
Cryptography
CS 555

Week 10:
• RSA
• Attacks on Plain RSA
• Discrete Log/DDH
Readings: Katz and Lindell Chapter 8.2-8.3,11.5.1

1Spring 2021

Recap

• Polynomial time algorithms (in bit lengths 𝒂𝒂 , 𝒃𝒃 and 𝐍𝐍) to do
important computations on integers

• GCD(a,b)
• Find multiplicative inverse a-1 of a such that 1=[aa-1 mod N] (if it exists)
• PowerMod: [ab mod N]
• Draw uniform sample from ℤ

𝑁𝑁

∗ = 𝑥𝑥 ∈ ℤ𝑁𝑁 gcd 𝑁𝑁, 𝑥𝑥 = 1

• Fact: 𝑔𝑔𝑥𝑥mod N = 𝑔𝑔[𝑥𝑥 𝑚𝑚𝑚𝑚𝑚𝑚 𝝓𝝓 𝑵𝑵]mod N where 𝝓𝝓 𝑵𝑵 = ℤ
𝑁𝑁
∗

• Proof: Group Theory

• Chinese Remainder Theorem

2

CS 555: Week 10: Topic 1
Finding Prime Numbers, RSA

3

RSA Key-Generation

KeyGeneration(1n)
Step 1: Pick two random n-bit primes p and q
Step 2: Let N=pq, 𝜙𝜙 𝑁𝑁 = (𝑝𝑝 − 1)(𝑞𝑞 − 1)
Step 3: …

Question: How do we accomplish step one?

5

Bertrand’s Postulate

Theorem 8.32. For any n > 1 the fraction of n-bit integers that are prime is at least ⁄1 3𝑛𝑛.

GenerateRandomPrime(1n)
For i=1 to 3n2:

p’ {0,1}n-1

p 1‖𝑝𝑝𝑝
if isPrime(p) then

return p
return fail

6

Can we do this in
polynomial time?

Bertrand’s Postulate

Theorem 8.32. For any n > 1 the fraction of n-bit integers that are prime is at least ⁄1 3𝑛𝑛.

GenerateRandomPrime(1n)
For i=1 to 3n2:

p’ {0,1}n-1

p 1‖𝑝𝑝𝑝
if isPrime(p) then

return p
return fail

7

Assume for now that we can run isPrime(p). What are the
odds that the algorithm fails?

On each iteration the probability that p is not a prime is
1 − 1

3𝑛𝑛

We fail if we pick a non-prime in all 3n2 iterations. The
probability of failure is at most

1 −
1
3𝑛𝑛

3𝑛𝑛2

= 1 −
1
3𝑛𝑛

3𝑛𝑛
𝑛𝑛

≤ 𝑒𝑒−𝑛𝑛

isPrime(p): Miller-Rabin Test

• We can check for primality of p in polynomial time in 𝑝𝑝 .

Theory: Deterministic algorithm to test for primality.
• See breakthrough paper “Primes is in P”
• https://www.cse.iitk.ac.in/users/manindra/algebra/primality_v6.pdf

Practice: Miller-Rabin Test (randomized algorithm)
• Guarantee 1: If p is prime then the test outputs YES
• Guarantee 2: If p is not prime then the test outputs NO (except with

negligible probability).

8

https://www.cse.iitk.ac.in/users/manindra/algebra/primality_v6.pdf

The “Almost” Miller-Rabin Test

Input: Integer N and parameter 1t

Output: “prime” or “composite”
for i=1 to t:

a  {1,…,N-1}
if 𝑎𝑎𝑁𝑁−1 ≠ 1 mod N then return “composite”

Return “prime”

Claim: If N is prime then algorithm always outputs “prime”
Proof: For any a ∈ {1,…,N−1} we have 𝑎𝑎𝑁𝑁−1 = 𝑎𝑎𝜙𝜙 𝑁𝑁 = 1 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁

9

𝜙𝜙 𝑁𝑁 = 𝑁𝑁 − 1 for primes N

The “Almost” Miller-Rabin Test

Input: Integer N and parameter 1t

Output: “prime” or “composite”
for i=1 to t:

a  {1,…,N-1} //random
if 𝑎𝑎𝑁𝑁−1 ≠ 1 mod N then return “composite”

Return “prime”

Fact: If N is composite and not a Carmichael number then the algorithm
outputs “composite” with probability

1 − 2−𝑡𝑡

10

Need a bit of extra work to
handle Carmichael

numbers (see textbook).

Miller-Rabin Primality Test

Input: Integer N and parameter 1t

Output: “prime” or “composite”
If Even(N) or PerfectPower(N) return “composite”
Else find 𝑢𝑢 (odd) and 𝑟𝑟 ≥ 1 s.t. N − 1 = 2𝑟𝑟𝑢𝑢
for j=1 to t:

pick 𝑎𝑎 in [2,N-2] randomly
if 𝑎𝑎𝑢𝑢 ≠ ±1 mod N and 𝑎𝑎2𝑖𝑖𝑢𝑢 ≠ −1 mod N for all 1 ≤ 𝑖𝑖 ≤ 𝑟𝑟 − 1

return “composite”
Return “prime”

11

Miller-Rabin Primality Test

Input: Integer N and parameter 1t

Output: “prime” or “composite”
If Even(N) or PerfectPower(N) return “composite”
Else find 𝑢𝑢 (odd) and 𝑟𝑟 ≥ 1 s.t. N − 1 = 2𝑟𝑟𝑢𝑢
for j=1 to t:

pick 𝑎𝑎 in [2,N-2] randomly
if 𝑎𝑎𝑢𝑢 ≠ ±1 mod N and 𝑎𝑎2𝑖𝑖𝑢𝑢 ≠ −1 mod N for all 1 ≤ 𝑖𝑖 ≤ 𝑟𝑟 − 1

return “composite”
Return “prime”

12

Lemma: If p is prime and
𝑥𝑥2 = 1 mod p then

𝑥𝑥 = ±1 mod p

Miller-Rabin Primality Test

Input: Integer N and parameter 1t

Output: “prime” or “composite”
If Even(N) or PerfectPower(N) return “composite”
Else find 𝑢𝑢 (odd) and 𝑟𝑟 ≥ 1 s.t. N − 1 = 2𝑟𝑟𝑢𝑢
for j=1 to t:

pick 𝑎𝑎 in [2,N-2] randomly
if 𝑎𝑎𝑢𝑢 ≠ ±1 mod N and 𝑎𝑎2𝑖𝑖𝑢𝑢 ≠ −1 mod N for all 1 ≤ 𝑖𝑖 ≤ 𝑟𝑟 − 1

return “composite”
Return “prime”

13

If N is prime then:

𝑎𝑎2𝑟𝑟−1𝑢𝑢
𝟐𝟐

= 𝑎𝑎𝑁𝑁−1 mod N
= 1 mod N

𝑎𝑎2𝑖𝑖𝑢𝑢 − 𝟏𝟏 = 𝑎𝑎2𝑖𝑖−1𝑢𝑢 − 𝟏𝟏 𝑎𝑎2𝑖𝑖−1𝑢𝑢 + 𝟏𝟏

Miller-Rabin Primality Test

Input: Integer N and parameter 1t

Output: “prime” or “composite”
If Even(N) or PerfectPower(N) return “composite”
Else find 𝑢𝑢 (odd) and 𝑟𝑟 ≥ 1 s.t. N − 1 = 2𝑟𝑟𝑢𝑢
for j=1 to t:

pick 𝑎𝑎 in [2,N-2] randomly
if 𝑎𝑎𝑢𝑢 ≠ ±1 mod N and 𝑎𝑎2𝑖𝑖𝑢𝑢 ≠ −1 mod N for all 1 ≤ 𝑖𝑖 ≤ 𝑟𝑟 − 1

return “composite”
Return “prime”

14

If N is prime we won’t return composite
𝟎𝟎 = 𝑎𝑎2𝑟𝑟𝑢𝑢 − 𝟏𝟏 = 𝑎𝑎2𝑟𝑟−1𝑢𝑢 − 𝟏𝟏 𝑎𝑎2𝑟𝑟−1𝑢𝑢 + 𝟏𝟏

= ⋯ = 𝑎𝑎2𝑟𝑟−2𝑢𝑢 − 𝟏𝟏 𝑎𝑎2𝑟𝑟−2𝑢𝑢 + 𝟏𝟏 𝑎𝑎2𝑟𝑟−1𝑢𝑢 + 𝟏𝟏

𝑎𝑎2𝑖𝑖𝑢𝑢 − 𝟏𝟏 = 𝑎𝑎2𝑖𝑖−1𝑢𝑢 − 𝟏𝟏 𝑎𝑎2𝑖𝑖−1𝑢𝑢 + 𝟏𝟏

Miller-Rabin Primality Test

Input: Integer N and parameter 1t

Output: “prime” or “composite”
If Even(N) or PerfectPower(N) return “composite”
Else find 𝑢𝑢 (odd) and 𝑟𝑟 ≥ 1 s.t. N − 1 = 2𝑟𝑟𝑢𝑢
for j=1 to t:

pick 𝑎𝑎 in [2,N-2] randomly
if 𝑎𝑎𝑢𝑢 ≠ ±1 mod N and 𝑎𝑎2𝑖𝑖𝑢𝑢 ≠ −1 mod N for all 1 ≤ 𝑖𝑖 ≤ 𝑟𝑟 − 1

return “composite”
Return “prime”

15

𝑎𝑎2𝑖𝑖𝑢𝑢 − 𝟏𝟏 = 𝑎𝑎2𝑖𝑖−1𝑢𝑢 − 𝟏𝟏 𝑎𝑎2𝑖𝑖−1𝑢𝑢 + 𝟏𝟏

If N is prime we won’t return composite

𝟎𝟎 = 𝑎𝑎2𝑟𝑟𝑢𝑢 − 𝟏𝟏 = ⋯ = 𝑎𝑎𝑢𝑢 − 𝟏𝟏 �
𝒊𝒊=𝟎𝟎

𝒓𝒓−𝟏𝟏

𝑎𝑎2𝑖𝑖𝑢𝑢 + 𝟏𝟏

Miller-Rabin Primality Test

Input: Integer N and parameter 1t

Output: “prime” or “composite”
If Even(N) or PerfectPower(N) return “composite”
Else find 𝑢𝑢 (odd) and 𝑟𝑟 ≥ 1 s.t. N − 1 = 2𝑟𝑟𝑢𝑢
for j=1 to t:

pick 𝑎𝑎 in [2,N-2] randomly
if 𝑎𝑎𝑢𝑢 ≠ ±1 mod N and 𝑎𝑎2𝑖𝑖𝑢𝑢 ≠ −1 mod N for all 1 ≤ 𝑖𝑖 ≤ 𝑟𝑟 − 1

return “composite”
Return “prime”

16

𝑎𝑎2𝑖𝑖𝑢𝑢 − 𝟏𝟏 = 𝑎𝑎2𝑖𝑖−1𝑢𝑢 − 𝟏𝟏 𝑎𝑎2𝑖𝑖−1𝑢𝑢 + 𝟏𝟏

If N is prime we won’t return composite

𝟎𝟎 = 𝑎𝑎2𝑟𝑟𝑢𝑢 − 𝟏𝟏 = ⋯ = 𝑎𝑎𝑢𝑢 − 𝟏𝟏 �
𝒊𝒊=𝟎𝟎

𝒓𝒓−𝟏𝟏

𝑎𝑎2𝑖𝑖𝑢𝑢 + 𝟏𝟏

One of these factors must be 0 (mod N)

Miller-Rabin Primality Test

Input: Integer N and parameter 1t

Output: “prime” or “composite”
If Even(N) or PerfectPower(N) return “composite”
Else find 𝑢𝑢 (odd) and 𝑟𝑟 ≥ 1 s.t. N − 1 = 2𝑟𝑟𝑢𝑢
for j=1 to t:

if 𝑎𝑎𝑢𝑢 ≠ ±1 mod N and 𝑎𝑎2𝑖𝑖𝑢𝑢 ≠ −1 mod N for all 1 ≤ 𝑖𝑖 ≤ 𝑟𝑟 − 1
return “composite”

Return “prime”

18

Claim: If N is composite then at most ¼
choices of random value a in [2,n-1] will
pass the test

Miller-Rabin Primality Test

Input: Integer N and parameter 1t

Output: “prime” or “composite”
If Even(N) or PerfectPower(N) return “composite”
Else find 𝑢𝑢 (odd) and 𝑟𝑟 ≥ 1 s.t. N − 1 = 2𝑟𝑟𝑢𝑢
for j=1 to t:

if 𝑎𝑎𝑢𝑢 ≠ ±1 mod N and 𝑎𝑎2𝑖𝑖𝑢𝑢 ≠ −1 mod N for all 1 ≤ 𝑖𝑖 ≤ 𝑟𝑟 − 1
return “composite”

Return “prime”

19

Claim: If N is composite then we return
prime with probability at most 𝟒𝟒−𝐭𝐭
Proof: (See textbook )

Back to RSA Key-Generation

KeyGeneration(1n)
Step 1: Pick two random n-bit primes p and q
Step 2: Let N=pq, 𝜙𝜙 𝑁𝑁 = (𝑝𝑝 − 1)(𝑞𝑞 − 1)
Step 3: Pick e > 1 such that gcd(e, 𝜙𝜙 𝑁𝑁)=1
Step 4: Set d=[e-1 mod 𝜙𝜙 𝑁𝑁] (secret key)
Return: N, e, d

• How do we find d?
• Answer: Use extended gcd algorithm to find e-1mod 𝜙𝜙 𝑁𝑁 .

20

Back to RSA Key-Generation

KeyGeneration(1n)
Step 1: Pick two random n-bit primes p and q

Step 2: Let N=pq, 𝜙𝜙 𝑁𝑁 = (𝑝𝑝 − 1)(𝑞𝑞 − 1)
Step 3: Pick e > 1 such that gcd(e, 𝜙𝜙 𝑁𝑁)=1
Step 4: Set d=[e-1 mod 𝜙𝜙 𝑁𝑁] (secret key)
Return: N, e, d

• What is the probability that e-1mod 𝜙𝜙 𝑁𝑁 exists when we pick e randomly?
• Hint: 𝜙𝜙 𝜙𝜙 𝑁𝑁 choices of e in ℤ𝜙𝜙 𝑁𝑁 have a multiplicative inverse mod 𝜙𝜙 𝑁𝑁 .

21

Be Careful Where You Get Your “Random Bits!”

• RSA Keys Generated with weak PRG
• Implementation Flaw
• Unfortunately Commonplace

• Resulting Keys are Vulnerable
• Sophisticated Attack
• Coppersmith’s Method

22
The Return of Coppersmith's Attack: Practical Factorization of Widely Used RSA Moduli (CCS 2017)

(Plain) RSA Encryption

• Public Key: PK=(N,e)
• Message m ∈ ℤ

N EncPK(m) = 𝑚𝑚𝑒𝑒 mod N

• Remark: Encryption is efficient if we use the power mod algorithm.

23

(Plain) RSA Decryption

• Secret Key: SK=(N,d)
• Ciphertext c ∈ ℤ

N DecSK(c) = 𝑐𝑐𝑑𝑑 mod N

• Remark 1: Decryption is efficient if we use the power mod algorithm.
• Remark 2: Suppose that m ∈ ℤ

N

∗ and let c=EncPK(m) = 𝑚𝑚𝑒𝑒 mod N

DecSK(c) = 𝑚𝑚𝑒𝑒 𝑑𝑑 mod N = 𝑚𝑚𝑒𝑒𝑒𝑒 mod N
= 𝑚𝑚[𝑒𝑒𝑒𝑒 𝑚𝑚𝑚𝑚𝑚𝑚 𝝓𝝓 𝑵𝑵] mod N

= 𝑚𝑚1 mod N = 𝑚𝑚

24

Chinese Remainder Theorem

Theorem: Let N = pq (where gcd(p,q)=1) be given and let 𝑓𝑓:ℤ
N
→ ℤ𝑝𝑝 ×

ℤ𝑞𝑞 be defined as follows
𝑓𝑓 𝑥𝑥 = [𝑥𝑥 𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝], [𝑥𝑥 𝑚𝑚𝑚𝑚𝑚𝑚 𝑞𝑞]

then
• f is a bijective mapping (invertible)
• f and its inverse𝑓𝑓−1:ℤ𝑝𝑝 × ℤ𝑞𝑞 → ℤ

N
can be computed efficiently

• 𝑓𝑓 𝑥𝑥 + 𝑦𝑦 = 𝑓𝑓 𝑥𝑥 + 𝑓𝑓(𝑦𝑦)
• The restriction of f to ℤ

𝑁𝑁
∗ yields a bijective mapping to ℤ

𝑝𝑝
∗ × ℤ

𝑞𝑞
∗

• For inputs 𝑥𝑥, 𝑦𝑦 ∈ ℤ
𝑁𝑁
∗ we have 𝑓𝑓 𝑥𝑥 𝑓𝑓 𝑦𝑦 = 𝑓𝑓 𝑥𝑥𝑥𝑥

25

RSA Decryption

• Secret Key: SK=(N,d)
• Ciphertext c ∈ ℤ

N DecSK(c) = 𝑐𝑐𝑑𝑑 mod N

• Remark 1: Decryption is efficient if we use the power mod algorithm.
• Remark 2: Suppose that m ∈ ℤ

N

∗ and let c=EncPK(m) = 𝑚𝑚𝑒𝑒 mod N then
DecSK(c) = 𝑚𝑚

• Remark 3: Even if m ∈ ℤ
N

\ ℤ
N

∗ and let c = EncPK(m) = 𝑚𝑚𝑒𝑒 mod N then
DecSK(c) = 𝑚𝑚

• Use Chinese Remainder Theorem to show this
𝑒𝑒𝑒𝑒 = 1 + 𝑘𝑘 𝑝𝑝 − 1 𝑞𝑞 − 1

→ f 𝑐𝑐𝑑𝑑 = 𝑚𝑚𝑒𝑒𝑒𝑒 mod p , 𝑚𝑚𝑒𝑒𝑒𝑒 mod q = 𝑚𝑚1 mod p , 𝑚𝑚1 mod q
→ 𝑓𝑓−1 f 𝑐𝑐𝑑𝑑 = 𝑓𝑓−1 𝑚𝑚1 mod p , 𝑚𝑚1 mod q = 𝑚𝑚

26

Plain RSA (Summary)

• Public Key (pk): N = pq, e such that GCD e,𝜙𝜙 𝑁𝑁 = 1
• 𝜙𝜙 𝑁𝑁 = 𝑝𝑝 − 1 𝑞𝑞 − 1 for distinct primes p and q

• Secret Key (sk): N, d such that ed=1 mod 𝜙𝜙 𝑁𝑁
• Encrypt(pk=(N,e),m) = 𝑚𝑚𝒆𝒆 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁
• Decrypt(sk=(N,d),c) = 𝑐𝑐𝒅𝒅 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁

• Decryption Works because
𝑐𝑐𝑑𝑑mod N = 𝑚𝑚𝑒𝑒𝑒𝑒mod N = 𝑚𝑚[𝑒𝑒𝑒𝑒 𝑚𝑚𝑚𝑚𝑚𝑚 𝝓𝝓 𝑵𝑵]mod N = 𝑚𝑚 mod N

27

Factoring Assumption

Let GenModulus(1n) be a randomized algorithm that outputs
(N=pq,p,q) where p and q are n-bit primes (except with negligible
probability negl(n)).

Experiment FACTORA,n

1. (N=pq,p,q)  GenModulus(1n)
2. Attacker A is given N as input
3. Attacker A outputs p’ > 1 and q’ > 1
4. Attacker A wins if N=p’q’.

28

Factoring Assumption

Experiment FACTORA,n

1. (N=pq,p,q)  GenModulus(1n)
2. Attacker A is given N as input
3. Attacker A outputs p’ > 1 and q’ > 1
4. Attacker A wins (FACTORA,n = 1) if and only if N=p’q’.

∀𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴 ∃𝜇𝜇 (negligible) s. t Pr FACTORA,n = 1 ≤ 𝜇𝜇(𝑛𝑛)

29

• Necessary for security of RSA.
• Not known to be sufficient.

RSA-Inversion Assumption

RSA-Experiment: RSA-INVA,n

1. Run KeyGeneration(1n) to obtain (N,e,d)
2. Pick uniform y ∈ ℤ

N
∗

3. Attacker A is given N, e, y and outputs x ∈ ℤ
N
∗

4. Attacker wins (RSA-INVA,n=1) if 𝑥𝑥𝑒𝑒 = y mod N

∀𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴 ∃𝜇𝜇 (negligible) s. t Pr RSA−INVA,n = 1 ≤ 𝜇𝜇(𝑛𝑛)

30

RSA-Assumption

RSA-Experiment: RSA-INVA,n

1. Run KeyGeneration(1n) to obtain (N,e,d)
2. Pick uniform y ∈ ℤ

N
∗

3. Attacker A is given N, e, y and outputs x ∈ ℤ
N
∗

4. Attacker wins (RSA-INVA,n=1) if 𝑥𝑥𝑒𝑒 = y mod N

∀𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴 ∃𝜇𝜇 (negligible) s. t Pr RSA−INVA,n = 1 ≤ 𝜇𝜇(𝑛𝑛)

31

• Plain RSA Encryption behaves like a one-way function
• Attacker cannot invert encryption of random message

Discussion of RSA-Assumption

• Plain RSA Encryption behaves like a one-way-function

• Decryption key is a “trapdoor” which allows us to invert the OWF

• RSA-Assumption  OWFs exist

32

Recap

• Plain RSA
• Public Key (pk): N = pq, e such that GCD e,𝜙𝜙 𝑁𝑁 = 1

• 𝜙𝜙 𝑁𝑁 = 𝑝𝑝 − 1 𝑞𝑞 − 1 for distinct primes p and q
• Secret Key (sk): N, d such that ed=1 mod 𝜙𝜙 𝑁𝑁
• Encrypt(pk=(N,e),m) = 𝑚𝑚𝒆𝒆 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁
• Decrypt(sk=(N,d),c) = 𝑐𝑐𝒅𝒅 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁

• Decryption Works because
𝑐𝑐𝑑𝑑mod N = 𝑚𝑚𝑒𝑒𝑒𝑒mod N = 𝑚𝑚[𝑒𝑒𝑒𝑒 𝑚𝑚𝑚𝑚𝑚𝑚 𝝓𝝓 𝑵𝑵]mod N = 𝑚𝑚 mod N

33

Mathematica Demo

https://www.cs.purdue.edu/homes/jblocki/courses/555_Spring17/slid
es/Lecture24Demo.nb

http://develop.wolframcloud.com/app/

Note: Online version of mathematica available at
https://sandbox.open.wolframcloud.com (reduced functionality, but
can be used to solve homework bonus problems)

34

https://www.cs.purdue.edu/homes/jblocki/courses/555_Spring17/slides/Lecture24Demo.nb
http://develop.wolframcloud.com/app/
https://sandbox.open.wolframcloud.com/

(Toy) RSA Implementation in Mathematica

(* Random Seed 123456 is not secure, but it allows us to repeat the experiment *)
SeedRandom[123456]

(* Step 1: Generate primes for an RSA key *)
p = RandomPrime[{10^1000, 10^1050}];
q = RandomPrime[{10^1000, 10^1050}];
NN = p q; (*Symbol N is protected in mathematica *)
phi = (p - 1) (q - 1);

35
https://www.cs.purdue.edu/homes/jblocki/courses/555_Spring17/slides/Lecture24Demo.nb

https://www.cs.purdue.edu/homes/jblocki/courses/555_Spring17/slides/Lecture24Demo.nb

(Toy) RSA Implementation in Mathematica

(* Step 1.A: Find e *)
GCD[phi,7]

Output: 7
(* GCD[phi,7] is not 1, so he have to try a different value of e *)

GCD[phi,3]
Output: 1
(* We can set e=3 *)

e=3;

36
https://www.cs.purdue.edu/homes/jblocki/courses/555_Spring17/slides/Lecture24Demo.nb

https://www.cs.purdue.edu/homes/jblocki/courses/555_Spring17/slides/Lecture24Demo.nb

(Toy) RSA Implementation in Mathematica

(* Step 1.B find d s.t. ed = 1 mod N by using the extended GCD algorithm *)
(* Mathematica is clever enough to do this automatically *)

Solve[e x == 1, Modulus->phi]
Output:
{{x->36469680590663028301700626132883867272718728905205088...
……
394069421778610209425624440980084481398131}}
(* We can now set d = x *)

d=364696805…. 8131;

37

(Toy) RSA Implementation in Mathematica

(* Double Check 1 = [ed mod 𝜙𝜙 𝑁𝑁] *)
Mod [e d, (p-1)(q-1)]

Output: 1
(* Encrypt the message 200, c= m^e mod N *)

m = 200;
PowerMod[m,e,NN]

Output: 8 000 000

38

(Toy) RSA Implementation in Mathematica

(* Encrypt the message 200, c= m^e mod N *)
m = 200;
PowerMod[m,e,NN]

Output: 8 000 000
(* Hm...That doesn't seem too secure *)

CubeRoot[PowerMod[m,e,NN]]
Output: 200

(* Moral: if 𝑚𝑚𝑒𝑒 < 𝑁𝑁 then Plain RSA does not hide the message m. *)

39

RSA Implementation in Mathematica

(* Encrypt a larger message, c= m^e mod N *)
SeedRandom[1234567];
m2= RandomInteger[{10^1500,10^1501}];
c=PowerMod[m2,e,NN]

Output: 405215834903772786……… 388068292685976133

(* Does it Decrypt Properly? *)
PowerMod[c,d, NN]-m2

Output: 0
(* Yes! *)

40

CS 555: Week 10: Topic 2
Attacks on Plain RSA

41

(Plain) RSA Discussion

• We have not introduced security models like CPA-Security or CCA-
security for Public Key Cryptosystems

• However, notice that (Plain) RSA Encryption is stateless and
deterministic.
Plain RSA is not secure against chosen-plaintext attacks
• As we will see Plain RSA is also highly vulnerable to chosen-ciphertext

attacks

42

(Plain) RSA Discussion

• However, notice that (Plain) RSA Encryption is stateless and deterministic.
Plain RSA is not secure against chosen-plaintext attacks

• Remark: In a public key setting the attacker who knows the public key
always has access to an encryption oracle

• Encrypted messages with low entropy are particularly vulnerable to brute-
force attacks

• Example: If 𝑚𝑚 < 𝐵𝐵 then attacker can recover 𝑚𝑚 from c = Encpk 𝑚𝑚 after at most 𝐵𝐵
queries to encryption oracle (using public key)

43

Chosen Ciphertext Attack on Plain RSA

1. Attacker intercepts ciphertext 𝑐𝑐 = 𝑚𝑚𝑒𝑒 mod N
2. Attacker generates ciphertext c’ for secret message 2m as follows
3. c’ = 𝑐𝑐2𝑒𝑒 mod N
4. = 𝑚𝑚𝑒𝑒2𝑒𝑒 mod N
5. = 2𝑚𝑚 𝑒𝑒 mod N
6. Attacker asks for decryption of 𝑐𝑐2𝑒𝑒 mod N and receives 2m.
7. Divide by two to recover message
Above Example: Shows plain RSA is highly vulnerable to ciphertext-
tampering attacks

44

More Weaknesses: Plain RSA with small e

• (Small Messages) If me < N then we can decrypt c = me mod N directly
e.g., m=c(1/e)

• (Partially Known Messages) If an attacker knows first 1-(1/e) bits of
secret message m = m1‖? ? then he can recover m given

𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄 pk, m = 𝑚𝑚𝑒𝑒 mod N

Theorem[Coppersmith]: If p(x) is a polynomial of degree e then in
polynomial time (in log(N), 2e) we can find all m such that p(m) = 0 mod
N and |m|<N(1/e)

45

More Weaknesses: Plain RSA with small e

Theorem[Coppersmith]: If p(x) is a polynomial of degree e then in
polynomial time (in log(N), e) we can find all m such that p(m) = 0 mod
N and |m|<N(1/e)

Example: e = 3, 𝑚𝑚 = 𝑚𝑚1‖𝑚𝑚2 and attacker knows 𝑚𝑚1 2𝑘𝑘 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 and 𝒄𝒄 =
𝑚𝑚1‖𝑚𝑚2

𝑒𝑒mod N, but not 𝑚𝑚2 𝑘𝑘 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
𝑝𝑝 𝑥𝑥 = 2𝑘𝑘𝑚𝑚1 + 𝑥𝑥 3 − 𝑐𝑐

Polynomial has a small root mod N at x= 𝑚𝑚2 and coppersmith’s method
will find it!

46D. Coppersmith (1996). "Finding a Small Root of a Univariate Modular Equation".

More Weaknesses: Plain RSA with small e

Theorem[Coppersmith]: Can also find small roots of bivariate
polynomial p 𝒙𝒙𝟏𝟏,𝒙𝒙𝟐𝟐

• Similar Approach used to factor weak RSA secret keys N=q1q2

• Weak PRG  Can guess many of the bits of prime factors
• Obtain �𝑞𝑞1 ≈ 𝑞𝑞1 and �𝑞𝑞2 ≈ 𝑞𝑞2

• Coppersmith Attack: Define polynomial p(.,.) as follows
p 𝒙𝒙𝟏𝟏,𝒙𝒙𝟐𝟐 = 𝒙𝒙𝟏𝟏 + �𝒒𝒒𝟏𝟏 𝒙𝒙𝟐𝟐 + �𝒒𝒒𝟐𝟐 − 𝑵𝑵

• Small Roots of p 𝒙𝒙𝟏𝟏,𝒙𝒙𝟐𝟐 : 𝑥𝑥1 = 𝑞𝑞1 −�𝑞𝑞1 and 𝑥𝑥2 = 𝑞𝑞2 − �𝑞𝑞2

47D. Coppersmith (1996). "Finding a Small Root of a Bivariate Integer Equation; Factoring with high bits known"

48
The Return of Coppersmith's Attack: Practical Factorization of Widely Used RSA Moduli (CCS 2017)

A Side Channel Attack on RSA with CRT

• Suppose that decryption is done via Chinese Remainder Theorem for
speed.

𝐃𝐃𝐃𝐃𝐃𝐃𝒔𝒔𝒔𝒔 𝒄𝒄 = 𝒄𝒄𝒅𝒅 𝒎𝒎𝒎𝒎𝒎𝒎 𝑵𝑵 ↔ 𝒄𝒄𝒅𝒅 𝒎𝒎𝒎𝒎𝒎𝒎 𝒑𝒑, 𝒄𝒄𝒅𝒅 𝒎𝒎𝒎𝒎𝒎𝒎 𝒒𝒒

• Attacker has physical access to smartcard
• Can mess up computation of 𝒄𝒄𝒅𝒅 𝒎𝒎𝒎𝒎𝒎𝒎 𝒑𝒑
• Response is R ↔ 𝒓𝒓, 𝒄𝒄𝒅𝒅 𝒎𝒎𝒎𝒎𝒎𝒎 𝒒𝒒
• R − m ↔ 𝒓𝒓 −𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎 𝒑𝒑,𝟎𝟎𝒎𝒎𝒎𝒎𝒎𝒎 𝒒𝒒
• GCD(R-m,N)=q

52

Recovering Encrypted Message faster than
Brute-Force
Brute Force Attack: Suppose we know the secret message m < 2n

We can recover m from ciphertext c=me mod N in time 2n

(Solution: Search from m’ < 2n s.t. c=m’e mod N)

Claim: Let m < 2n be a secret message. For some constant 𝛼𝛼 = 1
2

+ 𝜀𝜀.
We can recover m in in time 𝑇𝑇 = 2𝛼𝛼𝑛𝑛 with high probability.

Roughly 𝐵𝐵 steps to find a secret message m < B
Similar to birthday attack

54

Fixes for Plain RSA

• Approach 1: RSA-OAEP
• Incorporates random nonce r
• CCA-Secure (in random oracle model)

• Approach 2: Use RSA to exchange symmetric key for Authenticated Encryption
scheme (e.g., AES)

• Key Encapsulation Mechanism (KEM)
• Alice has public key (N,e)
• Bob picks random 𝑟𝑟 ∈ ℤ𝑁𝑁 and sends c = 𝑟𝑟𝑒𝑒 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁 to Alice
• Alice and Bob use the symmetric secret key K = H(𝑟𝑟) for authenticated encryption
• Intuition:

• If attacker never queries H(𝑟𝑟) then 𝐾𝐾 can be viewed as truly random secret key (Random Oracle Model)
• If attacker does query H(𝑟𝑟) with non-negligible probability then we can win RSA-Inversion game using A

• More details in future lectures…stay tuned!

57

Recap and Announcements

• Plain RSA
• Primality Tests and Key Generation
• Encryption/Decryption
• Factoring/RSA-Inversion
• Attacks on Plain RSA
• Fixes: RSA-OAEP, Key-Exchange + Authenticated Encryption (more coming)

• Announcements
• Quiz 4 released today (Due: Saturday (3/27) at 11:30PM on Brightspace)
• Homework 4 released (Due: April 8th at 11:59 PM on Gradescope)

• Q4: Programming Assignment
• Q2: Programming Assignment or Written Solution (You pick!)

58

CS 555: Week 10: Topic 3
Discrete Log + DDH Assumption

59

(Recap) Finite Groups

Definition: A (finite) group is a (finite) set 𝔾𝔾 with a binary operation ∘ (over
G) for which we have
• (Closure:) For all g, h ∈ 𝔾𝔾 we have g ∘ h ∈ 𝔾𝔾
• (Identity:) There is an element e ∈ 𝔾𝔾 such that for all g ∈ 𝔾𝔾 we have

g ∘ e = g = e ∘ g
• (Inverses:) For each element g ∈ 𝔾𝔾 we can find h ∈ 𝔾𝔾 such that g ∘ h = e.

We say that h is the inverse of g.
• (Associativity:) For all g1, g2, g3 ∈ 𝔾𝔾 we have

g1 ∘ g2 ∘ g3 = g1 ∘ g2 ∘ g3
We say that the group is abelian if
• (Commutativity:) For all g, h ∈ 𝔾𝔾 we have g ∘ h = h ∘ g

60

Finite Abelian Groups (Examples)

• Example 1: ℤ
𝑁𝑁

when ∘ denotes addition modulo N
• Identity: 0, since 0 ∘ x =[0+x mod N] = [x mod N].
• Inverse of x? Set x-1=N-x so that [x-1+x mod N] = [N-x+x mod N] = 0.

• Example 2: ℤ
𝑁𝑁
∗ when ∘ denotes multiplication modulo N

• Identity: 1, since 1∘ x =[1(x) mod N] = [x mod N].
• Inverse of x? Run extended GCD to obtain integers a and b such that

𝑎𝑎𝑎𝑎 + 𝑏𝑏𝑏𝑏 = gcd 𝑥𝑥,𝑁𝑁 = 1
Observe that: x-1 = a. Why?

61

Cyclic Group

• Let 𝔾𝔾 be a group with order m = 𝔾𝔾 with a binary operation ∘ (over G)
and let g ∈ 𝔾𝔾 be given consider the set

𝑔𝑔 = 𝑔𝑔0,𝑔𝑔1,𝑔𝑔2, …

Fact: 𝑔𝑔 defines a subgroup of 𝔾𝔾.
• Identity: 𝑔𝑔0

• Closure: 𝑔𝑔𝑖𝑖 ∘ 𝑔𝑔𝑗𝑗 = 𝑔𝑔𝑖𝑖+𝑗𝑗 ∈ 𝑔𝑔
• g is called a “generator” of the subgroup.

Fact: Let r = 𝑔𝑔 then 𝑔𝑔𝑖𝑖 = 𝑔𝑔𝑗𝑗 if and only if 𝑖𝑖 = 𝑗𝑗 𝑚𝑚𝑚𝑚𝑚𝑚 𝑟𝑟. Also m is divisible
by r.

62

Finite Abelian Groups (Examples)

Fact: Let p be a prime then ℤ𝑝𝑝∗ is a cyclic group of order p-1.
• Note: Number of generators g s.t. of 𝑔𝑔 = ℤ𝑝𝑝∗ is 𝜙𝜙 𝑝𝑝 − 1

Example (non-generator): p=7, g=2
<2>={1,2,4}

Example (generator): p=7, g=5
<2>={1,5,4,6,2,3}

63

Discrete Log Experiment DLogA,G(n)

1. Run G(1n) to obtain a cyclic group 𝔾𝔾 of order q (with 𝑞𝑞 = 𝑛𝑛) and
a generator g such that < g >= 𝔾𝔾.

2. Select h ∈ 𝔾𝔾 uniformly at random.
3. Attacker A is given 𝔾𝔾, q, g, h and outputs integer x.
4. Attacker wins (DLogA,G(n)=1) if and only if gx=h.

We say that the discrete log problem is hard relative to generator G if
∀𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴 ∃𝜇𝜇 (negligible) s. t Pr DLogA,n = 1 ≤ 𝜇𝜇(𝑛𝑛)

64

Diffie-Hellman Problems

Computational Diffie-Hellman Problem (CDH)
• Attacker is given h1 = 𝑔𝑔𝑥𝑥1 ∈ 𝔾𝔾 and h2 = 𝑔𝑔𝑥𝑥2 ∈ 𝔾𝔾.
• Attackers goal is to find 𝑔𝑔𝑥𝑥1𝑥𝑥2= h1

𝑥𝑥2 = h2
𝑥𝑥1

• CDH Assumption: For all PPT A there is a negligible function negl upper
bounding the probability that A succeeds with probability at most negl(n).

Decisional Diffie-Hellman Problem (DDH)
• Let z0 = 𝑔𝑔𝑥𝑥1𝑥𝑥2 and let z1 = 𝑔𝑔𝑟𝑟, where x1,x2 and r are random
• Attacker is given 𝑔𝑔𝑥𝑥1, 𝑔𝑔𝑥𝑥2 and 𝑧𝑧𝑏𝑏 (for a random bit b)
• Attackers goal is to guess b
• DDH Assumption: For all PPT A there is a negligible function negl such that

A succeeds with probability at most ½ + negl(n).

65

Secure key-agreement with DDH

1. Alice publishes 𝑔𝑔𝑥𝑥𝐴𝐴 and Bob publishes 𝑔𝑔𝑥𝑥𝐵𝐵
2. Alice and Bob can both compute 𝐾𝐾𝐴𝐴,𝐵𝐵 = 𝑔𝑔𝑥𝑥𝐵𝐵 𝑥𝑥𝐴𝐴 but to Eve this key is

indistinguishable from a random group element (by DDH)

Remark: Protocol is vulnerable to Man-In-The-Middle Attacks if Bob
cannot validate 𝑔𝑔𝑥𝑥𝐴𝐴.

66

Can we find a cyclic group where DDH holds?

• Example 1: ℤ𝑝𝑝∗ where p is a random n-bit prime.
• CDH is believed to be hard
• DDH is *not* hard (Exercise 13.15)

• Theorem: 𝐿𝐿𝐿𝐿𝐿𝐿 p=rq+1 be a random n-bit prime where q is a large 𝜆𝜆-
bit prime then the set of rth residues modulo p is a cyclic subgroup of
order q. Then 𝔾𝔾𝑟𝑟 = [ℎ𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝] ℎ ∈ ℤ𝑝𝑝∗ is a cyclic subgroup of ℤ𝑝𝑝∗ of
order q.

• Remark 1: DDH is believed to hold for such a group
• Remark 2: It is easy to generate uniformly random elements of 𝔾𝔾𝑟𝑟
• Remark 3: Any element (besides 1) is a generator of 𝔾𝔾𝑟𝑟

67

Can we find a cyclic group where DDH holds?

• Theorem: 𝐿𝐿𝐿𝐿𝐿𝐿 p=rq+1 be a random n-bit prime where q is a large 𝜆𝜆-bit
prime then the set of rth residues modulo p is a cyclic subgroup of order q.
Then 𝔾𝔾𝑟𝑟 = [ℎ𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝] ℎ ∈ ℤ𝑝𝑝∗ is a cyclic subgroup of ℤ𝑝𝑝∗ of order q.

• Closure: ℎ𝑟𝑟𝑔𝑔𝑟𝑟 = ℎ𝑔𝑔 𝑟𝑟

• Inverse of ℎ𝑟𝑟 is ℎ−1 𝑟𝑟 ∈ 𝔾𝔾𝑟𝑟
• Size ℎ𝑟𝑟 𝑥𝑥 = ℎ[𝑟𝑟𝑟𝑟 𝑚𝑚𝑚𝑚𝑚𝑚 𝑟𝑟𝑟𝑟] = ℎ𝑟𝑟 𝑥𝑥 = ℎ𝑟𝑟[𝑥𝑥 𝑚𝑚𝑚𝑚𝑚𝑚 𝑞𝑞] = ℎ𝑟𝑟 [𝑥𝑥 𝑚𝑚𝑚𝑚𝑚𝑚 𝑞𝑞]𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝

Remark: Two known attacks on Discrete Log Problem for 𝔾𝔾𝑟𝑟(Section 9.2).
• First runs in time 𝑂𝑂 𝑞𝑞 = 𝑂𝑂 2𝜆𝜆/2

• Second runs in time 2𝑂𝑂
3 𝑛𝑛 log 𝑛𝑛 2/3

68

Can we find a cyclic group where DDH holds?

Remark: Two known attacks (Section 9.2).
• First runs in time 𝑂𝑂 𝑞𝑞 = 𝑂𝑂 2𝜆𝜆/2

• Second runs in time 2𝑂𝑂
3 𝑛𝑛 log 𝑛𝑛 2/3 , where n is bit length of p

Goal: Set 𝜆𝜆 and n to balance attacks
𝜆𝜆 = 𝑂𝑂 3 𝑛𝑛 log𝑛𝑛 2/3

How to sample p=rq+1?
• First sample a random 𝜆𝜆-bit prime q and
• Repeatedly check if rq+1 is prime for a random n- 𝜆𝜆 bit value r

69

Can we find a cyclic group where DDH holds?

Elliptic Curves Example: Let p be a prime (p > 3) and let A, B be
constants. Consider the equation

𝑦𝑦2 = 𝑥𝑥3 + 𝐴𝐴𝐴𝐴 + 𝐵𝐵 𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝
And let

𝐸𝐸 ℤ𝑝𝑝 = 𝑥𝑥,𝑦𝑦 ∈ ℤ𝑝𝑝2 𝑦𝑦2 = 𝑥𝑥3 + 𝐴𝐴𝐴𝐴 + 𝐵𝐵 𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝 ∪ 𝒪𝒪

Note: 𝒪𝒪 is defined to be an additive identity 𝑥𝑥,𝑦𝑦 + 𝒪𝒪 = 𝑥𝑥,𝑦𝑦

What is 𝑥𝑥1,𝑦𝑦1 + 𝑥𝑥2,𝑦𝑦2 ?

70

Elliptic Curve Example

The line passing through
𝒙𝒙𝟏𝟏,𝒚𝒚𝟏𝟏 and 𝒙𝒙𝟐𝟐,𝒚𝒚𝟐𝟐 has the

equation
𝑦𝑦 = 𝑚𝑚 𝑥𝑥 − 𝑥𝑥1 + 𝑦𝑦1 𝑚𝑚𝑚𝑚𝑚𝑚 𝑃𝑃

Where the slope
𝑚𝑚 =

𝑦𝑦1 − 𝑦𝑦2

𝑥𝑥1 − 𝑥𝑥2
𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝

71

𝒙𝒙𝟏𝟏,𝒚𝒚𝟏𝟏

𝒙𝒙𝟐𝟐,𝒚𝒚𝟐𝟐 (x3,y3)

(x3,-y3)= 𝒙𝒙𝟏𝟏,𝒚𝒚𝟏𝟏 + 𝒙𝒙𝟐𝟐,𝒚𝒚𝟐𝟐

Elliptic Curve Example

Formally, let
𝑚𝑚 =

𝑦𝑦1 − 𝑦𝑦2

𝑥𝑥1 − 𝑥𝑥2
𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝

Be the slope. Then the line
passing through 𝒙𝒙𝟏𝟏,𝒚𝒚𝟏𝟏 and
𝒙𝒙𝟐𝟐,𝒚𝒚𝟐𝟐 has the equation
𝑦𝑦 = 𝑚𝑚 𝑥𝑥 − 𝑥𝑥1 + 𝑦𝑦1 𝑚𝑚𝑚𝑚𝑚𝑚 𝑃𝑃

𝑚𝑚 𝑥𝑥 − 𝑥𝑥1 + 𝑦𝑦1
2

= 𝑥𝑥3 + 𝐴𝐴𝐴𝐴 + 𝐵𝐵 𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝 72

𝒙𝒙𝟏𝟏,𝒚𝒚𝟏𝟏

𝒙𝒙𝟐𝟐,𝒚𝒚𝟐𝟐

𝑥𝑥3 = [𝑚𝑚2 − 𝑥𝑥1 − 𝑥𝑥2𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝]
𝑦𝑦3 = [𝑚𝑚 𝑥𝑥3 − 𝑥𝑥1 + 𝑦𝑦1𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝]

(x3,y3)

(x3,-y3)= 𝒙𝒙𝟏𝟏,𝒚𝒚𝟏𝟏 + 𝒙𝒙𝟐𝟐,𝒚𝒚𝟐𝟐

73

Elliptic Curve Example

74

No third point R on the elliptic curve.

P+Q = 0

(Inverse)

Elliptic Curve Special Cases

75

No third point R on the elliptic curve.

P+Q = 0

(Inverse)
Z+Z=0 Z

Elliptic Curve Special Cases

76

Z+Z=RZ
-R

R

How to find R?

Can we find a cyclic group where DDH holds?

Elliptic Curves Example: Let p be a prime (p > 3) and let A, B be constants. Consider
the equation

𝑦𝑦2 = 𝑥𝑥3 + 𝐴𝐴𝐴𝐴 + 𝐵𝐵 𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝
And let

𝐸𝐸 ℤ𝑝𝑝 = 𝑥𝑥,𝑦𝑦 ∈ ℤ𝑝𝑝2 𝑦𝑦2 = 𝑥𝑥3 + 𝐴𝐴𝐴𝐴 + 𝐵𝐵 𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝 ∪ 𝒪𝒪

Fact: 𝐸𝐸 ℤ𝑝𝑝 defines an abelian group
• For appropriate curves the DDH assumption is believed to hold
• If you make up your own curve there is a good chance it is broken…
• NIST has a list of recommendations
• Bad Elliptic Curves:

• Order is p, p+1, order divides 𝑝𝑝𝑘𝑘 − 1 for “small” k,…

77

Generic Group Model

• Suppose 𝑝𝑝 < 2𝑛𝑛 is a prime
• Fact: Every prime order group is isomorphic to ℤ𝑝𝑝, +

• Random (injective mapping) 𝜏𝜏:ℤ𝑝𝑝 → 0,1 𝑛𝑛

• Access to Group via Two Oracles
• Mult 𝜏𝜏 𝑥𝑥 , 𝜏𝜏 𝑦𝑦 = 𝜏𝜏 𝑥𝑥 + 𝑦𝑦 mod p
• Inverse 𝜏𝜏 𝑥𝑥 = 𝜏𝜏 𝑝𝑝 − 𝑥𝑥

• Discrete Log Problem: Attacker is given g = 𝜏𝜏(1) and g = 𝜏𝜏 𝑥𝑥 for a random 0 ≤ x < 𝑝𝑝.
• Attacker Goal: Find x
• DDH Problem: Challenger picks random bit b and random values 0 ≤ x, y, r < 𝑝𝑝

• Attacker is given g = 𝜏𝜏 1 , g = 𝜏𝜏 𝑥𝑥 , g = 𝜏𝜏 𝑦𝑦 , and
• g = 𝜏𝜏 𝑟𝑟 if b=0
• g = 𝜏𝜏 𝑥𝑥𝑥𝑥 if b=1

78

Generic Group Model
• Suppose 𝑝𝑝 < 2𝑛𝑛 is a prime

• Fact: Every prime order group is isomorphic to ℤ𝑝𝑝, +

• Random (injective mapping) 𝜏𝜏:ℤ𝑝𝑝 → 0,1 𝑛𝑛

• Access to Group via Two Oracles
• Mult 𝜏𝜏 𝑥𝑥 , 𝜏𝜏 𝑦𝑦 = 𝜏𝜏 𝑥𝑥 + 𝑦𝑦 mod p
• Inverse 𝜏𝜏 𝑥𝑥 = 𝜏𝜏 𝑝𝑝 − 𝑥𝑥

• Discrete Log Problem: Attacker is given g = 𝜏𝜏(1) and g = 𝜏𝜏 𝑥𝑥 for a random 0 ≤ x < 𝑝𝑝.
• Attacker Goal: Find x
• Fact: Any attacker A making at most q queries to group oracles finds x with probability at most

O(𝑞𝑞/2𝑛𝑛/2)
• Matching Attack: Birthday Bound
• Intuition: Suppose we know i input/output pairs (𝑥𝑥1, 𝜏𝜏 𝑥𝑥1), … (𝑥𝑥𝑖𝑖, 𝜏𝜏 𝑥𝑥𝑖𝑖) but x ≠ 𝑥𝑥1, … 𝑥𝑥𝑖𝑖

• Can view x as a yet to be sampled element from ℤ𝑝𝑝\ 𝑥𝑥1, … 𝑥𝑥𝑖𝑖

79

Generic Group Model

• Suppose 𝑝𝑝 < 2𝑛𝑛 is a prime
• Fact: Every prime order group is isomorphic to ℤ𝑝𝑝, +

• Random (injective mapping) 𝜏𝜏:ℤ𝑝𝑝 → 0,1 𝑛𝑛

• Access to Group via Two Oracles
• Mult 𝜏𝜏 𝑥𝑥 , 𝜏𝜏 𝑦𝑦 = 𝜏𝜏 𝑥𝑥 + 𝑦𝑦 mod p
• Inverse 𝜏𝜏 𝑥𝑥 = 𝜏𝜏 𝑝𝑝 − 𝑥𝑥

• DDH Problem: Challenger picks random bit b and random values 0 ≤ x, y, r < 𝑝𝑝
• Attacker is given g = 𝜏𝜏 1 , g = 𝜏𝜏 𝑥𝑥 , g = 𝜏𝜏 𝑦𝑦 , and

• g = 𝜏𝜏 𝑟𝑟 if b=0
• g = 𝜏𝜏 𝑥𝑥𝑥𝑥 if b=1

• Fact: Any attacker A making at most q queries to group oracles guesses b with
probability at most 1

2
+ O(𝑞𝑞/2𝑛𝑛/2)

80

Week 12 Topic 2: Formalizing
Public Key Cryptography

81

Public Key Encryption: Basic Terminology

• Plaintext/Plaintext Space
• A message m ∈ ℳ

• Ciphertext c ∈ 𝒞𝒞
• Public/Private Key Pair 𝒑𝒑𝒑𝒑, 𝒔𝒔𝒔𝒔 ∈ 𝓚𝓚

82

Public Key Encryption Syntax

• Three Algorithms
• Gen(1𝑛𝑛,𝑅𝑅) (Key-generation algorithm)

• Input: Random Bits R
• Output: 𝒑𝒑𝒑𝒑, 𝒔𝒔𝒔𝒔 ∈ 𝓚𝓚

• Encpk(𝑚𝑚) ∈ 𝒞𝒞 (Encryption algorithm)
• Decsk(𝑐𝑐) (Decryption algorithm)

• Input: Secret key sk and a ciphertex c
• Output: a plaintext message m ∈ ℳ

• Invariant: Decsk(Encpk(m))=m

Alice must run key generation
algorithm in advance an publishes the

public key: pk

Assumption: Adversary only gets to
see pk (not sk)

83

Chosen-Plaintext Attacks

• Model ability of adversary to control or influence what the honest
parties encrypt.

• Historical Example: Battle of Midway (WWII).
• US Navy cryptanalysts were able to break Japanese code by tricking Japanese

navy into encrypting a particular message

• Private Key Cryptography

84

Recap CPA-Security (Symmetric Key Crypto)

85

m0,1,m1,1

Random bit b
K = Gen(.)

c1 = EncK(mb,1)

b’

m0,2,m1,2

c2 = EncK(mb,2)

c3 = EncK(mb,3)
m0,3,m1,3

…

∀𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴 ∃𝜇𝜇 (negligible) s. t
Pr 𝐴𝐴 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝑏𝑏′ = 𝑏𝑏 ≤

1
2

+ 𝜇𝜇(𝑛𝑛)

Chosen-Plaintext Attacks

• Model ability of adversary to control or influence what the honest
parties encrypt.

• Private Key Crypto
• Attacker tricks victim into encrypting particular messages

• Public Key Cryptography
• The attacker already has the public key pk
• Can encrypt any message s/he wants!
• CPA Security is critical!

86

CPA-Security (PubKA,Π
LR−cpa n)

87

𝑚𝑚0
1,𝑚𝑚1

1

Random bit b
(pk,sk) = Gen(.)

𝒄𝒄𝟏𝟏 = 𝐄𝐄𝐄𝐄𝐄𝐄𝒑𝒑𝒑𝒑 𝒎𝒎𝒃𝒃
𝟏𝟏

b’

𝒄𝒄𝟐𝟐 = 𝐄𝐄𝐄𝐄𝐄𝐄𝒑𝒑𝒑𝒑 𝒎𝒎𝒃𝒃
𝟐𝟐

𝒄𝒄𝟑𝟑 = 𝐄𝐄𝐄𝐄𝐄𝐄𝒑𝒑𝒑𝒑 𝒎𝒎𝒃𝒃
𝟑𝟑

𝑚𝑚0
3,𝑚𝑚1

3

…

∀𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴 ∃𝜇𝜇 (negligible) s. t
Pr PubKA,Π

LR−cpa n = 1 ≤
1
2

+ 𝜇𝜇(𝑛𝑛)

𝑚𝑚0
2,𝑚𝑚1

2

Public Key: pk

CPA-Security (Single Message)

88

m0,m1

Random bit b
K = Gen(.)

c = EncK(mb)

b’

m2

c2 = EncK(m2)

c3 = EncK(m3)
m3

…

∀𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴 ∃𝜇𝜇 (negligible) s. t
Pr 𝐴𝐴 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝑏𝑏′ = 𝑏𝑏 ≤

1
2

+ 𝜇𝜇(𝑛𝑛)

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹, 𝑙𝑙𝑙𝑙𝑙𝑙 Π = 𝐺𝐺𝐺𝐺𝐺𝐺,𝐸𝐸𝐸𝐸𝐸𝐸,𝐷𝐷𝐷𝐷𝐷𝐷 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑡𝑡𝑡𝑡𝑡 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,
𝑐𝑐𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡𝑡𝑡𝑡 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴,Π

𝐿𝐿𝐿𝐿−𝑐𝑐𝑐𝑐𝑐𝑐 𝑛𝑛 𝑎𝑎𝑎𝑎𝑎𝑎 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑎𝑎 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣

PubKA,Π
LR−cpa 𝑛𝑛 = �1 if 𝑏𝑏 = 𝑏𝑏′

0 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

Π ℎ𝑎𝑎𝑎𝑎 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑎𝑎 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
𝑖𝑖𝑖𝑖 𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎 𝑃𝑃𝑃𝑃𝑃𝑃 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝐴𝐴, 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑖𝑖𝑖𝑖 𝑎𝑎 negligible function 𝜇𝜇 such that

Pr[PubKA,Π
LR−cpa 𝑛𝑛 = 1] ≤ 1

2
+ 𝜇𝜇(𝑛𝑛)

Private Key Crypto

• CPA Security was stronger than eavesdropping security

EncK(m) = G(K)⨁𝑚𝑚

Vs.

EncK(m) = 𝑟𝑟,𝐹𝐹𝑘𝑘 𝑟𝑟 ⨁𝑚𝑚

89

Public Key Crypto

• Fact 1: CPA Security and Eavesdropping Security are Equivalent
• Key Insight: The attacker has the public key so he doesn’t gain anything from being able to

query the encryption oracle!

• Fact 2: Any deterministic encryption scheme is not CPA-Secure
• Historically overlooked in many real world public key crypto systems

• Fact 3: Plain RSA is not CPA-Secure
• Fact 4: No Public Key Cryptosystem can achieve Perfect Secrecy!

• Exercise 11.1
• Hint: Unbounded attacker can keep encrypting the message m using the public key to recover

all possible encryptions of m.

90

Encrypting Longer Messages

Claim 11.7: Let Π = 𝐺𝐺𝐺𝐺𝐺𝐺,𝐸𝐸𝐸𝐸𝐸𝐸,𝐷𝐷𝐷𝐷𝐷𝐷 denote a CPA-Secure public key
encryption scheme and let Π′ = 𝐺𝐺𝐺𝐺𝐺𝐺,𝐸𝐸𝐸𝐸𝐸𝐸′,𝐷𝐷𝐷𝐷𝐷𝐷′ be defined such
that

𝐄𝐄𝐄𝐄𝐄𝐄𝐩𝐩𝐩𝐩′ 𝒎𝒎𝟏𝟏 ∥ 𝒎𝒎𝟐𝟐 ∥ ⋯ ∥ 𝒎𝒎ℓ = 𝐄𝐄𝐄𝐄𝐄𝐄𝐩𝐩𝐩𝐩 𝒎𝒎𝟏𝟏 ∥ ⋯ ∥ 𝐄𝐄𝐄𝐄𝐄𝐄𝐩𝐩𝐩𝐩 𝒎𝒎ℓ

Then Π′ is also CPA-Secure.

91

Chosen Ciphertext Attacks

• Models ability of attacker to obtain (partial) decryption of selected
ciphertexts

• Attacker might intercept ciphertext c (sent from S to R) and send c’
instead.

• After that attacker can observe receiver’s behavior (abort, reply etc…)

• Attacker might send a modified ciphertext c’ to receiver R in his own
name.

• E-mail response: Receiver might decrypt c’ to obtain m’ and include m’ in the
response to the attacker

92

Recap CCA-Security (Symmetric Key Crypto)

93

m0,m1

Random bit b
K = Gen(.)

c = EncK(mb)

b’

m3

c2 = EncK(m2)

m3 = DecK(m3)
c3

…

“No Way!”
c4 =c

m-1
c-1 = EncK(m-1)

m-2 = DecK(c-2)
c-2 …

We could set m0 = m-1 or m1 = m-2

However, we could still flip 1 bit
of c and ask challenger to decrypt

Recap CCA-Security 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴,Π
𝑐𝑐𝑐𝑐𝑐𝑐 𝑛𝑛

1. Challenger generates a secret key k and a bit b
2. Adversary (A) is given oracle access to Enck and Deck
3. Adversary outputs m0,m1
4. Challenger sends the adversary c=Enck(mb).
5. Adversary maintains oracle access to Enck and Deck ,however the adversary is

not allowed to query Deck(c).
6. Eventually, Adversary outputs b’.

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴,Π
𝑐𝑐𝑐𝑐𝑐𝑐 𝑛𝑛 = 1 if b = b′; otherwise 0.

CCA-Security: For all PPT A exists a negligible function negl(n) s.t.

Pr 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴,Π
𝑐𝑐𝑐𝑐𝑐𝑐 𝑛𝑛 = 1 ≤

1
2

+ 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(𝑛𝑛)

94

CCA-Security (PubKA,Π
cca n)

95

𝑚𝑚0 ,𝑚𝑚1

Random bit b
(pk,sk) = Gen(.)

𝒎𝒎−𝟏𝟏 = 𝐃𝐃𝐃𝐃𝐃𝐃𝒔𝒔𝒔𝒔 𝒄𝒄−𝟏𝟏

b’

𝒄𝒄𝒃𝒃 = 𝐄𝐄𝐄𝐄𝐄𝐄𝒑𝒑𝒑𝒑 𝒎𝒎𝒃𝒃

…

∀𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴 ∃𝜇𝜇 (negligible) s. t
Pr PubKA,Π

cca n = 1 ≤
1
2

+ 𝜇𝜇(𝑛𝑛)

𝒄𝒄−𝟏𝟏

…

𝒄𝒄𝒌𝒌
𝒎𝒎𝒌𝒌 = 𝐃𝐃𝐃𝐃𝐃𝐃𝒔𝒔𝒔𝒔 𝒄𝒄𝒌𝒌

Public Key: pk

Encrypting Longer Messages

Claim 11.7: Let Π = 𝐺𝐺𝐺𝐺𝐺𝐺,𝐸𝐸𝐸𝐸𝐸𝐸,𝐷𝐷𝐷𝐷𝐷𝐷 denote a CPA-Secure public key
encryption scheme and let Π′ = 𝐺𝐺𝐺𝐺𝐺𝐺,𝐸𝐸𝐸𝐸𝐸𝐸′,𝐷𝐷𝐷𝐷𝐷𝐷′ be defined such that

𝐄𝐄𝐄𝐄𝐄𝐄𝐩𝐩𝐩𝐩′ 𝒎𝒎𝟏𝟏 ∥ 𝒎𝒎𝟐𝟐 ∥ ⋯ ∥ 𝒎𝒎ℓ = 𝐄𝐄𝐄𝐄𝐄𝐄𝐩𝐩𝐩𝐩 𝒎𝒎𝟏𝟏 ∥ ⋯ ∥ 𝐄𝐄𝐄𝐄𝐄𝐄𝐩𝐩𝐩𝐩 𝒎𝒎ℓ
Then Π′ is also CPA-Secure.

Claim? Let Π = 𝐺𝐺𝐺𝐺𝐺𝐺,𝐸𝐸𝐸𝐸𝐸𝐸,𝐷𝐷𝐷𝐷𝐷𝐷 denote a CCA-Secure public key encryption
scheme and let Π′ = 𝐺𝐺𝐺𝐺𝐺𝐺,𝐸𝐸𝐸𝐸𝐸𝐸𝐸,𝐷𝐷𝐷𝐷𝐷𝐷𝐷 be defined such that

𝐄𝐄𝐄𝐄𝐄𝐄𝐩𝐩𝐩𝐩′ 𝒎𝒎𝟏𝟏 ∥ 𝒎𝒎𝟐𝟐 ∥ ⋯ ∥ 𝒎𝒎ℓ = 𝐄𝐄𝐄𝐄𝐄𝐄𝐩𝐩𝐩𝐩 𝒎𝒎𝟏𝟏 ∥ ⋯ ∥ 𝐄𝐄𝐄𝐄𝐄𝐄𝐩𝐩𝐩𝐩 𝒎𝒎ℓ
Then Π′ is also CCA-Secure.

Is this second claim true?

96

Encrypting Longer Messages

Claim? Let Π = 𝐺𝐺𝐺𝐺𝐺𝐺,𝐸𝐸𝐸𝐸𝐸𝐸,𝐷𝐷𝐷𝐷𝐷𝐷 denote a CCA-Secure public key
encryption scheme and let Π′ = 𝐺𝐺𝐺𝐺𝐺𝐺,𝐸𝐸𝐸𝐸𝐸𝐸𝐸,𝐷𝐷𝐷𝐷𝐷𝐷𝐷 be defined such
that

𝐄𝐄𝐄𝐄𝐄𝐄𝐩𝐩𝐩𝐩′ 𝒎𝒎𝟏𝟏 ∥ 𝒎𝒎𝟐𝟐 ∥ ⋯ ∥ 𝒎𝒎ℓ = 𝐄𝐄𝐄𝐄𝐄𝐄𝐩𝐩𝐩𝐩 𝒎𝒎𝟏𝟏 ∥ ⋯ ∥ 𝐄𝐄𝐄𝐄𝐄𝐄𝐩𝐩𝐩𝐩 𝒎𝒎ℓ

Then Π′ is also CCA-Secure.

Is this second claim true?
Answer: No!

97

Encrypting Longer Messages

Fact: Let Π = 𝐺𝐺𝐺𝐺𝐺𝐺,𝐸𝐸𝐸𝐸𝐸𝐸,𝐷𝐷𝐷𝐷𝐷𝐷 denote a CCA-Secure public key encryption scheme
and let Π′ = 𝐺𝐺𝐺𝐺𝐺𝐺,𝐸𝐸𝐸𝐸𝐸𝐸𝐸,𝐷𝐷𝐷𝐷𝐷𝐷𝐷 be defined such that

𝐄𝐄𝐄𝐄𝐄𝐄𝐩𝐩𝐩𝐩′ 𝒎𝒎𝟏𝟏 ∥ 𝒎𝒎𝟐𝟐 ∥ ⋯ ∥ 𝒎𝒎ℓ = 𝐄𝐄𝐄𝐄𝐄𝐄𝐩𝐩𝐩𝐩 𝒎𝒎𝟏𝟏 ∥ ⋯ ∥ 𝐄𝐄𝐄𝐄𝐄𝐄𝐩𝐩𝐩𝐩 𝒎𝒎ℓ
Then Π′ is Provably Not CCA-Secure.

1. Attacker sets 𝒎𝒎𝟎𝟎 = 𝟎𝟎𝒏𝒏 ∥ 𝟏𝟏𝒏𝒏 ∥ 𝟏𝟏𝒏𝒏 and 𝒎𝒎𝟏𝟏 = 𝟎𝟎𝒏𝒏 ∥ 𝟎𝟎𝒏𝒏 ∥ 𝟏𝟏𝒏𝒏 and gets 𝒄𝒄𝒃𝒃 =
𝐄𝐄𝐄𝐄𝐄𝐄𝐩𝐩𝐩𝐩′ 𝒎𝒎𝒃𝒃 = 𝒄𝒄𝒃𝒃,𝟏𝟏 ∥ 𝒄𝒄𝒃𝒃,𝟐𝟐 ∥ 𝒄𝒄𝒃𝒃,𝟑𝟑

2. Attacker sets 𝒄𝒄𝒄 = 𝒄𝒄𝒃𝒃,𝟐𝟐 ∥ 𝒄𝒄𝒃𝒃,𝟑𝟑 ∥ 𝒄𝒄𝒃𝒃,𝟏𝟏 , queries the decryption oracle and gets

𝐃𝐃𝐃𝐃𝐃𝐃𝐬𝐬𝐤𝐤′ 𝒄𝒄𝒄 = �𝟏𝟏𝒏𝒏 ∥ 𝟏𝟏𝒏𝒏 ∥ 𝟎𝟎𝒏𝒏 if b=𝟎𝟎
𝟎𝟎𝒏𝒏 ∥ 𝟏𝟏𝒏𝒏 ∥ 𝟎𝟎𝒏𝒏 𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐

98

Achieving CPA and CCA-Security

• Plain RSA is not CPA Secure (therefore, not CCA-Secure)

• El-Gamal (future) is CPA-Secure, but not CCA-Secure

• Tools to obtain CCA-Security in Public Key Setting
• RSA-OAEP, Cramer-Shoup
• Key Encapsulation Mechanism

99

Key Encapsulation Mechanism (KEM)

• Three Algorithms
• Gen(1𝑛𝑛,𝑅𝑅) (Key-generation algorithm)

• Input: Random Bits R
• Output: 𝒑𝒑𝒑𝒑, 𝒔𝒔𝒔𝒔 ∈ 𝓚𝓚

• Encapspk(1𝑛𝑛,𝑅𝑅)
• Input: security parameter, random bits R
• Output: Symmetric key k ∈ 0,1 ℓ 𝑛𝑛 and a ciphertext c

• Decapssk(𝑐𝑐) (Deterministic algorithm)
• Input: Secret key sk ∈ 𝒦𝒦 and a ciphertex c
• Output: a symmetric key 0,1 ℓ 𝑛𝑛 or ⊥ (fail)

• Invariant: Decapssk(c)=k whenever (c,k) = Encapspk(1𝑛𝑛,𝑅𝑅)

100

KEM CCA-Security (KEMA,Π
cca n)

101

𝒄𝒄𝟏𝟏 ≠ 𝒄𝒄

Random bit b
(pk,sk) = Gen(.)

𝒄𝒄,𝒌𝒌𝟎𝟎 = 𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝒑𝒑𝒑𝒑 .
𝒌𝒌𝟏𝟏 ⟵ 𝟎𝟎,𝟏𝟏 𝒏𝒏

b’

𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝒔𝒔𝒌𝒌 𝒄𝒄𝟏𝟏

…

∀𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴 ∃𝜇𝜇 (negligible) s. t
Pr KEMA,Π

cca = 1 ≤
1
2

+ 𝜇𝜇(𝑛𝑛)

…

𝒄𝒄𝟐𝟐 ≠ 𝒄𝒄
𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝒔𝒔𝒔𝒔 𝒄𝒄𝟐𝟐

𝒑𝒑𝒑𝒑, 𝒄𝒄,𝒌𝒌𝒃𝒃

CCA-Secure Encryption from CCA-Secure KEM

𝐄𝐄𝐄𝐄𝐄𝐄𝐩𝐩𝐩𝐩 𝒎𝒎;𝑹𝑹 = 𝒄𝒄,𝐄𝐄𝐄𝐄𝐄𝐄𝐤𝐤∗ 𝒎𝒎
Where

• 𝒄𝒄,𝒌𝒌 ← 𝐄𝐄𝐄𝐄𝐄𝐄𝐚𝐚𝐚𝐚𝐚𝐚𝐩𝐩𝐩𝐩 𝟏𝟏𝒏𝒏;𝑹𝑹 ,
• 𝐄𝐄𝐄𝐄𝐄𝐄𝐤𝐤∗ is a CCA-Secure symmetric key encryption algorithm, and

• 𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐩𝐩𝐩𝐩 is a CCA-Secure KEM.

Theorem 11.14: 𝐄𝐄𝐄𝐄𝐄𝐄𝐩𝐩𝐩𝐩 is CCA-Secure public key encryption scheme.

102

CCA-Secure KEM in the Random Oracle Model

• Let (N,e,d) be an RSA key (pk =(N,e), sk=(N,d)).

Encapspk 1𝑛𝑛,𝑅𝑅 = 𝑟𝑟𝑒𝑒 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁, 𝑘𝑘 = 𝐻𝐻 𝑟𝑟

• Remark 1: k is completely random string unless the adversary
can query random oracle H on input r.

• Remark 2: If Plain-RSA is hard to invert for a random input
then PPT attacker finds r with negligible probability.

103

Using a CCA-Secure KEM

• Let (N,e,d) be an RSA key (pk =(N,e), sk=(N,d)).

Encpk 𝑚𝑚;𝑅𝑅 = (𝑐𝑐, AEnck(𝑚𝑚)) where
𝑐𝑐 = Encapspk 1𝑛𝑛,𝑅𝑅

• Remark 1: k is completely random string unless the adversary
can query random oracle H on input r.

• Remark 2: If Plain-RSA is hard to invert for a random input
then PPT attacker finds r with negligible probability.

104

RSA-OAEP
(Optimal Asymmetric Encryption Padding)
• 𝐄𝐄𝐄𝐄𝐄𝐄𝒑𝒑𝒑𝒑 (𝑚𝑚; 𝑟𝑟) = [𝑥𝑥 ∥ 𝑦𝑦 𝑒𝑒 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁]
• Where 𝑥𝑥 ∥ 𝑦𝑦 ← OAEP(𝑚𝑚 ∥ 0𝑘𝑘1 ∥ 𝑟𝑟)
• 𝐃𝐃𝐃𝐃𝐃𝐃𝒔𝒔𝒌𝒌 𝑐𝑐 =
• �𝑚𝑚 ← [𝑐𝑐 𝑑𝑑 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁]
• If �𝑚𝑚 > 𝑛𝑛 return fail
• 𝑚𝑚 ∥ 𝑧𝑧 ∥ 𝑟𝑟 ← OAEP−1(�𝑚𝑚)
• If 𝑧𝑧 ≠ 0𝑘𝑘1 then output fail
• Otherwise output m

105

Recap RSA-Assumption

RSA-Experiment: RSA-INVA,n

1. Run KeyGeneration(1n) to obtain (N,e,d)
2. Pick uniform y ∈ ℤ

N
∗

3. Attacker A is given N, e, y and outputs x ∈ ℤ
N
∗

4. Attacker wins (RSA−INV𝐴𝐴,𝑛𝑛=1) if 𝑥𝑥𝑒𝑒 = y mod N

∀𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴 ∃𝜇𝜇 (negligible) s. t Pr RSA−INV𝐴𝐴,𝑛𝑛 = 1 ≤ 𝜇𝜇(𝑛𝑛)

106

RSA-OAEP
(Optimal Asymmetric Encryption Padding)
Theorem: If we model G and H as
Random oracles then RSA-OAEP is
a CCA-Secure public key encryption scheme
(given RSA-Inversion assumption).

Bonus: One of the fastest in practice!

107

PKCS #1 v2.0

• Implementation of RSA-OAEP

• James Manger found a chosen-ciphertext attack.

• What gives?

108

PKCS #1 v2.0 (Bad Implementation)

• 𝐄𝐄𝐄𝐄𝐄𝐄𝒑𝒑𝒑𝒑 (𝑚𝑚; 𝑟𝑟) = [𝑥𝑥 ∥ 𝑦𝑦 𝑒𝑒 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁]
• Where 𝑥𝑥 ∥ 𝑦𝑦 ← OAEP(𝑚𝑚 ∥ 0𝑘𝑘1 ∥ 𝑟𝑟)
• 𝐃𝐃𝐃𝐃𝐃𝐃𝒔𝒔𝒌𝒌 𝑐𝑐 =
• �𝑚𝑚 ← [𝑐𝑐 𝑑𝑑 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁]
• If �𝒎𝒎 > 𝒏𝒏 return Error Message 1
• 𝑚𝑚 ∥ 𝑧𝑧 ∥ 𝑟𝑟 ← OAEP−1(�𝑚𝑚)
• If 𝒛𝒛 ≠ 𝟎𝟎𝒌𝒌𝟏𝟏 then output Error Message 2
• Otherwise output m

109

PKCS #1 v2.0 (Attack)

• Manger’s CCA-Attack recovers secret message
• Step 1: Use decryption oracle to check if 2 �𝑚𝑚 ≥ 2𝑛𝑛
• 𝑐𝑐 = [�𝑚𝑚 𝑒𝑒 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁]2𝑒𝑒𝑐𝑐 = [2 �𝑚𝑚 𝑒𝑒 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁]

• Requires 𝑵𝑵 𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞 𝑡𝑡𝑡𝑡 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜.

• Attack also works as a side channel attack
• Even if error messages are the same the time to respond could be different in each

case.
• Fix: Implementation should return same error message and should make

sure that the time to return each error is the same.

110

	Cryptography�CS 555
	Recap
	CS 555: Week 10: Topic 1�Finding Prime Numbers, RSA
	RSA Key-Generation
	Bertrand’s Postulate
	Bertrand’s Postulate
	isPrime(p): Miller-Rabin Test
	The “Almost” Miller-Rabin Test
	The “Almost” Miller-Rabin Test
	Miller-Rabin Primality Test
	Miller-Rabin Primality Test
	Miller-Rabin Primality Test
	Miller-Rabin Primality Test
	Miller-Rabin Primality Test
	Miller-Rabin Primality Test
	Miller-Rabin Primality Test
	Miller-Rabin Primality Test
	Back to RSA Key-Generation
	Back to RSA Key-Generation
	Be Careful Where You Get Your “Random Bits!”
	(Plain) RSA Encryption
	(Plain) RSA Decryption
	Chinese Remainder Theorem
	RSA Decryption
	Plain RSA (Summary)
	Factoring Assumption
	Factoring Assumption
	RSA-Inversion Assumption
	RSA-Assumption
	Discussion of RSA-Assumption
	Recap
	Mathematica Demo
	(Toy) RSA Implementation in Mathematica
	(Toy) RSA Implementation in Mathematica
	(Toy) RSA Implementation in Mathematica
	(Toy) RSA Implementation in Mathematica
	(Toy) RSA Implementation in Mathematica
	RSA Implementation in Mathematica
	CS 555: Week 10: Topic 2�Attacks on Plain RSA
	(Plain) RSA Discussion
	(Plain) RSA Discussion
	Chosen Ciphertext Attack on Plain RSA
	More Weaknesses: Plain RSA with small e
	More Weaknesses: Plain RSA with small e
	More Weaknesses: Plain RSA with small e
	Slide Number 48
	A Side Channel Attack on RSA with CRT
	Recovering Encrypted Message faster than Brute-Force
	Fixes for Plain RSA
	Recap and Announcements
	CS 555: Week 10: Topic 3�Discrete Log + DDH Assumption
	(Recap) Finite Groups
	Finite Abelian Groups (Examples)
	Cyclic Group
	Finite Abelian Groups (Examples)
	Discrete Log Experiment DLogA,G(n)
	Diffie-Hellman Problems
	Secure key-agreement with DDH
	Can we find a cyclic group where DDH holds?
	Can we find a cyclic group where DDH holds?
	Can we find a cyclic group where DDH holds?
	Can we find a cyclic group where DDH holds?
	Elliptic Curve Example
	Elliptic Curve Example
	Slide Number 73
	Elliptic Curve Example
	Elliptic Curve Special Cases
	Elliptic Curve Special Cases
	Can we find a cyclic group where DDH holds?
	Generic Group Model
	Generic Group Model
	Generic Group Model
	Week 12 Topic 2: Formalizing Public Key Cryptography
	Public Key Encryption: Basic Terminology
	Public Key Encryption Syntax
	Chosen-Plaintext Attacks
	Recap CPA-Security (Symmetric Key Crypto)
	Chosen-Plaintext Attacks
	CPA-Security (PubK A,Π LR−cpa n)
	CPA-Security (Single Message)
	Private Key Crypto
	Public Key Crypto
	Encrypting Longer Messages
	Chosen Ciphertext Attacks
	Recap CCA-Security (Symmetric Key Crypto)
	Recap CCA-Security 𝑃𝑟𝑖𝑣𝐾 𝐴,Π 𝑐𝑐𝑎 𝑛
	CCA-Security (PubK A,Π cca n)
	Encrypting Longer Messages
	Encrypting Longer Messages
	Encrypting Longer Messages
	Achieving CPA and CCA-Security
	Key Encapsulation Mechanism (KEM)
	KEM CCA-Security (KEM A,Π cca n)
	CCA-Secure Encryption from CCA-Secure KEM
	CCA-Secure KEM in the Random Oracle Model
	Using a CCA-Secure KEM
	RSA-OAEP �(Optimal Asymmetric Encryption Padding)
	Recap RSA-Assumption
	RSA-OAEP �(Optimal Asymmetric Encryption Padding)
	PKCS #1 v2.0
	PKCS #1 v2.0 (Bad Implementation)
	PKCS #1 v2.0 (Attack)

