = 𝑝𝑝𝑥𝑥 mod r.

• Chinese Remainder Theorem h = 𝑔𝑔𝑥𝑥 where x ↔ 𝑧𝑧 mod 𝑝𝑝 , [𝑦𝑦 mod 𝑟𝑟]

5

Baby-step/Giant-Step Algorithm

• Input: 𝔾𝔾 = 𝑔𝑔 of order q, generator g and h = 𝑔𝑔𝑥𝑥 ∈ 𝔾𝔾
• Set 𝑡𝑡 = 𝑞𝑞

6
g

g2

g3

g0
gq-1

gt gt+1

…

… g2t

g2t+1
…

𝑔𝑔𝑡𝑡
𝑞𝑞
𝑡𝑡

…

Baby-step/Giant-Step Algorithm

• Input: 𝔾𝔾 = 𝑔𝑔 of order q, generator g and h = 𝑔𝑔𝑥𝑥 ∈ 𝔾𝔾
• Set 𝑡𝑡 = 𝑞𝑞

7
g

g2

g3

g0
gq-1

gt gt+1

…

… g2t

g2t+1

𝑔𝑔𝑡𝑡
𝑞𝑞
𝑡𝑡

Precomputation: Compute and store gti

For each i =0 to 𝑞𝑞
𝑡𝑡

Baby-step/Giant-Step Algorithm

• Input: 𝔾𝔾 = 𝑔𝑔 of order q, generator g and h = 𝑔𝑔𝑥𝑥 ∈ 𝔾𝔾
• Set 𝑡𝑡 = 𝑞𝑞

8
g

g2

g3

g0
gq-1

gt gt+1

…

… g2t

g2t+1

𝑔𝑔𝑡𝑡
𝑞𝑞
𝑡𝑡Example: x=t+1

Post-Processing: h=gx

gt+2

Baby-step/Giant-Step Algorithm

• Input: 𝔾𝔾 = 𝑔𝑔 of order q, generator g and h = 𝑔𝑔𝑥𝑥 ∈ 𝔾𝔾
• Set 𝑡𝑡 = 𝑞𝑞
For i =0 to 𝑞𝑞

𝑡𝑡
𝑔𝑔𝑖𝑖 ← 𝑔𝑔𝑖𝑖𝑖𝑖

Sort the pairs (i,gi) by their second component
For i =0 to 𝑡𝑡

ℎ𝑖𝑖 ← ℎ𝑔𝑔𝑖𝑖

if ℎ𝑖𝑖 = 𝑔𝑔𝑘𝑘 ∈ 𝑔𝑔0, … ,𝑔𝑔𝑡𝑡 then
return [kt-i mod q]

9

ℎ𝑖𝑖 = ℎ𝑔𝑔𝑖𝑖 = 𝑔𝑔𝑘𝑘𝑘𝑘

→ ℎ = 𝑔𝑔𝑘𝑘𝑘𝑘−𝑖𝑖

Discrete Log Attacks

• Baby-step/Giant-Step Algorithm
• Solve discrete logarithm in time 𝑂𝑂 𝑞𝑞 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑞𝑞)
• Requires memory 𝑂𝑂 𝑞𝑞 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑞𝑞)

• Pollard’s Rho Algorithm
• Solve discrete logarithm in time 𝑂𝑂 𝑞𝑞 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑞𝑞)
• Bonus: Constant memory!

• Key Idea: Low-Space Birthday Attack (*) using our collision resistant hash
function

𝐻𝐻𝑔𝑔,ℎ 𝑥𝑥1, 𝑥𝑥2 = 𝑔𝑔𝑥𝑥1ℎ𝑥𝑥2
𝐻𝐻𝑔𝑔,ℎ 𝑦𝑦1,𝑦𝑦2 = 𝐻𝐻𝑔𝑔,ℎ 𝑥𝑥1, 𝑥𝑥2 → ℎ𝑦𝑦2−𝑥𝑥2 = 𝑔𝑔𝑥𝑥1−𝑦𝑦1

→ ℎ = 𝑔𝑔 𝑥𝑥1−𝑦𝑦1 𝑦𝑦2−𝑥𝑥2 −1

(*) A few small technical details to address

10

Discrete Log Attacks

• Baby-step/Giant-Step Algorithm
• Solve discrete logarithm in time 𝑂𝑂 𝑞𝑞 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑞𝑞)
• Requires memory 𝑂𝑂 𝑞𝑞 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑞𝑞)

• Pollard’s Rho Algorithm
• Solve discrete logarithm in time 𝑂𝑂 𝑞𝑞 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑞𝑞)
• Bonus: Constant memory!

• Key Idea: Low-Space Birthday Attack (*)
𝐻𝐻𝑔𝑔,ℎ 𝑥𝑥1, 𝑥𝑥2 = 𝑔𝑔𝑥𝑥1ℎ𝑥𝑥2

𝐻𝐻𝑔𝑔,ℎ 𝑦𝑦1,𝑦𝑦2 = 𝐻𝐻𝑔𝑔,ℎ 𝑥𝑥1, 𝑥𝑥2

→ ℎ𝑦𝑦2−𝑥𝑥2 = 𝑔𝑔𝑥𝑥1−𝑦𝑦1
→ ℎ = 𝑔𝑔 𝑥𝑥1−𝑦𝑦1 𝑦𝑦2−𝑥𝑥2 −1

(*) A few small technical details to address

11

Remark: We used discrete-log problem to
construct collision resistant hash functions.

Security Reduction showed that attack on
collision resistant hash function yields attack

on discrete log.

Generic attack on collision resistant hash
functions (e.g., low space birthday attack)

yields generic attack on discrete log.

Discrete Log Attacks

• Index Calculus Algorithm
• Similar to quadratic sieve
• Runs in sub-exponential time 2𝑂𝑂 log 𝑝𝑝 log log 𝑝𝑝

• Specific to the group ℤ𝑝𝑝∗ (e.g., attack doesn’t work on elliptic-curve groups)

• As before let {p1,…,pk} denote the set of prime numbers < B.
• Step 1.A: Find ℓ > 𝑘𝑘 distinct values 𝑥𝑥1, … , 𝑥𝑥𝑘𝑘 such that 𝑔𝑔𝑗𝑗 = 𝑔𝑔𝑥𝑥𝑗𝑗 𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝 is

B-smooth for each j. That is

𝑔𝑔𝑗𝑗 = �
𝑖𝑖=1

𝑘𝑘

𝑝𝑝𝑖𝑖
𝑒𝑒𝑖𝑖,𝑗𝑗 .

12

Discrete Log Attacks

• As before let {p1,…,pk} be set of prime numbers < B.
• Step 1.A: Find ℓ > 𝑘𝑘 distinct values 𝑥𝑥1, … , 𝑥𝑥𝑘𝑘 such that 𝑔𝑔𝑗𝑗 = 𝑔𝑔𝑥𝑥𝑗𝑗 𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝 is

B-smooth for each j. That is

𝑔𝑔𝑗𝑗 = �
𝑖𝑖=1

𝑘𝑘

𝑝𝑝𝑖𝑖
𝑒𝑒𝑖𝑖,𝑗𝑗 .

• Step 1.B: Use linear algebra to solve the equations

𝑥𝑥𝑗𝑗 = �
𝑖𝑖=1

𝑘𝑘

𝐥𝐥𝐥𝐥𝐥𝐥𝐠𝐠 𝐩𝐩𝐢𝐢 × 𝑒𝑒𝑖𝑖,𝑗𝑗 mod (𝑝𝑝 − 1).

(Note: the 𝐥𝐥𝐥𝐥𝐥𝐥𝐠𝐠𝐩𝐩𝐢𝐢’s are the unknowns)

13

Discrete Log

• As before let {p1,…,pk} be set of prime numbers < B.
• Step 1 (precomputation): Obtain y1,…,yk such that pi = 𝑔𝑔𝑦𝑦𝑖𝑖 𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝.
• Step 2: Given discrete log challenge h=gx mod p.

• Find z such that 𝑔𝑔𝑧𝑧h mod p is B-smooth

𝑔𝑔𝑧𝑧h mod p = �
𝑖𝑖=1

𝑘𝑘

𝑝𝑝𝑖𝑖
𝑒𝑒𝑖𝑖

= �
𝑖𝑖=1

𝑘𝑘

𝑔𝑔𝑦𝑦𝑖𝑖 𝑒𝑒𝑖𝑖 = 𝑔𝑔∑𝑖𝑖 𝑒𝑒𝑖𝑖𝑦𝑦𝑖𝑖

14

Discrete Log

• As before let {p1,…,pk} be set of prime numbers < B.
• Step 1 (precomputation): Obtain y1,…,yk such that pi = 𝑔𝑔𝑦𝑦𝑖𝑖 𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝.
• Step 2: Given discrete log challenge h=gx mod p.

• Find z such that 𝑔𝑔𝑧𝑧h mod p is B-smooth
𝑔𝑔𝑧𝑧h mod p = 𝑔𝑔∑𝑖𝑖 𝑒𝑒𝑖𝑖𝑦𝑦𝑖𝑖 → ℎ = 𝑔𝑔∑𝑖𝑖 𝑒𝑒𝑖𝑖𝑦𝑦𝑖𝑖−𝑧𝑧

→ 𝑥𝑥 = �
𝑖𝑖

𝑒𝑒𝑖𝑖𝑦𝑦𝑖𝑖 − 𝑧𝑧

• Remark: Precomputation costs can be amortized over many discrete
log instances

• In practice, the same group 𝔾𝔾 = 𝑔𝑔 and generator g are used repeatedly.

15Reference: https://www.weakdh.org/

https://www.weakdh.org/

NIST Guidelines (Concrete Security)
Best known attack against 1024 bit RSA takes time (approximately) 280

16

NIST Guidelines (Concrete Security)
Diffie-Hellman uses subgroup of ℤ𝑝𝑝∗ size q

17

q=224 bits

q=256 bits

q=384 bits

q=512 bits

NIST Guidelines (Concrete Security)
112 bits = log 2224

2
= log 2224 bits (Pollard’s Rho)

18

q=224 bits

q=256 bits

q=384 bits

q=512 bits

NIST Guidelines (Concrete Security)
112 bits ≈ 2048 log 2048 bits (Index Calculus)

19

q=224 bits

q=256 bits

q=384 bits

q=512 bits

20

Signature Length

• RSA-FDH
• 128-bit security  log2(N) > 3072
• RSA-FDH Signatures are at least 3Kb long
• Are shorter signatures possible?

• RSA Ciphertexts/RSA KEM
• At least 3Kb long for 128-bit security
• Shorter Ciphertexts

21

Identification Scheme

• Interactive protocol that allows one party to prove its identify
(authenticate itself) to another

• Two Parties: Prover and Verifier
• Prover has secret key sk and Verifier has public key pk

1. Prover runs P1(sk) to obtain (I,st) ---- initial message I, state st
• Sends I to Verifier

2. Verifier picks random message r from distribution Ω𝑝𝑝𝑝𝑝 and sends r to
Prover

3. Prover runs P2(sk,st,r) to obtain s and sends s to verifier
4. Verifier checks if V(pk,r,s)=I

22

Identification Scheme

1. Prover runs P1(sk) to obtain (I,st) ---- initial message I, state st
1. Sends I to Verifier

2. Verifier picks random message r from distribution Ω𝑝𝑝𝑝𝑝 and sends r
to Prover

3. Prover runs P2(sk,st,r) to obtain s and sends s to verifier
4. Verifier checks if V(pk,r,s)=I
An eavesdropping attacker obtains a transcript (I,r,s) of all the message
sent.
Transcript Oracle: Transsk(.) runs honest execution and outputs
transcript.

23

Identification Game (IdentA,Π n)

24

𝐴𝐴𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔

(pk,sk) = Gen(.)

𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝒔𝒔𝒌𝒌 .

𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝒔𝒔𝒌𝒌 .
𝐼𝐼

…

∀𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴 ∃𝜇𝜇 (negligible) s. t Pr IdentA,Π n = 1 ≤ 𝜇𝜇(𝑛𝑛)

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴

Public Key: pk

𝒓𝒓 ← 𝜴𝜴𝒑𝒑𝒑𝒑

𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝒔𝒔𝒌𝒌 .
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴

𝑠𝑠

𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝐀𝐀,𝚷𝚷 𝐧𝐧 = �𝟏𝟏 𝒊𝒊𝒊𝒊 𝑽𝑽 𝒑𝒑𝒑𝒑, 𝒓𝒓, 𝒔𝒔 = 𝑰𝑰
𝟎𝟎 𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐

Schnorr Identification Scheme

• Verifier knows h=gx

• Prover knows x such that h=gx

1. Prover runs P1(x) to obtain 𝑘𝑘 ∈ ℤ
q

, 𝐼𝐼 = 𝑔𝑔𝑘𝑘 and sends initial
message I to verifier

2. Verifier picks random 𝑟𝑟 ∈ ℤ
q

(q is order of the group) and sends r to
prover

3. Prover runs P2(x,k,r) to obtain s ≔ 𝑟𝑟𝑟𝑟 + 𝑘𝑘 𝑚𝑚𝑚𝑚𝑚𝑚 𝑞𝑞 and sends s to
Verifier

4. Verifier checks if 𝑔𝑔𝑠𝑠 ∗ ℎ−1 𝑟𝑟 = 𝐼𝐼 = 𝑔𝑔𝑘𝑘

25

Schnorr Identification Scheme

• Verifier knows h=gx

• Prover knows x such that h=gx

1. Prover runs P1(x) to obtain 𝑘𝑘 ∈ ℤ
q

, 𝐼𝐼 = 𝑔𝑔𝑘𝑘 and sends initial
message I to verifier

2. Verifier picks random 𝑟𝑟 ∈ ℤ
q

(q is order of the group) and sends r to
prover

3. Prover runs P2(x,k,r) to obtain s ≔ 𝑟𝑟𝑟𝑟 + 𝑘𝑘 𝑚𝑚𝑚𝑚𝑚𝑚 𝑞𝑞 and sends s to
Verifier

4. Verifier checks if 𝑔𝑔𝑠𝑠 ∗ ℎ−1 𝑟𝑟 = 𝐼𝐼 = 𝑔𝑔𝑘𝑘
𝑔𝑔𝑠𝑠 ∗ ℎ−1 𝑟𝑟 = 𝑔𝑔𝑟𝑟𝑟𝑟+𝑘𝑘 𝑚𝑚𝑚𝑚𝑚𝑚 𝑞𝑞 ∗ 𝑔𝑔−𝑥𝑥𝑥𝑥 = 𝑔𝑔𝑘𝑘

26

Schnorr Identification Scheme

• Verifier knows h=gx

• Prover knows x such that h=gx

• Prover runs P1(x) to obtain 𝑘𝑘 ∈ ℤ
q

, 𝐼𝐼 = 𝑔𝑔𝑘𝑘 and sends initial message I to
verifier

• Verifier picks random 𝑟𝑟 ∈ ℤ
q

(q is order of the group) and sends r to prover
• Prover runs P1(x,k,r) to obtain s ≔ 𝑟𝑟𝑟𝑟 + 𝑘𝑘 mod 𝑞𝑞 and sends s to Verifier
• Verifier checks if 𝑔𝑔𝑠𝑠 ∗ ℎ−1 𝑟𝑟 = 𝐼𝐼 = 𝑔𝑔𝑘𝑘

Theorem 12.11: If the discrete-logarithm problem is hard (relative to group
generator) then Schnorr identification scheme is secure.

27

Fiat-Shamir Transform

• Identification Schemes can be transformed into signatures
• Signsk(m)

• First compute (I,st)= P1(sk) (as prover)
• Next compute the challenge 𝒓𝒓 = 𝑯𝑯(𝑰𝑰,𝒎𝒎) (as verifier)
• Compute the response s = P2(sk,st,r)
• Output signature (r,s)

• Vrfypk(m,(r,s))
• Compute I := V(pk,r,s)
• Check that H(I,m)=r

Theorem 12.10: If the identification scheme is secure and H is a
random oracle then the above signature scheme is secure.

28

Schnorr Signatures via Fiat-Shamir

• Public Key: h=gx in cyclic group 𝑔𝑔 of order q.
• Secret Key: x
• 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠𝑠𝑠 𝑚𝑚

1. Select random 𝑘𝑘 ∈ ℤ
q

and set 𝐼𝐼 = 𝑔𝑔𝑘𝑘.
2. 𝒓𝒓 = 𝑯𝑯 𝑰𝑰,𝒎𝒎
3. Return σ = 𝑟𝑟, 𝑠𝑠 where s ≔ 𝑟𝑟𝑟𝑟 + 𝑘𝑘 𝑚𝑚𝑚𝑚𝑚𝑚 𝑞𝑞

• 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑝𝑝𝑝𝑝 𝑚𝑚,σ = 𝑟𝑟, 𝑠𝑠
• Compute 𝑔𝑔𝑠𝑠 ∗ ℎ−1 𝑟𝑟 = 𝑔𝑔𝑠𝑠−𝑟𝑟𝑟𝑟 and check if r = 𝐻𝐻 𝑔𝑔𝑠𝑠−𝑟𝑟𝑟𝑟 ,𝑚𝑚

29

Schnorr Signatures

• 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠𝑠𝑠 𝑚𝑚
1. Select random 𝑘𝑘 ∈ ℤ

q
and set 𝐼𝐼 = 𝑔𝑔𝑘𝑘.

2. 𝒓𝒓 = 𝑯𝑯 𝑰𝑰,𝒎𝒎
3. Return σ = 𝑟𝑟, 𝑠𝑠 where s ≔ 𝑟𝑟𝑟𝑟 + 𝑘𝑘 𝑚𝑚𝑚𝑚𝑚𝑚 𝑞𝑞

• 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑝𝑝𝑝𝑝 𝑚𝑚,σ = 𝑟𝑟, 𝑠𝑠
• Compute 𝑔𝑔𝑠𝑠 ∗ ℎ−1 𝑟𝑟 = 𝑔𝑔𝑠𝑠−𝑟𝑟𝑟𝑟 and check if r = 𝐻𝐻 𝑔𝑔𝑠𝑠−𝑟𝑟𝑟𝑟 ,𝑚𝑚

Corollary (of Thms 12.10 + 12.11): If the discrete-logarithm problem is
hard (relative to group generator) then Schnorr Signatures are secure in
the random oracle model.

30

Schnorr Signatures

• 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠𝑠𝑠 𝑚𝑚
1. Select random 𝑘𝑘 ∈ ℤ

q
and set 𝐼𝐼 = 𝑔𝑔𝑘𝑘.

2. 𝒓𝒓 = 𝑯𝑯 𝑰𝑰,𝒎𝒎
3. Return σ = 𝑟𝑟, 𝑠𝑠 where s ≔ 𝑟𝑟𝑟𝑟 + 𝑘𝑘 𝑚𝑚𝑚𝑚𝑚𝑚 𝑞𝑞

• 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑝𝑝𝑝𝑝 𝑚𝑚,σ = 𝑟𝑟, 𝑠𝑠
• Compute 𝑔𝑔𝑠𝑠 ∗ ℎ−1 𝑟𝑟 = 𝑔𝑔𝑠𝑠−𝑟𝑟𝑟𝑟 and check if r = 𝐻𝐻 𝑔𝑔𝑠𝑠−𝑟𝑟𝑟𝑟 ,𝑚𝑚

Advantages:
• Short Signatures σ = 𝑟𝑟 + 𝑠𝑠 = 2 log2 𝑞𝑞 bits
• Fast and Efficient
• Patent Expired: February 2008

31

Depends only on
order of the subgroup

q!

DLOG 128 bit security:
log2 𝑞𝑞 ≈ 256

• Independent of size of
original group

(rth residue subgroup).

• Independent of #bits to
represent group
element
(Elliptic Curve Pairs)

Schnorr Signatures

• 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠𝑠𝑠 𝑚𝑚
1. Select random 𝑘𝑘 ∈ ℤ

q
and set 𝐼𝐼 = 𝑔𝑔𝑘𝑘.

2. 𝒓𝒓 = 𝑯𝑯 𝑰𝑰,𝒎𝒎
3. Return σ = 𝑟𝑟, 𝑠𝑠 where s ≔ 𝑟𝑟𝑟𝑟 + 𝑘𝑘 𝑚𝑚𝑚𝑚𝑚𝑚 𝑞𝑞

• 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑝𝑝𝑝𝑝 𝑚𝑚,σ = 𝑟𝑟, 𝑠𝑠
• Compute 𝑔𝑔𝑠𝑠 ∗ ℎ−1 𝑟𝑟 = 𝑔𝑔𝑠𝑠−𝑟𝑟𝑟𝑟 and check if r = 𝐻𝐻 𝑔𝑔𝑠𝑠−𝑟𝑟𝑟𝑟 ,𝑚𝑚

Advantages:
• Short Signatures σ = 𝑟𝑟 + 𝑠𝑠 = 2 log2 𝑞𝑞 bits
• Fast and Efficient
• Patent Expired: February 2008

32

Depends only on
order of the subgroup

q!

DLOG 128 bit security:
log2 𝑞𝑞 ≈ 256

≈ 512 bit signatures

• Independent of size of
original group

(rth residue subgroup).

• Independent of #bits to
represent group
element
(Elliptic Curve Pairs)

Short Schnorr Signatures

• 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠𝑠𝑠 𝑚𝑚
1. Select random 𝑘𝑘 ∈ ℤ

q
and set 𝐼𝐼 = 𝑔𝑔𝑘𝑘.

2. 𝒓𝒓 = 𝑯𝑯 𝑰𝑰,𝒎𝒎 // 𝒓𝒓 ≤ 𝒒𝒒
3. Return σ = 𝑟𝑟, 𝑠𝑠 where s ≔ 𝑟𝑟𝑟𝑟 + 𝑘𝑘 𝑚𝑚𝑚𝑚𝑚𝑚 𝑞𝑞

• 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑝𝑝𝑝𝑝 𝑚𝑚,σ = 𝑟𝑟, 𝑠𝑠
• Compute 𝑔𝑔𝑠𝑠 ∗ ℎ−1 𝑟𝑟 = 𝑔𝑔𝑠𝑠−𝑟𝑟𝑟𝑟 and check if r = 𝐻𝐻 𝑔𝑔𝑠𝑠−𝑟𝑟𝑟𝑟 ,𝑚𝑚

• Short Signatures σ = 𝑟𝑟 + 𝑠𝑠 = 𝟏𝟏.𝟓𝟓 log2 𝑞𝑞 bits
• New Result: Short Schnorr Signatures are also secure in Generic Group+

Random Oracle Model https://eprint.iacr.org/2019/1105.pdf
• 384 bit signatures for 128-bit security
• BLS Signatures: 256 bit signatures for 128-bit security (computational

overhead is much higher) 33

https://eprint.iacr.org/2019/1105.pdf

Digital Signature Algorithm (DSA)

DSA: 𝒈𝒈 is subgroup of ℤ𝑝𝑝∗ of order q
ECDSA: 𝒈𝒈 is order q subgroup of elliptic curve

• Secret key is x, public key is h=gx along with generator g (of order q)
• Signsk(m)

• Pick random 𝑘𝑘 ∈ ℤ
q

and set 𝑟𝑟 = 𝐹𝐹 𝑔𝑔𝑘𝑘 ∈ ℤ𝑞𝑞
• Compute s ≔ 𝑘𝑘−1 𝑥𝑥𝑥𝑥 + 𝐻𝐻(𝑚𝑚) 𝑚𝑚𝑚𝑚𝑚𝑚 𝑞𝑞
• Output signature (r,s)

• Vrfypk(m,(r,s)) check to make sure that
𝑟𝑟 = 𝐹𝐹 𝑔𝑔𝐻𝐻(𝑚𝑚)𝑠𝑠−1ℎ𝑟𝑟𝑠𝑠−1

34

Digital Signature Algorithm (DSA)

• Signsk(m)
• Pick random 𝑘𝑘 ∈ ℤ

q
and set 𝑟𝑟 = 𝐹𝐹 𝑔𝑔𝑘𝑘 = 𝑔𝑔𝑘𝑘 𝑚𝑚𝑚𝑚𝑚𝑚 𝑞𝑞

• Compute s ≔ 𝑘𝑘−1 𝑥𝑥𝑥𝑥 + 𝐻𝐻(𝑚𝑚) 𝑚𝑚𝑚𝑚𝑚𝑚 𝑞𝑞
• Output signature (r,s)

• Vrfypk(m,(r,s)) check to make sure that
𝑟𝑟 = 𝐹𝐹 𝑔𝑔𝐻𝐻(𝑚𝑚)𝑠𝑠−1ℎ𝑟𝑟𝑠𝑠−1

= 𝐹𝐹 𝑔𝑔𝐻𝐻 𝑚𝑚 𝑘𝑘 𝑥𝑥𝑥𝑥+𝐻𝐻(𝑚𝑚) −1𝑔𝑔𝑥𝑥𝑟𝑟𝑘𝑘 𝑥𝑥𝑥𝑥+𝐻𝐻(𝑚𝑚) −1

= 𝐹𝐹 𝑔𝑔(𝐻𝐻 𝑚𝑚 +𝑥𝑥𝑥𝑥)𝑘𝑘 𝑥𝑥𝑥𝑥+𝐻𝐻(𝑚𝑚) −1

= 𝐹𝐹 𝑔𝑔𝑘𝑘 ≔ 𝑟𝑟

35

Digital Signature Algorithm (DSA)

• Secret key is x, public key is h=gx along with generator g (of order q)
• Signsk(m)

• Pick random 𝑘𝑘 ∈ ℤ
q

and set 𝑟𝑟 = 𝐹𝐹 𝑔𝑔𝑘𝑘 = 𝑔𝑔𝑘𝑘 𝑚𝑚𝑚𝑚𝑚𝑚 𝑞𝑞
• Compute s ≔ 𝑘𝑘−1 𝑥𝑥𝑥𝑥 + 𝐻𝐻(𝑚𝑚) 𝑚𝑚𝑚𝑚𝑚𝑚 𝑞𝑞
• Output signature (r,s)

• Vrfypk(m,(r,s)) check to make sure that
𝑟𝑟 = 𝐹𝐹 𝑔𝑔𝐻𝐻(𝑚𝑚)𝑠𝑠−1ℎ𝑟𝑟𝑠𝑠−1

Theorem: If H and F are modeled as random oracles then DSA is secure.
Weird Assumption for F(.)?
• Theory: DSA Still lack compelling proof of security from standard crypto assumptions
• Practice: DSA has been used/studied for decades without attacks

36

Digital Signature Algorithm (DSA)

• Secret key is x, public key is h=gx

• Signsk(m)
• Pick random 𝑘𝑘 ∈ ℤ

q
and set 𝑟𝑟 = 𝐹𝐹 𝑔𝑔𝑘𝑘 = 𝑔𝑔𝑘𝑘 𝑚𝑚𝑚𝑚𝑚𝑚 𝑞𝑞

• Compute s ≔ 𝑘𝑘−1 𝑥𝑥𝑥𝑥 + 𝐻𝐻(𝑚𝑚) 𝑚𝑚𝑚𝑚𝑚𝑚 𝑞𝑞
• Output signature (r,s)

• Vrfypk(m,(r,s)) check to make sure that
𝑟𝑟 = 𝐹𝐹 𝑔𝑔𝐻𝐻(𝑚𝑚)𝑠𝑠−1ℎ𝑟𝑟𝑠𝑠−1

Remark: If signer signs two messages with same random 𝑘𝑘 ∈ ℤ
q

then attacker can find
secret key sk!
• Theory: Negligible Probability this happens
• Practice: Will happen if a weak PRG is used
• Sony PlayStation (PS3) hack in 2010.

37

Certificate Authority

• Trusted Authority (CA)
• 𝑚𝑚𝐶𝐶𝐶𝐶→𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚=“Amazon’s public key is 𝑝𝑝𝑝𝑝𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 (date,expiration,###)”
• 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝐶𝐶𝐶𝐶→𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶 𝑚𝑚

• Delegate Authority to other CA1
• Root CA signs m= “CA1 public key is 𝑝𝑝𝑝𝑝𝐶𝐶𝐶𝐶𝐶 (date,expiration,###) can issue

certificates”
• Verifier can check entire certification chain

• Revocation List Signed Daily
• Decentralized Web of Trust (PGP)

38

One-Time Signature Scheme

• Weak notion of one-time secure signature schemes
• Attacker makes one query to oracle Signsk(.) and then attempts to output

forged signature for m’
• If attacker sees two different signatures then guarantees break down

• Achievable from Hash Functions
• No number theory!
• No Random Oracles!

39

Lamport’s Signature Scheme (from OWFs)

𝑠𝑠𝑠𝑠 =
𝑥𝑥1,0 𝑥𝑥2,0 𝑥𝑥3,0
𝑥𝑥1,1 𝑥𝑥2,1 𝑥𝑥3,1

𝑝𝑝𝑘𝑘 =
𝑦𝑦1,0 𝑦𝑦2,0 𝑦𝑦3,0
𝑦𝑦1,1 𝑦𝑦2,1 𝑦𝑦3,1

𝑥𝑥𝑖𝑖,𝑗𝑗 ∈ 0,1 𝑛𝑛 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢
𝑦𝑦𝑖𝑖,𝑗𝑗 = 𝑓𝑓 𝑥𝑥𝑖𝑖,𝑗𝑗

Assumption: f is a One-Way Function

40

Lamport’s Signature Scheme (from OWFs)

𝑠𝑠𝑠𝑠 =
𝑥𝑥1,0 𝑥𝑥2,0 𝑥𝑥3,0
𝑥𝑥1,1 𝑥𝑥2,1 𝑥𝑥3,1

𝑝𝑝𝑘𝑘 =
𝑦𝑦1,0 𝑦𝑦2,0 𝑦𝑦3,0
𝑦𝑦1,1 𝑦𝑦2,1 𝑦𝑦3,1

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠𝑠𝑠 011 = 𝑥𝑥1,0, 𝑥𝑥2,1, 𝑥𝑥3,1

41

Lamport’s Signature Scheme (from OWFs)

𝑠𝑠𝑠𝑠 =
𝑥𝑥1,0 𝑥𝑥2,0 𝑥𝑥3,0
𝑥𝑥1,1 𝑥𝑥2,1 𝑥𝑥3,1

𝑝𝑝𝑘𝑘 =
𝑦𝑦1,0 𝑦𝑦2,0 𝑦𝑦3,0
𝑦𝑦1,1 𝑦𝑦2,1 𝑦𝑦3,1

𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 011 = 𝑥𝑥1,0, 𝑥𝑥2,1, 𝑥𝑥3,1

Vrfy𝑝𝑝𝑝𝑝 011, 𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3 = � 1 if 𝑓𝑓 𝑥𝑥1 = 𝑦𝑦1,0 ∧ 𝑓𝑓 𝑥𝑥2 = 𝑦𝑦2,1 ∧ 𝑓𝑓 𝑥𝑥3 = 𝑦𝑦3,1
0 otherwise

42

Lamport’s Signature Scheme

Theorem 12.16: Lamport’s Signature Scheme is a secure one-time signature scheme
(assuming f is a one-way function).

Proof Sketch: Signing a fresh message requires inverting 𝑓𝑓 𝑥𝑥𝑖𝑖,𝑗𝑗 for random 𝑥𝑥𝑖𝑖,𝑗𝑗.

Remark: Attacker can break scheme if he can request two signatures.

How?
Request signatures of both 0n and 1n.

43

Lamport’s Signature Scheme

Remark: Attacker can break scheme if he can request two signatures.

How?
Request signatures of both 0n and 1n.

𝑠𝑠𝑠𝑠 =
𝑥𝑥1,0 𝑥𝑥2,0 𝑥𝑥3,0
𝑥𝑥1,1 𝑥𝑥2,1 𝑥𝑥3,1

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠𝑠𝑠 000 = 𝑥𝑥1,0, 𝑥𝑥2,0, 𝑥𝑥3,0

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑠𝑠𝑠𝑠 111 = 𝑥𝑥1,1, 𝑥𝑥2,1, 𝑥𝑥3,1

44

Secure Signature Scheme from OWFs

Theorem 12.22: secure/stateless signature scheme from collision-resistant
hash functions.
• Collision Resistant Hash Functions do imply OWFs exist

Remark: Possible to construct signature scheme Π which is existentially
unforgeable under an adaptive chosen message attacks using the minimal
assumption that one-way functions exist.

45

Week 13 Topic 1: El-Gamal
Encryption

46

El-Gamal Encryption

• Key Generation:
• Generate cyclic group <g> of prime order q
• Pick random 𝑥𝑥 ≤ 𝑞𝑞 and compute ℎ = 𝑔𝑔𝑥𝑥

• Public Key: 𝑔𝑔,ℎ
• Secret Key: 𝑥𝑥 = dlog𝑔𝑔 ℎ

47

El-Gamal Encryption

• Public Key: 𝑔𝑔,ℎ
• Secret Key: 𝑥𝑥 = dlog𝑔𝑔 ℎ
• Encpk(𝑚𝑚) = 𝑔𝑔𝑦𝑦,𝑚𝑚 � ℎ𝑦𝑦 for a random y ∈ ℤ𝑞𝑞
• Decsk(𝑐𝑐 = 𝑐𝑐1, 𝑐𝑐2) = 𝑐𝑐2𝑐𝑐1−𝑥𝑥

Decsk(𝑔𝑔𝑦𝑦,𝑚𝑚 � ℎ𝑦𝑦) = 𝑚𝑚 � ℎ𝑦𝑦 𝑔𝑔𝑦𝑦 −𝑥𝑥

= 𝑚𝑚 � ℎ𝑦𝑦 𝑔𝑔𝑦𝑦 −𝑥𝑥

= 𝑚𝑚 � 𝑔𝑔𝑥𝑥 𝑦𝑦 𝑔𝑔𝑦𝑦 −𝑥𝑥

= 𝑚𝑚 � 𝑔𝑔𝑥𝑥𝑥𝑥𝑔𝑔−𝑥𝑥𝑥𝑥
= 𝑚𝑚

48

El-Gamal Encryption

• Encpk(𝑚𝑚) = 𝑔𝑔𝑦𝑦,𝑚𝑚 � ℎ𝑦𝑦 for a random y ∈ ℤ𝑞𝑞
• Decsk(𝑐𝑐 = 𝑐𝑐1, 𝑐𝑐2) = 𝑐𝑐2𝑐𝑐1−𝑥𝑥

Theorem 11.18: Let Π = 𝐺𝐺𝐺𝐺𝐺𝐺,𝐸𝐸𝐸𝐸𝐸𝐸,𝐷𝐷𝐷𝐷𝐷𝐷 be the El-Gamal Encryption
scheme (above) then if DDH is hard relative to 𝒢𝒢 then Π is CPA-Secure.
Proof: Recall that CPA-security and eavesdropping security are
equivalent for public key crypto. Therefore, it suffices to show that for
all PPT A there is a negligible function negl such that

Pr PubKA,Π
eav n = 1 ≤

1
2

+ negl(n)

50

Eavesdropping Security (PubKA,Π
eav n)

51

𝑚𝑚0 ,𝑚𝑚1

Random bit b
(pk,sk) = Gen(.)

𝒄𝒄𝟏𝟏 = 𝐄𝐄𝐄𝐄𝐄𝐄𝒑𝒑𝒑𝒑 𝒎𝒎𝒃𝒃

b’

∀𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴 ∃𝜇𝜇 (negligible) s. t
Pr PubKA,Π

eav n = 1 ≤
1
2

+ 𝜇𝜇(𝑛𝑛)

Public Key: pk

El-Gamal Encryption

Theorem 11.18: Let Π = 𝐺𝐺𝐺𝐺𝐺𝐺,𝐸𝐸𝐸𝐸𝐸𝐸,𝐷𝐷𝐷𝐷𝐷𝐷 be the El-Gamal Encryption
scheme (above) then if DDH is hard relative to 𝒢𝒢 then Π is CPA-Secure.
Proof: First introduce an `encryption scheme’ �Π in which �Encpk 𝑚𝑚 =
𝑔𝑔𝑦𝑦,𝑚𝑚 � 𝑔𝑔𝑧𝑧 for random y, z ∈ ℤ𝑞𝑞 (there is actually no way to do

decryption, but the experiment PubKA,�Π
eav n is still well defined).

Claim: Pr PubKA,�Π
eav n = 1 = 1

2

52

El-Gamal Encryption

Claim: Pr PubKA,�Π
eav n = 1 = 1

2
Proof: (using Lemma 11.15)

Pr PubKA,�Π
eav n = 1

=
1
2

Pr PubKA,�Π
eav n = 1|𝑏𝑏 = 1 +

1
2

1 − Pr PubKA,�Π
eav n = 0|𝑏𝑏 = 0

=
1
2

+
1
2

Pry,z←ℤ𝑞𝑞 𝐴𝐴 𝑔𝑔𝑦𝑦,𝑚𝑚1 � 𝑔𝑔𝑧𝑧 = 1 − Pry,z←ℤ𝑞𝑞 𝐴𝐴 𝑔𝑔𝑦𝑦,𝑚𝑚0 � 𝑔𝑔𝑧𝑧 = 1

=
1
2

53

El-Gamal Encryption

Theorem 11.18: Let Π = 𝐺𝐺𝐺𝐺𝐺𝐺,𝐸𝐸𝐸𝐸𝐸𝐸,𝐷𝐷𝐷𝐷𝐷𝐷 be the El-Gamal Encryption
scheme (above) then if DDH is hard relative to 𝒢𝒢 then Π is CPA-Secure.
Proof: We just showed that

Pr PubKA,�Π
eav n = 1 =

1
2

Therefore, it suffices to show that
Pr PubKA,Π

eav n = 1 − Pr PubKA,�Π
eav n = 1 ≤ 𝐧𝐧𝐧𝐧𝐧𝐧𝐧𝐧(𝑛𝑛)

This, will follow from DDH assumption.

54

El-Gamal Encryption

Theorem 11.18: Let Π = 𝐺𝐺𝐺𝐺𝐺𝐺,𝐸𝐸𝐸𝐸𝐸𝐸,𝐷𝐷𝐷𝐷𝐷𝐷 be the El-Gamal Encryption scheme
(above) then if DDH is hard relative to 𝒢𝒢 then Π is CPA-Secure.
Proof: We can build 𝐵𝐵 𝑔𝑔𝑥𝑥 ,𝑔𝑔𝑦𝑦,𝑍𝑍 to break DDH assumption if Π is not CPA-Secure.
Simulate eavesdropping attacker A
1. Send attacker public key pk = 𝔾𝔾, 𝑞𝑞,𝑔𝑔, ℎ = 𝑔𝑔𝑥𝑥
2. Receive m0,m1 from A.
3. Send A the ciphertext 𝑔𝑔𝑦𝑦,𝑚𝑚𝑏𝑏 � 𝑍𝑍 .
4. Output 1 if and only if attacker outputs b’=b; otherwise output 0.

Pr 𝐵𝐵 𝑔𝑔𝑥𝑥 ,𝑔𝑔𝑦𝑦,𝑍𝑍 = 1�𝑍𝑍 = 𝑔𝑔𝑥𝑥𝑥𝑥 − Pr 𝐵𝐵 𝑔𝑔𝑥𝑥 ,𝑔𝑔𝑦𝑦,𝑍𝑍 = 1�𝑍𝑍 = 𝑔𝑔𝑧𝑧
= Pr PubKA,Π

eav n = 1 − Pr PubKA,�Π
eav n = 1

= Pr PubKA,Π
eav n = 1 − �1

2
55

El-Gamal Encryption

• Encpk(𝑚𝑚) = 𝑔𝑔𝑦𝑦,𝑚𝑚 � ℎ𝑦𝑦 for a random y ∈ ℤ𝑞𝑞 and ℎ = 𝑔𝑔𝑥𝑥,
• Decsk(𝑐𝑐 = 𝑐𝑐1, 𝑐𝑐2) = 𝑐𝑐2𝑐𝑐1−𝑥𝑥

Fact: El-Gamal Encryption is malleable.
c = Encpk(𝑚𝑚) = 𝑔𝑔𝑦𝑦,𝑚𝑚 � ℎ𝑦𝑦

𝑐𝑐𝑐 = 𝑔𝑔𝑦𝑦, 2 � 𝑚𝑚 � ℎ𝑦𝑦
Decsk(𝑐𝑐′) = 2 � 𝑚𝑚 � ℎ𝑦𝑦 � 𝑔𝑔−𝑥𝑥𝑥𝑥 = 2𝑚𝑚

Hint: This observation may be relevant for homework 4.

56

Key Encapsulation Mechanism (KEM)

• Three Algorithms
• Gen(1𝑛𝑛,𝑅𝑅) (Key-generation algorithm)

• Input: Random Bits R
• Output: 𝒑𝒑𝒑𝒑, 𝒔𝒔𝒔𝒔 ∈ 𝓚𝓚

• Encapspk(1𝑛𝑛,𝑅𝑅)
• Input: security parameter, random bits R
• Output: Symmetric key k ∈ 0,1 ℓ 𝑛𝑛 and a ciphertext c

• Decapssk(𝑐𝑐) (Deterministic algorithm)
• Input: Secret key sk ∈ 𝒦𝒦 and a ciphertex c
• Output: a symmetric key 0,1 ℓ 𝑛𝑛 or ⊥ (fail)

• Invariant: Decapssk(c)=k whenever (c,k) = Encapspk(1𝑛𝑛,𝑅𝑅)

57

KEM CCA-Security (KEMA,Π
cca n)

58

𝒄𝒄𝟏𝟏 ≠ 𝒄𝒄

Random bit b
(pk,sk) = Gen(.)

𝒄𝒄,𝒌𝒌𝟎𝟎 = 𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝒑𝒑𝒑𝒑 .
𝒌𝒌𝟏𝟏 ⟵ 𝟎𝟎,𝟏𝟏 𝒏𝒏

b’

𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝒔𝒔𝒌𝒌 𝒄𝒄𝟏𝟏

…

∀𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴 ∃𝜇𝜇 (negligible) s. t
Pr KEMA,Π

cca = 1 ≤
1
2

+ 𝜇𝜇(𝑛𝑛)

…

𝒄𝒄𝟐𝟐 ≠ 𝒄𝒄
𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝒔𝒔𝒔𝒔 𝒄𝒄𝟐𝟐

𝒑𝒑𝒑𝒑, 𝒄𝒄,𝒌𝒌𝒌𝒌

KEM from RSA and El-Gamal

• Recap: CCA-Secure KEM from RSA in Random Oracle Model

• El-Gamal yields CPA-Secure KEM in Random Oracle Model
• 𝒈𝒈𝒚𝒚,𝑯𝑯 𝒉𝒉𝒚𝒚 ← 𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐩𝐩𝐩𝐩 𝟏𝟏𝒏𝒏;𝑹𝑹 and 𝐃𝐃𝐃𝐃𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐬𝐬𝐤𝐤 𝒈𝒈𝒚𝒚 = 𝑯𝑯 𝒈𝒈𝒙𝒙𝒚𝒚

• CDH assumption must hold.

• Above construction is also a CPA-Secure KEM in standard model
• As long as 𝑃𝑃𝑃𝑃𝑥𝑥∈𝔾𝔾 𝐻𝐻 𝑥𝑥 = 𝑘𝑘 ≈ 2−ℓ for each key 𝑘𝑘 ∈ 0,1 ℓ and DDH holds
• Disadvantage: weaker security notion for KEM, stronger DDH assumption
• Advantage: Proof in standard model

59

CCA-Secure Variant in Random Oracle Model

• Key Generation (Gen(1𝑛𝑛)):
1. Run 𝒢𝒢 1𝑛𝑛 to obtain a cyclic group 𝔾𝔾 of order q (with 𝑞𝑞 = 𝑛𝑛) and a generator g such

that < g >= 𝔾𝔾.
2. Choose a random x ∈ ℤ𝑞𝑞 and set ℎ = 𝑔𝑔𝑥𝑥
3. Public Key: pk = 𝔾𝔾, 𝑞𝑞,𝑔𝑔,ℎ
4. Private Key: sk = 𝔾𝔾, 𝑞𝑞,𝑔𝑔, 𝑥𝑥

• Encpk(𝑚𝑚) = 𝑔𝑔𝑦𝑦, 𝑐𝑐′,𝑀𝑀𝑀𝑀𝑀𝑀𝐾𝐾𝑀𝑀 𝑐𝑐𝑐 for a random y ∈ ℤ𝑞𝑞 where

𝐾𝐾𝐸𝐸�𝐾𝐾𝑀𝑀 = 𝐻𝐻 ℎ𝑦𝑦 (KEM)
and

𝑐𝑐′ = EncKE
′ 𝑚𝑚 (Encrypt then MAC)

60

CCA-Secure Variant in Random Oracle Model

Public Key: pk = 𝔾𝔾, 𝑞𝑞,𝑔𝑔,ℎ
Private Key: sk = 𝔾𝔾, 𝑞𝑞,𝑔𝑔, 𝑥𝑥

• Encpk(𝑚𝑚) = 𝑔𝑔𝑦𝑦, 𝑐𝑐′,𝑀𝑀𝑀𝑀𝑀𝑀𝐾𝐾𝑀𝑀 𝑐𝑐𝑐 for a random y ∈ ℤ𝑞𝑞 and 𝐾𝐾𝐸𝐸�𝐾𝐾𝑀𝑀 =
𝐻𝐻 ℎ𝑦𝑦 and 𝑐𝑐′ = EncKE

′ 𝑚𝑚
• Decsk(𝑐𝑐, 𝑐𝑐′, 𝑡𝑡)
1. 𝐾𝐾𝐸𝐸�𝐾𝐾𝑀𝑀 = 𝐻𝐻 𝑐𝑐𝑥𝑥

2. If VrfyKM 𝑐𝑐′, 𝑡𝑡 ≠ 1 or 𝑐𝑐 ∉ 𝔾𝔾 output ⊥; otherwise output DecKE
′ 𝑐𝑐′

61

CCA-Secure Variant in Random Oracle Model

Theorem: If EncKE
′ is CPA-secure, MacKM is a strong MAC and a problem

called gap-CDH is hard then this a CCA-secure public key encryption
scheme in the random oracle model.

• Encpk(𝑚𝑚) = 𝑔𝑔𝑦𝑦, 𝑐𝑐′, MacKM 𝑐𝑐𝑐 for a random y ∈ ℤ𝑞𝑞 and 𝐾𝐾𝐸𝐸�𝐾𝐾𝑀𝑀 =
𝐻𝐻 ℎ𝑦𝑦 and 𝑐𝑐′ = EncKE

′ 𝑚𝑚
• Decsk(𝑐𝑐, 𝑐𝑐′, 𝑡𝑡)
1. 𝐾𝐾𝐸𝐸�𝐾𝐾𝑀𝑀 = 𝐻𝐻 𝑐𝑐𝑥𝑥

2. If VrfyKM 𝑐𝑐′, 𝑡𝑡 ≠ 1 or 𝑐𝑐 ∉ 𝔾𝔾 output ⊥; otherwise output DecKE
′ 𝑐𝑐′

62

CCA-Secure Variant in Random Oracle Model

Remark: The CCA-Secure variant is used in practice in the ISO/IEC 18033-2
standard for public-key encryption.
• Diffie-Hellman Integrated Encryption Scheme (DHIES)
• Elliptic Curve Integrated Encryption Scheme (ECIES)
• Encpk(𝑚𝑚) = 𝑔𝑔𝑦𝑦, 𝑐𝑐′, MacKM 𝑐𝑐𝑐 for a random y ∈ ℤ𝑞𝑞 and 𝐾𝐾𝐸𝐸�𝐾𝐾𝑀𝑀 =
𝐻𝐻 ℎ𝑦𝑦 and 𝑐𝑐′ = EncKE

′ 𝑚𝑚
• Decsk(𝑐𝑐, 𝑐𝑐′, 𝑡𝑡)
1. 𝐾𝐾𝐸𝐸�𝐾𝐾𝑀𝑀 = 𝐻𝐻 𝑐𝑐𝑥𝑥

2. If VrfyKM 𝑐𝑐′, 𝑡𝑡 ≠ 1 or 𝑐𝑐 ∉ 𝔾𝔾 output ⊥; otherwise output DecKE
′ 𝑐𝑐′

63

	Cryptography�CS 555
	Week 12: Topic 0: Discrete Log Attacks + NIST Recommendations for Concrete Security Parameters�
	Factoring Algorithms (Summary)
	Discrete Log Attacks
	Discrete Log Attacks
	Baby-step/Giant-Step Algorithm
	Baby-step/Giant-Step Algorithm
	Baby-step/Giant-Step Algorithm
	Baby-step/Giant-Step Algorithm
	Discrete Log Attacks
	Discrete Log Attacks
	Discrete Log Attacks
	Discrete Log Attacks
	Discrete Log
	Discrete Log
	NIST Guidelines (Concrete Security)
	NIST Guidelines (Concrete Security)
	NIST Guidelines (Concrete Security)
	NIST Guidelines (Concrete Security)
	Slide Number 20
	Signature Length
	Identification Scheme
	Identification Scheme
	Identification Game (Ident A,Π n)
	Schnorr Identification Scheme
	Schnorr Identification Scheme
	Schnorr Identification Scheme
	Fiat-Shamir Transform
	Schnorr Signatures via Fiat-Shamir
	Schnorr Signatures
	Schnorr Signatures
	Schnorr Signatures
	Short Schnorr Signatures
	Digital Signature Algorithm (DSA)
	Digital Signature Algorithm (DSA)
	Digital Signature Algorithm (DSA)
	Digital Signature Algorithm (DSA)
	Certificate Authority
	One-Time Signature Scheme
	Lamport’s Signature Scheme (from OWFs)
	Lamport’s Signature Scheme (from OWFs)
	Lamport’s Signature Scheme (from OWFs)
	Lamport’s Signature Scheme
	Lamport’s Signature Scheme
	Secure Signature Scheme from OWFs
	Week 13 Topic 1: El-Gamal Encryption
	El-Gamal Encryption
	El-Gamal Encryption
	El-Gamal Encryption
	Eavesdropping Security (PubK A,Π eav n)
	El-Gamal Encryption
	El-Gamal Encryption
	El-Gamal Encryption
	El-Gamal Encryption
	El-Gamal Encryption
	Key Encapsulation Mechanism (KEM)
	KEM CCA-Security (KEM A,Π cca n)
	KEM from RSA and El-Gamal
	CCA-Secure Variant in Random Oracle Model
	CCA-Secure Variant in Random Oracle Model
	CCA-Secure Variant in Random Oracle Model
	CCA-Secure Variant in Random Oracle Model

