Cryptography
CS 555

Week 12:

e Discrete Log Attacks + NIST Recommendations for Concrete
Security Parameters

* |dentification Schemes + Schnorr Signatures
e El Gamal

Readings: Katz and Lindell Chapter 10 & Chapter 11.1-11.2, 11.4

Homework 4 Due Thursday (4/8) at 11:59PM on Gradescope

Spring 2021

Week 12: Topic O: Discrete Log
Attacks + NIST
Recommendations for Concrete
Security Parameters

Factoring Algorithms (Summary)

e Pollard’s p-1 Algorithm
 Works when N = pg where (p-1) has only “small” prime factors
e Defense: Ensure that p (resp. q) is a strong prime (p-1) has no “small” prime factors.
* Note: A random prime is strong with high probability.

e Pollard’s Rho Algorithm
e General purpose factoring algorithm
e Core: Low Space Cycle Detection

* Time: T(N) = O(VN polylog(N))
e Naive Algorithm takes time O(W polylog(N)) to factor

e Quadratic Sieve
e Time: 20(Vlog N loglogN) — 70(Jnlogn) (sh-exponential, but not polynomial time)
e Preprocessing + Linear Algebra: find %,y € Zj such that x* = y* mod N and x # +y mod N?

|"

Discrete Log Attacks

Pohlig-Hellman Algorithm
e Given a cyclic group G of non-prime order g=| G |=rp
e Reduce discrete log problem to discrete problem(s) for subgroup(s) of order p (or smaller).
» Preference for prime order subgroups in cryptography

Baby-step/Giant-Step Algorithm
* Solve discrete logarithm in time 0(\@ polylog(q))
Pollard’s Rho Algorithm
* Solve discrete logarithm in time 0(\/6 polylog(q))
e Bonus: Constant memory!
Index Calculus Algorithm
e Similar to quadratic sieve

e Runs in sub-exponential time 20(Vlog qloglogq)
* Specific to the group Zj (e.g., attack doesn’t work against elliptic-curve groups)

Discrete Log Attacks

e Pohlig-Hellman Algorithm
e Given a cyclic group G of non-prime order g=| G |=rp
e Reduce discrete log problem to discrete problem(s) for subgroup(s) of order p (or smaller).
* Preference for prime order subgroups in cryptography

e Let G = (g) and h = g* € G be given. For simplicity assume that r is prime and r < p.

* Observe that (g") generates a subgroup of size p and that h" € (g").
* Solve discrete log problem in subgroup {(g") with input h".
e Find z such thath" = g"*= rz = rx mod p.

* Observe that (g?) generates a subgroup of size r and that hP € (gP).
* Solve discrete log problem in subgroup {(g?) with input hP.
* Find y such that h? = g¥?- pz = px modr.

 Chinese Remainder Theorem h = g* where x & (|z mod p], [y mod r])

Baby-step/Giant-Step Algorithm

* Input: G = (g) of order g, generatorgand h = g* € G
*Sett = Wﬁ]

gt

Baby-step/Giant-Step Algorithm

* Input: G = (g) of order g, generatorgand h = g* € G

e Sett = b /qJ
Precomputation: Compute and store gt °
For eachi=0to El

g’ N

g3

g

Baby-step/Giant-Step Algorithm

* Input: G = (g) of order g, generatorgand h = g* € G
*Sett = Wﬁ]

t-1 steps =2 x+(t-1)=2t-9x=t+1

' @

Example: x=t+1

st-Processing: h=g*
gZ

g

ga-

Baby-step/Giant-Step Algorithm

* Input: G = (g) of order g, generatorgandh = g* € G
e Sett = |/q]

Fori=0to H
t .
gi < g"
Sort the pairs (i,g.) by their second component
Fori=Otot .
h; < hg' hi — hgl —
if h; = g, € {90, ..., g¢} then b=
return [kt-i mod q] —n=9g

Discrete Log Attacks

e Baby-step/Giant-Step Algorithm
e Solve discrete logarithm in time 0(\/6 polylog(q))
* Requires memory 0(+/q polylog(q))

* Pollard’s Rho Algorithm

e Solve discrete logarithm in time 0(\/6 polylog (q))
e Bonus: Constant memory!

e Key Idea: Low-Space Birthday Attack (*) using our collision resistant hash
function

Hy p(xq,%,) = g*1h™*2

Hg,h(yLYZ) — Hg,h(xl, xz) — hyz_xz — gxl_yl
- h = g(xl_Jﬁ)(J’z—xz)_l

(*) A few small technical details to address

Remark: We used discrete-log problem to

D | SC rete Log Atta C kS construct collision resistant hash functions.

Security Reduction showed that attack on
collision resistant hash function yields attack

* Baby-step/Giant-Step Algorithm on discrete log.
» Solve discrete logarithm in time 0(\/6 polylog(q))
e Requires memory 0(\/5 polylog(q)) - Generic attack on collision resistant hash

e Pollard’s Rho Algorithm functions (e.g., low space birthday attack)

« Solve discrete logarithm in time O(W o yields generic attack on discrete log.

e Bonus: Constant memory!

» Key Idea: Low-Space Birthday Attack (*)
Hy p(x1,x72) = g*th*?

Hg,h(YLYZ) = Hg,h(xl;xz)
- h}’z_xz — gxl_yl
- h = g(x1—3’1)(3’2—x2)_1

(*) A few small technical details to address

11

Discrete Log Attacks

e Index Calculus Algorithm
e Similar to quadratic sieve

e Runs in sub-exponential time 20(y/logploglogp)
* Specific to the group Z,, (e.g., attack doesn’t work on elliptic-curve groups)

* As before let {p,,...,p,} denote the set of prime numbers < B.
* Step 1.A: Find £ > k distinct values x4, ..., x4 such that g; = [g"/ mod p] is

B-smooth for each j. That is y
ei’-
gj = Hpi g
i=1

Discrete Log Attacks

* As before let {p,,...,p,} be set of prime numbers < B.

* Step 1.A: Find £ > k distinct values xq, ..., x4 such that g; = [g"/ mod p] is
B-smooth for each j. That is)
ei’-
gj = Hpi 7
i=1

e Step 1.B: Use linear algegra to solve the equations
Xj = Z(log, pi) X e;; mod (p — 1).
i=1

(Note: the loggpj’s are the unknowns)

Discrete Log

* As before let {p,,...,p,} be set of prime numbers < B.
e Step 1 (precomputation): Obtain y,,...,y, such that p.

e Step 2: Given discrete log challenge h=g* mod p.
* Find z such that [g?h mod p] is B-smooth

|gZ?h mod p| = np
1_[(93’1)91 — ng eiYi

= g”i mod p.

Discrete Log

* As before let {p,,...,p,} be set of prime numbers < B.
* Step 1 (precomputation): Obtain y,,...,y, such that p. = g”t mod p.

e Step 2: Given discrete log challenge h=g* mod p.
* Find z such that [g?h mod p] is B-smooth

[gZh mod p] = gZi¢Yi » h = gLi¢Vi=Z

—>x=z€i)’i—z

i
* Remark: Precomputation costs can be amortized over many discrete
log instances

* In practice, the same group G = (g) and generator g are used repeatedly.

Reference: https://www.weakdh.org/

https://www.weakdh.org/

NIST Guidelines (Concrete Security)

Best known attack against 1024 bit RSA takes time (approximately) 28°

Symmetric Key Size RSA and Diffie-Hellman Key Size Elliptic Curve Key Size
(bits) (bits) (bits)
80 1024 160
112 2048 224
128 3072 256
192 7680 384
256 15360 521

Table 1: NIST Recommended Key Sizes

NIST Guidelines (Concrete Security)

Diffie-Hellman uses subgroup of Z, size g

Symmetric Key Size RSA and Diffie-Hellman Key Size Elliptic Curve Key Size
(bits) (bits) (bits)
80 1024 160
112 2048 q=224 bits 224
128 3072 q=256 bits 256
192 7680 q=384 bits 384
256 15360 q=512 bits 521

Table 1: NIST Recommended Key Sizes

17

NIST Guidelines (Concrete Security)

112 bits = 28 2 log V2224 bits (Pollard’s Rho)
Symmetric Key Size RSA and Diffie-Hellman Key Size Elliptic Curve Key Size
(bits) (bits) (bits)
80 1024 160
112 2048 q=224 bits 224
128 3072 4=256 bits 256
192 7680 q=384 bits 384
256 15360 q=512 bits 521

Table 1: NIST Recommended Key Sizes

18

NIST Guidelines (Concrete Security)

112 bits ~ ,/204810og 2048 bits (Index Calculus)

Symmetric Key Size RSA and Diffie-Hellman Key Size Elliptic Curve Key Size
(bits) (bits) (bits)
80 1024 160
112 2048 q=224 bits 224
128 3072 q=256 bits 256
192 7680 q=384 bits 384
256 15360 q=512 bits 521

Table 1: NIST Recommended Key Sizes

19

2014

: 2011 through 2031 and
Security Strength 2013 O Beyond
Applying Deprecated Disallowed
50 Processing Legacy use
112 ﬁppl:,.ru.ig Acceptable Acceptable Disallowed
Processing Legacy use
128 Acceptable Acceptable Acceptable
192 | Applying/Processing | Acceptable Acceptable Acceptable
256 Acceptable Acceptable Acceptable

MIST s security strength guidelines, from Specialist Publication 3P 800-57
Kecommendation for Key Manogement — Fart 1: General (Kewision 3]

Signature Length

* RSA-FDH
* 128-bit security =» log,(N) > 3072
* RSA-FDH Signatures are at least 3Kb long
* Are shorter signatures possible?

* RSA Ciphertexts/RSA KEM
* At least 3Kb long for 128-bit security
e Shorter Ciphertexts

ldentification Scheme

* Interactive protocol that allows one party to prove its identify

(authenticate itself) to another

e Two Parties: Prover and Verifier

1.

e Prover has secret key sk and Verifier has public key pk

Prover runs P,(sk) to obtain (I,st) ----initial message |, state st
e Sends | to Verifier

Verifier picks random message r from distribution (), and sends r to
Prover

Prover runs P,(sk,st,r) to obtain s and sends s to verifier
Verifier checks if V(pk,r,s)=I

ldentification Scheme

1. Prover runs P,(sk) to obtain (I,st) ---- initial message |, state st
1. Sends | to Verifier

2. Verifier picks random message r from distribution (), and sends r
to Prover

3. Prover runs P,(sk,st,r) to obtain s and sends s to verifier

4. Verifier checks if V(pk,r,s)=l
An eavesdropping attacker obtains a transcript (I,r,s) of all the message
sent.

Transcript Oracle: Trans,,(.) runs honest execution and outputs
transcript.

[dentification Game (Ident, (n))

Public Key: pk
Again
Transg;(.)

1 Again
‘ Transg, ()
I B
) r< 0,
- Again }
Transg, ()

1if V(pk,r,s) =1

Ident, ;(n) =

VPPT A 3u (negligible) s.t Pr[Ident, n(n) = 1] < u(n) .

Schnorr Identification Scheme

 Verifier knows h=g*
* Prover knows x such that h=g*

1. Prover runs P,(x) to obtain (k € Z I = k) and sends initial
message | to verifier

2. Verifier picks randomr € Z (q is order of the group) and sends r to
q
prover

3. Prover runs P,(x,k,r) to obtain s := [rx + k mod q] and sends s to
Verifier

4. Verifier checks if g * (h™1)" =1 = g~

Schnorr Identification Scheme

 Verifier knows h=g*
* Prover knows x such that h=g*

1. Prover runs P,(x) to obtain (k € Z 1 = k) and sends initial
message | to verifier

2. Verifier picks random r € Z (q is order of the group) and sends r to
prover

3. Prover runs P,(x,k,r) to obtain s := [rx + k mod q] and sends s to
Verifier

4. Verifier checks if g5 x (h™1)" =1 = g*
gs " (h—l)r — grx+k mod q g—xr — gk

Schnorr Identification Scheme

e Verifier knows h=g*
* Prover knows x such that h=g*

* Prover runs P,(x) to obtain (k eZ , I = gk)and sends initial message | to
verifier !

e Verifier picks random r € Zq (q is order of the group) and sends r to prover

e Prover runs P1(x,k,r) to obtain s := [rx + k mod q] and sends s to Verifier
* Verifier checks if g5 * (h™1)" = [= g~

Theorem 12.11: If the discrete-logarithm problem is hard (relative to group
generator) then Schnorr identification scheme is secure.

Fiat-Shamir Transform

 |dentification Schemes can be transformed into signatures
e Sign g (m)

e First compute (l,st)= P,(sk) (as prover)
e Next compute the challenge r = H(I,m) (as verifier)
e Compute the response s = P,(sk,st,r)
e Qutput signature (r,s)
* Vrfy, (m,(r,s))
e Compute | := V(pk,r,s)
e Check that H(l,m)=r

Theorem 12.10: If the identification scheme is secure and H is a
random oracle then the above signature scheme is secure.

Schnorr Signatures via Fiat-Shamir

* Public Key: h=g* in cyclic group (g) of order q.
e Secret Key: x
* Signg,(m)

1. Selectrandomk € Z_ andset! = gk.

2. r=HU,m)
3. Returno = (r,s) wheres = |[rx + k mod q]

. Verifypk(m, o = (r, S))
e Compute g5 * (h™1)" = g5 "™ and check ifr = H(g* ™, m)

Schnorr Signhatures

* Signg,(m)
1. Select random k € Zq and set I = g*.
2. r=H(,m)
3. Returno = (r,s) where s := [rx + k mod q]

. Verifypk(m, o=(r, S))
e Compute g5 * (h™1)" = g5 ™ and check ifr = H(g®* ™, m)

Corollary (of Thms 12.10 + 12.11): If the discrete-logarithm problem is
hard (relative to group generator) then Schnorr Signatures are secure in
the random oracle model.

 |ndependent of size of
original group Depends only on
(rth residue subgroup). ~rder of the subgroup

 |ndependent of #bits to
represent group
element
(Elliptic Curve Pairs)

Advantages:

 Short Signatures ||o|| = ||7|| + ||s|| = 2[log, g] bits
e Fast and Efficient

e Patent Expired: February 2008

* Independent of size of Depends only on

original group order of the subgroup
(rth residue subgroup). q!

g~

 |ndependent of #bits to DLOG 128 bit security:
represent group BEaek! [log, g] =~ 256

element
(Elliptic Curve Pairs)

Advantages:

 Short Signatures ||o|| = ||7|| + ||s|| = 2[log, g] bits
e Fast and Efficient

e Patent Expired: February 2008

checkif r ~ 512 bit signatures

Short Schnorr Signatures

* Signg,(m)
1. Selectrandomk € Z andsetI = g*.
2 r=HUIm) [Ir<q
3. Returno = (r,s) wheres = [rx + k mod ¢]

. Verifypk('m, o= (r5))
e Compute g5 * (h™1)" = g5 ™ and check ifr = H(g®* ™, m)

 Short Signatures ||c|| = ||7|| + ||s|| = 1. 5]log, q] bits
 New Result: Short Schnorr Signatures are also secure in Generic Group+
Random Oracle Model https://eprint.iacr.org/2019/1105.pdf
e 384 bit signatures for 128-bit security

e BLS Signatures: 256 bit signatures for 128-bit security (computational
overhead is much higher)

https://eprint.iacr.org/2019/1105.pdf

Digital Signature Algorithm (DSA)

DSA: (g) is subgroup of Z,, of order q
ECDSA: (g) is order q subgroup of elliptic curve

e Secret key is X, public key is h=g*along with generator g (of order q)

* Sign (M)
e Pickrandom (k € Z)andsetr = F(g*) € Z,
e Compute s := [k~ (xr + H(m)) mod q]
e Qutput signature (r,s)
* Vrfy, (m,(r,s)) check to make sure that
r = F(gH(m)s hTs™)

Digital Signature Algorithm (DSA)

* Signg (m)
e Pick random (k € Z) and setr = F(gk) [g% mod q]
e Compute s == [k 1(xr + H(m)) mod q]
e Qutput signature (r,s)

* Vrfy,(m,(r,s)) check to make sure that
r = F(gH(m)S RS~)
— F(gH(‘m)k(xr+H(m)) 1gx7‘k(xr+H(m))—1)

_ F(g (H(m)+xr)k(xr+H(m))_1)
- P(g") =

Digital Signature Algorithm (DSA)

e Secret key is x, public key is h=gXalong with generator g (of order q)
* Sign,(m)

e Pickrandom (k € Z)andsetr = F(g*) = [g"* mod q]

« Computes == [k~ 1(xr + H(m)) mod q]

e Qutput signature (r,s)

* Vrfy,(m,(rs)) check to make sure that
r = F(gH(m)s‘lhrs‘l)

Theorem: If H and F are modeled as random oracles then DSA is secure.

Weird Assumption for F(.)?

 Theory: DSA Still lack compelling proof of security from standard crypto assumptions
* Practice: DSA has been used/studied for decades without attacks

Digital Signature Algorithm (DSA)

e Secret key is x, public key is h=g*

* Sign,(m)
e Pickrandom (k € Z)andsetr = F(g*) = [g"* mod q]
« Computes == [k~ 1(xr + H(m)) mod q]
e Qutput signature (r,s)

* Vrfy,(m,(rs)) check to make sure that
r = F(gH(m)s‘lhrs‘l)

Remark: If signer signs two messages with same random k € Z then attacker can find
secret key sk! 1

* Theory: Negligible Probability this happens
* Practice: Will happen if a weak PRG is used
e Sony PlayStation (PS3) hack in 2010.

Certificate Authority

e Trusted Authority (CA)

* Measamazon= AMazon’s public key is pk 4mazon (date,expiration, ###)”
* certcasamazon = S i.gnSKCA (m)

* Delegate Authority to other CA,

e Root CA signs m= “CA, public key is pk.41 (date,expiration, ###) can issue
certificates”

e Verifier can check entire certification chain
e Revocation List Signed Daily
e Decentralized Web of Trust (PGP)

One-Time Signature Scheme

* Weak notion of one-time secure signature schemes

 Attacker makes one query to oracle Sign,(.) and then attempts to output
forged signature for m’

* |f attacker sees two different signatures then guarantees break down

e Achievable from Hash Functions
* No number theory!
* No Random Oracles!

Lamport’s Signature Scheme (from OWFs)

X1,0 X20 X3,0
sk =

X11 X21 X31

k_[yLo Y2,0 Y3,0]
PR = yi1 Y21 Yan

x; j € {0,1}" (uniform)

yij = f(xi)

Assumption: f is a One-Way Function

Lamport’s Signature Scheme (from OWFs)

X10 X20 X3,0
sk =

X11 X21 X31

k_[yLo Y2,0 3’3,0]
PR = yi1 Y21 Yan

Sign, (011) = (X1,0» X2,1s x3,1)

Lamport’s Signature Scheme (from OWFs)

X1,0 X200 X3,0
sk =

X11 X21 X31

k—[yl’o Y2,0 3’3,0]
PX=yi1 Vo1 ¥31

Sign,(011) = (Xl,o, X2,1) x3,1)

1 iff(x)= NT(x>) = NT(xs) =
Vrfypk(Oll, (xl,lexg)) — {0 Ot];l(eri/\)liseh,o f(x3) V2,1 f(x3) V3,1

42

Lamport’s Signature Scheme

Theorem 12.16: Lamport’s Signature Scheme is a secure one-time signature scheme
(assuming f is a one-way function).

Proof Sketch: Signing a fresh message requires inverting f(xi,j) for random x; ;.

Remark: Attacker can break scheme if he can request two signatures.

How?

Request signatures of both 0" and 1".

Lamport’s Signature Scheme

Remark: Attacker can break scheme if he can request two signatures.

How?
Request signatures of both 0" and 1".

X10 X20 X3,0]
X11 X21 X31

sk = |

Signg, (000) = (10, %20, %3,0)

Signg,(111) = (x11,%51,%31)

44

Secure Signature Scheme from OWFs

Theorem 12.22: secure/stateless signature scheme from collision-resistant
hash functions.

* Collision Resistant Hash Functions do imply OWFs exist

Remark: Possible to construct signature scheme Il which is existentially
unforgeable under an adaptive chosen message attacks using the minimal
assumption that one-way functions exist.

Week 13 Topic 1: El-Gamal
Encryption

El-Gamal Encryption

» Key Generation:
 Generate cyclic group <g> of prime order q
e Pickrandom x < q and compute h = g*

e PublicKey: g, h
» Secret Key: x = dlog,(h)

El-Gamal Encryption

* Public Key: g, h

* SecretKey: x = dlog,(h)

* Enc, (m) = (g”,m - h¥) forarandomy € Z,
* Dec, (c = (c1,63)) = 1™

Decy (g”,m-h”) =m-h¥(g”)™>
= m - hy(gy)_x
=m-(g*)7(g”)™"
= m - gxyg_xy
—m

El-Gamal Encryption

* Enc, (m) = (g”,m - h”) forarandomy € Z,
* Dec, (c = (c1,63)) = coc1”

Theorem 11.18: Let 1 = (Gen, Enc, Dec) be the EI-Gamal Encryption
scheme (above) then if DDH is hard relative to G then Il is CPA-Secure.

Proof: Recall that CPA-security and eavesdropping security are
equivalent for public key crypto. Therefore, it suffices to show that for
all PPT A there is a negligible function negl such that

Pr[PubKeaV(n) = 1] + negl(n)

EFavesdropping Security (PubK3 (n))

Public Key: pk
Mo, My

¢ = Ency(m,) ;

b)

[]
Random bitb /7
k,sk) = G 1 PE
(p »S) = en(-) Ao L
* U’f [e

VPPT A 3du (negligiblle) S. t
Pr[PubK§ (n) = 1| < >+ 1)

51

El-Gamal Encryption

Theorem 11.18: Let 1 = (Gen, Enc, Dec) be the EI-Gamal Encryption
scheme (above) then if DDH is hard relative to G then Il is CPA-Secure.

Proof: First introduce an “encryption scheme’ I1 in which Enc k(m) =
(g7, m - g”)forrandomy,z € Z, (there is actually no way to do
decryption, but the experiment PubKeaV(n) is still well defined).

Claim: Pr[PubKeaV(n) = 1| =

El-Gamal Encryption

Claim: Pr|PubK$% (n) = 1| =
Proof: (using Lemma 11.15)

Pr[PubKF (n) = 1]

%Pr[PubKeaV(n) =1lb=1]+= (1 — Pr[PubK3%{ (n) = 0|b = 0])
1

1
— E + E (Pry,z<—Zq [A«gy' my - gz>) — 1] o Pryrz‘—zq [A(<gy’ Mo * gz>) - 1])

1
2

53

El-Gamal Encryption

Theorem 11.18: Let 1 = (Gen, Enc, Dec) be the EI-Gamal Encryption
scheme (above) then if DDH is hard relative to G then Il is CPA-Secure.

Proof: We just showed that
Pr[PubKiF(n) = 1] =

Therefore, it suffices to show that
\Pr[PubKeaV(n) = 1] — Pr[PubK{H (n) = 1]| < negl(n)

This, will follow from DDH assumption.

El-Gamal Encryption

Theorem 11.18: Let II = (Gen, Enc, Dec) be the El-Gamal Encryption scheme
(above) then if DDH is hard relative to G then Il is CPA-Secure.

Proof: We can build B(g*, g”, Z) to break DDH assumption if IT is not CPA-Secure.
Simulate eavesdropping attacker A

1. Send attacker public key pk = (G, q,g, h = g*)
2. Receive my,,m, from A.
3. Send A the ciphertext (g¥, my, - Z).
4. Output 1 if and only if attacker outputs b’=b; otherwise output 0.
|Pr[B(g%, 9, 2) = 1|Z = g*7| - Pr[B(g%, g, 2) = 1|Z = 7|
= |Pr|[PubKgi{(n) = 1] — Pr[PubK3y(n) = 1]
= |Pr[PubK§¥(n) = 1] - 1/,

El-Gamal Encryption

* Enc, (m) = (g”,m - h”) forarandomy € Z, and h = g*,

* Dec,(c = (c1,¢3)) = coc1 ™

Fact: El-Gamal Encryption is malleable.
C = Encpk(m) = (g”,m-hY)
=(9”,2-m-h’)
Decsk(c) =2-m-hY.-g Y =2m

Hint: This observation may be relevant for homework 4.

Key Encapsulation Mechanism (KEM)

 Three Algorithms
e Gen(1", R) (Key-generation algorithm)
e Input: Random Bits R
e Output: (pk,sk) € ¥
* Encaps (1™, R)
e |nput: security parameter, random bits R
e Output: Symmetric key k € {0,1}¥™ and a ciphertext c
e Decaps,,.(c) (Deterministic algorithm)
e Input: Secret key sk € K and a ciphertex c
« Output: a symmetric key{0,1}¥™ or 1 (fail)

* Invariant: Decaps,,(c)=k whenever (c,k) = Encapspk(ln, R)

KEM CCA-Security (KEMa 17(n))

(pk,c,kb)

C1:/:C

Decapsg(cy)

Cy FC

Decaps;(cy)]

Random bit b

VPPT A 3Ju (neghglble) .t (pksk)=Gen() |

Pr[KEMSG@ = 1] < + u(n) (cky) = Encapsyi()
k, —{0,1}"

KEM from RSA and El-Gamal

e Recap: CCA-Secure KEM from RSA in Random Oracle Model

* El-Gamal yields CPA-Secure KEM in Random Oracle Model
. (gy,H(hy)) < Encaps,(1™; R) and Decaps(g”) = H(g*?)
e CDH assumption must hold.

e Above construction is also a CPA-Secure KEM in standard model

e Aslong as Prycg[H(x) = k] = 27* for each key k € {0,1}* and DDH holds
e Disadvantage: weaker security notion for KEM, stronger DDH assumption
e Advantage: Proof in standard model

CCA-Secure Variant in Random Oracle Model

e Key Generation (Gen(1™)):

1. Run G(1™) to obtain a cyclic group G of order q (with ||g]|| = n) and a generator g such
that< g >= G.

2. Choose arandomx € Z, and set h = g*
3. PublicKey: pk = (G, q, g, h)
4. Private Key: sk = (G, q, g, x)

* Enc,, (m) = (gy, c’,MacKM(c')) for arandomy € Z, where

Kg||Ky = H(RY) (KEM)
and
¢’ = Encg_ (m) (Encryptthen MAC)

CCA-Secure Variant in Random Oracle Model

Public Key: pk = (G, g, g, h)
Private Key: sk = (G, g, g, x)

* Enc, (m) = (gy, c',MacKM(c’)) forarandomy € Z, and KEHKM =
H(h”) and ¢’ = Encg,_ (m)

* Dec, ({c,c’,t))
1. Kg||[Ky = H(c®)
2. If Vrfyg, (c’,t) # 1 orc & Goutput 1; otherwise output Decg_(c')

CCA-Secure Variant in Random Oracle Model

Theorem: If Ency_ is CPA-secure, Macy,, is a strong MAC and a problem

called gap-CDH is hard then this a CCA-secure public key encryption
scheme in the random oracle model.

* Enc, (m) = (gy, ¢’,Macg,, (c’)) forarandomy € Z, and I{EHKM =
H(h”) and ¢’ = Encg_ (m)

* Dec, ({c,c’, t))
1. Kg||Ky = H(c®)
2. If Vrfyg, (c’,t) # 1 or ¢ € G output L; otherwise output Decg_(c')

CCA-Secure Variant in Random Oracle Model

Remark: The CCA-Secure variant is used in practice in the ISO/IEC 18033-2
standard for public-key encryption.

* Diffie-Hellman Integrated Encryption Scheme (DHIES)
e Elliptic Curve Integrated Encryption Scheme (ECIES)

* Enc, (m) = (gy c’ MaCK (c) forarandomy € Z; and KEHKM =

H(hY)and ¢’ = EDCKE (16
* Dec, ({c,c’,t))
1. Kg||Ky = H(c¥)
2. If Vrfyg, (c’,t) # 1 or ¢ € G output L; otherwise output Decg_ (c")

	Cryptography�CS 555
	Week 12: Topic 0: Discrete Log Attacks + NIST Recommendations for Concrete Security Parameters�
	Factoring Algorithms (Summary)
	Discrete Log Attacks
	Discrete Log Attacks
	Baby-step/Giant-Step Algorithm
	Baby-step/Giant-Step Algorithm
	Baby-step/Giant-Step Algorithm
	Baby-step/Giant-Step Algorithm
	Discrete Log Attacks
	Discrete Log Attacks
	Discrete Log Attacks
	Discrete Log Attacks
	Discrete Log
	Discrete Log
	NIST Guidelines (Concrete Security)
	NIST Guidelines (Concrete Security)
	NIST Guidelines (Concrete Security)
	NIST Guidelines (Concrete Security)
	Slide Number 20
	Signature Length
	Identification Scheme
	Identification Scheme
	Identification Game (Ident A,Π n)
	Schnorr Identification Scheme
	Schnorr Identification Scheme
	Schnorr Identification Scheme
	Fiat-Shamir Transform
	Schnorr Signatures via Fiat-Shamir
	Schnorr Signatures
	Schnorr Signatures
	Schnorr Signatures
	Short Schnorr Signatures
	Digital Signature Algorithm (DSA)
	Digital Signature Algorithm (DSA)
	Digital Signature Algorithm (DSA)
	Digital Signature Algorithm (DSA)
	Certificate Authority
	One-Time Signature Scheme
	Lamport’s Signature Scheme (from OWFs)
	Lamport’s Signature Scheme (from OWFs)
	Lamport’s Signature Scheme (from OWFs)
	Lamport’s Signature Scheme
	Lamport’s Signature Scheme
	Secure Signature Scheme from OWFs
	Week 13 Topic 1: El-Gamal Encryption
	El-Gamal Encryption
	El-Gamal Encryption
	El-Gamal Encryption
	Eavesdropping Security (PubK A,Π eav n)
	El-Gamal Encryption
	El-Gamal Encryption
	El-Gamal Encryption
	El-Gamal Encryption
	El-Gamal Encryption
	Key Encapsulation Mechanism (KEM)
	KEM CCA-Security (KEM A,Π cca n)
	KEM from RSA and El-Gamal
	CCA-Secure Variant in Random Oracle Model
	CCA-Secure Variant in Random Oracle Model
	CCA-Secure Variant in Random Oracle Model
	CCA-Secure Variant in Random Oracle Model

