Cryptography
 CS 555

Week 10:

- RSA
- Attacks on Plain RSA
- Discrete Log/DDH

Readings: Katz and Lindell Chapter 8.2-8.3,11.5.1

Recap

- Polynomial time algorithms (in bit lengths $\|\boldsymbol{a}\|,\|\boldsymbol{b}\|$ and $\|\mathbf{N}\|$) to do important computations on integers
- GCD(a,b)
- Find multiplicative inverse \mathbf{a}^{-1} of a such that $1=\left[a a^{-1} \bmod \mathbf{N}\right]$ (if it exists)
- PowerMod: [ab $\bmod \mathbf{N}]$
- Draw uniform sample from $\mathbb{Z}_{N}^{*}=\left\{x \in \mathbb{Z}_{N} \mid \operatorname{gcd}(N, x)=1\right\}$
- Fact: $\left[g^{x} \bmod N\right]=\left[g^{[x \bmod \phi(N)]} \bmod N\right]$ where $\boldsymbol{\phi}(N)=\left|\mathbb{Z}_{N}^{*}\right|$
- Proof: Group Theory
- Chinese Remainder Theorem

CS 555: Week 10: Topic 1 Finding Prime Numbers, RSA

RSA Key-Generation

KeyGeneration(1 ${ }^{\text {n }}$)

Step 1: Pick two random n -bit primes p and q
Step 2: Let $\mathrm{N}=\mathrm{pq}, \phi(N)=(p-1)(q-1)$
Step 3: ...

Question: How do we accomplish step one?

Bertrand's Postulate

Theorem 8.32. For any $\mathrm{n}>1$ the fraction of n -bit integers that are prime is at least $1 / 3 n$.

```
GenerateRandomPrime(1')
For i=1 to 3n}\mp@subsup{n}{}{2
    p}<<{0,1\mp@subsup{}}{}{n-1
    p\leftarrow1|p'
    if isPrime(p) then
        return p
return fail
```


Can we do this in polynomial time?

```
if isPrime(p) then return \(p\)
return fail
```


Bertrand's Postulate

Theorem 8.32. For any $n>1$ the fraction of n-bit integers that are prime is at least $1 / 3 n$.
Assume for now that we can run isPrime(p). What are the

GenerateRandomPrime(1 ${ }^{n}$)
For $\mathrm{i}=1$ to $3 \mathrm{n}^{2}$:
$p^{\prime} \leftarrow\{0,1\}^{n-1}$
$p \leftarrow 1 \| p^{\prime}$
if isPrime (p) then return p
return fail
odds that the algorithm fails?

On each iteration the probability that p is not a prime is $\left(1-\frac{1}{3 n}\right)$

We fail if we pick a non-prime in all $3 n^{2}$ iterations. The probability of failure is at most

$$
\left(1-\frac{1}{3 n}\right)^{3 n^{2}}=\left(\left(1-\frac{1}{3 n}\right)^{3 n}\right)^{n} \leq e^{-n}
$$

isPrime(p): Miller-Rabin Test

- We can check for primality of p in polynomial time in $\|p\|$.

Theory: Deterministic algorithm to test for primality.

- See breakthrough paper "Primes is in P"
- https://www.cse.iitk.ac.in/users/manindra/algebra/primality v6.pdf

Practice: Miller-Rabin Test (randomized algorithm)

- Guarantee 1: If p is prime then the test outputs YES
- Guarantee 2: If p is not prime then the test outputs NO (except with negligible probability).

The "Almost" Miller-Rabin Test

Input: Integer N and parameter 1^{t}
Output: "prime" or "composite"
for $\mathrm{i}=1$ to t :
$a \leftarrow\{1, \ldots, N-1\}$
if $a^{N-1} \neq 1 \bmod \mathrm{~N}$ then return "composite"
Return "prime"
Claim: If N is prime then algorithm always outputs "prime"
Proof: For any a $\in\{1, \ldots, \mathrm{~N}-1\}$ we have $a^{N-1}=a^{\phi(N)}=1 \bmod N$

$$
\phi(N)=N-1 \text { for primes } \mathrm{N}
$$

The "Almost" Miller-Rabin Test

Input: Integer N and parameter 1^{t} Output: "prime" or "composite" for $\mathrm{i}=1$ to t :
$a \leftarrow\{1, \ldots, N-1\} / /$ random
if $a^{N-1} \neq 1 \bmod \mathrm{~N}$ then return "composi+
Return "prime"

Fact: If N is composite and not a Carmichael number then the algorithm outputs "composite" with probability

$$
1-2^{-t}
$$

Miller-Rabin Primality Test

Input: Integer N and parameter $1^{\text {t }}$
Output: "prime" or "composite"
If Even(\mathbf{N}) or PerfectPower(\mathbf{N}) return "composite"
Else find u (odd) and $r \geq 1$ s.t. $\mathrm{N}-1=2^{r} u$
for $\mathrm{j}=1$ to t :
pick a in [2, $\mathrm{N}-2$] randomly
if $a^{u} \neq \pm 1 \bmod \mathrm{~N}$ and $a^{2^{i} u} \neq-1 \bmod \mathrm{~N}$ for all $1 \leq i \leq r-1$ return "composite"
Return "prime"

Miller-Rabin Primality Test

Input: Integer N and parameter 1^{t}
Output: "prime" or "composite"
If Even(\mathbf{N}) or PerfectPower(\mathbf{N}) return "compc
Else find u (odd) and $r \geq 1$ s.t. $\mathrm{N}-1=2^{r} u$
for $\mathrm{j}=1$ to t :
pick a in [2,N-2] randomly
if $a^{u} \neq \pm 1 \bmod \mathrm{~N}$ and $a^{2^{i} u} \neq-1 \bmod \mathrm{~N}$ for all $1 \leq i \leq r-1$
return "composite"
Return "prime"

Miller-Rabin Primality Test

If N is prime then:

$\left(a^{2^{r-1} u}\right)^{2}=a^{N-1} \bmod N$
 $=1 \quad \bmod N$

Input: Integer N and parameter $1^{\text {t }}$
Output: "prime" or "composite"
If Even(\mathbf{N}) or PerfectPower(\mathbf{N}) return "composits
Else find u (odd) and $r \geq 1$ s.t. $\mathrm{N}-1=2^{r} u$
for $\mathrm{j}=1$ to t :
pick a in [2, N-2] randomly
if $a^{u} \neq \pm 1 \bmod \mathrm{~N}$ and $a^{2^{i} u} \neq-1 \bmod \mathrm{~N}$ for all $1 \leq i \leq r-1$
return "composite"
Return "prime"

$$
a^{2^{i} u}-1=\left(a^{2^{i-1} u}-1\right)\left(a^{2^{i-1} u}+1\right)
$$

Miller-Rabin Primality Test

Input: Integer N and p Output: "prime" or "cc If Even(\mathbf{N}) or PerfectP Else find u (odd) and r

If N is prime we won't return composite

$$
\begin{gathered}
0=\left(a^{2^{r} u}-1\right)=\left(a^{2^{r-1} u}-1\right)\left(a^{2^{r-1} u}+1\right) \\
=\cdots=\left(a^{2^{r-2} u}-1\right)\left(a^{2^{r-2} u}+1\right)\left(a^{2^{r-1} u}+1\right)
\end{gathered}
$$ for $\mathrm{j}=1$ to t : pick a in [2, $\mathrm{N}-2$] randomly

if $a^{u} \neq \pm 1 \bmod \mathrm{~N}$ and $a^{2^{i} u} \neq-1 \bmod \mathrm{~N}$ for all $1 \leq i \leq r-1$ return "composite"
Return "prime"

$$
a^{2^{i} u}-1=\left(a^{2^{i-1} u}-1\right)\left(a^{2^{i-1} u}+1\right)
$$

Miller-Rabin Primality Test

Input: Integer N and para Output: "prime" or "coml If Even(\mathbf{N}) or PerfectPow Else find u (odd) and $r \geq$ If N is prime we won't return composite

$$
0=\left(a^{2^{r} u}\right)-1=\cdots=\left(a^{u}-1\right) \prod_{i=0}^{i-1}\left(a^{2^{i} u}+1\right)
$$ for $\mathrm{j}=1$ to t : pick a in [2, $\mathrm{N}-2$] randomly if $a^{u} \neq \pm 1 \bmod \mathrm{~N}$ and $a^{2^{i} u} \neq-1 \bmod \mathrm{~N}$ for all $1 \leq i \leq r-1$ return "composite"

Return "prime"

$$
a^{2^{i} u}-1=\left(a^{2^{i-1} u}-1\right)\left(a^{2^{i-1} u}+1\right)
$$

Miller-Rabin Fone of these factors must be $0(\bmod N)$

Input: Integer N and para Output: "prime" or "coml If Even(\mathbf{N}) or PerfectPow Else find u (odd) and $r \geq$ If N is prime we won't return mposite $0=\left(a^{2^{r} u}\right)-1=\cdots=\left(a^{u}-1\right) \prod_{i=0}^{r-1}\left(a^{2^{i} u}+1\right)$ for $\mathrm{j}=1$ to t : pick a in [2, $\mathrm{N}-2$] randomly if $a^{u} \neq \pm 1 \bmod \mathrm{~N}$ and $a^{2^{i} u} \neq-1 \bmod \mathrm{~N}$ for all $1 \leq i \leq r-1$ return "composite"
Return "prime"

$$
a^{2^{i} u}-1=\left(a^{2^{i-1} u}-1\right)\left(a^{2^{i-1} u}+1\right)
$$

Miller-Rabin Primality Test

Input: Integer N and parameter 1^{t}
Output: "prime" or "composite"
If Even(\mathbf{N}) or PerfectPower(\mathbf{N}) return "composite"
Else find u (odd) and $r \geq 1$ s.t. $\mathrm{N}-1=2^{r} u$
for $\mathrm{j}=1$ to t :
if $a^{u} \neq \pm 1 \bmod \mathrm{~N}$ and $a^{2^{i} u} \neq-1 \bmod \mathrm{~N}$ for all $1 \leq i \leq r-1$
return "composite"
Return "prime"
Claim: If N is composite then at most $1 / 4$ choices of random value a in [2,n-1] will pass the test

Miller-Rabin Primality Test

Input: Integer N and parameter 1^{t}
Output: "prime" or "composite"
If Even(\mathbf{N}) or PerfectPower(\mathbf{N}) return "composite"
Else find u (odd) and $r \geq 1$ s.t. $\mathrm{N}-1=2^{r} u$
for $\mathrm{j}=1$ to t :
if $a^{u} \neq \pm 1 \bmod \mathrm{~N}$ and $a^{2^{i} u} \neq-1 \bmod \mathrm{~N}$ for all $1 \leq i \leq r-1$
return "composite" Claim: If N is composite then we return
Return "prime"

Back to RSA Key-Generation

KeyGeneration(1 ${ }^{\text {n }}$)

Step 1: Pick two random n -bit primes p and q
Step 2: Let $\mathrm{N}=\mathrm{pq}, \phi(N)=(p-1)(q-1)$
Step 3: Pick e > 1 such that $\operatorname{gcd}(\mathrm{e}, \phi(N))=1$
Step 4: Set $\mathrm{d}=\left[\mathrm{e}^{-1} \bmod \phi(N)\right] \quad$ (secret key)
Return: $\mathrm{N}, \mathrm{e}, \mathrm{d}$

- How do we find d?
- Answer: Use extended gcd algorithm to find $\mathrm{e}^{-1} \bmod \phi(N)$.

Back to RSA Key-Generation

KeyGeneration(1n)

Step 1: Pick two random n -bit primes p and q
Step 2: Let $\mathrm{N}=\mathrm{pq}, \phi(N)=(p-1)(q-1)$
Step 3: Pick e>1 such that $\operatorname{gcd}(\mathrm{e}, \phi(N))=1$
Step 4: Set $d=\left[e^{-1} \bmod \phi(N)\right] \quad$ (secret key)
Return: $\mathrm{N}, \mathrm{e}, \mathrm{d}$

- What is the probability that $\mathrm{e}^{-1} \bmod \phi(N)$ exists when we pick e randomly?
- Hint: $\phi(\phi(N))$ choices of e in $\mathbb{Z}_{\phi(N)}$ have a multiplicative inverse $\bmod \phi(N)$.

Be Careful Where You Get Your "Random Bits!"

```
int getRandomNumber()
{
    return 4; // chosen by fair dice roll.
        // guaranteed to be random.
}
```

- RSA Keys Generated with weak PRG
- Implementation Flaw
- Unfortunately Commonplace
- Resulting Keys are Vulnerable
- Sophisticated Attack
- Coppersmith's Method

```
(ars TECHNICA a mizgil tech sclence policy chrs gammggculure forums 三
```


Millions of high-security crypto keys crippled by newly discovered flaw

Factorization weakness lets attackers impersonate key holders and decrypt their data. DAN GOODIN - 10/16/2017, 7:00 AM

(Plain) RSA Encryption

- Public Key: $\mathrm{PK}=(\mathrm{N}, \mathrm{e})$
- Message $m \in \mathbb{Z}_{N}$

$$
\mathrm{Enc}_{\mathrm{PK}}(\mathrm{~m})=\left[m^{e} \bmod \mathrm{~N}\right]
$$

- Remark: Encryption is efficient if we use the power mod algorithm.

(Plain) RSA Decryption

- Secret Key: SK=(N,d)
- Ciphertext $c \in \mathbb{Z}_{\mathrm{N}}$

$$
\operatorname{Dec}_{\mathrm{SK}}(\mathrm{c})=\left[c^{d} \bmod \mathrm{~N}\right]
$$

- Remark 1: Decryption is efficient if we use the power mod algorithm.
- Remark 2: Suppose that $m \in \mathbb{Z}_{\mathrm{N}}^{*}$ and let $\mathrm{c}=\mathrm{Enc}_{\mathrm{PK}}(\mathrm{m})=\left[m^{e} \bmod \mathrm{~N}\right]$

$$
\begin{aligned}
\operatorname{Dec}_{\mathrm{SK}}(\mathrm{c}) & =\left[\left(m^{e}\right)^{d} \bmod \mathrm{~N}\right]=\left[m^{e d} \bmod \mathrm{~N}\right] \\
= & {\left.\left[m^{[e d} \bmod \phi(N)\right] \bmod \mathrm{N}\right] } \\
& =\left[m^{1} \bmod \mathrm{~N}\right]=m
\end{aligned}
$$

Chinese Remainder Theorem

Theorem: Let $\mathrm{N}=\mathrm{pq}(\boldsymbol{w h e r e} \operatorname{gcd}(\mathrm{p}, \mathrm{q})=1)$ be given and let $f: \mathbb{Z}_{\mathrm{N}} \rightarrow \mathbb{Z}_{p} \times$ \mathbb{Z}_{q} be defined as follows

$$
f(x)=([x \bmod p],[x \bmod q])
$$

then

- f is a bijective mapping (invertible)
- f and its inverse $f^{-1}: \mathbb{Z}_{p} \times \mathbb{Z}_{q} \rightarrow \mathbb{Z}_{\mathrm{N}}$ can be computed efficiently
- $f(x+y)=f(x)+f(y)$
- The restriction of f to \mathbb{Z}_{N}^{*} yields a bijective mapping to $\mathbb{Z}_{p}^{*} \times \mathbb{Z}_{q}^{*}$
- For inputs $x, y \in \mathbb{Z}_{N}^{*}$ we have $f(x) f(y)=f(x y)$

RSA Decryption

- Secret Key: SK=(N,d)
- Ciphertext $\mathrm{c} \in \mathbb{Z}_{\mathrm{N}}$

$$
\operatorname{Dec}_{\mathrm{sk}}(\mathrm{c})=\left[c^{d} \bmod \mathrm{~N}\right]
$$

- Remark 1: Decryption is efficient if we use the power mod algorithm.
- Remark 2: Suppose that $m \in \mathbb{Z}_{N}^{*}$ and let $c=\operatorname{Enc}_{\mathrm{PK}}(m)=\left[m^{e} \bmod N\right]$ then

$$
\operatorname{Dec}_{\mathrm{sk}}(\mathrm{c})=m
$$

- Remark 3: Even if $m \in \mathbb{Z}_{N} \backslash \mathbb{Z}_{N}^{*}$ and let $c=\operatorname{Enc}_{\text {PK }}(m)=\left[m^{e} \bmod N\right]$ then

$$
\operatorname{Dec}_{\mathrm{sk}}(\mathrm{c})=m
$$

- Use Chinese Remainder Theorem to show this

$$
\begin{aligned}
e d= & 1+k(p-1)(q-1) \\
& \rightarrow \mathrm{f}\left(c^{d}\right)=\left(\left[m^{e d} \bmod \mathrm{p}\right],\left[m^{e d} \bmod \mathrm{q}\right]\right)=\left(\left[m^{1} \bmod \mathrm{p}\right],\left[m^{1} \bmod \mathrm{q}\right]\right) \\
& \rightarrow f^{-1}\left(\mathrm{f}\left(c^{d}\right)\right)=f^{-1}\left(\left[m^{1} \bmod \mathrm{p}\right],\left[m^{1} \bmod \mathrm{q}\right]\right)=m
\end{aligned}
$$

Plain RSA (Summary)

- Public Key (pk): $\mathrm{N}=\mathrm{pq}$, e such that $\operatorname{GCD}(\mathrm{e}, \phi(N))=1$
- $\phi(N)=(p-1)(q-1)$ for distinct primes p and q
- Secret $\operatorname{Key}(\mathrm{sk}): \mathrm{N}, \mathrm{d}$ such that $\mathrm{ed}=1 \bmod \phi(N)$
- Encrypt(pk=(N,e),m) $=m^{e} \bmod N$
- $\operatorname{Decrypt}(\mathrm{sk}=(\mathrm{N}, \mathrm{d}), \mathrm{c})=c^{d} \bmod N$
- Decryption Works because $\left[c^{d} \bmod \mathrm{~N}\right]=\left[m^{e d} \bmod \mathrm{~N}\right]=\left[m^{[e d \bmod \boldsymbol{\phi}(N)]} \bmod \mathrm{N}\right]=[m \bmod \mathrm{~N}]$

Factoring Assumption

Let GenModulus $\left(1^{n}\right)$ be a randomized algorithm that outputs ($N=p q, p, q$) where p and q are n-bit primes (except with negligible probability negl(n)).

Experiment FACTOR $_{\mathrm{A}, \mathrm{n}}$

1. ($N=p q, p, q$) \leftarrow GenModulus $\left(1^{n}\right)$
2. Attacker A is given N as input
3. Attacker A outputs $\mathrm{p}^{\prime}>1$ and $\mathrm{q}^{\prime}>1$
4. Attacker A wins if $\mathrm{N}=\mathrm{p}^{\prime} \mathrm{q}^{\prime}$.

Factoring Assumption

Experiment FACTOR ${ }_{\text {A,n }}$

- Necessary for security of RSA.
- Not known to be sufficient.

1. ($N=p q, p, q$) $\leftarrow G e n M o d u l u s\left(1^{n}\right)$
2. Attacker A is given N as input
3. Attacker A outputs $\mathrm{p}^{\prime}>1$ and $\mathrm{q}^{\prime}>1$
4. Attacker A wins $\left(F_{A C T O R}^{A, n} 1=1\right)$ if and only if $N=p^{\prime} q^{\prime}$.

$$
\forall P P T A \exists \mu \text { (negligible) s.t } \operatorname{Pr}\left[\mathrm{FACTOR}_{\mathrm{A}, \mathrm{n}}=1\right] \leq \mu(n)
$$

RSA-Inversion Assumption

RSA-Experiment: RSA-INV $V_{A, n}$

1. Run KeyGeneration $\left(1^{n}\right)$ to obtain ($\mathrm{N}, \mathrm{e}, \mathrm{d}$)
2. Pick uniform $y \in \mathbb{Z}_{N}^{*}$
3. Attacker A is given $\mathrm{N}, \mathrm{e}, \mathrm{y}$ and outputs $\mathrm{x} \in \mathbb{Z}_{\mathrm{N}}^{*}$
4. Attacker wins $\left(R S A-I N V_{\mathrm{A}, \mathrm{n}}=1\right)$ if $x^{e}=y \bmod \mathrm{~N}$

$$
\forall P P T A \exists \mu \text { (negligible) s.t } \operatorname{Pr}\left[\mathrm{RSA}^{-I N V A}, \mathrm{n}, 1\right] \leq \mu(n)
$$

RSA-Assumption

RSA-Experiment: RSA-INV $V_{A, n}$

1. Run KeyGeneration(1 ${ }^{\text {n }}$) to obtain ($\mathbf{N}, \mathbf{e}, \mathrm{d}$)
2. Pick uniform $y \in \mathbb{Z}_{N}^{*}$
3. Attacker A is given $\mathrm{N}, \mathrm{e}, \mathrm{y}$ and outputs $\mathrm{x} \in \mathbb{Z}_{\mathrm{N}}^{*}$
4. Attacker wins $\left(R S A-I N V_{\mathrm{A}, \mathrm{n}}=1\right)$ if $x^{e}=y \bmod \mathrm{~N}$

$$
\forall P P T A \exists \mu \text { (negligible) s.t } \operatorname{Pr}\left[\mathrm{RSA}_{\left.-1 \mathrm{NVA}_{, \mathrm{n}}=1\right] \leq \mu(n)}\right.
$$

- Plain RSA Encryption behaves like a one-way function
- Attacker cannot invert encryption of random message

Discussion of RSA-Assumption

- Plain RSA Encryption behaves like a one-way-function
- Decryption key is a "trapdoor" which allows us to invert the OWF
- RSA-Assumption \rightarrow OWFs exist

Recap

- Plain RSA
- Public Key (pk): $\mathrm{N}=\mathrm{pq}$, e such that $\operatorname{GCD}(\mathrm{e}, \phi(N))=1$
- $\phi(N)=(p-1)(q-1)$ for distinct primes p and q
- Secret $\operatorname{Key}(\mathrm{sk}): \mathrm{N}, \mathrm{d}$ such that $\mathrm{ed}=1 \bmod \phi(N)$
- Encrypt(pk=(N,e),m) = $m^{e} \bmod N$
- $\operatorname{Decrypt}(\mathrm{sk}=(\mathrm{N}, \mathrm{d}), \mathrm{c})=c^{\boldsymbol{d}} \bmod N$
- Decryption Works because $\left[c^{d} \bmod \mathrm{~N}\right]=\left[m^{e d} \bmod \mathrm{~N}\right]=\left[m^{[e d \bmod \boldsymbol{\phi}(N)]} \bmod \mathrm{N}\right]=[\operatorname{m\operatorname {mod}\mathrm {N}]}$

Mathematica Demo

https://www.cs.purdue.edu/homes/jblocki/courses/555 Spring17/slid es/Lecture24Demo.nb

http://develop.wolframcloud.com/app/

Note: Online version of mathematica available at https://sandbox.open.wolframcloud.com (reduced functionality, but can be used to solve homework bonus problems)

(Toy) RSA Implementation in Mathematica

(* Random Seed 123456 is not secure, but it allows us to repeat the experiment *) SeedRandom[123456]
(* Step 1: Generate primes for an RSA key *)
$p=$ RandomPrime[\{10^1000, 10^1050\}];
$\mathrm{q}=$ RandomPrime[\{10^1000, 10^1050\}];
NN = p q; (*Symbol N is protected in mathematica *) phi $=(p-1)(q-1)$;

(Toy) RSA Implementation in Mathematica

(* Step 1.A: Find e *)

GCD[phi,7]

Output: 7
(* GCD[phi,7] is not 1 , so he have to try a different value of e *)

GCD[phi,3]

Output: 1
(* We can set e=3 *)
e=3;

(Toy) RSA Implementation in Mathematica

(* Step 1.B find d s.t. ed = 1 mod N by using the extended GCD algorithm *)
(* Mathematica is clever enough to do this automatically *)
Solve[e $x==1$, Modulus->phi]
Output:
\{\{x->36469680590663028301700626132883867272718728905205088...
$394069421778610209425624440980084481398131\}\}$
(* We can now set $d=x$ *) $\mathrm{d}=364696805$... 8131;

(Toy) RSA Implementation in Mathematica

(* Double Check $\left.1=[\operatorname{ed} \bmod \phi(N)]^{*}\right)$
Mod [ed, (p-1)(q-1)]
Output: 1
(* Encrypt the message 200, c= $\mathrm{m}^{\wedge} \mathrm{e} \bmod \mathrm{N} *$)
m = 200;

PowerMod[m,e,NN]
Output: 8000000

(Toy) RSA Implementation in Mathematica

(* Encrypt the message 200, c= m^e mod N *)
m = 200;

PowerMod[m,e,NN]
Output: 8000000
(* Hm...That doesn't seem too secure *)
CubeRoot[PowerMod[m,e,NN]]
Output: 200
(* Moral: if $m^{e}<N$ then Plain RSA does not hide the message $\mathrm{m} .{ }^{*}$)

RSA Implementation in Mathematica

(* Encrypt a larger message, $c=m^{\wedge} e \bmod N *$)
SeedRandom[1234567];
$\mathrm{m} 2=$ RandomInteger[\{10^1500,10^1501\}];
c=PowerMod[m2,e,NN]
Output: 405215834903772786......... 388068292685976133
(* Does it Decrypt Properly? *) PowerMod[c,d, NN]-m2
Output: 0
(* Yes! *)

CS 555: Week 10: Topic 2 Attacks on Plain RSA

(Plain) RSA Discussion

- We have not introduced security models like CPA-Security or CCAsecurity for Public Key Cryptosystems
- However, notice that (Plain) RSA Encryption is stateless and deterministic.
\rightarrow Plain RSA is not secure against chosen-plaintext attacks
- As we will see Plain RSA is also highly vulnerable to chosen-ciphertext attacks

(Plain) RSA Discussion

- However, notice that (Plain) RSA Encryption is stateless and deterministic.
\rightarrow Plain RSA is not secure against chosen-plaintext attacks
- Remark: In a public key setting the attacker who knows the public key always has access to an encryption oracle
- Encrypted messages with low entropy are particularly vulnerable to bruteforce attacks
- Example: If $m<B$ then attacker can recover m from $\mathrm{c}=\operatorname{Enc}_{\mathrm{pk}}(m)$ after at most B queries to encryption oracle (using public key)

Chosen Ciphertext Attack on Plain RSA

1. Attacker intercepts ciphertext $c=\left[m^{e} \bmod \mathrm{~N}\right]$
2. Attacker generates ciphertext c^{\prime} for secret message 2 m as follows
3. $\mathrm{c}^{\prime}=\left[\left(c 2^{e}\right) \bmod \mathrm{N}\right]$
4. $=\left[\left(m^{e} 2^{e}\right) \bmod \mathrm{N}\right]$
5. $\quad=\left[(2 m)^{e} \bmod \mathrm{~N}\right]$
6. Attacker asks for decryption of $\left[c 2^{e} \bmod \mathrm{~N}\right]$ and receives 2 m .
7. Divide by two to recover message

Above Example: Shows plain RSA is highly vulnerable to ciphertexttampering attacks

More Weaknesses: Plain RSA with small e

-(Small Messages) If $\mathrm{m}^{\mathrm{e}}<\mathrm{N}$ then we can decrypt $\mathrm{c}=\mathrm{m}^{\mathrm{e}} \bmod \mathrm{N}$ directly e.g., $m=c^{(1 / e)}$

- (Partially Known Messages) If an attacker knows first 1-(1/e) bits of secret message $m=m_{1} \|$? ? then he can recover m given $\operatorname{Encrypt}(p k, m)=m^{e} \bmod N$

Theorem[Coppersmith]: If $p(x)$ is a polynomial of degree e then in polynomial time (in $\log (N), 2^{e}$) we can find all m such that $p(m)=0 \bmod$ N and $|m|<N^{(1 / e)}$

More Weaknesses: Plain RSA with small e

Theorem[Coppersmith]: If $p(x)$ is a polynomial of degree e then in polynomial time (in $\log (N)$, e) we can find all m such that $p(m)=0 \bmod$ N and $|\mathrm{m}|<\mathrm{N}^{(1 / \mathrm{e})}$

Example: $\mathrm{e}=3, m=m_{1} \| m_{2}$ and attacker knows $m_{1}(2 k$ bits $)$ and $\boldsymbol{c}=$ $\left(m_{1} \| m_{2}\right)^{e} \bmod \mathrm{~N}$, but not $m_{2}(k$ bits $)$

$$
p(x)=\left(2^{k} m_{1}+x\right)^{3}-c
$$

Polynomial has a small root mod N at $\mathrm{x}=m_{2}$ and coppersmith's method will find it!

More Weaknesses: Plain RSA with small e

Theorem[Coppersmith]: Can also find small roots of bivariate polynomial p($\boldsymbol{x}_{1}, \boldsymbol{x}_{2}$)

- Similar Approach used to factor weak RSA secret keys $N=q_{1} q_{2}$
- Weak PRG \rightarrow Can guess many of the bits of prime factors
- Obtain $\widetilde{q_{1}} \approx q_{1}$ and $\widetilde{q_{2}} \approx q_{2}$
- Coppersmith Attack: Define polynomial $p(.,$.$) as follows$

$$
\mathrm{p}\left(x_{1}, x_{2}\right)=\left(x_{1}+\widetilde{q_{1}}\right)\left(x_{2}+\widetilde{q_{2}}\right)-N
$$

- Small Roots of $\mathrm{p}\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right): x_{1}=q_{1}-\widetilde{q_{1}}$ and $x_{2}=q_{2}-\widetilde{q_{2}}$

COMPLETELY BROKEN

Millions of high-security crypto keys crippled by newly discovered flaw

Factorization weakness lets attackers impersonate key holders and decrypt their data. DAN GOODIN - 10/16/2017, 7:00 AM

Enlarge / 750,000 Estonian cards that look like this use a 2048 -bit RSA key that can be factored in a matter of days.

A Side Channel Attack on RSA with CRT

- Suppose that decryption is done via Chinese Remainder Theorem for speed.

$$
\operatorname{Dec}_{s k}(c)=c^{d} \bmod N \leftrightarrow\left(c^{d} \bmod p, c^{d} \bmod q\right)
$$

- Attacker has physical access to smartcard
- Can mess up computation of $\boldsymbol{c}^{\boldsymbol{d}} \boldsymbol{\operatorname { m o d } \boldsymbol { p }}$
- Response is $\mathrm{R} \leftrightarrow\left(\boldsymbol{r}, \boldsymbol{c}^{\boldsymbol{d}} \boldsymbol{\operatorname { m o d }} \boldsymbol{q}\right)$
- $\mathrm{R}-\mathrm{m} \leftrightarrow(\boldsymbol{r}-\boldsymbol{m} \bmod \boldsymbol{p}, 0 \bmod \boldsymbol{q})$
- $\operatorname{GCD}(\mathrm{R}-\mathrm{m}, \mathrm{N})=\mathrm{q}$

Recovering Encrypted Message faster than Brute-Force

Brute Force Attack: Suppose we know the secret message $m<2^{n}$
We can recover m from ciphertext $c=m^{e} \bmod N$ in time 2^{n}
(Solution: Search from $\mathbf{m}^{\prime}<2^{\mathrm{n}}$ s.t. $\mathbf{c =}=\mathbf{m}^{\boldsymbol{e}} \bmod \mathbf{N}$)
Claim: Let $\mathrm{m}<2^{\mathrm{n}}$ be a secret message. For some constant $\alpha=\frac{1}{2}+\varepsilon$. We can recover m in in time $T=2^{\alpha n}$ with high probability.

Roughly \sqrt{B} steps to find a secret message $\mathbf{m}<\mathbf{B}$
Similar to birthday attack

Fixes for Plain RSA

- Approach 1: RSA-OAEP
- Incorporates random nonce r
- CCA-Secure (in random oracle model)
- Approach 2: Use RSA to exchange symmetric key for Authenticated Encryption scheme (e.g., AES)
- Key Encapsulation Mechanism (KEM)
- Alice has public key (N, e)
- Bob picks random $r \in \mathbb{Z}_{N}$ and sends $c=r^{e} \bmod N$ to Alice
- Alice and Bob use the symmetric secret key $K=H(r)$ for authenticated encryption
- Intuition:
- If attacker never queries $H(r)$ then K can be viewed as truly random secret key (Random Oracle Model)
- If attacker does query $\mathrm{H}(r)$ with non-negligible probability then we can win RSA-Inversion game using A
- More details in future lectures...stay tuned!

Recap and Announcements

- Plain RSA
- Primality Tests and Key Generation
- Encryption/Decryption
- Factoring/RSA-Inversion
- Attacks on Plain RSA
- Fixes: RSA-OAEP, Key-Exchange + Authenticated Encryption (more coming)
- Announcements
- Quiz 4 released today (Due: Saturday (3/27) at 11:30PM on Brightspace)
- Homework 4 released (Due: April 8 ${ }^{\text {th }}$ at 11:59 PM on Gradescope)
- Q4: Programming Assignment
- Q2: Programming Assignment or Written Solution (You pick!)

CS 555: Week 10: Topic 3
Discrete Log + DDH Assumption

(Recap) Finite Groups

Definition: A (finite) group is a (finite) set \mathbb{G} with a binary operation o (over G) for which we have

- (Closure:) For all $g, h \in \mathbb{G}$ we have $g \circ h \in \mathbb{G}$
- (Identity:) There is an element $e \in \mathbb{G}$ such that for all $g \in \mathbb{G}$ we have

$$
\mathrm{g} \circ \mathrm{e}=\mathrm{g}=\mathrm{e} \circ \mathrm{~g}
$$

- (Inverses:) For each element $g \in \mathbb{G}$ we can find $h \in \mathbb{G}$ such that $g \circ h=e$. We say that h is the inverse of g.
- (Associativity:) For all $g_{1}, g_{2}, g_{3} \in \mathbb{G}$ we have

$$
\left(g_{1} \circ g_{2}\right) \circ g_{3}=g_{1} \circ\left(g_{2} \circ g_{3}\right)
$$

We say that the group is abelian if

- (Commutativity:) For all $\mathrm{g}, \mathrm{h} \in \mathbb{G}$ we have $\mathrm{g} \circ \mathrm{h}=\mathrm{h} \circ \mathrm{g}$

Finite Abelian Groups (Examples)

- Example 1: \mathbb{Z}_{N} when o denotes addition modulo N
- Identity: 0 , since $0 \circ x=[0+x \bmod N]=[x \bmod N]$.
- Inverse of x ? Set $x^{-1}=N-x$ so that $\left[x^{-1}+x \bmod N\right]=[N-x+x \bmod N]=0$.
- Example 2: \mathbb{Z}_{N}^{*} when \circ denotes multiplication modulo N
- Identity: 1 , since $10 x=[1(x) \bmod N]=[x \bmod N]$.
- Inverse of x ? Run extended GCD to obtain integers a and b such that

$$
a x+b N=\operatorname{gcd}(x, N)=1
$$

Observe that: $x^{-1}=a$. Why?

Cyclic Group

- Let \mathbb{G} be a group with order $m=|\mathbb{G}|$ with a binary operation $\circ($ over $G)$ and let $\mathrm{g} \in \mathbb{G}$ be given consider the set

$$
\langle g\rangle=\left\{g^{0}, g^{1}, g^{2}, \ldots\right\}
$$

Fact: $\langle g\rangle$ defines a subgroup of \mathbb{G}.

- Identity: g^{0}
- Closure: $g^{i} \circ g^{j}=g^{i+j} \in\langle g\rangle$
- g is called a "generator" of the subgroup.

Fact: Let $\mathrm{r}=|\langle g\rangle|$ then $g^{i}=g^{j}$ if and only if $i=j$ mod r. Also m is divisible by r .

Finite Abelian Groups (Examples)

Fact: Let p be a prime then \mathbb{Z}_{p}^{*} is a cyclic group of order $\mathrm{p}-1$.

- Note: Number of generators g s.t. of $\langle g\rangle=\mathbb{Z}_{p}^{*}$ is $\phi(p-1)$

Example (non-generator): $p=7, \mathrm{~g}=2$

$$
<2>=\{1,2,4\}
$$

Example (generator): $\mathrm{p}=7, \mathrm{~g}=5$

$$
<2>=\{1,5,4,6,2,3\}
$$

Discrete Log Experiment $\operatorname{DLog}_{A, G}(n)$

1. Run $G\left(1^{n}\right)$ to obtain a cyclic group \mathbb{G} of order q (with $\|q\|=n$) and a generator g such that $<\mathrm{g}>=\mathbb{G}$.
2. Select $h \in \mathbb{G}$ uniformly at random.
3. Attacker A is given \mathbb{G}, q, g, h and outputs integer x.
4. Attacker wins $\left(\operatorname{DLog}_{A, G}(n)=1\right)$ if and only if $g^{x}=h$.

We say that the discrete log problem is hard relative to generator G if

$$
\forall P P T A \exists \mu \text { (negligible) s.t } \operatorname{Pr}\left[\operatorname{DLog}_{\mathrm{A}, \mathrm{n}}=1\right] \leq \mu(n)
$$

Diffie-Hellman Problems

Computational Diffie-Hellman Problem (CDH)

- Attacker is given $\mathrm{h}_{1}=g^{x_{1}} \in \mathbb{G}$ and $\mathrm{h}_{2}=g^{x_{2}} \in \mathbb{G}$.
- Attackers goal is to find $g^{x_{1} x_{2}}=\left(\mathrm{h}_{1}\right)^{x_{2}}=\left(\mathrm{h}_{2}\right)^{x_{1}}$
- CDH Assumption: For all PPT A there is a negligible function negl upper bounding the probability that A succeeds with probability at most negl(n).
Decisional Diffie-Hellman Problem (DDH)
- Let $\mathrm{z}_{0}=g^{x_{1} x_{2}}$ and let $\mathrm{z}_{1}=g^{r}$, where $\mathrm{x}_{1}, \mathrm{x}_{2}$ and r are random
- Attacker is given $g^{x_{1}}, g^{x_{2}}$ and z_{b} (for a random bit b)
- Attackers goal is to guess b
- DDH Assumption: For all PPT A there is a negligible function negl such that A succeeds with probability at most $1 / 2+$ negl(n).

Secure key-agreement with DDH

1. Alice publishes $g^{x_{A}}$ and Bob publishes $g^{x_{B}}$
2. Alice and Bob can both compute $K_{A, B}=g^{x_{B} x_{A}}$ but to Eve this key is indistinguishable from a random group element (by DDH)

Remark: Protocol is vulnerable to Man-In-The-Middle Attacks if Bob cannot validate $g^{x_{A}}$.

Can we find a cyclic group where DDH holds?

- Example 1: \mathbb{Z}_{p}^{*} where p is a random n -bit prime.
- CDH is believed to be hard
- DDH is *not* hard (Exercise 13.15)
- Theorem: Let $\mathrm{p}=\mathrm{rq}+1$ be a random n -bit prime where q is a large λ bit prime then the set of $\mathrm{r}^{\text {th }}$ residues modulo p is a cyclic subgroup of order q . Then $\mathbb{G}_{r}=\left\{\left[h^{r} \bmod p\right] \mid h \in \mathbb{Z}_{p}^{*}\right\}$ is a cyclic subgroup of \mathbb{Z}_{p}^{*} of order q.
- Remark 1: DDH is believed to hold for such a group
- Remark 2: It is easy to generate uniformly random elements of \mathbb{G}_{r}
- Remark 3: Any element (besides 1) is a generator of \mathbb{G}_{r}

Can we find a cyclic group where DDH holds?

- Theorem: Let $\mathrm{p}=\mathrm{rq}+1$ be a random n -bit prime where q is a large λ-bit prime then the set of rth residues modulo p is a cyclic subgroup of order q . Then $\mathbb{G}_{r}=\left\{\left[h^{r} \bmod p\right] \mid h \in \mathbb{Z}_{p}^{*}\right\}$ is a cyclic subgroup of \mathbb{Z}_{p}^{*} of order q .
- Closure: $h^{r} g^{r}=(h g)^{r}$
- Inverse of h^{r} is $\left(h^{-1}\right)^{r} \in \mathbb{G}_{r}$
- Size $\left(h^{r}\right)^{x}=h^{[r x \bmod r q]}=\left(h^{r}\right)^{x}=h^{r[x \bmod q]}=\left(h^{r}\right)^{[x \bmod q]} \bmod p$

Remark: Two known attacks on Discrete Log Problem for \mathbb{G}_{r} (Section 9.2).

- First runs in time $O(\sqrt{q})=O\left(2^{\lambda / 2}\right)$
- Second runs in time $2^{O\left(\sqrt[3]{n}(\log n)^{2 / 3}\right)}$

Can we find a cyclic group where DDH holds?

Remark: Two known attacks (Section 9.2).

- First runs in time $O(\sqrt{q})=O\left(2^{\lambda / 2}\right)$
- Second runs in time $2^{O\left(\sqrt[3]{n}(\log n)^{2 / 3}\right)}$, where n is bit length of p

Goal: Set λ and n to balance attacks

$$
\lambda=O\left(\sqrt[3]{n}(\log n)^{2 / 3}\right)
$$

How to sample $p=r q+1$?

- First sample a random λ-bit prime q and
- Repeatedly check if $r q+1$ is prime for a random $n-\lambda$ bit value r

Can we find a cyclic group where DDH holds?

Elliptic Curves Example: Let p be a prime ($p>3$) and let A, B be constants. Consider the equation

$$
y^{2}=x^{3}+A x+B \bmod p
$$

And let

$$
E\left(\mathbb{Z}_{p}\right)=\left\{(x, y) \in \mathbb{Z}_{p}^{2} \mid y^{2}=x^{3}+A x+B \bmod p\right\} \cup\{\mathcal{O}\}
$$

Note: \mathcal{O} is defined to be an additive identity $(x, y)+\mathcal{O}=(x, y)$

What is $\left(x_{1}, y_{1}\right)+\left(x_{2}, y_{2}\right)$?

Elliptic Curve Example

The line passing through $\left(\boldsymbol{x}_{1}, \boldsymbol{y}_{1}\right)$ and $\left(\boldsymbol{x}_{2}, \boldsymbol{y}_{2}\right)$ has the equation

$$
y=m\left(x-x_{1}\right)+y_{1} \bmod P
$$

Where the slope

$$
m=\left[\frac{y_{1}-y_{2}}{x_{1}-x_{2}} \bmod p\right]
$$

Elliptic Curve Example

Formally, let

$$
m=\left[\frac{y_{1}-y_{2}}{x_{1}-x_{2}} \bmod p\right]
$$

Be the slope. Then the line passing through ($\boldsymbol{x}_{1}, \boldsymbol{y}_{1}$) and ($\boldsymbol{x}_{2}, y_{2}$) has the equation

$$
y=m\left(x-x_{1}\right)+y_{1} \bmod P
$$

$$
\begin{aligned}
& x_{3}=\left[m^{2}-x_{1}-x_{2} \bmod p\right] \\
& y_{3}=\left[m\left(x_{3}-x_{1}\right)+y_{1} \bmod p\right]
\end{aligned}
$$

$$
\begin{aligned}
& \left(m\left(x-x_{1}\right)+y_{1}\right)^{2} \\
& =x^{3}+A x+B \bmod p
\end{aligned}
$$

Elliptic Curve Example

No third point R on the elliptic curve.
$P+Q=0$
(Inverse)

$$
P+Q+0=0
$$

Elliptic Curve Special Cases

No third point R on the elliptic curve.
$P+Q=0$
(Inverse)

Elliptic Curve Special Cases

Z+Z=R
How to find R?

$$
P+Q+0=0
$$

Can we find a cyclic group where DDH holds?

Elliptic Curves Example: Let p be a prime $(p>3)$ and let A, B be constants. Consider the equation

$$
y^{2}=x^{3}+A x+B \bmod p
$$

And let

$$
E\left(\mathbb{Z}_{p}\right)=\left\{(x, y) \in \mathbb{Z}_{p}^{2} \mid y^{2}=x^{3}+A x+B \bmod p\right\} \cup\{\mathcal{O}\}
$$

Fact: $E\left(\mathbb{Z}_{p}\right)$ defines an abelian group

- For appropriate curves the DDH assumption is believed to hold
- If you make up your own curve there is a good chance it is broken...
- NIST has a list of recommendations
- Bad Elliptic Curves:
- Order is $p, p+1$, order divides $p^{k}-1$ for "small" k, \ldots

Generic Group Model

- Suppose $p<2^{n}$ is a prime
- Fact: Every prime order group is isomorphic to $\mathbb{Z}_{p},+$
- Random (injective mapping) $\tau: \mathbb{Z}_{p} \rightarrow\{0,1\}^{n}$
- Access to Group via Two Oracles
- $\operatorname{Mult}(\tau(x), \tau(y))=\tau(x+y \bmod \mathrm{p})$
- Inverse $(\tau(x))=\tau(p-x)$
- Discrete Log Problem: Attacker is given $\mathrm{g}=\tau(1)$ and $\mathrm{g}=\tau(x)$ for a random $0 \leq \mathrm{x}<p$.
- Attacker Goal: Find x
- DDH Problem: Challenger picks random bit b and random values $0 \leq \mathrm{x}, \mathrm{y}, \mathrm{r}<p$
- Attacker is given $\mathrm{g}=\tau(1), \mathrm{g}=\tau(x), \mathrm{g}=\tau(y)$, and
- $\mathrm{g}=\tau(r) \quad$ if $\mathrm{b}=0$
- $\mathrm{g}=\tau(x y)$ if $\mathrm{b}=1$

Generic Group Model

- Suppose $p<2^{n}$ is a prime
- Fact: Every prime order group is isomorphic to $\mathbb{Z}_{p},+$
- Random (injective mapping) $\tau: \mathbb{Z}_{p} \rightarrow\{0,1\}^{n}$
- Access to Group via Two Oracles
- $\operatorname{Mult}(\tau(x), \tau(y))=\tau(x+y \bmod \mathrm{p})$
- Inverse $(\tau(x))=\tau(p-x)$
- Discrete Log Problem: Attacker is given $\mathrm{g}=\tau(1)$ and $\mathrm{g}=\tau(x)$ for a random $0 \leq \mathrm{x}<p$.
- Attacker Goal: Find x
- Fact: Any attacker A making at most q queries to group oracles finds x with probability at most $0\left(q / 2^{n / 2}\right)$
- Matching Attack: Birthday Bound
- Intuition: Suppose we know input/output pairs $\left(x_{1}, \tau\left(x_{1}\right)\right), \ldots\left(x_{i}, \tau\left(x_{i}\right)\right)$ but $\mathrm{x} \neq x_{1}, \ldots x_{i}$
- Can view x as a yet to be sampled element from $\mathbb{Z}_{p} \backslash\left\{x_{1}, \ldots x_{i}\right\}$

Generic Group Model

- Suppose $p<2^{n}$ is a prime
- Fact: Every prime order group is isomorphic to $\mathbb{Z}_{p},+$
- Random (injective mapping) τ : $\mathbb{Z}_{p} \rightarrow\{0,1\}^{n}$
- Access to Group via Two Oracles
- $\operatorname{Mult}(\tau(x), \tau(y))=\tau(x+y \bmod \mathrm{p})$
- Inverse $(\tau(x))=\tau(p-x)$
- DDH Problem: Challenger picks random bit b and random values $0 \leq \mathrm{x}, \mathrm{y}, \mathrm{r}<p$
- Attacker is given $\mathrm{g}=\tau(1), \mathrm{g}=\tau(x), \mathrm{g}=\tau(y)$, and
- $\mathrm{g}=\tau(r) \quad$ if $\mathrm{b}=0$
- $\mathrm{g}=\tau(x y)$ if $\mathrm{b}=1$
- Fact: Any attacker A_{1} making at most q queries to group oracles guesses b with probability at most $\frac{1}{2}+O\left(q / 2^{n / 2}\right)$

Week 12 Topic 2: Formalizing Public Key Cryptography

Public Key Encryption: Basic Terminology

- Plaintext/Plaintext Space
- A message $m \in \mathcal{M}$
- Ciphertext c $\in \mathcal{C}$
- Public/Private Key Pair $(\boldsymbol{p k}, \boldsymbol{s k}) \in \mathcal{K}$

Public Key Encryption Syntax

- Three Algorithms
- Gen $\left(1^{n}, R\right)$ (Key-generation algorithm)
- Input: Random Bits R
- Output: $(\boldsymbol{p} \boldsymbol{k}, \boldsymbol{s k}) \in \mathcal{K}$

Alice must run key generation
algorithm in advance an publishes the public key: pk

- $\mathrm{Enc}_{\mathrm{pk}}(m) \in \mathcal{C}$ (Encryption algoritrim)
- $\operatorname{Dec}_{\text {sk }}(c)$ (Decryption algorithm)
- Input: Secret key sk and a ciphertex c
- Output: a plaintext message $m \in \mathcal{M}$

Assumption: Adversary only gets to see pk (not sk)

- Invariant: $\operatorname{Dec}_{\mathrm{sk}}\left(\mathrm{Enc}_{\mathrm{pk}}(\mathrm{m})\right)=\mathrm{m}$

Chosen-Plaintext Attacks

- Model ability of adversary to control or influence what the honest parties encrypt.
- Historical Example: Battle of Midway (WWII).
- US Navy cryptanalysts were able to break Japanese code by tricking Japanese navy into encrypting a particular message
- Private Key Cryptography

Recap CPA-Security (Symmetric Key Crypto)

$\forall P P T A \exists \mu$ (negligible) s.t $\operatorname{Pr}\left[\right.$ A Guesses $\left.b^{\prime}=b\right] \leq \frac{1}{2}+\mu(n)$

Chosen-Plaintext Attacks

- Model ability of adversary to control or influence what the honest parties encrypt.
- Private Key Crypto
- Attacker tricks victim into encrypting particular messages
- Public Key Cryptography
- The attacker already has the public key pk
- Can encrypt any message s/he wants!
- CPA Security is critical!

CPA-Security $\left(\right.$ PubK $\left._{A, \Pi}^{\mathrm{LR}-\mathrm{cpa}}(\mathrm{n})\right)$

$\forall P P T A \exists \mu$ (negligible) s.t

Random bit b (pk,sk) = Gen(.)
$\operatorname{Pr}\left[\operatorname{PubK}_{\mathrm{A}, \Pi}^{\mathrm{LR}-\mathrm{cpa}}(\mathrm{n})=1\right] \leq \frac{1}{2}+\mu(n)$

CPA-Security (Single Message)

Formally, let $\Pi=(G e n, E n c, D e c)$ denote the encryption scheme, call the experiment $P u b K_{A, \Pi}^{L R-c p a}(n)$ and define a random variable

$$
\operatorname{PubK}_{\mathrm{A}, \Pi}^{\mathrm{LR}-\mathrm{cpa}}(n)=\left\{\begin{array}{lc}
1 & \text { if } b=b^{\prime} \\
0 & \text { otherwise }
\end{array}\right.
$$

Π has indistinguishable encryptions under a chosen plaintext attack if for all PPT adversaries A, there is a negligible function μ such that

$$
\operatorname{Pr}\left[\operatorname{PubK}_{\mathrm{A}, \Pi}^{\mathrm{LR}-\mathrm{cpa}}(n)=1\right] \leq \frac{1}{2}+\mu(n)
$$

Private Key Crypto

- CPA Security was stronger than eavesdropping security

$$
\begin{gathered}
\mathrm{Enc}_{\mathrm{K}}(\mathrm{~m})=\mathrm{G}(\mathrm{~K}) \oplus m \\
\mathrm{Vs} \\
\mathrm{Enc}_{\mathrm{K}}(\mathrm{~m})=\left\langle r, F_{k}(r) \oplus m\right\rangle
\end{gathered}
$$

Public Key Crypto

- Fact 1: CPA Security and Eavesdropping Security are Equivalent
- Key Insight: The attacker has the public key so he doesn't gain anything from being able to query the encryption oracle!
- Fact 2: Any deterministic encryption scheme is not CPA-Secure
- Historically overlooked in many real world public key crypto systems
- Fact 3: Plain RSA is not CPA-Secure
- Fact 4: No Public Key Cryptosystem can achieve Perfect Secrecy!

- Exercise 11.1
- Hint: Unbounded attacker can keep encrypting the message m using the public key to recover all possible encryptions of m.

Encrypting Longer Messages

Claim 11.7: Let $\Pi=$ (Gen, Enc, Dec) denote a CPA-Secure public key encryption scheme and let $\Pi^{\prime}=\left(G e n, E n c^{\prime}, D e c^{\prime}\right)$ be defined such that

$$
\operatorname{Enc}_{\mathbf{p k}}^{\prime}\left(\boldsymbol{m}_{1}\left\|\boldsymbol{m}_{\mathbf{2}}\right\| \cdots \| \boldsymbol{m}_{\ell}\right)=\operatorname{Enc}_{\mathbf{p k}}\left(\boldsymbol{m}_{1}\right)\|\cdots\| \operatorname{Enc}_{\mathbf{p k}}\left(\boldsymbol{m}_{\ell}\right)
$$

Then Π^{\prime} is also CPA-Secure.

Chosen Ciphertext Attacks

- Models ability of attacker to obtain (partial) decryption of selected ciphertexts
- Attacker might intercept ciphertext c (sent from S to R) and send c^{\prime} instead.
- After that attacker can observe receiver's behavior (abort, reply etc...)
- Attacker might send a modified ciphertext c' to receiver R in his own name.
- E-mail response: Receiver might decrypt c' to obtain m^{\prime} and include m^{\prime} in the response to the attacker

Recap CCA-Security (Symmon weond sat $m_{0}=m_{1}$ orm $=m_{2}$

b^{\prime}

Recap CCA-Security $\left(\operatorname{PrivK}_{A, \Pi}^{c c a}(n)\right)$

1. Challenger generates a secret key k and a bit b
2. Adversary (A) is given oracle access to $E n c_{k}$ and Dec_{k}
3. Adversary outputs $\mathrm{m}_{0}, \mathrm{~m}_{1}$
4. Challenger sends the adversary $c=E n c_{k}\left(m_{b}\right)$.
5. Adversary maintains oracle access to $E n c_{k}$ and Dec_{k}, however the adversary is not allowed to query $\operatorname{Dec}_{\mathrm{k}}(\mathrm{c})$.
6. Eventually, Adversary outputs b'.

$$
\operatorname{Priv} K_{A, \Pi}^{c c a}(n)=1 \text { if } \mathrm{b}=\mathrm{b}^{\prime} ; \text { otherwise } 0 .
$$

CCA-Security: For all PPT A exists a negligible function negl(n) s.t.

$$
\operatorname{Pr}\left[\operatorname{Priv}_{A, \Pi}^{c c a}(n)=1\right] \leq \frac{1}{2}+\operatorname{negl}(n)
$$

CCA-Security $\left(\operatorname{PubK}_{A, \Pi}^{\mathrm{cca}}(\mathrm{n})\right)$

Public Key: pk

Encrypting Longer Messages

Claim 11.7: Let $\Pi=(G e n, E n c, D e c)$ denote a CPA-Secure public key encryption scheme and let $\Pi^{\prime}=\left(G e n, E n c^{\prime}\right.$, Dec') be defined such that

$$
\operatorname{Enc}_{\mathbf{p k}}^{\prime}\left(\boldsymbol{m}_{1}\left\|\boldsymbol{m}_{2}\right\| \cdots \| \boldsymbol{m}_{\ell}\right)=\operatorname{Enc}_{\mathbf{p k}}\left(\boldsymbol{m}_{1}\right)\|\cdots\| \operatorname{Enc}_{\mathbf{p k}}\left(\boldsymbol{m}_{\ell}\right)
$$

Then Π^{\prime} is also CPA-Secure.

Claim? Let $\Pi=$ (Gen, Enc, Dec), denote a CCA-Secure public key encryption scheme and let $\Pi^{\prime}=\left(G e n, E n c^{\prime}, D e c^{\prime}\right)$ be defined such that

$$
\operatorname{Enc}_{\mathbf{p k}}^{\prime}\left(\boldsymbol{m}_{1}\left\|\boldsymbol{m}_{2}\right\| \cdots \| \boldsymbol{m}_{\ell}\right)=\operatorname{Enc}_{\mathbf{p k}}\left(\boldsymbol{m}_{1}\right)\|\cdots\| \operatorname{Enc}_{\mathbf{p k}}\left(\boldsymbol{m}_{\ell}\right)
$$

Then Π^{\prime} is also CCA-Secure.

Is this second claim true?

Encrypting Longer Messages

Claim? Let $\Pi=$ (Gen, Enc, Dec) denote a CCA-Secure public key encryption scheme and let $\Pi^{\prime}=\left(G e n, E n c^{\prime}, D e c^{\prime}\right)$ be defined such that

$$
\operatorname{Enc}_{\mathbf{p k}}^{\prime}\left(\boldsymbol{m}_{1}\left\|\boldsymbol{m}_{\mathbf{2}}\right\| \cdots \| \boldsymbol{m}_{\ell}\right)=\operatorname{Enc}_{\mathbf{p k}}\left(\boldsymbol{m}_{\mathbf{1}}\right)\|\cdots\| \operatorname{Enc}_{\mathbf{p k}}\left(\boldsymbol{m}_{\ell}\right)
$$

Then Π^{\prime} is also CCA-Secure.

> Is this second claim true?

Answer: No!

Encrypting Longer Messages

Fact: Let $\Pi=(G e n, E n c, D e c)$ denote a CCA-Secure public key encryption scheme and let $\Pi^{\prime}=\left(G e n, E n c^{\prime}, D e c^{\prime}\right)$ be defined such that

$$
\operatorname{Enc}_{\mathbf{p k}}^{\prime}\left(\boldsymbol{m}_{1}\left\|\boldsymbol{m}_{2}\right\| \cdots \| \boldsymbol{m}_{\ell}\right)=\operatorname{Enc}_{\mathbf{p k}}\left(\boldsymbol{m}_{\mathbf{1}}\right)\|\cdots\| \mathbf{E n c}_{\mathbf{p k}}\left(\boldsymbol{m}_{\ell}\right)
$$

Then Π^{\prime} is Provably Not CCA-Secure.

1. Attacker sets $\boldsymbol{m}_{\mathbf{0}}=\mathbf{0}^{n}\left\|\mathbf{1}^{n}\right\| \mathbf{1}^{n}$ and $\boldsymbol{m}_{\mathbf{1}}=\mathbf{0}^{\boldsymbol{n}}\left\|\mathbf{0}^{n}\right\| \mathbf{1}^{n}$ and gets $\boldsymbol{c}_{\boldsymbol{b}}=$ $\operatorname{Enc}_{\mathbf{p k}}^{\prime}\left(\boldsymbol{m}_{\boldsymbol{b}}\right)=\boldsymbol{c}_{\boldsymbol{b}, \mathbf{1}}\left\|\boldsymbol{c}_{\boldsymbol{b}, 2}\right\| \boldsymbol{c}_{\boldsymbol{b}, 3}$
2. Attacker sets $\boldsymbol{c}^{\prime}=\boldsymbol{c}_{\boldsymbol{b}, 2}\left\|\boldsymbol{c}_{\boldsymbol{b}, \mathbf{3}}\right\| \boldsymbol{c}_{\boldsymbol{b}, \mathbf{1}}$, queries the decryption oracle and gets

$$
\operatorname{Dec}_{\mathrm{sk}}^{\prime}\left(c^{\prime}\right)=\left\{\begin{array}{l}
1^{n}\left\|1^{n}\right\| 0^{n} \quad \text { if } \mathrm{b}=0 \\
\mathbf{0}^{n}\left\|\mathbf{1}^{n}\right\| 0^{n} \quad \text { otherwise }
\end{array}\right.
$$

Achieving CPA and CCA-Security

- Plain RSA is not CPA Secure (therefore, not CCA-Secure)
- El-Gamal (future) is CPA-Secure, but not CCA-Secure
- Tools to obtain CCA-Security in Public Key Setting
- RSA-OAEP, Cramer-Shoup
- Key Encapsulation Mechanism

Key Encapsulation Mechanism (KEM)

- Three Algorithms
- Gen $\left(1^{n}, R\right)$ (Key-generation algorithm)
- Input: Random Bits R
- Output: $(p \boldsymbol{k}, \mathrm{sk}) \in \mathcal{K}$
- Encaps $\mathrm{pk}\left(1^{n}, R\right)$
- Input: security parameter, random bits R
- Output: Symmetric key $\mathrm{k} \in\{0,1\}^{\ell(n)}$ and a ciphertext c
- $\operatorname{Decaps}_{\mathrm{sk}}(c)$ (Deterministic algorithm)
- Input: Secret key sk $\in \mathcal{K}$ and a ciphertex c
- Output: a symmetric $\operatorname{key}\{0,1\}^{\ell(n)}$ or \perp (fail)
- Invariant: $\operatorname{Decaps}_{\mathrm{sk}}(\mathrm{c})=\mathrm{k}$ whenever $(\mathrm{c}, \mathrm{k})=\operatorname{Encaps}_{\mathrm{pk}}\left(1^{n}, R\right)$

KEM CCA-Security ($\operatorname{KEM}_{\mathrm{A}, \Pi}^{\mathrm{cca}}(\mathrm{n})$)

CCA-Secure Encryption from CCA-Secure KEM

$$
\operatorname{Enc}_{\mathbf{p k}}(\boldsymbol{m} ; \boldsymbol{R})=\left\langle\boldsymbol{c}, \operatorname{Enc}_{\mathbf{k}}^{*}(\boldsymbol{m})\right\rangle
$$

Where

- $(c, k) \leftarrow \operatorname{Encaps}_{\mathbf{p k}}\left(\mathbf{1}^{n} ; R\right)$,
- Enc $_{\mathbf{k}}^{*}$ is a CCA-Secure symmetric key encryption algorithm, and
- Encaps $_{\mathbf{p k}}$ is a CCA-Secure KEM.

Theorem 11.14: $\mathbf{E n c}_{\mathbf{p k}}$ is CCA-Secure public key encryption scheme.

CCA-Secure KEM in the Random Oracle Model

- Let (N, e, d) be an RSA key ($\mathrm{pk}=(\mathrm{N}, \mathrm{e}), \mathrm{sk}=(\mathrm{N}, \mathrm{d})$).

$$
\text { Encaps }_{\mathrm{pk}}\left(1^{n}, R\right)=\left(r^{e} \bmod N, k=H(r)\right)
$$

- Remark 1: k is completely random string unless the adversary can query random oracle H on input r.
- Remark 2: If Plain-RSA is hard to invert for a random input then PPT attacker finds r with negligible probability.

Using a CCA-Secure KEM

- Let ($\mathrm{N}, \mathrm{e}, \mathrm{d}$) be an RSA key ($\mathrm{pk}=(\mathrm{N}, \mathrm{e})$, $\mathrm{sk}=(\mathrm{N}, \mathrm{d})$).

$$
\begin{aligned}
\operatorname{Enc}_{\mathrm{pk}}(m ; R) & =\left(c, \operatorname{AEnc}_{\mathrm{k}}(m)\right) \text { where } \\
c & =\operatorname{Encaps}_{\mathrm{pk}}\left(1^{n}, R\right)
\end{aligned}
$$

- Remark 1: k is completely random string unless the adversary can query random oracle H on input r.
- Remark 2: If Plain-RSA is hard to invert for a random input then PPT attacker finds r with negligible probability.

RSA-OAEP
 (Optimal Asymmetric Encryption Padding)

- $\operatorname{Enc}_{\boldsymbol{p k}}(m ; r)=\left[(x \| y)^{e} \bmod N\right]$
- Where $x \| y \leftarrow \operatorname{OAEP}\left(m\left\|0^{k_{1}}\right\| r\right)$
- $\operatorname{Dec}_{s k}(c)=$
- $\widetilde{m} \leftarrow\left[(c)^{d} \bmod N\right]$
- If $\|\widetilde{m}\|>n$ return fail
- $m\|z\| r \leftarrow \operatorname{OAEP}^{-1}(\widetilde{m})$
- If $z \neq 0^{k_{1}}$ then output fail
- Otherwise output m

Recap RSA-Assumption

RSA-Experiment: RSA-INV $V_{A, n}$

1. Run KeyGeneration($1^{\text {n }}$) to obtain ($\mathbf{N}, \mathrm{e}, \mathrm{d}$)
2. Pick uniform $y \in \mathbb{Z}_{N}^{*}$
3. Attacker A is given $\mathrm{N}, \mathrm{e}, \mathrm{y}$ and outputs $\mathrm{x} \in \mathbb{Z}_{\mathrm{N}}^{*}$
4. Attacker wins $\left(\operatorname{RSA}-\mathrm{INV}_{A, n}=1\right)$ if $x^{e}=y \bmod \mathrm{~N}$

$$
\forall P P T A \exists \mu \text { (negligible) s.t } \operatorname{Pr}\left[\operatorname{RSA}-\mathrm{INV}_{A, n}=1\right] \leq \mu(n)
$$

RSA-OAEP

(Optimal Asymmetric Encryption Padding)

Theorem: If we model G and H as Random oracles then RSA-OAEP is a CCA-Secure public key encryption scheme (given RSA-Inversion assumption).

Bonus: One of the fastest in practice!

PKCS \#1 v2.0

- Implementation of RSA-OAEP
- James Manger found a chosen-ciphertext attack.
- What gives?

PKCS \#1 v2.0 (Bad Implementation)

- $\operatorname{Enc}_{\boldsymbol{p} \boldsymbol{k}}(m ; r)=\left[(x \| y)^{e} \bmod N\right]$
- Where $x \| y \leftarrow \operatorname{OAEP}\left(m\left\|0^{k_{1}}\right\| r\right)$
- $\operatorname{Dec}_{s k}(c)=$
- $\widetilde{m} \leftarrow\left[(c)^{d} \bmod N\right]$
- If $\|\widetilde{\boldsymbol{m}}\|>\boldsymbol{n}$ return Error Message 1
- $m\|z\| r \leftarrow \operatorname{OAEP}^{-1}(\widetilde{m})$
- If $\boldsymbol{Z} \neq \mathbf{0}^{\boldsymbol{k}_{1}}$ then output Error Message 2
- $\operatorname{Enn}_{p k}\left(m_{1}, r\right)=\left[(x \| y)^{e} \bmod N\right]$
- Wherex $\boldsymbol{\|} \| y+\operatorname{OAEP}\left(m\left\|0^{0}\right\| r\right)$
- $\operatorname{Dec}_{\text {sk }}(c)=$
- $\tilde{m} \leftarrow\left[(c)^{d} \bmod N\right]$

- $m\|z\| r-0 A E E^{-1}(\tilde{m})$
- $\| z=0^{k}$ then output Eroor Messyge 2
- Otherwise output m
- Otherwise output m

PKCS \#1 v2.0 (Attack)

- Manger's CCA-Attack recovers secret message
- Step 1: Use decryption oracle to check if $2 \widetilde{m} \geq 2^{n}$
- $c=\left[(\widetilde{m})^{e} \bmod N\right] \rightarrow 2^{e} c=\left[(2 \widetilde{m})^{e} \bmod N\right]$
- Requires $\|N\|$ queries to decryption oracle.
- Attack also works as a side channel attack
- Even if error messages are the same the time to respond could be different in each case.
- Fix: Implementation should return same error message and should make sure that the time to return each error is the same.

