
Cryptography
CS 555

Week 11:
• Formalizing Public Key Crypto

• Fixes for Plain RSA
• Applications of DDH
• Factoring Algorithms, Discrete Log Attacks + NIST Recommendations

for Concrete Security Parameters
Readings: Katz and Lindell Chapter 8.4 & Chapter 9

1Spring 2021

Recap CCA-Security 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴,Π
𝑐𝑐𝑐𝑐𝑐𝑐 𝑛𝑛

1. Challenger generates a secret key k and a bit b
2. Adversary (A) is given oracle access to Enck and Deck
3. Adversary outputs m0,m1
4. Challenger sends the adversary c=Enck(mb).
5. Adversary maintains oracle access to Enck and Deck ,however the adversary is

not allowed to query Deck(c).
6. Eventually, Adversary outputs b’.

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴,Π
𝑐𝑐𝑐𝑐𝑐𝑐 𝑛𝑛 = 1 if b = b′; otherwise 0.

CCA-Security: For all PPT A exists a negligible function negl(n) s.t.

Pr 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴,Π
𝑐𝑐𝑐𝑐𝑐𝑐 𝑛𝑛 = 1 ≤

1
2

+ 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(𝑛𝑛)

2

CCA-Security (PubKA,Π
cca n)

3

𝑚𝑚0 ,𝑚𝑚1

Random bit b
(pk,sk) = Gen(.)

𝒎𝒎−𝟏𝟏 = 𝐃𝐃𝐃𝐃𝐃𝐃𝒔𝒔𝒔𝒔 𝒄𝒄−𝟏𝟏

b’

𝒄𝒄𝒃𝒃 = 𝐄𝐄𝐄𝐄𝐄𝐄𝒑𝒑𝒑𝒑 𝒎𝒎𝒃𝒃

…

∀𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴 ∃𝜇𝜇 (negligible) s. t
Pr PubKA,Π

cca n = 1 ≤
1
2

+ 𝜇𝜇(𝑛𝑛)

𝒄𝒄−𝟏𝟏

…

𝒄𝒄𝒌𝒌
𝒎𝒎𝒌𝒌 = 𝐃𝐃𝐃𝐃𝐃𝐃𝒔𝒔𝒔𝒔 𝒄𝒄𝒌𝒌

Public Key: pk

Encrypting Longer Messages

Claim 11.7: Let Π = 𝐺𝐺𝐺𝐺𝐺𝐺,𝐸𝐸𝐸𝐸𝐸𝐸,𝐷𝐷𝐷𝐷𝐷𝐷 denote a CPA-Secure public key
encryption scheme and let Π′ = 𝐺𝐺𝐺𝐺𝐺𝐺,𝐸𝐸𝐸𝐸𝐸𝐸′,𝐷𝐷𝐷𝐷𝐷𝐷′ be defined such that

𝐄𝐄𝐄𝐄𝐄𝐄𝐩𝐩𝐩𝐩′ 𝒎𝒎𝟏𝟏 ∥ 𝒎𝒎𝟐𝟐 ∥ ⋯ ∥ 𝒎𝒎ℓ = 𝐄𝐄𝐄𝐄𝐄𝐄𝐩𝐩𝐩𝐩 𝒎𝒎𝟏𝟏 ∥ ⋯ ∥ 𝐄𝐄𝐄𝐄𝐄𝐄𝐩𝐩𝐩𝐩 𝒎𝒎ℓ
Then Π′ is also CPA-Secure.

Claim? Let Π = 𝐺𝐺𝐺𝐺𝐺𝐺,𝐸𝐸𝐸𝐸𝐸𝐸,𝐷𝐷𝐷𝐷𝐷𝐷 denote a CCA-Secure public key encryption
scheme and let Π′ = 𝐺𝐺𝐺𝐺𝐺𝐺,𝐸𝐸𝐸𝐸𝐸𝐸𝐸,𝐷𝐷𝐷𝐷𝐷𝐷𝐷 be defined such that

𝐄𝐄𝐄𝐄𝐄𝐄𝐩𝐩𝐩𝐩′ 𝒎𝒎𝟏𝟏 ∥ 𝒎𝒎𝟐𝟐 ∥ ⋯ ∥ 𝒎𝒎ℓ = 𝐄𝐄𝐄𝐄𝐄𝐄𝐩𝐩𝐩𝐩 𝒎𝒎𝟏𝟏 ∥ ⋯ ∥ 𝐄𝐄𝐄𝐄𝐄𝐄𝐩𝐩𝐩𝐩 𝒎𝒎ℓ
Then Π′ is also CCA-Secure.

Is this second claim true?

4

Encrypting Longer Messages

Claim? Let Π = 𝐺𝐺𝐺𝐺𝐺𝐺,𝐸𝐸𝐸𝐸𝐸𝐸,𝐷𝐷𝐷𝐷𝐷𝐷 denote a CCA-Secure public key
encryption scheme and let Π′ = 𝐺𝐺𝐺𝐺𝐺𝐺,𝐸𝐸𝐸𝐸𝐸𝐸𝐸,𝐷𝐷𝐷𝐷𝐷𝐷𝐷 be defined such
that

𝐄𝐄𝐄𝐄𝐄𝐄𝐩𝐩𝐩𝐩′ 𝒎𝒎𝟏𝟏 ∥ 𝒎𝒎𝟐𝟐 ∥ ⋯ ∥ 𝒎𝒎ℓ = 𝐄𝐄𝐄𝐄𝐄𝐄𝐩𝐩𝐩𝐩 𝒎𝒎𝟏𝟏 ∥ ⋯ ∥ 𝐄𝐄𝐄𝐄𝐄𝐄𝐩𝐩𝐩𝐩 𝒎𝒎ℓ

Then Π′ is also CCA-Secure.

Is this second claim true?
Answer: No!

5

Encrypting Longer Messages

Fact: Let Π = 𝐺𝐺𝐺𝐺𝐺𝐺,𝐸𝐸𝐸𝐸𝐸𝐸,𝐷𝐷𝐷𝐷𝐷𝐷 denote a CCA-Secure public key encryption scheme
and let Π′ = 𝐺𝐺𝐺𝐺𝐺𝐺,𝐸𝐸𝐸𝐸𝐸𝐸𝐸,𝐷𝐷𝐷𝐷𝐷𝐷𝐷 be defined such that

𝐄𝐄𝐄𝐄𝐄𝐄𝐩𝐩𝐩𝐩′ 𝒎𝒎𝟏𝟏 ∥ 𝒎𝒎𝟐𝟐 ∥ ⋯ ∥ 𝒎𝒎ℓ = 𝐄𝐄𝐄𝐄𝐄𝐄𝐩𝐩𝐩𝐩 𝒎𝒎𝟏𝟏 ∥ ⋯ ∥ 𝐄𝐄𝐄𝐄𝐄𝐄𝐩𝐩𝐩𝐩 𝒎𝒎ℓ
Then Π′ is Provably Not CCA-Secure.

1. Attacker sets 𝒎𝒎𝟎𝟎 = 𝟎𝟎𝒏𝒏 ∥ 𝟏𝟏𝒏𝒏 ∥ 𝟏𝟏𝒏𝒏 and 𝒎𝒎𝟏𝟏 = 𝟎𝟎𝒏𝒏 ∥ 𝟎𝟎𝒏𝒏 ∥ 𝟏𝟏𝒏𝒏 and gets 𝒄𝒄𝒃𝒃 =
𝐄𝐄𝐄𝐄𝐄𝐄𝐩𝐩𝐩𝐩′ 𝒎𝒎𝒃𝒃 = 𝒄𝒄𝒃𝒃,𝟏𝟏 ∥ 𝒄𝒄𝒃𝒃,𝟐𝟐 ∥ 𝒄𝒄𝒃𝒃,𝟑𝟑

2. Attacker sets 𝒄𝒄𝒄 = 𝒄𝒄𝒃𝒃,𝟐𝟐 ∥ 𝒄𝒄𝒃𝒃,𝟑𝟑 ∥ 𝒄𝒄𝒃𝒃,𝟏𝟏 , queries the decryption oracle and gets

𝐃𝐃𝐃𝐃𝐃𝐃𝐬𝐬𝐤𝐤′ 𝒄𝒄𝒄 = �𝟏𝟏𝒏𝒏 ∥ 𝟏𝟏𝒏𝒏 ∥ 𝟎𝟎𝒏𝒏 if b=𝟎𝟎
𝟎𝟎𝒏𝒏 ∥ 𝟏𝟏𝒏𝒏 ∥ 𝟎𝟎𝒏𝒏 𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐

6

Achieving CPA and CCA-Security

• Plain RSA is not CPA Secure (therefore, not CCA-Secure)

• El-Gamal (future) is CPA-Secure, but not CCA-Secure

• Tools to obtain CCA-Security in Public Key Setting
• Key Encapsulation Mechanism
• RSA-OAEP (proof in random oracle model)
• Cramer-Shoup (first provably secure construction using standard assumptions (DDH))

7

Key Encapsulation Mechanism (KEM)

• Three Algorithms
• Gen(1𝑛𝑛;𝑅𝑅) (Key-generation algorithm)

• Input: Random Bits R
• Output: 𝒑𝒑𝒑𝒑, 𝒔𝒔𝒔𝒔 ∈ 𝓚𝓚

• Encapspk(1𝑛𝑛;𝑅𝑅)
• Input: public key 𝒑𝒑𝒑𝒑, security parameter 1𝑛𝑛, random bits R
• Output: Symmetric key k ∈ 0,1 ℓ 𝑛𝑛 and a ciphertext c

• Decapssk(𝑐𝑐) (Deterministic algorithm)
• Input: Secret key sk ∈ 𝒦𝒦 and a ciphertext c
• Output: a symmetric key k ∈ 0,1 ℓ 𝑛𝑛 or ⊥ (fail)

• Invariant: Decapssk(c)=k whenever (c,k) = Encapspk(1𝑛𝑛′;𝑅𝑅)

8

∀𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴 ∃𝜇𝜇 (negligible) s. t
Pr KEMA,Π

cca = 1 ≤
1
2

+ 𝜇𝜇(𝑛𝑛)

KEM CCA-Security (KEMA,Π
cca n)

9

𝒄𝒄𝟏𝟏 ≠ 𝒄𝒄

Random bit b
(pk,sk) = Gen(.)

𝒄𝒄,𝒌𝒌𝟎𝟎 = 𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝒑𝒑𝒑𝒑 .
𝒌𝒌𝟏𝟏 ⟵ 𝟎𝟎,𝟏𝟏 𝒏𝒏

b’

𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝒔𝒔𝒌𝒌 𝒄𝒄𝟏𝟏

…

𝒄𝒄𝟐𝟐 ≠ 𝒄𝒄
𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝒔𝒔𝒔𝒔 𝒄𝒄𝟐𝟐

𝒑𝒑𝒑𝒑, 𝒄𝒄,𝒌𝒌𝒃𝒃

CCA-Secure Encryption from CCA-Secure KEM

𝐄𝐄𝐄𝐄𝐄𝐄𝐩𝐩𝐩𝐩 𝒎𝒎;𝑹𝑹𝟏𝟏,𝑹𝑹𝟐𝟐 = 𝒄𝒄,𝐄𝐄𝐄𝐄𝐄𝐄𝐤𝐤∗ 𝒎𝒎;𝑹𝑹𝟐𝟐

Where

• 𝒄𝒄,𝒌𝒌 = 𝐄𝐄𝐄𝐄𝐄𝐄𝐚𝐚𝐚𝐚𝐚𝐚𝐩𝐩𝐩𝐩 𝟏𝟏𝒏𝒏;𝑹𝑹𝟏𝟏 ,
• 𝐄𝐄𝐄𝐄𝐄𝐄𝐤𝐤∗ is a CCA-Secure symmetric key encryption algorithm, and

• 𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐩𝐩𝐩𝐩 is a CCA-Secure KEM.

Theorem 11.14: 𝐄𝐄𝐄𝐄𝐄𝐄𝐩𝐩𝐩𝐩 is CCA-Secure public key encryption scheme.

10

CCA-Secure Encryption from CCA-Secure KEM

𝐄𝐄𝐄𝐄𝐄𝐄𝐩𝐩𝐩𝐩 𝒎𝒎;𝑹𝑹𝟏𝟏,𝑹𝑹𝟐𝟐 = 𝒄𝒄,𝐄𝐄𝐄𝐄𝐄𝐄𝐤𝐤∗ 𝒎𝒎;𝑹𝑹𝟐𝟐

𝐃𝐃𝐃𝐃𝐃𝐃𝐩𝐩𝐩𝐩 (𝒄𝒄, 𝒄𝒄𝒄) = 𝐃𝐃𝐃𝐃𝐃𝐃𝐤𝐤∗ 𝒄𝒄𝒄
where

𝒄𝒄,𝒌𝒌 = 𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐩𝐩𝐩𝐩 𝟏𝟏𝒏𝒏;𝑹𝑹𝟏𝟏 and 𝒌𝒌 = 𝐃𝐃𝐃𝐃𝐜𝐜𝐚𝐚𝐚𝐚𝐚𝐚𝐬𝐬𝐤𝐤 𝒄𝒄

Theorem 11.14: 𝐄𝐄𝐄𝐄𝐄𝐄𝐩𝐩𝐩𝐩 is CCA-Secure public key encryption scheme.

11

CCA-Secure Encryption from CCA-Secure KEM

𝐄𝐄𝐄𝐄𝐄𝐄𝐩𝐩𝐩𝐩 𝒎𝒎;𝑹𝑹 = 𝒄𝒄,𝐄𝐄𝐄𝐄𝐄𝐄𝐤𝐤∗ 𝒎𝒎 where 𝒄𝒄,𝒌𝒌 = 𝐄𝐄𝐄𝐄𝐄𝐄𝐚𝐚𝐚𝐚𝐚𝐚𝐩𝐩𝐩𝐩 𝟏𝟏𝒏𝒏;𝑹𝑹 ,
• 𝐄𝐄𝐄𝐄𝐄𝐄𝐤𝐤∗ is a CCA-Secure symmetric key encryption algorithm, and

Theorem 11.14: 𝐄𝐄𝐄𝐄𝐄𝐄𝐩𝐩𝐩𝐩 is CCA-Secure public key encryption scheme.
Proof: Assume for contradiction that PPT attacker A wins the CCA-Security Game against 𝐄𝐄𝐄𝐄𝐄𝐄𝐤𝐤 with non-
negligible probability 1

2
+ 𝑓𝑓(𝑛𝑛). Design an attacker B that break CCA-Security of KEM 𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐩𝐩𝐩𝐩

1. B receives public key pk from KEM challenger, along with challenge 𝒄𝒄,𝒌𝒌𝒃𝒃 and forwards public key pk it
to A

2. B flips a coin b’ and simulates CCA attacker A
3. Whenever A submits the challenge pair of messages 𝒎𝒎𝟎𝟎,𝒎𝒎𝟏𝟏 B responds with (c,𝐄𝐄𝐄𝐄𝐄𝐄𝒌𝒌𝒃𝒃

∗ 𝒎𝒎𝒃𝒃𝒃)
4. Whenever A queries for 𝐃𝐃𝐃𝐃𝐃𝐃𝐬𝐬𝐬𝐬 𝒄𝒄′, 𝒕𝒕′ attacker B forwards 𝒄𝒄′ to KEM challenger to get 𝐤𝐤′ = 𝐃𝐃𝐃𝐃𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐬𝐬𝐬𝐬(𝒄𝒄)

and sends 𝐃𝐃𝐃𝐃𝐃𝐃𝐤𝐤′
∗ (𝒕𝒕′) to attacker.

5. Whenever A outputs a guess b’’ B outputs 1 if and only if b’’=b’.

12

CCA-Secure Encryption from CCA-Secure KEM
Theorem 11.14: 𝐄𝐄𝐄𝐄𝐄𝐄𝐩𝐩𝐩𝐩 is CCA-Secure public key encryption scheme.

Proof: Assume for contradiction that PPT attacker A wins the CCA-Security Game against 𝐄𝐄𝐄𝐄𝐄𝐄𝐤𝐤 with non-negligible probability 1
2

+
𝑓𝑓(𝑛𝑛). Design an attacker B that break CCA-Security of KEM 𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐩𝐩𝐩𝐩
1. B receives public key pk from KEM challenger, along with challenge 𝒄𝒄,𝒌𝒌𝒃𝒃 and forwards public key pk it to A
2. B flips a coin b’ and simulates CCA attacker A
3. Whenever A submits the challenge pair of messages 𝒎𝒎𝟎𝟎,𝒎𝒎𝟏𝟏 B simply responds with (c,𝐄𝐄𝐄𝐄𝐄𝐄𝒌𝒌𝒃𝒃

∗ 𝒎𝒎𝒃𝒃𝒃)

4. Whenever A queries for 𝐃𝐃𝐃𝐃𝐃𝐃𝐬𝐬𝐬𝐬 𝒄𝒄′, 𝒕𝒕′ attacker B forwards 𝒄𝒄′ to KEM challenger to get 𝐤𝐤′ = 𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐬𝐬𝐬𝐬(𝒄𝒄) and sends 𝐃𝐃𝐃𝐃𝐃𝐃𝐤𝐤′
∗ (𝒕𝒕′)

to attacker.
5. Whenever A outputs a guess b’’ B outputs 0 if and only if b’’=b’.

Analysis: If b=0 then Pr b′′ = b′ = 1
2

+ 𝑓𝑓 𝑛𝑛 as this is just the regular CCA-Security game

If b=1 then Pr b′′ = b′ ≥ 1
2
− 𝜇𝜇(𝑛𝑛) for some negligible function 𝜇𝜇(𝑛𝑛)

(Follows by CCA-Security of 𝐄𝐄𝐄𝐄𝐄𝐄𝒌𝒌𝟏𝟏
∗ since 𝒌𝒌𝟏𝟏 is random and is unrelated to c)

B outputs correct guess with non-negligible probability at least

Pr 𝑏𝑏 = 1
1
2

+ 𝑓𝑓 𝑛𝑛 + Pr 𝑏𝑏 = 0
1
2
− 𝜇𝜇(𝑛𝑛) =

1
2

+
𝑓𝑓 𝑛𝑛 − 𝜇𝜇(𝑛𝑛)

2

13

Recap RSA-Assumption

RSA-Experiment: RSA-INVA,n

1. Run KeyGeneration(1n) to obtain (N,e,d)
2. Pick uniform y ∈ ℤ

N
∗

3. Attacker A is given N, e, y and outputs x ∈ ℤ
N
∗

4. Attacker wins (RSA−INV𝐴𝐴,𝑛𝑛=1) if 𝑥𝑥𝑒𝑒 = y mod N

∀𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴 ∃𝜇𝜇 (negligible) s. t Pr RSA−INV𝐴𝐴,𝑛𝑛 = 1 ≤ 𝜇𝜇(𝑛𝑛)

14

CCA-Secure KEM in the Random Oracle Model

• Let (N,e,d) be an RSA key (pk =(N,e), sk=(N,d)).

Encapspk 1𝑛𝑛,𝑅𝑅 = 𝑟𝑟𝑒𝑒 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁,𝑘𝑘 = 𝐻𝐻 𝑟𝑟
Decapssk 𝑐𝑐 = 𝐻𝐻 𝑟𝑟 where 𝑟𝑟 = 𝑐𝑐𝑑𝑑 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁

• Remark 1: k is completely random string unless the adversary can
query random oracle H on input r.

• Remark 2: If RSA-Inversion assumption holds (Plain-RSA is hard to
invert for a random input) then any PPT attacker finds queries
H(r) with negligible probability.

15

Using a CCA-Secure KEM

• Let (N,e,d) be an RSA key (pk =(N,e), sk=(N,d)).

Encpk 𝑚𝑚;𝑅𝑅 = (𝑟𝑟𝑒𝑒 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁, AEnck(𝑚𝑚)) where 𝑘𝑘 = 𝐻𝐻 𝑟𝑟
Decsk 𝑐𝑐, 𝑡𝑡 = (𝑐𝑐𝑑𝑑 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁, ADeck(𝑡𝑡)) where 𝑘𝑘 = 𝐻𝐻 𝑐𝑐𝑑𝑑 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁

• Remark 1: k is completely random string unless the adversary can query
random oracle H on input r.

• Remark 2: If RSA-Inversion assumption holds (Plain-RSA is hard to invert
for a random input) then any PPT attacker finds queries H(r) with
negligible probability.

16

Using a CCA-Secure KEM

• Let (N,e,d) be an RSA key (pk =(N,e), sk=(N,d)).

Encpk 𝑚𝑚;𝑅𝑅 = (𝑟𝑟𝑒𝑒 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁, AEnck(𝑚𝑚)) where 𝑘𝑘 = 𝐻𝐻 𝑟𝑟
Decsk 𝑐𝑐, 𝑡𝑡 = (𝑐𝑐𝑑𝑑 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁, ADeck(𝑡𝑡)) where 𝑘𝑘 = 𝐻𝐻 𝑐𝑐𝑑𝑑 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁

Theorem: If RSA-Inversion assumption holds and H is a random oracle
then encryption scheme above is CCA-Secure.

17

RSA-OAEP
(Optimal Asymmetric Encryption Padding)
• 𝐄𝐄𝐄𝐄𝐄𝐄𝒑𝒑𝒑𝒑 (𝑚𝑚; 𝑟𝑟) = [𝑥𝑥 ∥ 𝑦𝑦 𝑒𝑒 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁]
• Where 𝑥𝑥 ∥ 𝑦𝑦 ← OAEP(𝑚𝑚 ∥ 0𝑘𝑘1 ∥ 𝑟𝑟)
• 𝐃𝐃𝐃𝐃𝐃𝐃𝒔𝒔𝒌𝒌 𝑐𝑐 =
�𝑚𝑚 ← [𝑐𝑐 𝑑𝑑 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁]
If �𝑚𝑚 > 𝑛𝑛 return fail
𝑚𝑚 ∥ 𝑧𝑧 ∥ 𝑟𝑟 ← OAEP−1(�𝑚𝑚)
If 𝑧𝑧 ≠ 0𝑘𝑘1 then return fail
return m

18

𝐎𝐎𝐎𝐎𝐎𝐎𝐎𝐎(𝒎𝒎 ∥ 𝟎𝟎𝒌𝒌𝟏𝟏 ∥ 𝒓𝒓)

RSA-OAEP
(Optimal Asymmetric Encryption Padding)
Theorem: If we model G and H as
Random oracles then RSA-OAEP is
a CCA-Secure public key encryption scheme
(given RSA-Inversion assumption).

Bonus: One of the fastest in practice!

19

PKCS #1 v2.0

• Implementation of RSA-OAEP

• James Manger found a chosen-ciphertext attack.

• What gives?

20

PKCS #1 v2.0 (Bad Implementation)

• 𝐄𝐄𝐄𝐄𝐄𝐄𝒑𝒑𝒑𝒑 (𝑚𝑚; 𝑟𝑟) = [𝑥𝑥 ∥ 𝑦𝑦 𝑒𝑒 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁]
• Where 𝑥𝑥 ∥ 𝑦𝑦 ← OAEP(𝑚𝑚 ∥ 0𝑘𝑘1 ∥ 𝑟𝑟)
• 𝐃𝐃𝐃𝐃𝐃𝐃𝒔𝒔𝒌𝒌 𝑐𝑐 =

�𝑚𝑚 ← [𝑐𝑐 𝑑𝑑 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁]
If �𝒎𝒎 > 𝒏𝒏 return Error Message 1
𝑚𝑚 ∥ 𝑧𝑧 ∥ 𝑟𝑟 ← OAEP−1 �𝑚𝑚
If 𝒛𝒛 ≠ 𝟎𝟎𝒌𝒌𝟏𝟏 then output Error Message 2
return m

21

PKCS #1 v2.0 (Attack)

• Manger’s CCA-Attack recovers secret message
• Step 1: Use decryption oracle to check if 2 �𝑚𝑚 ≥ 2𝑛𝑛 (i.e., if we get error message 1
• 𝑐𝑐 = [�𝑚𝑚 𝑒𝑒 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁]2𝑒𝑒𝑐𝑐 = [2 �𝑚𝑚 𝑒𝑒 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁]
• If we get error message 1 when decrypting 2𝑒𝑒𝑐𝑐 then 2 �𝑚𝑚 ≥ 2𝑛𝑛

• Generalization (𝑥𝑥 > 2): can check if 𝑥𝑥 �𝑚𝑚 ≥ 2𝑛𝑛 by submitting query 𝑥𝑥𝑒𝑒𝑐𝑐 to
decryption oracle

• Can extract �𝑚𝑚 using O 𝑵𝑵 queries to decryption oracle
• Run 𝑚𝑚 ∥ 𝑧𝑧 ∥ 𝑟𝑟 ← OAEP−1(�𝑚𝑚) to recover message
• Attack also works as a side channel attack

• Even if error messages are the same the time to respond could be different in each case.

• Fixes: Implementation should return same error message and should make sure
that the time to return each error is the same in all cases.

22

Week 11: Topic 1: Discrete
Logarithm Applications

Diffie-Hellman Key Exchange
Collision Resistant Hash Functions

Password Authenticated Key Exchange

23

Diffie-Hellman Key Exchange

1. Alice picks 𝑥𝑥𝐴𝐴 and sends ℎ𝐴𝐴: = 𝑔𝑔𝑥𝑥𝐴𝐴 to Bob
2. Bob picks 𝑥𝑥𝐵𝐵 and sends ℎ𝐵𝐵: = 𝑔𝑔𝑥𝑥𝐵𝐵 to Alice
3. Alice and Bob can both compute 𝐾𝐾𝐴𝐴,𝐵𝐵 = 𝑔𝑔𝑥𝑥𝐵𝐵 𝑥𝑥𝐴𝐴

Alice Computes: ℎ𝐵𝐵 𝑥𝑥𝐴𝐴 = 𝑔𝑔𝑥𝑥𝐵𝐵 𝑥𝑥𝐴𝐴 = 𝑔𝑔𝑥𝑥𝐵𝐵 𝑥𝑥𝐴𝐴 = 𝐾𝐾𝐴𝐴,𝐵𝐵

Bob Computes: ℎ𝐴𝐴 𝑥𝑥𝐵𝐵 = 𝑔𝑔𝑥𝑥𝐴𝐴 𝑥𝑥𝐵𝐵 = 𝑔𝑔𝑥𝑥𝐴𝐴 𝑥𝑥𝐵𝐵 = 𝐾𝐾𝐴𝐴,𝐵𝐵

24

Key-Exchange Experiment 𝐾𝐾𝐾𝐾𝐴𝐴,Π
𝑒𝑒𝑒𝑒𝑒𝑒 𝑛𝑛 :

• Two parties run Π to exchange secret messages (with security parameter 1n).
• Let trans be a transcript which contains all messages sent and let k be the secret

key output by each party.
• Let b be a random bit and let kb = k if b=0; otherwise kb is sampled uniformly at

random.
• Attacker A is given trans and kb (passive attacker).
• Attacker outputs b’ (𝐾𝐾𝐾𝐾𝐴𝐴,Π

𝑒𝑒𝑒𝑒𝑒𝑒 𝑛𝑛 =1 if and only if b=b’)

Security of Π against an eavesdropping attacker: For all PPT A there is a negligible
function negl such that

Pr 𝐾𝐾𝐾𝐾𝐴𝐴,Π
𝑒𝑒𝑒𝑒𝑒𝑒 𝑛𝑛 ≤ ½ + 𝐧𝐧𝐧𝐧𝐧𝐧𝐧𝐧 n .

25

Diffie-Hellman Key-Exchange is Secure

Theorem: If the decisional Diffie-Hellman problem is hard relative to group
generator 𝒢𝒢 then the Diffie-Hellman key-exchange protocol Π is secure in the
presence of a (passive) eavesdropper (*).
(*) Assuming keys are chosen uniformly at random from the cyclic group 𝔾𝔾

Protocol Π
1. Alice picks 𝑥𝑥𝐴𝐴 and sends 𝑔𝑔𝑥𝑥𝐴𝐴 to Bob
2. Bob picks 𝑥𝑥𝐵𝐵 and sends 𝑔𝑔𝑥𝑥𝐵𝐵 to Alice
3. Alice and Bob can both compute 𝐾𝐾𝐴𝐴,𝐵𝐵 = 𝑔𝑔𝑥𝑥𝐵𝐵 𝑥𝑥𝐴𝐴

26

Diffie-Hellman Assumptions

Computational Diffie-Hellman Problem (CDH)
• Attacker is given h1 = 𝑔𝑔𝑥𝑥1 ∈ 𝔾𝔾 and h2 = 𝑔𝑔𝑥𝑥2 ∈ 𝔾𝔾.
• Attackers goal is to find 𝑔𝑔𝑥𝑥1𝑥𝑥2= h1

𝑥𝑥2 = h2
𝑥𝑥1

• CDH Assumption: For all PPT A there is a negligible function negl upper
bounding the probability that A succeeds

Decisional Diffie-Hellman Problem (DDH)
• Let z0 = 𝑔𝑔𝑥𝑥1𝑥𝑥2 and let z1 = 𝑔𝑔𝑟𝑟, where x1,x2 and r are random
• Attacker is given 𝑔𝑔𝑥𝑥1, 𝑔𝑔𝑥𝑥2 and 𝑧𝑧𝑏𝑏 (for a random bit b)
• Attackers goal is to guess b
• DDH Assumption: For all PPT A there is a negligible function negl such that

A succeeds with probability at most ½ + negl(n).

27

Diffie-Hellman Key Exchange

1. Alice picks 𝑥𝑥𝐴𝐴 and sends 𝑔𝑔𝑥𝑥𝐴𝐴 to Bob
2. Bob picks 𝑥𝑥𝐵𝐵 and sends 𝑔𝑔𝑥𝑥𝐵𝐵 to Alice
3. Alice and Bob can both compute 𝐾𝐾𝐴𝐴,𝐵𝐵 = 𝑔𝑔𝑥𝑥𝐵𝐵 𝑥𝑥𝐴𝐴

Intuition: Decisional Diffie-Hellman assumption implies that a passive
attacker who observes 𝑔𝑔𝑥𝑥𝐴𝐴 and 𝑔𝑔𝑥𝑥𝐵𝐵 still cannot distinguish between
𝐾𝐾𝐴𝐴,𝐵𝐵 = 𝑔𝑔𝑥𝑥𝐵𝐵 𝑥𝑥𝐴𝐴 and a random group element.

Remark: Modified protocol sets 𝐾𝐾𝐴𝐴,𝐵𝐵 = 𝐻𝐻 𝑔𝑔𝑥𝑥𝐵𝐵 𝑥𝑥𝐴𝐴 which is provably secure
under the weaker CDH assumption assuming that H is a random oracle.

28

Diffie-Hellman Key-Exchange is Secure

Theorem: If the decisional Diffie-Hellman problem is hard relative to group
generator 𝒢𝒢 then the Diffie-Hellman key-exchange protocol Π is secure in the
presence of an eavesdropper (*).
Proof: Diffie-Hellman transcript: (𝑔𝑔𝑥𝑥 ,𝑔𝑔𝑦𝑦)

Pr 𝐾𝐾𝐾𝐾𝐴𝐴,Π
𝑒𝑒𝑒𝑒𝑒𝑒 𝑛𝑛 = 1

=½Pr 𝐾𝐾𝐾𝐾𝐴𝐴,Π
𝑒𝑒𝑒𝑒𝑒𝑒 𝑛𝑛 = 1|𝑏𝑏 = 1 + ½Pr 𝐾𝐾𝐾𝐾𝐴𝐴,Π

𝑒𝑒𝑒𝑒𝑒𝑒 𝑛𝑛 = 1|𝑏𝑏 = 0
=½Pr 𝐴𝐴 𝔾𝔾 ,𝑔𝑔, 𝑞𝑞,𝑔𝑔𝑥𝑥 ,𝑔𝑔𝑦𝑦 ,𝑔𝑔𝑥𝑥𝑥𝑥 = 1 + ½Pr 𝐴𝐴 𝔾𝔾 ,𝑔𝑔, 𝑞𝑞,𝑔𝑔𝑥𝑥 ,𝑔𝑔𝑦𝑦 ,𝑔𝑔𝑧𝑧 = 0

=½+½ Pr 𝐴𝐴 𝔾𝔾 ,𝑔𝑔, 𝑞𝑞,𝑔𝑔𝑥𝑥 ,𝑔𝑔𝑦𝑦 ,𝑔𝑔𝑥𝑥𝑥𝑥 = 1 − Pr 𝐴𝐴 𝔾𝔾 ,𝑔𝑔, 𝑞𝑞,𝑔𝑔𝑥𝑥 ,𝑔𝑔𝑦𝑦 ,𝑔𝑔𝑧𝑧 = 1 .
≤ ½ + ½negl(n) (by DDH)

(*) Assuming keys are chosen uniformly at random from the cyclic group 𝔾𝔾

29

Diffie-Hellman Key Exchange

1. Alice picks 𝑥𝑥𝐴𝐴 and sends 𝑔𝑔𝑥𝑥𝐴𝐴 to Bob
2. Bob picks 𝑥𝑥𝐵𝐵 and sends 𝑔𝑔𝑥𝑥𝐵𝐵 to Alice
3. Alice and Bob can both compute 𝐾𝐾𝐴𝐴,𝐵𝐵 = 𝑔𝑔𝑥𝑥𝐵𝐵 𝑥𝑥𝐴𝐴

Intuition: Decisional Diffie-Hellman assumption implies that a passive
attacker who observes 𝑔𝑔𝑥𝑥𝐴𝐴 and 𝑔𝑔𝑥𝑥𝐵𝐵 still cannot distinguish between
𝐾𝐾𝐴𝐴,𝐵𝐵 = 𝑔𝑔𝑥𝑥𝐵𝐵 𝑥𝑥𝐴𝐴 and a random group element.
Remark: The protocol is vulnerable against active attackers who can
tamper with messages.

30

Man in the Middle Attack (MITM)

31

Man in the Middle Attack (MITM)

1. Alice picks 𝑥𝑥𝐴𝐴 and sends 𝑔𝑔𝑥𝑥𝐴𝐴 to Bob
• Mallory intercepts 𝑔𝑔𝑥𝑥𝐴𝐴 , picks 𝑥𝑥𝐸𝐸 and sends 𝑔𝑔𝑥𝑥𝐸𝐸 to Bob instead

2. Bob picks 𝑥𝑥𝐵𝐵 and sends 𝑔𝑔𝑥𝑥𝐵𝐵 to Alice
1. Mallory intercepts 𝑔𝑔𝑥𝑥𝐵𝐵, picks 𝑥𝑥𝐸𝐸′ and sends 𝑔𝑔𝑥𝑥𝐸𝐸𝐸 to Alice instead

3. Eve computes 𝑔𝑔𝑥𝑥𝐸𝐸′𝑥𝑥𝐴𝐴 and 𝑔𝑔𝑥𝑥𝐸𝐸𝑥𝑥𝐵𝐵
1. Alice computes secret key 𝑔𝑔𝑥𝑥𝐸𝐸′𝑥𝑥𝐴𝐴 (shared with Eve not Bob)
2. Bob computes 𝑔𝑔𝑥𝑥𝐸𝐸𝑥𝑥𝐵𝐵(shared with Eve not Alice)

4. Mallory forwards messages between Alice and Bob (tampering with
the messages if desired)

5. Neither Alice nor Bob can detect the attack

32

Man in the Middle Attack (MITM)

Defense: If Alice and Bob already
know 𝑔𝑔𝑥𝑥𝐵𝐵 and 𝑔𝑔𝑥𝑥𝐴𝐴 (respectively)
then MITM attackdoes not work.

Certificate Authorities (CA):
Users/Companies can register &
lookup public keys e.g., Alice asks CA to send Bob’s public key.

Corrupt/Breached CA: does not learn secret keys 𝑥𝑥𝐴𝐴 and 𝑥𝑥𝐵𝐵
Corrupt CA could send Alice (resp. Bob) the wrong key for Bob

33

Discrete Log Experiment DLogA,G(n)

1. Run 𝒢𝒢 1𝑛𝑛 to obtain a cyclic group 𝔾𝔾 of order q (with 𝑞𝑞 = 𝑛𝑛) and
a generator g such that < g >= 𝔾𝔾.

2. Select h ∈ 𝔾𝔾 uniformly at random.
3. Attacker A is given 𝔾𝔾, q, g, h and outputs an integer x.
4. Attacker wins (DLogA,G(n)=1) if and only if gx=h.

We say that the discrete log problem is hard relative to generator 𝒢𝒢 if
∀𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴 ∃𝜇𝜇 (negligible) s. t Pr DLogA,n = 1 ≤ 𝜇𝜇(𝑛𝑛)

34

Collision Resistant Hash Functions (CRHFs)

• Recall: not known how to build CRHFs from OWFs
• Can build collision resistant hash functions from Discrete Logarithm

Assumption
• Let 𝒢𝒢 1𝑛𝑛 output 𝔾𝔾, 𝑞𝑞,𝑔𝑔 where 𝔾𝔾 is a cyclic group of order 𝑞𝑞 and g

is a generator of the group.
• Suppose that discrete log problem is hard relative to generator 𝒢𝒢.

∀𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴 ∃𝜇𝜇 (negligible) s. t Pr DLogA,n = 1 ≤ 𝜇𝜇(𝑛𝑛)

35

Collision Resistant Hash Functions

• Let 𝒢𝒢 1𝑛𝑛 output 𝔾𝔾, 𝑞𝑞,𝑔𝑔 where 𝔾𝔾 is a cyclic group of prime order 𝑞𝑞 and g
is a generator of the group.

Collision Resistant Hash Function (Gen,H):
• 𝐺𝐺𝐺𝐺𝐺𝐺 1𝑛𝑛

1. 𝔾𝔾, 𝑞𝑞,𝑔𝑔 ← 𝒢𝒢 1𝑛𝑛
2. Select random h ← 𝔾𝔾
3. Output public seed s = 𝔾𝔾, 𝑞𝑞,𝑔𝑔,ℎ

• 𝐻𝐻𝑠𝑠 𝑥𝑥1, 𝑥𝑥2 = 𝑔𝑔𝑥𝑥1ℎ𝑥𝑥2 (where, 𝑥𝑥1, 𝑥𝑥2 ∈ ℤ𝑞𝑞)
Claim: (Gen,H) is collision resistant if the discrete log assumption holds for 𝒢𝒢

36

Collision Resistant Hash Functions

• 𝐻𝐻𝑠𝑠 𝑥𝑥1, 𝑥𝑥2 = 𝑔𝑔𝑥𝑥1ℎ𝑥𝑥2 (where, 𝑥𝑥1, 𝑥𝑥2 ∈ ℤ𝑞𝑞)
Claim: (Gen,H) is collision resistant

Proof (sketch): Suppose we find a collision 𝐻𝐻𝑠𝑠 𝑥𝑥1, 𝑥𝑥2 = 𝐻𝐻𝑠𝑠 𝑦𝑦1,𝑦𝑦2
then we have 𝑔𝑔𝑥𝑥1ℎ𝑥𝑥2 = 𝑔𝑔𝑦𝑦1ℎ𝑦𝑦2 which implies

ℎ𝑥𝑥2−𝑦𝑦2 = 𝑔𝑔𝑦𝑦1−𝑥𝑥1
Use extended GCD to find 𝑥𝑥2 − 𝑦𝑦2 −1 mod q then

ℎ = ℎ 𝑥𝑥2−𝑦𝑦2 𝑥𝑥2−𝑦𝑦2 −1 = 𝑔𝑔 𝑦𝑦1−𝑥𝑥1 𝑥𝑥2−𝑦𝑦2 −1

Which means that 𝑦𝑦1 − 𝑥𝑥1 𝑥𝑥2 − 𝑦𝑦2 −1 𝑚𝑚𝑚𝑚𝑚𝑚 𝑞𝑞 is the discrete log of h.

37

Collision Resistant Hash Functions

• 𝐻𝐻𝑠𝑠 𝑥𝑥1, 𝑥𝑥2 = 𝑔𝑔𝑥𝑥1ℎ𝑥𝑥2 (where, 𝑥𝑥1, 𝑥𝑥2 ∈ ℤ𝑞𝑞)
Claim: (Gen,H) is collision resistant

Proof (sketch): Suppose we find a collision 𝐻𝐻𝑠𝑠 𝑥𝑥1, 𝑥𝑥2 = 𝐻𝐻𝑠𝑠 𝑦𝑦1,𝑦𝑦2
then we have 𝑔𝑔𝑥𝑥1ℎ𝑥𝑥2 = 𝑔𝑔𝑦𝑦1ℎ𝑦𝑦2 which implies

ℎ𝑥𝑥2−𝑦𝑦2 = 𝑔𝑔𝑦𝑦1−𝑥𝑥1
Use extended GCD to find 𝑥𝑥2 − 𝑦𝑦2 −1 mod q then

ℎ = ℎ 𝑥𝑥2−𝑦𝑦2 𝑥𝑥2−𝑦𝑦2 −1 = 𝑔𝑔 𝑦𝑦1−𝑥𝑥1 𝑥𝑥2−𝑦𝑦2 −1

Which means that 𝑦𝑦1 − 𝑥𝑥1 𝑥𝑥2 − 𝑦𝑦2 −1 𝑚𝑚𝑚𝑚𝑚𝑚 𝑞𝑞 is the discrete log of h.

38

What if 𝑥𝑥2 = 𝑦𝑦2 so that inverse 𝑥𝑥2 − 𝑦𝑦2 −1 does not exist?
Claim: This cannot happen.
Proof: If 𝑥𝑥2 − 𝑦𝑦2 then ℎ𝑥𝑥2−𝑦𝑦2 = ℎ0 is the identity  𝑔𝑔𝑦𝑦1−𝑥𝑥1 is the
identity  𝑦𝑦1 = 𝑥𝑥1 (𝑥𝑥1, 𝑥𝑥2)=(𝑦𝑦1, 𝑦𝑦2) (Contradiction)

Week 11: Topic 2: Factoring
Algorithms, Discrete Log Attacks

+ NIST Recommendations for
Concrete Security Parameters

39

Pollard’s p-1 Algorithm (Factoring)

• Let 𝑁𝑁 = 𝑝𝑝𝑝𝑝 where (p-1) has only “small” prime factors.
• Pollard’s p-1 algorithm can factor N.

• Remark 1: This happens with very small probability if p is a random n bit
prime.

• Remark 2: One convenient/fast way to generate big primes it to multiply
many small primes, add 1 and test for primality.

• Example: 2 × 3 × 5 × 7 + 1 = 211 is prime

Claim: Suppose we are given an integer B such that (p-1) divides B but
(q-1) does not divide B then we can factor N.

40

Pollard’s p-1 Algorithm (Factoring)

Claim: Suppose we are given an integer B such that (p-1) divides B but (q-1)
does not divide B then we can factor N.
Proof: Suppose B=c(p-1) for some integer c and let

𝑦𝑦 = 𝑥𝑥𝐵𝐵 − 1 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁
Applying the Chinese Remainder Theorem we have

𝑦𝑦 ↔ 𝑥𝑥𝐵𝐵 − 1 mod p, 𝑥𝑥𝐵𝐵 − 1 mod q
= 0, 𝑥𝑥𝐵𝐵 𝑚𝑚𝑚𝑚𝑚𝑚 (𝑞𝑞−1) − 1 mod q

This means that p divides y, but q does not divide y (unless 𝑥𝑥𝐵𝐵 = 1 mod q,
which is unlikely when 𝑥𝑥 is random since 0 ≠ 𝐵𝐵 𝑚𝑚𝑚𝑚𝑚𝑚 (𝑞𝑞 − 1)).

Thus, GCD(y,N) = p

41

Pollard’s p-1 Algorithm (Factoring)

• Let 𝑁𝑁 = 𝑝𝑝𝑝𝑝 where (p-1) has only “small” prime factors.
• Pollard’s p-1 algorithm can factor N.
Claim: Suppose we are given an integer B such that (p-1) divides B but
(q-1) does not divide B then we can factor N.

• Goal: Find B such that (p-1) divides B but (q-1) does not divide B.
• Remark: This is difficult if (p-1) has a large prime factor.

𝐵𝐵 = �
𝑖𝑖=1

𝑘𝑘

𝑝𝑝𝑖𝑖
𝑛𝑛/ log 𝑝𝑝𝑖𝑖

42

Pollard’s p-1 Algorithm (Factoring)

• Goal: Find B such that (p-1) divides B but (q-1) does not divide B.
• Remark: This is difficult if (p-1) has a large prime factor.

𝐵𝐵 = �
𝑖𝑖=1

𝑘𝑘

𝑝𝑝𝑖𝑖
𝑛𝑛/ log 𝑝𝑝𝑖𝑖

Here p1=2,p2=3,…pk are the first k prime numbers.

Fact: If (q-1) has prime factor larger than pk then (q-1) does not divide B.
Fact: If (p-1) does not have prime factor larger than pk then (p-1) does divide
B.

43

Pollard’s p-1 Algorithm (Factoring)

• Option 1: To defeat this attack we can choose strong primes p and q
• A prime p is strong if (p-1) has a large prime factor

• Drawback: It takes more time to generate (provably) strong primes

• Option 2: A random prime is strong with high probability

• Current Consensus: Just pick a random prime

44

Pollard’s Rho Algorithm

• General Purpose Factoring Algorithm
• Doesn’t assume (p-1) has no large prime factor
• Goal: factor N=pq (product of two n-bit primes)

• Running time: 𝑂𝑂 4 𝑁𝑁 pol𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦(𝑁𝑁)
• Contrast: Naïve Algorithm takes time 𝑂𝑂 𝑁𝑁 pol𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦(𝑁𝑁) to factor

• Core idea: find distinct x, x′ ∈ ℤ𝑁𝑁∗ such that 𝑥𝑥 = 𝑥𝑥′mod 𝑝𝑝
• Implies that x-x’ is a multiple of p and, thus, GCD(x-x’,N)=p (whp)

45

Pollard’s Rho Algorithm

• General Purpose Factoring Algorithm
• Doesn’t assume (p-1) has no large prime factor

• Running time: 𝑂𝑂 4 𝑁𝑁 pol𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦(𝑁𝑁)

• Core idea: find distinct x, x′ ∈ ℤ𝑁𝑁∗ such that 𝑥𝑥 = 𝑥𝑥′mod 𝑝𝑝 (but 𝑥𝑥 ≠ 𝑥𝑥′mod 𝑞𝑞)
• Implies that x-x’ is a multiple of p and, thus, GCD(x-x’,N)=p

• Question: If we pick k = O 𝑝𝑝 random 𝑥𝑥(1), … , 𝑥𝑥(𝑘𝑘) ∈ ℤ𝑁𝑁∗ then what is the
probability that we can find distinct 𝑖𝑖 and 𝑗𝑗 such that

𝑥𝑥(𝑖𝑖) = 𝑥𝑥(𝑗𝑗)mod p?

46

Pollard’s Rho Algorithm

• Question: If we pick k = O 𝑝𝑝 random 𝑥𝑥(1), … , 𝑥𝑥(𝑘𝑘) ∈ ℤ𝑁𝑁∗ then what
is the probability that we can find distinct 𝑖𝑖 and 𝑗𝑗 such that 𝑥𝑥(𝑖𝑖) =
𝑥𝑥(𝑗𝑗)mod p?

• Answer: ≥ ⁄1 2

• Proof (sketch): Use the Chinese Remainder Theorem + Birthday
Bound

𝑥𝑥(𝑖𝑖) = 𝑥𝑥(𝑖𝑖) 𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝, 𝑥𝑥(𝑖𝑖) 𝑚𝑚𝑚𝑚𝑚𝑚 𝑞𝑞

Note: We will also have 𝑥𝑥(𝑖𝑖) ≠ 𝑥𝑥 𝑗𝑗 mod q (whp)

47

Pollard’s Rho Algorithm

• Question: If we pick k = O 𝑝𝑝 random 𝑥𝑥(1), … , 𝑥𝑥(𝑘𝑘) ∈ ℤ𝑁𝑁∗ then what
is the probability that we can find distinct 𝑖𝑖 and 𝑗𝑗 such that 𝑥𝑥(𝑖𝑖) =
𝑥𝑥(𝑗𝑗)mod p?

• Answer: ≥ ⁄1 2
• Challenge: We do not know p or q so we cannot sort the 𝑥𝑥(𝑖𝑖)’s using

the Chinese Remainder Theorem Representation

𝑥𝑥(𝑖𝑖) = 𝑥𝑥(𝑖𝑖) 𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝, 𝑥𝑥(𝑖𝑖) 𝑚𝑚𝑚𝑚𝑚𝑚 𝑞𝑞
Problem: How can we identify the pair 𝑖𝑖 and 𝑗𝑗 such that 𝑥𝑥(𝑖𝑖) =
𝑥𝑥(𝑗𝑗)mod p?

48

Pollard’s Rho Algorithm

• Pollard’s Rho Algorithm is similar the low-space version of the birthday
attack

Input: N (product of two n bit primes)
𝑥𝑥(0) ← ℤ𝑁𝑁∗ , x = x′ = 𝑥𝑥(0)

For i=1 to 2𝑛𝑛/2

𝑥𝑥 ← 𝐹𝐹(𝑥𝑥)
𝑥𝑥′ ← 𝐹𝐹 𝐹𝐹 𝑥𝑥𝑥
p = GCD(x-x’,N)
if 1< p < N return p

49

𝐹𝐹 𝑥𝑥(𝑖𝑖−1) = 𝑥𝑥(𝑖𝑖) ↔ 𝑥𝑥(𝑖𝑖)mod p , 𝑥𝑥(𝑖𝑖)mod q

Expected Cycle Length: O 𝑁𝑁 too high!

Pollard’s Rho Algorithm

• Pollard’s Rho Algorithm is similar the low-space version of the birthday
attack

Input: N (product of two n bit primes)
𝑥𝑥(0) ← ℤ𝑁𝑁∗ , x = x′ = 𝑥𝑥(0)

For i=1 to 2𝑛𝑛/2

𝑥𝑥 ← 𝐹𝐹(𝑥𝑥)
𝑥𝑥′ ← 𝐹𝐹 𝐹𝐹 𝑥𝑥𝑥
p = GCD(x-x’,N)
if 1< p < N return p

50

Remark 1: F should have the property that
F x = 𝐹𝐹 𝑥𝑥 𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝 𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝 i.e.,
𝐹𝐹 𝑥𝑥 ↔ 𝐹𝐹 𝑥𝑥 𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝 𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝,𝐹𝐹2 𝑥𝑥 𝑚𝑚𝑚𝑚𝑚𝑚 𝑞𝑞

𝑥𝑥(𝑖𝑖)mod p , 𝑥𝑥(𝑖𝑖)mod q
𝑥𝑥(𝑖𝑖)mod p

Pollard’s Rho Algorithm

• Pollard’s Rho Algorithm is similar the low-space version of the birthday
attack

Input: N (product of two n bit primes)
𝑥𝑥(0) ← ℤ𝑁𝑁∗ , x = x′ = 𝑥𝑥(0)

For i=1 to 2𝑛𝑛/2

𝑥𝑥 ← 𝐹𝐹(𝑥𝑥)
𝑥𝑥′ ← 𝐹𝐹 𝐹𝐹 𝑥𝑥𝑥
p = GCD(x-x’,N)
if 1< p < N return p

51

Remark 1: F should have the property that
F x = 𝐹𝐹 𝑥𝑥 𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝 𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝 i.e.,
𝐹𝐹 𝑥𝑥 ↔ 𝐹𝐹 𝑥𝑥 𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝 𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝,𝐹𝐹 𝑥𝑥 𝑚𝑚𝑚𝑚𝑚𝑚 𝑞𝑞

Remark 2: 𝐹𝐹 𝑥𝑥 = 𝑥𝑥2 + 1 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁 will
work since

𝐹𝐹 𝑥𝑥 = 𝑥𝑥2 + 1 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁
↔ 𝑥𝑥2 + 1 𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝, 𝑥𝑥2 + 1 𝑚𝑚𝑚𝑚𝑚𝑚 𝑞𝑞

↔ 𝐹𝐹 𝑥𝑥 mod 𝑝𝑝 𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝,𝐹𝐹 𝑥𝑥 mod 𝑞𝑞 𝑚𝑚𝑚𝑚𝑚𝑚 𝑞𝑞

Pollard’s Rho Algorithm

• Pollard’s Rho Algorithm is similar the low-space version of the birthday
attack

Input: N (product of two n bit primes)
𝑥𝑥(0) ← ℤ𝑁𝑁∗ , x = x′ = 𝑥𝑥(0)

For i=1 to 2𝑛𝑛/2

𝑥𝑥 ← 𝐹𝐹 𝑥𝑥
𝑥𝑥′ ← 𝐹𝐹 𝐹𝐹 𝑥𝑥𝑥
p = GCD(x-x’,N)
if 1< p < N return p

52

Claim: Let 𝑥𝑥(𝑖𝑖+1) = 𝐹𝐹 𝑥𝑥(𝑖𝑖) and suppose that for
some distinct i, j < 2𝑛𝑛/2 we have 𝑥𝑥(𝑖𝑖) = 𝑥𝑥(𝑗𝑗) mod p
but 𝑥𝑥(𝑖𝑖) ≠ 𝑥𝑥(𝑗𝑗). Then the algorithm will find p.

Expected Cycle Length: O 𝑝𝑝

𝑥𝑥(3) mod p
𝑥𝑥(𝑗𝑗) ≡ 𝑥𝑥(𝑖𝑖) mod p

Pollard’s Rho Algorithm (Summary)

• General Purpose Factoring Algorithm
• Doesn’t assume (p-1) has no large prime factor

• Expected Running Time: 𝑂𝑂 4 𝑁𝑁 pol𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦(𝑁𝑁)
• (Birthday Bound)
• (still exponential in number of bits ~2𝑛𝑛/4)

• Required Space: 𝑂𝑂 log(𝑁𝑁)

53

Quadratic Sieve Algorithm

• Runs in sub-exponential time 2𝑂𝑂 log 𝑁𝑁 log log 𝑁𝑁 = 2𝑂𝑂 𝑛𝑛 log 𝑛𝑛

• Still not polynomial time but 2 𝑛𝑛 log 𝑛𝑛 is sub-exponential and grows much
slower than 2𝑛𝑛/4.

• Core Idea: Find x, y ∈ ℤ𝑁𝑁∗ such that
𝑥𝑥2 = 𝑦𝑦2 mod 𝑁𝑁

and
𝑥𝑥 ≠ ±𝑦𝑦 mod 𝑁𝑁

54

Quadratic Sieve Algorithm

• Core Idea: Find x, y ∈ ℤ𝑁𝑁∗ such that
𝑥𝑥2 = 𝑦𝑦2 mod 𝑁𝑁 (1)

and
𝑥𝑥 ≠ ±𝑦𝑦 mod 𝑁𝑁 2

Claim: gcd(x-y,N)∈ 𝑝𝑝, 𝑞𝑞
N=pq divides 𝑥𝑥2 − 𝑦𝑦2 = 𝑥𝑥 − 𝑦𝑦 𝑥𝑥 + 𝑦𝑦 . (by (1)).
 𝑥𝑥 − 𝑦𝑦 𝑥𝑥 + 𝑦𝑦 ≠ 0 (by (2)).
N does not divide 𝑥𝑥 − 𝑦𝑦 (by (2)).
N does not divide 𝑥𝑥 + 𝑦𝑦 . (by (2)).
p is a factor of exactly one of the terms 𝑥𝑥 − 𝑦𝑦 and 𝑥𝑥 + 𝑦𝑦 .
(q is a factor of the other term)

55

Quadratic Sieve Algorithm
• Core Idea: Find x, y ∈ ℤ𝑁𝑁∗ such that

𝑥𝑥2 = 𝑦𝑦2 mod 𝑁𝑁
and

𝑥𝑥 ≠ ±𝑦𝑦 mod 𝑁𝑁
• Key Question: How to find such an x, y ∈ ℤ𝑁𝑁∗ ?
• Step 1: (Initialize j=0);
For x = 𝑁𝑁 + 1, 𝑁𝑁 + 2, … , 𝑁𝑁 + 𝑖𝑖,…

q ← 𝑁𝑁 + 𝑖𝑖
2
𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁 = 2𝑖𝑖 𝑁𝑁 + 𝑖𝑖2𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁

Check if q is B-smooth (all prime factors of q are in {p1,…,pk} where pk < B).
If q is B smooth then factor q, increment j and define

qj ← 𝑞𝑞 = �
𝑖𝑖=1

𝑘𝑘

𝑝𝑝𝑖𝑖
𝑒𝑒𝑗𝑗,𝑖𝑖 , and xj ← 𝑥𝑥

56

Quadratic Sieve Algorithm

• Core Idea: Find x, y ∈ ℤ𝑁𝑁∗ such that
𝑥𝑥2 = 𝑦𝑦2 mod 𝑁𝑁

and
𝑥𝑥 ≠ ±𝑦𝑦 mod 𝑁𝑁

• Key Question: How to find such an x, y ∈ ℤ𝑁𝑁∗ ?
• Step 2: Once we have ℓ > 𝑘𝑘 equations of the form

qj ← 𝑞𝑞 = �
𝑖𝑖=1

𝑘𝑘

𝑝𝑝𝑖𝑖
𝑒𝑒𝑗𝑗,𝑖𝑖 ,

We can use linear algebra to find subset S such that for each 𝑖𝑖 ≤ 𝑘𝑘 we have

�
𝑗𝑗∈𝑆𝑆

𝑒𝑒𝑗𝑗,𝑖𝑖 = 0 𝑚𝑚𝑚𝑚𝑚𝑚 2.

57

Quadratic Sieve Algorithm

• Key Question: How to find x, y ∈ ℤ𝑁𝑁∗ such that 𝑥𝑥2 = 𝑦𝑦2 mod 𝑁𝑁 and 𝑥𝑥 ≠ ±𝑦𝑦 mod 𝑁𝑁?
• Step 2: Once we have ℓ > 𝑘𝑘 equations of the form

qj ← 𝑞𝑞 = �
𝑖𝑖=1

𝑘𝑘

𝑝𝑝𝑖𝑖
𝑒𝑒𝑗𝑗,𝑖𝑖 ,

We can use linear algebra to find a subset S such that for each i ≤ k we have

�
𝑗𝑗∈𝑆𝑆

𝑒𝑒𝑗𝑗,𝑖𝑖 = 0 𝑚𝑚𝑚𝑚𝑚𝑚 2.

Thus,

�
𝑗𝑗∈𝑆𝑆

qj = �
𝑖𝑖=1

𝑘𝑘

𝑝𝑝𝑖𝑖
∑𝑗𝑗∈𝑆𝑆 𝑒𝑒𝑗𝑗,𝑖𝑖 = �

𝑖𝑖=1

𝑘𝑘

𝑝𝑝𝑖𝑖
1
2 ∑𝑗𝑗∈𝑆𝑆 𝑒𝑒𝑗𝑗,𝑖𝑖

2

= 𝑦𝑦2

58

Quadratic Sieve Algorithm

• Key Question: How to find x, y ∈ ℤ𝑁𝑁∗ such that 𝑥𝑥2 = 𝑦𝑦2 mod 𝑁𝑁 and
𝑥𝑥 ≠ ±𝑦𝑦 mod 𝑁𝑁?

Thus,

�
𝑗𝑗∈𝑆𝑆

qj = �
𝑖𝑖=1

𝑘𝑘

𝑝𝑝𝑖𝑖
∑𝑗𝑗∈𝑆𝑆 𝑒𝑒𝑗𝑗,𝑖𝑖 = �

𝑖𝑖=1

𝑘𝑘

𝑝𝑝𝑖𝑖
1
2 ∑𝑗𝑗∈𝑆𝑆 𝑒𝑒𝑗𝑗,𝑖𝑖

2

= 𝑦𝑦2

But we also have

�
𝑗𝑗∈𝑆𝑆

qj = �
𝑗𝑗∈𝑆𝑆

𝑥𝑥𝑗𝑗2 = �
𝑗𝑗∈𝑆𝑆

𝑥𝑥𝑗𝑗
2

= 𝑥𝑥2 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁

59

Quadratic Sieve Algorithm (Summary)

• Appropriate parameter tuning yields sub-exponential time algorithm
2𝑂𝑂 log 𝑁𝑁 log log 𝑁𝑁 = 2𝑂𝑂 𝑛𝑛 log 𝑛𝑛

• Still not polynomial time but 2 𝑛𝑛 log 𝑛𝑛 grows much slower than 2𝑛𝑛/4.

60

Discrete Log Attacks

• Pohlig-Hellman Algorithm
• Given a cyclic group 𝔾𝔾 of non-prime order q=| 𝔾𝔾 |=rp
• Reduce discrete log problem to discrete problem(s) for subgroup(s) of order p (or smaller).
• Preference for prime order subgroups in cryptography

• Baby-step/Giant-Step Algorithm
• Solve discrete logarithm in time 𝑂𝑂 𝑞𝑞 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑞𝑞)

• Pollard’s Rho Algorithm
• Solve discrete logarithm in time 𝑂𝑂 𝑞𝑞 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑞𝑞)
• Bonus: Constant memory!

• Index Calculus Algorithm
• Similar to quadratic sieve
• Runs in sub-exponential time 2𝑂𝑂 log 𝑞𝑞 log log 𝑞𝑞

• Specific to the group ℤ𝑝𝑝∗ (e.g., attack doesn’t work elliptic-curves)

61

Discrete Log Attacks

• Pohlig-Hellman Algorithm
• Given a cyclic group 𝔾𝔾 of non-prime order q=| 𝔾𝔾 |=rp
• Reduce discrete log problem to discrete problem(s) for subgroup(s) of order p (or smaller).
• Preference for prime order subgroups in cryptography

• Let 𝔾𝔾 = 𝑔𝑔 and h = 𝑔𝑔𝑥𝑥 ∈ 𝔾𝔾 be given. For simplicity assume that r is prime and r < p.
• Observe that 𝑔𝑔𝑟𝑟 generates a subgroup of size p and that hr ∈ 𝑔𝑔𝑟𝑟 .

• Solve discrete log problem in subgroup 𝑔𝑔𝑟𝑟 with input hr.
• Find z such that hrz = 𝑔𝑔𝑟𝑟𝑧𝑧.

• Observe that 𝑔𝑔𝑝𝑝 generates a subgroup of size r and that hp ∈ 𝑔𝑔𝑝𝑝 .
• Solve discrete log problem in subgroup 𝑔𝑔𝑝𝑝 with input hp.
• Find y such that hyp = 𝑔𝑔𝑦𝑦𝑦𝑦.

• Chinese Remainder Theorem h = 𝑔𝑔𝑥𝑥 where x ↔ 𝑧𝑧 mod 𝑝𝑝 , [𝑦𝑦 mod 𝑟𝑟]

62

Baby-step/Giant-Step Algorithm

• Input: 𝔾𝔾 = 𝑔𝑔 of order q, generator g and h = 𝑔𝑔𝑥𝑥 ∈ 𝔾𝔾
• Set 𝑡𝑡 = 𝑞𝑞
For i =0 to 𝑞𝑞

𝑡𝑡
𝑔𝑔𝑖𝑖 ← 𝑔𝑔𝑖𝑖𝑖𝑖

Sort the pairs (i,gi) by their second component
For i =0 to 𝑡𝑡

ℎ𝑖𝑖 ← ℎ𝑔𝑔𝑖𝑖

if ℎ𝑖𝑖 = 𝑔𝑔𝑘𝑘 ∈ 𝑔𝑔0, … ,𝑔𝑔𝑡𝑡 then
return [kt-i mod q]

63

ℎ𝑖𝑖 = ℎ𝑔𝑔𝑖𝑖 = 𝑔𝑔𝑘𝑘𝑘𝑘

→ ℎ = 𝑔𝑔𝑘𝑘𝑘𝑘−𝑖𝑖

Discrete Log Attacks

• Baby-step/Giant-Step Algorithm
• Solve discrete logarithm in time 𝑂𝑂 𝑞𝑞 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑞𝑞)
• Requires memory 𝑂𝑂 𝑞𝑞 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑞𝑞)

• Pollard’s Rho Algorithm
• Solve discrete logarithm in time 𝑂𝑂 𝑞𝑞 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑞𝑞)
• Bonus: Constant memory!

• Key Idea: Low-Space Birthday Attack (*) using our collision resistant hash
function

𝐻𝐻𝑔𝑔,ℎ 𝑥𝑥1, 𝑥𝑥2 = 𝑔𝑔𝑥𝑥1ℎ𝑥𝑥2
𝐻𝐻𝑔𝑔,ℎ 𝑦𝑦1,𝑦𝑦2 = 𝐻𝐻𝑔𝑔,ℎ 𝑥𝑥1, 𝑥𝑥2 → ℎ𝑦𝑦2−𝑥𝑥2 = 𝑔𝑔𝑥𝑥1−𝑦𝑦1

→ ℎ = 𝑔𝑔 𝑥𝑥1−𝑦𝑦1 𝑦𝑦2−𝑥𝑥2 −1

(*) A few small technical details to address

64

Discrete Log Attacks

• Baby-step/Giant-Step Algorithm
• Solve discrete logarithm in time 𝑂𝑂 𝑞𝑞 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑞𝑞)
• Requires memory 𝑂𝑂 𝑞𝑞 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑞𝑞)

• Pollard’s Rho Algorithm
• Solve discrete logarithm in time 𝑂𝑂 𝑞𝑞 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑞𝑞)
• Bonus: Constant memory!

• Key Idea: Low-Space Birthday Attack (*)
𝐻𝐻𝑔𝑔,ℎ 𝑥𝑥1, 𝑥𝑥2 = 𝑔𝑔𝑥𝑥1ℎ𝑥𝑥2

𝐻𝐻𝑔𝑔,ℎ 𝑦𝑦1,𝑦𝑦2 = 𝐻𝐻𝑔𝑔,ℎ 𝑥𝑥1, 𝑥𝑥2

→ ℎ𝑦𝑦2−𝑥𝑥2 = 𝑔𝑔𝑥𝑥1−𝑦𝑦1
→ ℎ = 𝑔𝑔 𝑥𝑥1−𝑦𝑦1 𝑦𝑦2−𝑥𝑥2 −1

(*) A few small technical details to address

65

Remark: We used discrete-log problem to
construct collision resistant hash functions.

Security Reduction showed that attack on
collision resistant hash function yields attack

on discrete log.

Generic attack on collision resistant hash
functions (e.g., low space birthday attack)

yields generic attack on discrete log.

Discrete Log Attacks

• Index Calculus Algorithm
• Similar to quadratic sieve
• Runs in sub-exponential time 2𝑂𝑂 log 𝑞𝑞 log log 𝑞𝑞

• Specific to the group ℤ𝑝𝑝∗ (e.g., attack doesn’t work elliptic-curves)

• As before let {p1,…,pk} be set of prime numbers < B.
• Step 1.A: Find ℓ > 𝑘𝑘 distinct values 𝑥𝑥1, … , 𝑥𝑥𝑘𝑘 such that 𝑔𝑔𝑗𝑗 = 𝑔𝑔𝑥𝑥𝑗𝑗 𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝 is

B-smooth for each j. That is

𝑔𝑔𝑗𝑗 = �
𝑖𝑖=1

𝑘𝑘

𝑝𝑝𝑖𝑖
𝑒𝑒𝑖𝑖,𝑗𝑗 .

66

Discrete Log Attacks

• As before let {p1,…,pk} be set of prime numbers < B.
• Step 1.A: Find ℓ > 𝑘𝑘 distinct values 𝑥𝑥1, … , 𝑥𝑥𝑘𝑘 such that 𝑔𝑔𝑗𝑗 = 𝑔𝑔𝑥𝑥𝑗𝑗 𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝 is

B-smooth for each j. That is

𝑔𝑔𝑗𝑗 = �
𝑖𝑖=1

𝑘𝑘

𝑝𝑝𝑖𝑖
𝑒𝑒𝑖𝑖,𝑗𝑗 .

• Step 1.B: Use linear algebra to solve the equations

𝑥𝑥𝑗𝑗 = �
𝑖𝑖=1

𝑘𝑘

𝐥𝐥𝐥𝐥𝐥𝐥𝐠𝐠 𝐩𝐩𝐢𝐢 × 𝑒𝑒𝑖𝑖,𝑗𝑗 mod (𝑝𝑝 − 1).

(Note: the 𝐥𝐥𝐥𝐥𝐥𝐥𝐠𝐠𝐩𝐩𝐢𝐢’s are the unknowns)

67

Discrete Log

• As before let {p1,…,pk} be set of prime numbers < B.
• Step 1 (precomputation): Obtain y1,…,yk such that pi = 𝑔𝑔𝑦𝑦𝑖𝑖 𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝.
• Step 2: Given discrete log challenge h=gx mod p.

• Find y such that 𝑔𝑔𝑦𝑦h mod p is B-smooth

𝑔𝑔𝑦𝑦h mod p = �
𝑖𝑖=1

𝑘𝑘

𝑝𝑝𝑖𝑖
𝑒𝑒𝑖𝑖

= �
𝑖𝑖=1

𝑘𝑘

𝑔𝑔𝑦𝑦𝑖𝑖 𝑒𝑒𝑖𝑖 = 𝑔𝑔∑𝑖𝑖 𝑒𝑒𝑖𝑖𝑦𝑦𝑖𝑖

68

Discrete Log

• As before let {p1,…,pk} be set of prime numbers < B.
• Step 1 (precomputation): Obtain y1,…,yk such that pi = 𝑔𝑔𝑦𝑦𝑖𝑖 𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝.
• Step 2: Given discrete log challenge h=gx mod p.

• Find z such that 𝑔𝑔𝑧𝑧h mod p is B-smooth
𝑔𝑔𝑧𝑧h mod p = 𝑔𝑔∑𝑖𝑖 𝑒𝑒𝑖𝑖𝑦𝑦𝑖𝑖 → ℎ = 𝑔𝑔∑𝑖𝑖 𝑒𝑒𝑖𝑖𝑦𝑦𝑖𝑖−𝑧𝑧

→ 𝑥𝑥 = �
𝑖𝑖

𝑒𝑒𝑖𝑖𝑦𝑦𝑖𝑖 − 𝑧𝑧

• Remark: Precomputation costs can be amortized over many discrete
log instances

• In practice, the same group 𝔾𝔾 = 𝑔𝑔 and generator g are used repeatedly.

69Reference: https://www.weakdh.org/

https://www.weakdh.org/

NIST Guidelines (Concrete Security)
Best known attack against 1024 bit RSA takes time (approximately) 280

70

NIST Guidelines (Concrete Security)
Diffie-Hellman uses subgroup of ℤ𝑝𝑝∗ size q

71

q=224 bits

q=256 bits

q=384 bits

q=512 bits

72

	Cryptography�CS 555
	Recap CCA-Security 𝑃𝑟𝑖𝑣𝐾 𝐴,Π 𝑐𝑐𝑎 𝑛
	CCA-Security (PubK A,Π cca n)
	Encrypting Longer Messages
	Encrypting Longer Messages
	Encrypting Longer Messages
	Achieving CPA and CCA-Security
	Key Encapsulation Mechanism (KEM)
	KEM CCA-Security (KEM A,Π cca n)
	CCA-Secure Encryption from CCA-Secure KEM
	CCA-Secure Encryption from CCA-Secure KEM
	CCA-Secure Encryption from CCA-Secure KEM
	CCA-Secure Encryption from CCA-Secure KEM
	Recap RSA-Assumption
	CCA-Secure KEM in the Random Oracle Model
	Using a CCA-Secure KEM
	Using a CCA-Secure KEM
	RSA-OAEP �(Optimal Asymmetric Encryption Padding)
	RSA-OAEP �(Optimal Asymmetric Encryption Padding)
	PKCS #1 v2.0
	PKCS #1 v2.0 (Bad Implementation)
	PKCS #1 v2.0 (Attack)
	Week 11: Topic 1: Discrete Logarithm Applications
	Diffie-Hellman Key Exchange
	Key-Exchange Experiment 𝐾𝐸 𝐴,Π 𝑒𝑎𝑣 𝑛 :
	Diffie-Hellman Key-Exchange is Secure
	Diffie-Hellman Assumptions
	Diffie-Hellman Key Exchange
	Diffie-Hellman Key-Exchange is Secure
	Diffie-Hellman Key Exchange
	Man in the Middle Attack (MITM)
	Man in the Middle Attack (MITM)
	Man in the Middle Attack (MITM)
	Discrete Log Experiment DLogA,G(n)
	Collision Resistant Hash Functions (CRHFs)
	Collision Resistant Hash Functions
	Collision Resistant Hash Functions
	Collision Resistant Hash Functions
	Week 11: Topic 2: Factoring Algorithms, Discrete Log Attacks + NIST Recommendations for Concrete Security Parameters�
	Pollard’s p-1 Algorithm (Factoring)
	Pollard’s p-1 Algorithm (Factoring)
	Pollard’s p-1 Algorithm (Factoring)
	Pollard’s p-1 Algorithm (Factoring)
	Pollard’s p-1 Algorithm (Factoring)
	Pollard’s Rho Algorithm
	Pollard’s Rho Algorithm
	Pollard’s Rho Algorithm
	Pollard’s Rho Algorithm
	Pollard’s Rho Algorithm
	Pollard’s Rho Algorithm
	Pollard’s Rho Algorithm
	Pollard’s Rho Algorithm
	Pollard’s Rho Algorithm (Summary)
	Quadratic Sieve Algorithm
	Quadratic Sieve Algorithm
	Quadratic Sieve Algorithm
	Quadratic Sieve Algorithm
	Quadratic Sieve Algorithm
	Quadratic Sieve Algorithm
	Quadratic Sieve Algorithm (Summary)
	Discrete Log Attacks
	Discrete Log Attacks
	Baby-step/Giant-Step Algorithm
	Discrete Log Attacks
	Discrete Log Attacks
	Discrete Log Attacks
	Discrete Log Attacks
	Discrete Log
	Discrete Log
	NIST Guidelines (Concrete Security)
	NIST Guidelines (Concrete Security)
	Slide Number 72

