
Cryptography
CS 555

Week 11: 
• Formalizing Public Key Crypto

• Fixes for Plain RSA
• Applications of DDH
• Factoring Algorithms, Discrete Log Attacks + NIST Recommendations 

for Concrete Security Parameters
Readings: Katz and Lindell Chapter 8.4 & Chapter 9
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Recap CCA-Security 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴,Π
𝑐𝑐𝑐𝑐𝑐𝑐 𝑛𝑛

1. Challenger generates a secret key k and a bit b
2. Adversary (A) is given oracle access to Enck and Deck
3. Adversary outputs m0,m1
4. Challenger sends the adversary c=Enck(mb).
5. Adversary maintains oracle access to  Enck and Deck ,however the adversary is 

not allowed to query Deck(c).
6. Eventually, Adversary outputs b’.

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴,Π
𝑐𝑐𝑐𝑐𝑐𝑐 𝑛𝑛 = 1 if b = b′; otherwise 0.

CCA-Security: For all PPT A exists a negligible function negl(n) s.t.

Pr 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴,Π
𝑐𝑐𝑐𝑐𝑐𝑐 𝑛𝑛 = 1 ≤

1
2

+ 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(𝑛𝑛)
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CCA-Security (PubKA,Π
cca n )

3

𝑚𝑚0 ,𝑚𝑚1

Random bit b
(pk,sk) = Gen(.)

𝒎𝒎−𝟏𝟏 = 𝐃𝐃𝐃𝐃𝐃𝐃𝒔𝒔𝒔𝒔 𝒄𝒄−𝟏𝟏

b’

𝒄𝒄𝒃𝒃 = 𝐄𝐄𝐄𝐄𝐃𝐃𝒑𝒑𝒔𝒔 𝒎𝒎𝒃𝒃

…

∀𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴 ∃𝜇𝜇 (negligible) s. t
Pr PubKA,Π

cca n = 1 ≤
1
2

+ 𝜇𝜇(𝑛𝑛)

𝒄𝒄−𝟏𝟏

…

𝒄𝒄𝒔𝒔
𝒎𝒎𝒔𝒔 = 𝐃𝐃𝐃𝐃𝐃𝐃𝒔𝒔𝒔𝒔 𝒄𝒄𝒔𝒔

Public Key: pk



Encrypting Longer Messages

Claim 11.7: Let Π = 𝐺𝐺𝑛𝑛𝑛𝑛,𝐸𝐸𝑛𝑛𝐸𝐸,𝐷𝐷𝑛𝑛𝐸𝐸 denote a CPA-Secure public key 
encryption scheme and let  Π′ = 𝐺𝐺𝑛𝑛𝑛𝑛,𝐸𝐸𝑛𝑛𝐸𝐸′,𝐷𝐷𝑛𝑛𝐸𝐸′ be defined such that 

𝐄𝐄𝐄𝐄𝐃𝐃𝐩𝐩𝐩𝐩′ 𝒎𝒎𝟏𝟏 ∥ 𝒎𝒎𝟐𝟐 ∥ ⋯ ∥ 𝒎𝒎ℓ = 𝐄𝐄𝐄𝐄𝐃𝐃𝐩𝐩𝐩𝐩 𝒎𝒎𝟏𝟏 ∥ ⋯ ∥ 𝐄𝐄𝐄𝐄𝐃𝐃𝐩𝐩𝐩𝐩 𝒎𝒎ℓ
Then Π′ is also CPA-Secure.

Claim? Let Π = 𝐺𝐺𝑛𝑛𝑛𝑛,𝐸𝐸𝑛𝑛𝐸𝐸,𝐷𝐷𝑛𝑛𝐸𝐸 denote a CCA-Secure public key encryption 
scheme and let  Π′ = 𝐺𝐺𝑛𝑛𝑛𝑛,𝐸𝐸𝑛𝑛𝐸𝐸′,𝐷𝐷𝑛𝑛𝐸𝐸′ be defined such that 

𝐄𝐄𝐄𝐄𝐃𝐃𝐩𝐩𝐩𝐩′ 𝒎𝒎𝟏𝟏 ∥ 𝒎𝒎𝟐𝟐 ∥ ⋯ ∥ 𝒎𝒎ℓ = 𝐄𝐄𝐄𝐄𝐃𝐃𝐩𝐩𝐩𝐩 𝒎𝒎𝟏𝟏 ∥ ⋯ ∥ 𝐄𝐄𝐄𝐄𝐃𝐃𝐩𝐩𝐩𝐩 𝒎𝒎ℓ
Then Π′ is also CCA-Secure.

Is this second claim true?
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Encrypting Longer Messages

Claim? Let Π = 𝐺𝐺𝑛𝑛𝑛𝑛,𝐸𝐸𝑛𝑛𝐸𝐸,𝐷𝐷𝑛𝑛𝐸𝐸 denote a CCA-Secure public key 
encryption scheme and let  Π′ = 𝐺𝐺𝑛𝑛𝑛𝑛,𝐸𝐸𝑛𝑛𝐸𝐸′,𝐷𝐷𝑛𝑛𝐸𝐸′ be defined such 
that 

𝐄𝐄𝐄𝐄𝐃𝐃𝐩𝐩𝐩𝐩′ 𝒎𝒎𝟏𝟏 ∥ 𝒎𝒎𝟐𝟐 ∥ ⋯ ∥ 𝒎𝒎ℓ = 𝐄𝐄𝐄𝐄𝐃𝐃𝐩𝐩𝐩𝐩 𝒎𝒎𝟏𝟏 ∥ ⋯ ∥ 𝐄𝐄𝐄𝐄𝐃𝐃𝐩𝐩𝐩𝐩 𝒎𝒎ℓ

Then Π′ is also CCA-Secure.

Is this second claim true?
Answer: No!
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Encrypting Longer Messages

Fact: Let Π = 𝐺𝐺𝑛𝑛𝑛𝑛,𝐸𝐸𝑛𝑛𝐸𝐸,𝐷𝐷𝑛𝑛𝐸𝐸 denote a CCA-Secure public key encryption scheme 
and let  Π′ = 𝐺𝐺𝑛𝑛𝑛𝑛,𝐸𝐸𝑛𝑛𝐸𝐸′,𝐷𝐷𝑛𝑛𝐸𝐸′ be defined such that 

𝐄𝐄𝐄𝐄𝐃𝐃𝐩𝐩𝐩𝐩′ 𝒎𝒎𝟏𝟏 ∥ 𝒎𝒎𝟐𝟐 ∥ ⋯ ∥ 𝒎𝒎ℓ = 𝐄𝐄𝐄𝐄𝐃𝐃𝐩𝐩𝐩𝐩 𝒎𝒎𝟏𝟏 ∥ ⋯ ∥ 𝐄𝐄𝐄𝐄𝐃𝐃𝐩𝐩𝐩𝐩 𝒎𝒎ℓ
Then Π′ is Provably Not CCA-Secure.

1. Attacker sets 𝒎𝒎𝟎𝟎 = 𝟎𝟎𝒏𝒏 ∥ 𝟏𝟏𝒏𝒏 ∥ 𝟏𝟏𝒏𝒏 and 𝒎𝒎𝟏𝟏 = 𝟎𝟎𝒏𝒏 ∥ 𝟎𝟎𝒏𝒏 ∥ 𝟏𝟏𝒏𝒏 and gets 𝒄𝒄𝒃𝒃 =
𝐄𝐄𝐄𝐄𝐃𝐃𝐩𝐩𝐩𝐩′ 𝒎𝒎𝒃𝒃 = 𝒄𝒄𝒃𝒃,𝟏𝟏 ∥ 𝒄𝒄𝒃𝒃,𝟐𝟐 ∥ 𝒄𝒄𝒃𝒃,𝟑𝟑

2. Attacker sets 𝒄𝒄′ = 𝒄𝒄𝒃𝒃,𝟐𝟐 ∥ 𝒄𝒄𝒃𝒃,𝟑𝟑 ∥ 𝒄𝒄𝒃𝒃,𝟏𝟏 , queries the decryption oracle and gets 

𝐃𝐃𝐃𝐃𝐃𝐃𝐬𝐬𝐩𝐩′ 𝒄𝒄′ = �𝟏𝟏𝒏𝒏 ∥ 𝟏𝟏𝒏𝒏 ∥ 𝟎𝟎𝒏𝒏 if b=𝟎𝟎
𝟎𝟎𝒏𝒏 ∥ 𝟏𝟏𝒏𝒏 ∥ 𝟎𝟎𝒏𝒏 𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒔𝒔𝒐𝒐
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Achieving CPA and CCA-Security

• Plain RSA is not CPA Secure (therefore, not CCA-Secure)

• El-Gamal (future) is CPA-Secure, but not CCA-Secure

• Tools to obtain CCA-Security in Public Key Setting
• Key Encapsulation Mechanism
• RSA-OAEP (proof in random oracle model) 
• Cramer-Shoup (first provably secure construction using standard assumptions (DDH))
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Key Encapsulation Mechanism (KEM)

• Three Algorithms
• Gen(1𝑛𝑛;𝑅𝑅) (Key-generation algorithm)

• Input: Random Bits R
• Output: 𝒑𝒑𝒔𝒔, 𝒔𝒔𝒔𝒔 ∈ 𝓚𝓚

• Encapspk(1𝑛𝑛;𝑅𝑅)
• Input: public key 𝒑𝒑𝒔𝒔, security parameter 1𝑛𝑛, random bits R
• Output: Symmetric key k ∈ 0,1 ℓ 𝑛𝑛 and a ciphertext c

• Decapssk(𝐸𝐸) (Deterministic algorithm)
• Input: Secret key sk ∈ 𝒦𝒦 and a ciphertext c
• Output: a symmetric key k ∈ 0,1 ℓ 𝑛𝑛 or ⊥ (fail)

• Invariant: Decapssk(c)=k whenever (c,k) = Encapspk(1𝑛𝑛′;𝑅𝑅)

8



∀𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴 ∃𝜇𝜇 (negligible) s. t
Pr KEMA,Π

cca = 1 ≤
1
2

+ 𝜇𝜇(𝑛𝑛)

KEM CCA-Security (KEMA,Π
cca n )

9

𝒄𝒄𝟏𝟏 ≠ 𝒄𝒄

Random bit b
(pk,sk) = Gen(.)

𝒄𝒄,𝒔𝒔𝟎𝟎 = 𝐄𝐄𝐄𝐄𝐃𝐃𝐄𝐄𝐩𝐩𝐬𝐬𝒑𝒑𝒔𝒔 .
𝒔𝒔𝟏𝟏 ⟵ 𝟎𝟎,𝟏𝟏 𝒏𝒏

b’

𝐃𝐃𝐃𝐃𝐃𝐃𝐄𝐄𝐩𝐩𝐬𝐬𝒔𝒔𝒔𝒔 𝒄𝒄𝟏𝟏

…

𝒄𝒄𝟐𝟐 ≠ 𝒄𝒄
𝐃𝐃𝐃𝐃𝐃𝐃𝐄𝐄𝐩𝐩𝐬𝐬𝒔𝒔𝒔𝒔 𝒄𝒄𝟐𝟐

𝒑𝒑𝒔𝒔, 𝒄𝒄,𝒔𝒔𝒃𝒃



CCA-Secure Encryption from CCA-Secure KEM

𝐄𝐄𝐄𝐄𝐃𝐃𝐩𝐩𝐩𝐩 𝒎𝒎;𝑹𝑹𝟏𝟏,𝑹𝑹𝟐𝟐 = 𝒄𝒄,𝐄𝐄𝐄𝐄𝐃𝐃𝐩𝐩∗ 𝒎𝒎;𝑹𝑹𝟐𝟐

Where

• 𝒄𝒄,𝒔𝒔 = 𝐄𝐄𝐄𝐄𝐃𝐃𝐄𝐄𝐩𝐩𝐬𝐬𝐩𝐩𝐩𝐩 𝟏𝟏𝒏𝒏;𝑹𝑹𝟏𝟏 ,
• 𝐄𝐄𝐄𝐄𝐃𝐃𝐩𝐩∗ is a CCA-Secure symmetric key encryption algorithm, and

• 𝐄𝐄𝐄𝐄𝐃𝐃𝐄𝐄𝐩𝐩𝐬𝐬𝐩𝐩𝐩𝐩 is a CCA-Secure KEM.

Theorem 11.14: 𝐄𝐄𝐄𝐄𝐃𝐃𝐩𝐩𝐩𝐩 is CCA-Secure public key encryption scheme. 
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CCA-Secure Encryption from CCA-Secure KEM

𝐄𝐄𝐄𝐄𝐃𝐃𝐩𝐩𝐩𝐩 𝒎𝒎;𝑹𝑹𝟏𝟏,𝑹𝑹𝟐𝟐 = 𝒄𝒄,𝐄𝐄𝐄𝐄𝐃𝐃𝐩𝐩∗ 𝒎𝒎;𝑹𝑹𝟐𝟐

𝐃𝐃𝐃𝐃𝐃𝐃𝐩𝐩𝐩𝐩 (𝒄𝒄, 𝒄𝒄′) = 𝐃𝐃𝐃𝐃𝐃𝐃𝐩𝐩∗ 𝒄𝒄′
where

𝒄𝒄,𝒔𝒔 = 𝐄𝐄𝐄𝐄𝐃𝐃𝐄𝐄𝐩𝐩𝐬𝐬𝐩𝐩𝐩𝐩 𝟏𝟏𝒏𝒏;𝑹𝑹𝟏𝟏 and 𝒔𝒔 = 𝐃𝐃𝐃𝐃𝐃𝐃𝐄𝐄𝐩𝐩𝐬𝐬𝐬𝐬𝐩𝐩 𝒄𝒄

Theorem 11.14: 𝐄𝐄𝐄𝐄𝐃𝐃𝐩𝐩𝐩𝐩 is CCA-Secure public key encryption scheme. 

11



CCA-Secure Encryption from CCA-Secure KEM

𝐄𝐄𝐄𝐄𝐃𝐃𝐩𝐩𝐩𝐩 𝒎𝒎;𝑹𝑹 = 𝒄𝒄,𝐄𝐄𝐄𝐄𝐃𝐃𝐩𝐩∗ 𝒎𝒎 where 𝒄𝒄,𝒔𝒔 = 𝐄𝐄𝐄𝐄𝐃𝐃𝐄𝐄𝐩𝐩𝐬𝐬𝐩𝐩𝐩𝐩 𝟏𝟏𝒏𝒏;𝑹𝑹 ,
• 𝐄𝐄𝐄𝐄𝐃𝐃𝐩𝐩∗ is a CCA-Secure symmetric key encryption algorithm, and

Theorem 11.14: 𝐄𝐄𝐄𝐄𝐃𝐃𝐩𝐩𝐩𝐩 is CCA-Secure public key encryption scheme. 
Proof: Assume for contradiction that PPT attacker A wins the CCA-Security Game against 𝐄𝐄𝐄𝐄𝐃𝐃𝐩𝐩 with non-
negligible probability 1

2
+ 𝑓𝑓(𝑛𝑛). Design an attacker B that break CCA-Security of KEM 𝐄𝐄𝐄𝐄𝐃𝐃𝐄𝐄𝐩𝐩𝐬𝐬𝐩𝐩𝐩𝐩

1. B receives public key pk from KEM challenger, along with challenge 𝒄𝒄,𝒔𝒔𝒃𝒃 and forwards public key pk it 
to A

2. B flips a coin b’ and simulates CCA attacker A
3. Whenever A submits the challenge pair of messages  𝒎𝒎𝟎𝟎,𝒎𝒎𝟏𝟏 B responds with (c,𝐄𝐄𝐄𝐄𝐃𝐃𝒔𝒔𝒃𝒃

∗ 𝒎𝒎𝒃𝒃′ )
4. Whenever A queries for 𝐃𝐃𝐃𝐃𝐃𝐃𝐬𝐬𝐩𝐩 𝒄𝒄′, 𝒐𝒐′ attacker B forwards 𝒄𝒄′ to KEM challenger to get  𝐩𝐩′ = 𝐃𝐃𝐃𝐃𝐃𝐃𝐄𝐄𝐩𝐩𝐬𝐬𝐬𝐬𝐩𝐩(𝒄𝒄)

and sends 𝐃𝐃𝐃𝐃𝐃𝐃𝐩𝐩′
∗ (𝒐𝒐′) to attacker.

5. Whenever A outputs a guess b’’ B outputs 1 if and only if b’’=b’. 
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CCA-Secure Encryption from CCA-Secure KEM
Theorem 11.14: 𝐄𝐄𝐄𝐄𝐃𝐃𝐩𝐩𝐩𝐩 is CCA-Secure public key encryption scheme. 

Proof: Assume for contradiction that PPT attacker A wins the CCA-Security Game against 𝐄𝐄𝐄𝐄𝐃𝐃𝐩𝐩 with non-negligible probability 1
2

+
𝑓𝑓(𝑛𝑛). Design an attacker B that break CCA-Security of KEM 𝐄𝐄𝐄𝐄𝐃𝐃𝐄𝐄𝐩𝐩𝐬𝐬𝐩𝐩𝐩𝐩
1. B receives public key pk from KEM challenger, along with challenge 𝒄𝒄,𝒔𝒔𝒃𝒃 and forwards public key pk it to A
2. B flips a coin b’ and simulates CCA attacker A
3. Whenever A submits the challenge pair of messages  𝒎𝒎𝟎𝟎,𝒎𝒎𝟏𝟏 B simply responds with (c,𝐄𝐄𝐄𝐄𝐃𝐃𝒔𝒔𝒃𝒃

∗ 𝒎𝒎𝒃𝒃′ )

4. Whenever A queries for 𝐃𝐃𝐃𝐃𝐃𝐃𝐬𝐬𝐩𝐩 𝒄𝒄′, 𝒐𝒐′ attacker B forwards 𝒄𝒄′ to KEM challenger to get  𝐩𝐩′ = 𝐃𝐃𝐃𝐃𝐃𝐃𝐄𝐄𝐩𝐩𝐬𝐬𝐬𝐬𝐩𝐩(𝒄𝒄) and sends 𝐃𝐃𝐃𝐃𝐃𝐃𝐩𝐩′
∗ (𝒐𝒐′)

to attacker.
5. Whenever A outputs a guess b’’ B outputs 0 if and only if b’’=b’. 

Analysis: If b=0 then Pr b′′ = b′ = 1
2

+ 𝑓𝑓 𝑛𝑛 as this is just the regular CCA-Security game

If b=1 then Pr b′′ = b′ ≥ 1
2
− 𝜇𝜇(𝑛𝑛) for some negligible function 𝜇𝜇(𝑛𝑛)

(Follows by CCA-Security of 𝐄𝐄𝐄𝐄𝐃𝐃𝒔𝒔𝟏𝟏
∗ since 𝒔𝒔𝟏𝟏 is random and is unrelated to c)

B outputs correct guess with non-negligible probability at least 

Pr 𝑏𝑏 = 1
1
2

+ 𝑓𝑓 𝑛𝑛 + Pr 𝑏𝑏 = 0
1
2
− 𝜇𝜇(𝑛𝑛) =

1
2

+
𝑓𝑓 𝑛𝑛 − 𝜇𝜇(𝑛𝑛)

2
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Recap RSA-Assumption

RSA-Experiment: RSA-INVA,n

1. Run KeyGeneration(1n) to obtain (N,e,d)
2. Pick uniform y ∈ ℤ

N
∗

3. Attacker A is given N, e, y and outputs x ∈ ℤ
N
∗

4. Attacker wins (RSA−INV𝐴𝐴,𝑛𝑛=1) if 𝑥𝑥𝑒𝑒 = y mod N

∀𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴 ∃𝜇𝜇 (negligible) s. t Pr RSA−INV𝐴𝐴,𝑛𝑛 = 1 ≤ 𝜇𝜇(𝑛𝑛)
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CCA-Secure KEM in the Random Oracle Model

• Let (N,e,d) be an RSA key (pk =(N,e), sk=(N,d)).

Encapspk 1𝑛𝑛,𝑅𝑅 = 𝑃𝑃𝑒𝑒 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁,𝑘𝑘 = 𝐻𝐻 𝑃𝑃
Decapssk 𝐸𝐸 = 𝐻𝐻 𝑃𝑃 where 𝑃𝑃 = 𝐸𝐸𝑑𝑑 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁

• Remark 1: k is completely random string unless the adversary can 
query random oracle H on input r.

• Remark 2: If RSA-Inversion assumption holds (Plain-RSA is hard to 
invert for a random input) then any PPT attacker finds queries 
H(r) with negligible probability.
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Using a CCA-Secure KEM

• Let (N,e,d) be an RSA key (pk =(N,e), sk=(N,d)).

Encpk 𝑚𝑚;𝑅𝑅 = (𝑃𝑃𝑒𝑒 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁, AEnck(𝑚𝑚)) where 𝑘𝑘 = 𝐻𝐻 𝑃𝑃
Decsk 𝐸𝐸, 𝑡𝑡 = (𝐸𝐸𝑑𝑑 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁, ADeck(𝑡𝑡)) where 𝑘𝑘 = 𝐻𝐻 𝐸𝐸𝑑𝑑 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁

• Remark 1: k is completely random string unless the adversary can query 
random oracle H on input r.

• Remark 2: If RSA-Inversion assumption holds (Plain-RSA is hard to invert 
for a random input) then any PPT attacker finds queries H(r) with 
negligible probability.
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Using a CCA-Secure KEM

• Let (N,e,d) be an RSA key (pk =(N,e), sk=(N,d)).

Encpk 𝑚𝑚;𝑅𝑅 = (𝑃𝑃𝑒𝑒 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁, AEnck(𝑚𝑚)) where 𝑘𝑘 = 𝐻𝐻 𝑃𝑃
Decsk 𝐸𝐸, 𝑡𝑡 = (𝐸𝐸𝑑𝑑 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁, ADeck(𝑡𝑡)) where 𝑘𝑘 = 𝐻𝐻 𝐸𝐸𝑑𝑑 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁

Theorem: If RSA-Inversion assumption holds and H is a random oracle 
then encryption scheme above is CCA-Secure.
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RSA-OAEP 
(Optimal Asymmetric Encryption Padding)
• 𝐄𝐄𝐄𝐄𝐃𝐃𝒑𝒑𝒔𝒔 (𝑚𝑚; 𝑃𝑃) = [ 𝑥𝑥 ∥ 𝑦𝑦 𝑒𝑒 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁]
• Where 𝑥𝑥 ∥ 𝑦𝑦 ← OAEP(𝑚𝑚 ∥ 0𝑘𝑘1 ∥ 𝑃𝑃)
• 𝐃𝐃𝐃𝐃𝐃𝐃𝒔𝒔𝒔𝒔 𝐸𝐸 =
�𝑚𝑚 ← [ 𝐸𝐸 𝑑𝑑 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁]
If �𝑚𝑚 > 𝑛𝑛 return fail
𝑚𝑚 ∥ 𝑧𝑧 ∥ 𝑃𝑃 ← OAEP−1( �𝑚𝑚)
If 𝑧𝑧 ≠ 0𝑘𝑘1 then return fail
return m

18
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RSA-OAEP 
(Optimal Asymmetric Encryption Padding)
Theorem: If we model G and H as 
Random oracles then RSA-OAEP is
a CCA-Secure public key encryption scheme
(given RSA-Inversion assumption).

Bonus: One of the fastest in practice! 
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PKCS #1 v2.0

• Implementation of RSA-OAEP

• James Manger found a chosen-ciphertext attack.

• What gives?
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PKCS #1 v2.0 (Bad Implementation)

• 𝐄𝐄𝐄𝐄𝐃𝐃𝒑𝒑𝒔𝒔 (𝑚𝑚; 𝑃𝑃) = [ 𝑥𝑥 ∥ 𝑦𝑦 𝑒𝑒 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁]
• Where 𝑥𝑥 ∥ 𝑦𝑦 ← OAEP(𝑚𝑚 ∥ 0𝑘𝑘1 ∥ 𝑃𝑃)
• 𝐃𝐃𝐃𝐃𝐃𝐃𝒔𝒔𝒔𝒔 𝐸𝐸 =

�𝑚𝑚 ← [ 𝐸𝐸 𝑑𝑑 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁]
If �𝒎𝒎 > 𝒏𝒏 return Error Message 1
𝑚𝑚 ∥ 𝑧𝑧 ∥ 𝑃𝑃 ← OAEP−1 �𝑚𝑚
If 𝒛𝒛 ≠ 𝟎𝟎𝒔𝒔𝟏𝟏 then output Error Message 2
return m
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PKCS #1 v2.0 (Attack)

• Manger’s CCA-Attack recovers secret message
• Step 1: Use decryption oracle to check if 2 �𝑚𝑚 ≥ 2𝑛𝑛 (i.e., if we get error message 1
• 𝐸𝐸 = [ �𝑚𝑚 𝑒𝑒 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁]2𝑒𝑒𝐸𝐸 = [ 2 �𝑚𝑚 𝑒𝑒 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁]
• If we get error message 1 when decrypting 2𝑒𝑒𝐸𝐸 then 2 �𝑚𝑚 ≥ 2𝑛𝑛

• Generalization (𝑥𝑥 > 2): can check if 𝑥𝑥 �𝑚𝑚 ≥ 2𝑛𝑛 by submitting query 𝑥𝑥𝑒𝑒𝐸𝐸 to 
decryption oracle  

• Can extract �𝑚𝑚 using  O 𝑵𝑵 queries to decryption oracle
• Run 𝑚𝑚 ∥ 𝑧𝑧 ∥ 𝑃𝑃 ← OAEP−1( �𝑚𝑚) to recover message
• Attack also works as a side channel attack

• Even if error messages are the same the time to respond could be different in each case.

• Fixes: Implementation should return same error message and should make sure 
that the time to return each error is the same in all cases.
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Week 11: Topic 1: Discrete 
Logarithm Applications

Diffie-Hellman Key Exchange
Collision Resistant Hash Functions

Password Authenticated Key Exchange
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Diffie-Hellman Key Exchange

1. Alice picks 𝑥𝑥𝐴𝐴 and sends ℎ𝐴𝐴: = 𝑛𝑛𝑥𝑥𝐴𝐴 to Bob 
2. Bob picks 𝑥𝑥𝐵𝐵 and sends ℎ𝐵𝐵: = 𝑛𝑛𝑥𝑥𝐵𝐵 to Alice 
3. Alice and Bob can both compute 𝑃𝑃𝐴𝐴,𝐵𝐵 = 𝑛𝑛𝑥𝑥𝐵𝐵 𝑥𝑥𝐴𝐴

Alice Computes: ℎ𝐵𝐵 𝑥𝑥𝐴𝐴 = 𝑛𝑛𝑥𝑥𝐵𝐵 𝑥𝑥𝐴𝐴 = 𝑛𝑛𝑥𝑥𝐵𝐵 𝑥𝑥𝐴𝐴 = 𝑃𝑃𝐴𝐴,𝐵𝐵

Bob Computes:   ℎ𝐴𝐴 𝑥𝑥𝐵𝐵 = 𝑛𝑛𝑥𝑥𝐴𝐴 𝑥𝑥𝐵𝐵 = 𝑛𝑛𝑥𝑥𝐴𝐴 𝑥𝑥𝐵𝐵 = 𝑃𝑃𝐴𝐴,𝐵𝐵
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Key-Exchange Experiment 𝑃𝑃𝐸𝐸𝐴𝐴,Π
𝑒𝑒𝑐𝑐𝑒𝑒 𝑛𝑛 :

• Two parties run Π to exchange secret messages (with security parameter 1n).
• Let trans be a transcript which contains all messages sent and let k be the secret 

key output by each party.
• Let b be a random bit and let kb = k if b=0; otherwise kb is sampled uniformly at 

random.
• Attacker A is given trans and kb (passive attacker). 
• Attacker outputs b’ (𝑃𝑃𝐸𝐸𝐴𝐴,Π

𝑒𝑒𝑐𝑐𝑒𝑒 𝑛𝑛 =1 if and only if b=b’)

Security of Π against an eavesdropping attacker: For all PPT A there is a negligible 
function negl such that

Pr 𝑃𝑃𝐸𝐸𝐴𝐴,Π
𝑒𝑒𝑐𝑐𝑒𝑒 𝑛𝑛 ≤ ½ + 𝐄𝐄𝐃𝐃𝐧𝐧𝐧𝐧 n .
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Diffie-Hellman Key-Exchange is Secure

Theorem: If the decisional Diffie-Hellman problem is hard relative to group 
generator 𝒢𝒢 then the Diffie-Hellman key-exchange protocol Π is secure in the 
presence of a (passive) eavesdropper (*). 
(*) Assuming keys are chosen uniformly at random from the cyclic group 𝔾𝔾

Protocol Π
1. Alice picks 𝑥𝑥𝐴𝐴 and sends 𝑛𝑛𝑥𝑥𝐴𝐴 to Bob 
2. Bob picks 𝑥𝑥𝐵𝐵 and sends 𝑛𝑛𝑥𝑥𝐵𝐵 to Alice 
3. Alice and Bob can both compute 𝑃𝑃𝐴𝐴,𝐵𝐵 = 𝑛𝑛𝑥𝑥𝐵𝐵 𝑥𝑥𝐴𝐴
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Diffie-Hellman Assumptions

Computational Diffie-Hellman Problem (CDH)
• Attacker is given h1 = 𝑛𝑛𝑥𝑥1 ∈ 𝔾𝔾 and h2 = 𝑛𝑛𝑥𝑥2 ∈ 𝔾𝔾.
• Attackers goal is to find 𝑛𝑛𝑥𝑥1𝑥𝑥2= h1

𝑥𝑥2 = h2
𝑥𝑥1

• CDH Assumption: For all PPT A there is a negligible function negl upper 
bounding the probability that A succeeds

Decisional Diffie-Hellman Problem (DDH)
• Let z0 = 𝑛𝑛𝑥𝑥1𝑥𝑥2 and let z1 = 𝑛𝑛𝑟𝑟, where x1,x2 and r are random
• Attacker is given 𝑛𝑛𝑥𝑥1, 𝑛𝑛𝑥𝑥2 and 𝑧𝑧𝑏𝑏 (for a random bit b)
• Attackers goal is to guess b
• DDH Assumption: For all PPT A there is a negligible function negl such that 

A succeeds with probability at most ½ + negl(n).
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Diffie-Hellman Key Exchange

1. Alice picks 𝑥𝑥𝐴𝐴 and sends 𝑛𝑛𝑥𝑥𝐴𝐴 to Bob 
2. Bob picks 𝑥𝑥𝐵𝐵 and sends 𝑛𝑛𝑥𝑥𝐵𝐵 to Alice 
3. Alice and Bob can both compute 𝑃𝑃𝐴𝐴,𝐵𝐵 = 𝑛𝑛𝑥𝑥𝐵𝐵 𝑥𝑥𝐴𝐴

Intuition: Decisional Diffie-Hellman assumption implies that a passive 
attacker who observes 𝑛𝑛𝑥𝑥𝐴𝐴 and 𝑛𝑛𝑥𝑥𝐵𝐵 still cannot distinguish between 
𝑃𝑃𝐴𝐴,𝐵𝐵 = 𝑛𝑛𝑥𝑥𝐵𝐵 𝑥𝑥𝐴𝐴 and a random group element.

Remark: Modified protocol sets 𝑃𝑃𝐴𝐴,𝐵𝐵 = 𝐻𝐻 𝑛𝑛𝑥𝑥𝐵𝐵 𝑥𝑥𝐴𝐴 which is provably secure 
under the weaker CDH assumption assuming that H is a random oracle.
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Diffie-Hellman Key-Exchange is Secure

Theorem: If the decisional Diffie-Hellman problem is hard relative to group 
generator 𝒢𝒢 then the Diffie-Hellman key-exchange protocol Π is secure in the 
presence of an eavesdropper (*). 
Proof: Diffie-Hellman transcript: (𝑛𝑛𝑥𝑥 ,𝑛𝑛𝑦𝑦)

Pr 𝑃𝑃𝐸𝐸𝐴𝐴,Π
𝑒𝑒𝑐𝑐𝑒𝑒 𝑛𝑛 = 1

=½Pr 𝑃𝑃𝐸𝐸𝐴𝐴,Π
𝑒𝑒𝑐𝑐𝑒𝑒 𝑛𝑛 = 1|𝑏𝑏 = 1 + ½Pr 𝑃𝑃𝐸𝐸𝐴𝐴,Π

𝑒𝑒𝑐𝑐𝑒𝑒 𝑛𝑛 = 1|𝑏𝑏 = 0
=½Pr 𝐴𝐴 𝔾𝔾 ,𝑛𝑛, 𝑞𝑞,𝑛𝑛𝑥𝑥 ,𝑛𝑛𝑦𝑦 ,𝑛𝑛𝑥𝑥𝑦𝑦 = 1 + ½Pr 𝐴𝐴 𝔾𝔾 ,𝑛𝑛, 𝑞𝑞,𝑛𝑛𝑥𝑥 ,𝑛𝑛𝑦𝑦 ,𝑛𝑛𝑧𝑧 = 0

=½+½ Pr 𝐴𝐴 𝔾𝔾 ,𝑛𝑛, 𝑞𝑞,𝑛𝑛𝑥𝑥 ,𝑛𝑛𝑦𝑦 ,𝑛𝑛𝑥𝑥𝑦𝑦 = 1 − Pr 𝐴𝐴 𝔾𝔾 ,𝑛𝑛, 𝑞𝑞,𝑛𝑛𝑥𝑥 ,𝑛𝑛𝑦𝑦 ,𝑛𝑛𝑧𝑧 = 1 .
≤ ½ + ½negl(n) (by DDH)

(*) Assuming keys are chosen uniformly at random from the cyclic group 𝔾𝔾
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Diffie-Hellman Key Exchange

1. Alice picks 𝑥𝑥𝐴𝐴 and sends 𝑛𝑛𝑥𝑥𝐴𝐴 to Bob 
2. Bob picks 𝑥𝑥𝐵𝐵 and sends 𝑛𝑛𝑥𝑥𝐵𝐵 to Alice 
3. Alice and Bob can both compute 𝑃𝑃𝐴𝐴,𝐵𝐵 = 𝑛𝑛𝑥𝑥𝐵𝐵 𝑥𝑥𝐴𝐴

Intuition: Decisional Diffie-Hellman assumption implies that a passive 
attacker who observes 𝑛𝑛𝑥𝑥𝐴𝐴 and 𝑛𝑛𝑥𝑥𝐵𝐵 still cannot distinguish between 
𝑃𝑃𝐴𝐴,𝐵𝐵 = 𝑛𝑛𝑥𝑥𝐵𝐵 𝑥𝑥𝐴𝐴 and a random group element.
Remark: The protocol is vulnerable against active attackers who can 
tamper with messages. 
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Man in the Middle Attack (MITM)
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Man in the Middle Attack (MITM)

1. Alice picks 𝑥𝑥𝐴𝐴 and sends 𝑛𝑛𝑥𝑥𝐴𝐴 to Bob 
• Mallory intercepts 𝑛𝑛𝑥𝑥𝐴𝐴 , picks 𝑥𝑥𝐸𝐸 and sends 𝑛𝑛𝑥𝑥𝐸𝐸 to Bob instead

2. Bob picks 𝑥𝑥𝐵𝐵 and sends 𝑛𝑛𝑥𝑥𝐵𝐵 to Alice 
1. Mallory intercepts 𝑛𝑛𝑥𝑥𝐵𝐵, picks 𝑥𝑥𝐸𝐸′ and sends 𝑛𝑛𝑥𝑥𝐸𝐸′ to Alice instead

3. Eve computes 𝑛𝑛𝑥𝑥𝐸𝐸′𝑥𝑥𝐴𝐴 and 𝑛𝑛𝑥𝑥𝐸𝐸𝑥𝑥𝐵𝐵
1. Alice computes secret key 𝑛𝑛𝑥𝑥𝐸𝐸′𝑥𝑥𝐴𝐴 (shared with Eve not Bob)
2. Bob computes 𝑛𝑛𝑥𝑥𝐸𝐸𝑥𝑥𝐵𝐵(shared with Eve not Alice)

4. Mallory forwards messages between Alice and Bob (tampering with 
the messages if desired)

5. Neither Alice nor Bob can detect the attack
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Man in the Middle Attack (MITM)

Defense: If Alice and Bob already 
know 𝑛𝑛𝑥𝑥𝐵𝐵 and 𝑛𝑛𝑥𝑥𝐴𝐴 (respectively) 
then MITM attackdoes not work.

Certificate Authorities (CA): 
Users/Companies can register & 
lookup public keys e.g., Alice asks CA to send Bob’s public key.

Corrupt/Breached CA: does not learn secret keys 𝑥𝑥𝐴𝐴 and 𝑥𝑥𝐵𝐵
Corrupt CA could send Alice (resp. Bob) the wrong key for Bob  
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Discrete Log Experiment DLogA,G(n)

1. Run 𝒢𝒢 1𝑛𝑛 to obtain a cyclic group 𝔾𝔾 of order q (with 𝑞𝑞 = 𝑛𝑛) and 
a generator g such that < g >= 𝔾𝔾.

2. Select h ∈ 𝔾𝔾 uniformly at random.
3. Attacker A is given 𝔾𝔾, q, g, h and outputs an integer x.
4. Attacker wins (DLogA,G(n)=1) if and only if  gx=h.

We say that the discrete log problem is hard relative to generator 𝒢𝒢 if
∀𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴 ∃𝜇𝜇 (negligible) s. t Pr DLogA,n = 1 ≤ 𝜇𝜇(𝑛𝑛)
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Collision Resistant Hash Functions (CRHFs)

• Recall: not known how to build CRHFs from OWFs
• Can build collision resistant hash functions from Discrete Logarithm 

Assumption
• Let 𝒢𝒢 1𝑛𝑛 output 𝔾𝔾, 𝑞𝑞,𝑛𝑛 where 𝔾𝔾 is a cyclic group of order 𝑞𝑞 and g 

is a generator of the group. 
• Suppose that discrete log problem is hard relative to generator 𝒢𝒢.

∀𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴 ∃𝜇𝜇 (negligible) s. t Pr DLogA,n = 1 ≤ 𝜇𝜇(𝑛𝑛)
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Collision Resistant Hash Functions

• Let 𝒢𝒢 1𝑛𝑛 output 𝔾𝔾, 𝑞𝑞,𝑛𝑛 where 𝔾𝔾 is a cyclic group of prime order 𝑞𝑞 and g 
is a generator of the group. 

Collision Resistant Hash Function (Gen,H):
• 𝐺𝐺𝑛𝑛𝑛𝑛 1𝑛𝑛

1. 𝔾𝔾, 𝑞𝑞,𝑛𝑛 ← 𝒢𝒢 1𝑛𝑛
2. Select random h ← 𝔾𝔾
3. Output public seed s = 𝔾𝔾, 𝑞𝑞,𝑛𝑛,ℎ

• 𝐻𝐻𝑠𝑠 𝑥𝑥1, 𝑥𝑥2 = 𝑛𝑛𝑥𝑥1ℎ𝑥𝑥2 (where, 𝑥𝑥1, 𝑥𝑥2 ∈ ℤ𝑞𝑞 )
Claim: (Gen,H) is collision resistant if the discrete log assumption holds for 𝒢𝒢
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Collision Resistant Hash Functions

• 𝐻𝐻𝑠𝑠 𝑥𝑥1, 𝑥𝑥2 = 𝑛𝑛𝑥𝑥1ℎ𝑥𝑥2 (where, 𝑥𝑥1, 𝑥𝑥2 ∈ ℤ𝑞𝑞 )
Claim: (Gen,H) is collision resistant

Proof (sketch): Suppose we find a collision 𝐻𝐻𝑠𝑠 𝑥𝑥1, 𝑥𝑥2 = 𝐻𝐻𝑠𝑠 𝑦𝑦1,𝑦𝑦2
then we have 𝑛𝑛𝑥𝑥1ℎ𝑥𝑥2 = 𝑛𝑛𝑦𝑦1ℎ𝑦𝑦2 which implies

ℎ𝑥𝑥2−𝑦𝑦2 = 𝑛𝑛𝑦𝑦1−𝑥𝑥1
Use extended GCD to find 𝑥𝑥2 − 𝑦𝑦2 −1 mod q then

ℎ = ℎ 𝑥𝑥2−𝑦𝑦2 𝑥𝑥2−𝑦𝑦2 −1 = 𝑛𝑛 𝑦𝑦1−𝑥𝑥1 𝑥𝑥2−𝑦𝑦2 −1

Which means that 𝑦𝑦1 − 𝑥𝑥1 𝑥𝑥2 − 𝑦𝑦2 −1 𝑚𝑚𝑚𝑚𝑚𝑚 𝑞𝑞 is the discrete log of h.
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Collision Resistant Hash Functions

• 𝐻𝐻𝑠𝑠 𝑥𝑥1, 𝑥𝑥2 = 𝑛𝑛𝑥𝑥1ℎ𝑥𝑥2 (where, 𝑥𝑥1, 𝑥𝑥2 ∈ ℤ𝑞𝑞 )
Claim: (Gen,H) is collision resistant

Proof (sketch): Suppose we find a collision 𝐻𝐻𝑠𝑠 𝑥𝑥1, 𝑥𝑥2 = 𝐻𝐻𝑠𝑠 𝑦𝑦1,𝑦𝑦2
then we have 𝑛𝑛𝑥𝑥1ℎ𝑥𝑥2 = 𝑛𝑛𝑦𝑦1ℎ𝑦𝑦2 which implies

ℎ𝑥𝑥2−𝑦𝑦2 = 𝑛𝑛𝑦𝑦1−𝑥𝑥1
Use extended GCD to find 𝑥𝑥2 − 𝑦𝑦2 −1 mod q then

ℎ = ℎ 𝑥𝑥2−𝑦𝑦2 𝑥𝑥2−𝑦𝑦2 −1 = 𝑛𝑛 𝑦𝑦1−𝑥𝑥1 𝑥𝑥2−𝑦𝑦2 −1

Which means that 𝑦𝑦1 − 𝑥𝑥1 𝑥𝑥2 − 𝑦𝑦2 −1 𝑚𝑚𝑚𝑚𝑚𝑚 𝑞𝑞 is the discrete log of h.
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What if 𝑥𝑥2 = 𝑦𝑦2 so that inverse 𝑥𝑥2 − 𝑦𝑦2 −1 does not exist? 
Claim: This cannot happen. 
Proof: If 𝑥𝑥2 − 𝑦𝑦2 then ℎ𝑥𝑥2−𝑦𝑦2 = ℎ0 is the identity  𝑛𝑛𝑦𝑦1−𝑥𝑥1 is the 
identity  𝑦𝑦1 = 𝑥𝑥1 (𝑥𝑥1, 𝑥𝑥2)=(𝑦𝑦1, 𝑦𝑦2) (Contradiction)



Week 11: Topic 2: Factoring 
Algorithms, Discrete Log Attacks 

+ NIST Recommendations for 
Concrete Security Parameters
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Pollard’s p-1 Algorithm (Factoring)

• Let 𝑁𝑁 = 𝑝𝑝𝑞𝑞 where (p-1) has only “small” prime factors. 
• Pollard’s p-1 algorithm can factor N.

• Remark 1: This happens with very small probability if p is a random n bit 
prime.

• Remark 2: One convenient/fast way to generate big primes it to multiply 
many small primes, add 1 and test for primality.

• Example: 2 × 3 × 5 × 7 + 1 = 211 is prime

Claim: Suppose we are given an integer B such that (p-1) divides B but 
(q-1) does not divide B then we can factor N. 
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Pollard’s p-1 Algorithm (Factoring)

Claim: Suppose we are given an integer B such that (p-1) divides B but (q-1) 
does not divide B then we can factor N. 
Proof:  Suppose B=c(p-1) for some integer c and let 

𝑦𝑦 = 𝑥𝑥𝐵𝐵 − 1 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁
Applying the Chinese Remainder Theorem we have 

𝑦𝑦 ↔ 𝑥𝑥𝐵𝐵 − 1 mod p, 𝑥𝑥𝐵𝐵 − 1 mod q
= 0, 𝑥𝑥𝐵𝐵 𝑚𝑚𝑚𝑚𝑑𝑑 (𝑞𝑞−1) − 1 mod q

This means that p divides y, but q does not divide y (unless 𝑥𝑥𝐵𝐵 = 1 mod q, 
which is unlikely when 𝑥𝑥 is random since 0 ≠ 𝐵𝐵 𝑚𝑚𝑚𝑚𝑚𝑚 (𝑞𝑞 − 1)).

Thus, GCD(y,N) = p
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Pollard’s p-1 Algorithm (Factoring)

• Let 𝑁𝑁 = 𝑝𝑝𝑞𝑞 where (p-1) has only “small” prime factors. 
• Pollard’s p-1 algorithm can factor N.
Claim: Suppose we are given an integer B such that (p-1) divides B but 
(q-1) does not divide B then we can factor N. 

• Goal: Find B such that (p-1) divides B but (q-1) does not divide B.
• Remark: This is difficult if (p-1) has a large prime factor.

𝐵𝐵 = �
𝑖𝑖=1

𝑘𝑘

𝑝𝑝𝑖𝑖
𝑛𝑛/ log 𝑝𝑝𝑖𝑖
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Pollard’s p-1 Algorithm (Factoring)

• Goal: Find B such that (p-1) divides B but (q-1) does not divide B.
• Remark: This is difficult if (p-1) has a large prime factor.

𝐵𝐵 = �
𝑖𝑖=1

𝑘𝑘

𝑝𝑝𝑖𝑖
𝑛𝑛/ log 𝑝𝑝𝑖𝑖

Here p1=2,p2=3,…pk are the first k prime numbers.

Fact: If (q-1) has prime factor larger than pk then (q-1) does not divide B.
Fact: If (p-1) does not have prime factor larger than pk then (p-1) does divide 
B.
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Pollard’s p-1 Algorithm (Factoring)

• Option 1: To defeat this attack we can choose strong primes p and q
• A prime p is strong if (p-1) has a large prime factor

• Drawback: It takes more time to generate (provably) strong primes

• Option 2: A random prime is strong with high probability

• Current Consensus: Just pick a random prime
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Pollard’s Rho Algorithm

• General Purpose Factoring Algorithm
• Doesn’t assume (p-1) has no large prime factor
• Goal: factor N=pq (product of two n-bit primes)  

• Running time: 𝑂𝑂 4 𝑁𝑁 pol𝑦𝑦𝑛𝑛𝑚𝑚𝑛𝑛(𝑁𝑁)
• Contrast: Naïve Algorithm takes time 𝑂𝑂 𝑁𝑁 pol𝑦𝑦𝑛𝑛𝑚𝑚𝑛𝑛(𝑁𝑁) to factor

• Core idea: find distinct x, x′ ∈ ℤ𝑁𝑁∗ such that 𝑥𝑥 = 𝑥𝑥′mod 𝑝𝑝
• Implies that x-x’ is a multiple of p and, thus, GCD(x-x’,N)=p (whp)
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Pollard’s Rho Algorithm

• General Purpose Factoring Algorithm
• Doesn’t assume (p-1) has no large prime factor

• Running time: 𝑂𝑂 4 𝑁𝑁 pol𝑦𝑦𝑛𝑛𝑚𝑚𝑛𝑛(𝑁𝑁)

• Core idea: find distinct x, x′ ∈ ℤ𝑁𝑁∗ such that 𝑥𝑥 = 𝑥𝑥′mod 𝑝𝑝 (but 𝑥𝑥 ≠ 𝑥𝑥′mod 𝑞𝑞 )
• Implies that x-x’ is a multiple of p and, thus, GCD(x-x’,N)=p

• Question: If we pick k = O 𝑝𝑝 random 𝑥𝑥(1), … , 𝑥𝑥(𝑘𝑘) ∈ ℤ𝑁𝑁∗ then what is the 
probability that we can find distinct 𝑃𝑃 and 𝑗𝑗 such that

𝑥𝑥(𝑖𝑖) = 𝑥𝑥(𝑗𝑗)mod p?
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Pollard’s Rho Algorithm

• Question: If we pick k = O 𝑝𝑝 random 𝑥𝑥(1), … , 𝑥𝑥(𝑘𝑘) ∈ ℤ𝑁𝑁∗ then what 
is the probability that we can find distinct 𝑃𝑃 and 𝑗𝑗 such that 𝑥𝑥(𝑖𝑖) =
𝑥𝑥(𝑗𝑗)mod p?

• Answer: ≥ ⁄1 2

• Proof (sketch): Use the Chinese Remainder Theorem + Birthday 
Bound

𝑥𝑥(𝑖𝑖) = 𝑥𝑥(𝑖𝑖) 𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝, 𝑥𝑥(𝑖𝑖) 𝑚𝑚𝑚𝑚𝑚𝑚 𝑞𝑞

Note: We will also have 𝑥𝑥(𝑖𝑖) ≠ 𝑥𝑥 𝑗𝑗 mod q (whp)
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Pollard’s Rho Algorithm

• Question: If we pick k = O 𝑝𝑝 random 𝑥𝑥(1), … , 𝑥𝑥(𝑘𝑘) ∈ ℤ𝑁𝑁∗ then what 
is the probability that we can find distinct 𝑃𝑃 and 𝑗𝑗 such that 𝑥𝑥(𝑖𝑖) =
𝑥𝑥(𝑗𝑗)mod p?

• Answer: ≥ ⁄1 2
• Challenge: We do not know p or q so we cannot sort the 𝑥𝑥(𝑖𝑖)’s using 

the Chinese Remainder Theorem Representation

𝑥𝑥(𝑖𝑖) = 𝑥𝑥(𝑖𝑖) 𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝, 𝑥𝑥(𝑖𝑖) 𝑚𝑚𝑚𝑚𝑚𝑚 𝑞𝑞
Problem: How can we identify the pair 𝑃𝑃 and 𝑗𝑗 such that 𝑥𝑥(𝑖𝑖) =
𝑥𝑥(𝑗𝑗)mod p?
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Pollard’s Rho Algorithm

• Pollard’s Rho Algorithm is similar the low-space version of the birthday 
attack

Input: N (product of two n bit primes)
𝑥𝑥(0) ← ℤ𝑁𝑁∗ , x = x′ = 𝑥𝑥(0)

For i=1 to 2𝑛𝑛/2

𝑥𝑥 ← 𝐹𝐹(𝑥𝑥)
𝑥𝑥′ ← 𝐹𝐹 𝐹𝐹 𝑥𝑥′
p = GCD(x-x’,N)
if 1< p < N return p 
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𝐹𝐹 𝑥𝑥(𝑖𝑖−1) = 𝑥𝑥(𝑖𝑖) ↔ 𝑥𝑥(𝑖𝑖)mod p , 𝑥𝑥(𝑖𝑖)mod q

Expected Cycle Length: O 𝑁𝑁 too high!



Pollard’s Rho Algorithm

• Pollard’s Rho Algorithm is similar the low-space version of the birthday 
attack

Input: N (product of two n bit primes)
𝑥𝑥(0) ← ℤ𝑁𝑁∗ , x = x′ = 𝑥𝑥(0)

For i=1 to 2𝑛𝑛/2

𝑥𝑥 ← 𝐹𝐹(𝑥𝑥)
𝑥𝑥′ ← 𝐹𝐹 𝐹𝐹 𝑥𝑥′
p = GCD(x-x’,N)
if 1< p < N return p 
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Remark 1: F should have the property that 
F x = 𝐹𝐹 𝑥𝑥 𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝 𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝 i.e.,
𝐹𝐹 𝑥𝑥 ↔ 𝐹𝐹 𝑥𝑥 𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝 𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝,𝐹𝐹2 𝑥𝑥 𝑚𝑚𝑚𝑚𝑚𝑚 𝑞𝑞

𝑥𝑥(𝑖𝑖)mod p , 𝑥𝑥(𝑖𝑖)mod q
𝑥𝑥(𝑖𝑖)mod p



Pollard’s Rho Algorithm

• Pollard’s Rho Algorithm is similar the low-space version of the birthday 
attack

Input: N (product of two n bit primes)
𝑥𝑥(0) ← ℤ𝑁𝑁∗ , x = x′ = 𝑥𝑥(0)

For i=1 to 2𝑛𝑛/2

𝑥𝑥 ← 𝐹𝐹(𝑥𝑥)
𝑥𝑥′ ← 𝐹𝐹 𝐹𝐹 𝑥𝑥′
p = GCD(x-x’,N)
if 1< p < N return p 
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Remark 1: F should have the property that 
F x = 𝐹𝐹 𝑥𝑥 𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝 𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝 i.e.,
𝐹𝐹 𝑥𝑥 ↔ 𝐹𝐹 𝑥𝑥 𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝 𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝,𝐹𝐹 𝑥𝑥 𝑚𝑚𝑚𝑚𝑚𝑚 𝑞𝑞

Remark 2: 𝐹𝐹 𝑥𝑥 = 𝑥𝑥2 + 1 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁 will 
work since 

𝐹𝐹 𝑥𝑥 = 𝑥𝑥2 + 1 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁
↔ 𝑥𝑥2 + 1 𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝, 𝑥𝑥2 + 1 𝑚𝑚𝑚𝑚𝑚𝑚 𝑞𝑞

↔ 𝐹𝐹 𝑥𝑥 mod 𝑝𝑝 𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝,𝐹𝐹 𝑥𝑥 mod 𝑞𝑞 𝑚𝑚𝑚𝑚𝑚𝑚 𝑞𝑞



Pollard’s Rho Algorithm

• Pollard’s Rho Algorithm is similar the low-space version of the birthday 
attack

Input: N (product of two n bit primes)
𝑥𝑥(0) ← ℤ𝑁𝑁∗ , x = x′ = 𝑥𝑥(0)

For i=1 to 2𝑛𝑛/2

𝑥𝑥 ← 𝐹𝐹 𝑥𝑥
𝑥𝑥′ ← 𝐹𝐹 𝐹𝐹 𝑥𝑥′
p = GCD(x-x’,N)
if 1< p < N return p 
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Claim: Let 𝑥𝑥(𝑖𝑖+1) = 𝐹𝐹 𝑥𝑥(𝑖𝑖) and suppose that for 
some distinct i, j < 2𝑛𝑛/2 we have 𝑥𝑥(𝑖𝑖) = 𝑥𝑥(𝑗𝑗) mod p
but 𝑥𝑥(𝑖𝑖) ≠ 𝑥𝑥(𝑗𝑗). Then the algorithm will find p.    

Expected Cycle Length: O 𝑝𝑝

𝑥𝑥(3) mod p
𝑥𝑥(𝑗𝑗) ≡ 𝑥𝑥(𝑖𝑖) mod p



Pollard’s Rho Algorithm (Summary)

• General Purpose Factoring Algorithm
• Doesn’t assume (p-1) has no large prime factor

• Expected Running Time: 𝑂𝑂 4 𝑁𝑁 pol𝑦𝑦𝑛𝑛𝑚𝑚𝑛𝑛(𝑁𝑁)
• (Birthday Bound)
• (still exponential in number of bits ~2𝑛𝑛/4)

• Required Space: 𝑂𝑂 log(𝑁𝑁)
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Quadratic Sieve Algorithm

• Runs in sub-exponential time 2𝑂𝑂 log 𝑁𝑁 log log 𝑁𝑁 = 2𝑂𝑂 𝑛𝑛 log 𝑛𝑛

• Still not polynomial time but 2 𝑛𝑛 log 𝑛𝑛 is sub-exponential and grows much 
slower than 2𝑛𝑛/4.

• Core Idea: Find x, y ∈ ℤ𝑁𝑁∗ such that 
𝑥𝑥2 = 𝑦𝑦2 mod 𝑁𝑁

and 
𝑥𝑥 ≠ ±𝑦𝑦 mod 𝑁𝑁
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Quadratic Sieve Algorithm

• Core Idea: Find x, y ∈ ℤ𝑁𝑁∗ such that 
𝑥𝑥2 = 𝑦𝑦2 mod 𝑁𝑁 (1)

and 
𝑥𝑥 ≠ ±𝑦𝑦 mod 𝑁𝑁 2

Claim: gcd(x-y,N)∈ 𝑝𝑝, 𝑞𝑞
N=pq divides 𝑥𝑥2 − 𝑦𝑦2 = 𝑥𝑥 − 𝑦𝑦 𝑥𝑥 + 𝑦𝑦 . (by (1)).
 𝑥𝑥 − 𝑦𝑦 𝑥𝑥 + 𝑦𝑦 ≠ 0 (by (2)).
N does not divide 𝑥𝑥 − 𝑦𝑦 (by (2)).
N does not divide 𝑥𝑥 + 𝑦𝑦 . (by (2)).
p is a factor of  exactly one of the terms 𝑥𝑥 − 𝑦𝑦 and 𝑥𝑥 + 𝑦𝑦 .
(q is a factor of the other term)
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Quadratic Sieve Algorithm
• Core Idea: Find x, y ∈ ℤ𝑁𝑁∗ such that 

𝑥𝑥2 = 𝑦𝑦2 mod 𝑁𝑁
and 

𝑥𝑥 ≠ ±𝑦𝑦 mod 𝑁𝑁
• Key Question: How to find such an x, y ∈ ℤ𝑁𝑁∗ ?
• Step 1: (Initialize j=0 );
For x = 𝑁𝑁 + 1, 𝑁𝑁 + 2, … , 𝑁𝑁 + 𝑃𝑃,…

q ← 𝑁𝑁 + 𝑃𝑃
2
𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁 = 2𝑃𝑃 𝑁𝑁 + 𝑃𝑃2𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁

Check if q is B-smooth (all prime factors of q are in {p1,…,pk} where pk < B). 
If q is B smooth then factor q, increment j and define 

qj ← 𝑞𝑞 = �
𝑖𝑖=1

𝑘𝑘

𝑝𝑝𝑖𝑖
𝑒𝑒𝑗𝑗,𝑖𝑖 , and xj ← 𝑥𝑥
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Quadratic Sieve Algorithm

• Core Idea: Find x, y ∈ ℤ𝑁𝑁∗ such that 
𝑥𝑥2 = 𝑦𝑦2 mod 𝑁𝑁

and 
𝑥𝑥 ≠ ±𝑦𝑦 mod 𝑁𝑁

• Key Question: How to find such an x, y ∈ ℤ𝑁𝑁∗ ?
• Step 2: Once we have ℓ > 𝑘𝑘 equations of the form

qj ← 𝑞𝑞 = �
𝑖𝑖=1

𝑘𝑘

𝑝𝑝𝑖𝑖
𝑒𝑒𝑗𝑗,𝑖𝑖 ,

We can use linear algebra to find subset S such that for each 𝑃𝑃 ≤ 𝑘𝑘 we have

�
𝑗𝑗∈𝑆𝑆

𝑛𝑛𝑗𝑗,𝑖𝑖 = 0 𝑚𝑚𝑚𝑚𝑚𝑚 2.
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Quadratic Sieve Algorithm

• Key Question: How to find x, y ∈ ℤ𝑁𝑁∗ such that 𝑥𝑥2 = 𝑦𝑦2 mod 𝑁𝑁 and 𝑥𝑥 ≠ ±𝑦𝑦 mod 𝑁𝑁?
• Step 2: Once we have ℓ > 𝑘𝑘 equations of the form

qj ← 𝑞𝑞 = �
𝑖𝑖=1

𝑘𝑘

𝑝𝑝𝑖𝑖
𝑒𝑒𝑗𝑗,𝑖𝑖 ,

We can use linear algebra to find a subset S such that for each i ≤ k we have

�
𝑗𝑗∈𝑆𝑆

𝑛𝑛𝑗𝑗,𝑖𝑖 = 0 𝑚𝑚𝑚𝑚𝑚𝑚 2.

Thus,

�
𝑗𝑗∈𝑆𝑆

qj = �
𝑖𝑖=1

𝑘𝑘

𝑝𝑝𝑖𝑖
∑𝑗𝑗∈𝑆𝑆 𝑒𝑒𝑗𝑗,𝑖𝑖 = �

𝑖𝑖=1

𝑘𝑘

𝑝𝑝𝑖𝑖
1
2 ∑𝑗𝑗∈𝑆𝑆 𝑒𝑒𝑗𝑗,𝑖𝑖

2

= 𝑦𝑦2
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Quadratic Sieve Algorithm

• Key Question: How to find x, y ∈ ℤ𝑁𝑁∗ such that 𝑥𝑥2 = 𝑦𝑦2 mod 𝑁𝑁 and 
𝑥𝑥 ≠ ±𝑦𝑦 mod 𝑁𝑁?

Thus,

�
𝑗𝑗∈𝑆𝑆

qj = �
𝑖𝑖=1

𝑘𝑘

𝑝𝑝𝑖𝑖
∑𝑗𝑗∈𝑆𝑆 𝑒𝑒𝑗𝑗,𝑖𝑖 = �

𝑖𝑖=1

𝑘𝑘

𝑝𝑝𝑖𝑖
1
2 ∑𝑗𝑗∈𝑆𝑆 𝑒𝑒𝑗𝑗,𝑖𝑖

2

= 𝑦𝑦2

But we also have 

�
𝑗𝑗∈𝑆𝑆

qj = �
𝑗𝑗∈𝑆𝑆

𝑥𝑥𝑗𝑗2 = �
𝑗𝑗∈𝑆𝑆

𝑥𝑥𝑗𝑗
2

= 𝑥𝑥2 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁
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Quadratic Sieve Algorithm (Summary)

• Appropriate parameter tuning yields sub-exponential time algorithm 
2𝑂𝑂 log 𝑁𝑁 log log 𝑁𝑁 = 2𝑂𝑂 𝑛𝑛 log 𝑛𝑛

• Still not polynomial time but 2 𝑛𝑛 log 𝑛𝑛 grows much slower than 2𝑛𝑛/4.
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Discrete Log Attacks

• Pohlig-Hellman Algorithm
• Given a cyclic group 𝔾𝔾 of non-prime order q=| 𝔾𝔾 |=rp
• Reduce discrete log problem to discrete problem(s) for subgroup(s) of order p (or smaller).
• Preference for prime order subgroups in cryptography

• Baby-step/Giant-Step Algorithm
• Solve discrete logarithm in time 𝑂𝑂 𝑞𝑞 𝑝𝑝𝑚𝑚𝑛𝑛𝑦𝑦𝑛𝑛𝑚𝑚𝑛𝑛(𝑞𝑞)

• Pollard’s Rho Algorithm
• Solve discrete logarithm in time 𝑂𝑂 𝑞𝑞 𝑝𝑝𝑚𝑚𝑛𝑛𝑦𝑦𝑛𝑛𝑚𝑚𝑛𝑛(𝑞𝑞)
• Bonus: Constant memory!

• Index Calculus Algorithm
• Similar to quadratic sieve
• Runs in sub-exponential time 2𝑂𝑂 log 𝑞𝑞 log log 𝑞𝑞

• Specific to the group ℤ𝑝𝑝∗ (e.g., attack doesn’t work elliptic-curves)
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Discrete Log Attacks

• Pohlig-Hellman Algorithm
• Given a cyclic group 𝔾𝔾 of non-prime order q=| 𝔾𝔾 |=rp
• Reduce discrete log problem to discrete problem(s) for subgroup(s) of order p (or smaller).
• Preference for prime order subgroups in cryptography

• Let 𝔾𝔾 = 𝑛𝑛 and h = 𝑛𝑛𝑥𝑥 ∈ 𝔾𝔾 be given. For simplicity assume that r is prime and r < p. 
• Observe that 𝑛𝑛𝑃𝑃 generates a subgroup of size p and that hr ∈ 𝑛𝑛𝑃𝑃 .

• Solve discrete log problem in subgroup 𝑛𝑛𝑃𝑃 with input hr. 
• Find z such that hrz = 𝑛𝑛𝑃𝑃𝑧𝑧.

• Observe that 𝑛𝑛𝑝𝑝 generates a subgroup of size r and that hp ∈ 𝑛𝑛𝑝𝑝 .
• Solve discrete log problem in subgroup 𝑛𝑛𝑝𝑝 with input hp. 
• Find y such that hyp = 𝑛𝑛𝑦𝑦𝑝𝑝.

• Chinese Remainder Theorem h = 𝑛𝑛𝑥𝑥 where x ↔ 𝑧𝑧 mod 𝑝𝑝 , [𝑦𝑦 mod 𝑃𝑃]
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Baby-step/Giant-Step Algorithm

• Input: 𝔾𝔾 = 𝑛𝑛 of order q, generator g and h = 𝑛𝑛𝑥𝑥 ∈ 𝔾𝔾
• Set 𝑡𝑡 = 𝑞𝑞
For i =0 to 𝑞𝑞

𝑡𝑡
𝑛𝑛𝑖𝑖 ← 𝑛𝑛𝑖𝑖𝑡𝑡

Sort the pairs (i,gi) by their second component
For i =0 to 𝑡𝑡

ℎ𝑖𝑖 ← ℎ𝑛𝑛𝑖𝑖

if ℎ𝑖𝑖 = 𝑛𝑛𝑘𝑘 ∈ 𝑛𝑛0, … ,𝑛𝑛𝑡𝑡 then 
return [kt-i mod q]
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ℎ𝑖𝑖 = ℎ𝑛𝑛𝑖𝑖 = 𝑛𝑛𝑘𝑘𝑡𝑡

→ ℎ = 𝑛𝑛𝑘𝑘𝑡𝑡−𝑖𝑖



Discrete Log Attacks

• Baby-step/Giant-Step Algorithm
• Solve discrete logarithm in time 𝑂𝑂 𝑞𝑞 𝑝𝑝𝑚𝑚𝑛𝑛𝑦𝑦𝑛𝑛𝑚𝑚𝑛𝑛(𝑞𝑞)
• Requires memory 𝑂𝑂 𝑞𝑞 𝑝𝑝𝑚𝑚𝑛𝑛𝑦𝑦𝑛𝑛𝑚𝑚𝑛𝑛(𝑞𝑞)

• Pollard’s Rho Algorithm
• Solve discrete logarithm in time 𝑂𝑂 𝑞𝑞 𝑝𝑝𝑚𝑚𝑛𝑛𝑦𝑦𝑛𝑛𝑚𝑚𝑛𝑛(𝑞𝑞)
• Bonus: Constant memory!

• Key Idea: Low-Space Birthday Attack (*) using our collision resistant hash 
function

𝐻𝐻𝑔𝑔,ℎ 𝑥𝑥1, 𝑥𝑥2 = 𝑛𝑛𝑥𝑥1ℎ𝑥𝑥2
𝐻𝐻𝑔𝑔,ℎ 𝑦𝑦1,𝑦𝑦2 = 𝐻𝐻𝑔𝑔,ℎ 𝑥𝑥1, 𝑥𝑥2 → ℎ𝑦𝑦2−𝑥𝑥2 = 𝑛𝑛𝑥𝑥1−𝑦𝑦1

→ ℎ = 𝑛𝑛 𝑥𝑥1−𝑦𝑦1 𝑦𝑦2−𝑥𝑥2 −1

(*) A few small technical details to address
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Discrete Log Attacks

• Baby-step/Giant-Step Algorithm
• Solve discrete logarithm in time 𝑂𝑂 𝑞𝑞 𝑝𝑝𝑚𝑚𝑛𝑛𝑦𝑦𝑛𝑛𝑚𝑚𝑛𝑛(𝑞𝑞)
• Requires memory 𝑂𝑂 𝑞𝑞 𝑝𝑝𝑚𝑚𝑛𝑛𝑦𝑦𝑛𝑛𝑚𝑚𝑛𝑛(𝑞𝑞)

• Pollard’s Rho Algorithm
• Solve discrete logarithm in time 𝑂𝑂 𝑞𝑞 𝑝𝑝𝑚𝑚𝑛𝑛𝑦𝑦𝑛𝑛𝑚𝑚𝑛𝑛(𝑞𝑞)
• Bonus: Constant memory!

• Key Idea: Low-Space Birthday Attack (*)
𝐻𝐻𝑔𝑔,ℎ 𝑥𝑥1, 𝑥𝑥2 = 𝑛𝑛𝑥𝑥1ℎ𝑥𝑥2

𝐻𝐻𝑔𝑔,ℎ 𝑦𝑦1,𝑦𝑦2 = 𝐻𝐻𝑔𝑔,ℎ 𝑥𝑥1, 𝑥𝑥2

→ ℎ𝑦𝑦2−𝑥𝑥2 = 𝑛𝑛𝑥𝑥1−𝑦𝑦1
→ ℎ = 𝑛𝑛 𝑥𝑥1−𝑦𝑦1 𝑦𝑦2−𝑥𝑥2 −1

(*) A few small technical details to address
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Remark: We used discrete-log problem to 
construct collision resistant hash functions.

Security Reduction showed that attack on 
collision resistant hash function yields attack 

on discrete log.

Generic attack on collision resistant hash 
functions (e.g., low space birthday attack) 

yields generic attack on discrete log.



Discrete Log Attacks

• Index Calculus Algorithm
• Similar to quadratic sieve
• Runs in sub-exponential time 2𝑂𝑂 log 𝑞𝑞 log log 𝑞𝑞

• Specific to the group ℤ𝑝𝑝∗ (e.g., attack doesn’t work elliptic-curves)

• As before let {p1,…,pk} be set of prime numbers < B.
• Step 1.A: Find ℓ > 𝑘𝑘 distinct values 𝑥𝑥1, … , 𝑥𝑥𝑘𝑘 such that 𝑛𝑛𝑗𝑗 = 𝑛𝑛𝑥𝑥𝑗𝑗 𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝 is 

B-smooth for each j. That is 

𝑛𝑛𝑗𝑗 = �
𝑖𝑖=1

𝑘𝑘

𝑝𝑝𝑖𝑖
𝑒𝑒𝑖𝑖,𝑗𝑗 .
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Discrete Log Attacks

• As before let {p1,…,pk} be set of prime numbers < B.
• Step 1.A: Find ℓ > 𝑘𝑘 distinct values 𝑥𝑥1, … , 𝑥𝑥𝑘𝑘 such that 𝑛𝑛𝑗𝑗 = 𝑛𝑛𝑥𝑥𝑗𝑗 𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝 is 

B-smooth for each j. That is 

𝑛𝑛𝑗𝑗 = �
𝑖𝑖=1

𝑘𝑘

𝑝𝑝𝑖𝑖
𝑒𝑒𝑖𝑖,𝑗𝑗 .

• Step 1.B: Use linear algebra to solve the equations 

𝑥𝑥𝑗𝑗 = �
𝑖𝑖=1

𝑘𝑘

𝐧𝐧𝐥𝐥𝐧𝐧𝐧𝐧 𝐩𝐩𝐢𝐢 × 𝑛𝑛𝑖𝑖,𝑗𝑗 mod (𝑝𝑝 − 1).

(Note: the 𝐧𝐧𝐥𝐥𝐧𝐧𝐧𝐧𝐩𝐩𝐢𝐢’s are the unknowns)
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Discrete Log

• As before let {p1,…,pk} be set of prime numbers < B.
• Step 1 (precomputation): Obtain y1,…,yk such that pi = 𝑛𝑛𝑦𝑦𝑖𝑖 𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝.
• Step 2: Given discrete log challenge h=gx mod p.

• Find y such that 𝑛𝑛𝑦𝑦h mod p is B-smooth

𝑛𝑛𝑦𝑦h mod p = �
𝑖𝑖=1

𝑘𝑘

𝑝𝑝𝑖𝑖
𝑒𝑒𝑖𝑖

= �
𝑖𝑖=1

𝑘𝑘

𝑛𝑛𝑦𝑦𝑖𝑖 𝑒𝑒𝑖𝑖 = 𝑛𝑛∑𝑖𝑖 𝑒𝑒𝑖𝑖𝑦𝑦𝑖𝑖
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Discrete Log

• As before let {p1,…,pk} be set of prime numbers < B.
• Step 1 (precomputation): Obtain y1,…,yk such that  pi = 𝑛𝑛𝑦𝑦𝑖𝑖 𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝.
• Step 2: Given discrete log challenge h=gx mod p.

• Find z such that 𝑛𝑛𝑧𝑧h mod p is B-smooth
𝑛𝑛𝑧𝑧h mod p = 𝑛𝑛∑𝑖𝑖 𝑒𝑒𝑖𝑖𝑦𝑦𝑖𝑖 → ℎ = 𝑛𝑛∑𝑖𝑖 𝑒𝑒𝑖𝑖𝑦𝑦𝑖𝑖−𝑧𝑧

→ 𝑥𝑥 = �
𝑖𝑖

𝑛𝑛𝑖𝑖𝑦𝑦𝑖𝑖 − 𝑧𝑧

• Remark: Precomputation costs can be amortized over many discrete 
log instances 

• In practice, the same group 𝔾𝔾 = 𝑛𝑛 and generator g are used repeatedly.

69Reference: https://www.weakdh.org/

https://www.weakdh.org/


NIST Guidelines (Concrete Security)
Best known attack against 1024 bit RSA takes time (approximately) 280
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NIST Guidelines (Concrete Security)
Diffie-Hellman uses subgroup of ℤ𝑝𝑝∗ size q 
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q=224 bits

q=256 bits

q=384 bits

q=512 bits
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