
Cryptography
CS 555

Week 10: 
• RSA
• Attacks on Plain RSA
• Discrete Log/DDH
Readings: Katz and Lindell Chapter 8.2-8.3,11.5.1

1Spring 2021



Recap

• Polynomial time algorithms (in bit lengths 𝒂𝒂 , 𝒃𝒃 and 𝐍𝐍 ) to do 
important computations on integers

• GCD(a,b)
• Find multiplicative inverse a-1 of a such that 1=[aa-1 mod N]   (if it exists)
• PowerMod: [ab mod N]
• Draw uniform sample from ℤ

𝑁𝑁

∗ = 𝑥𝑥 ∈ ℤ𝑁𝑁 gcd 𝑁𝑁, 𝑥𝑥 = 1

• Fact: 𝑔𝑔𝑥𝑥mod N = 𝑔𝑔[𝑥𝑥 𝑚𝑚𝑚𝑚𝑚𝑚 𝝓𝝓 𝑵𝑵 ]mod N where  𝝓𝝓 𝑵𝑵 = ℤ
𝑁𝑁
∗

• Proof: Group Theory

• Chinese Remainder Theorem
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CS 555: Week 10: Topic 1
Finding Prime Numbers, RSA
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RSA Key-Generation

KeyGeneration(1n)
Step 1: Pick two random n-bit primes p and q
Step 2: Let N=pq, 𝜙𝜙 𝑁𝑁 = (𝑝𝑝 − 1)(𝑞𝑞 − 1)
Step 3: …

Question: How do we accomplish step one?
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Bertrand’s Postulate

Theorem 8.32. For any n > 1 the fraction of n-bit integers that are prime is at least ⁄1 3𝑛𝑛.

GenerateRandomPrime(1n)
For i=1 to 3n2:

p’ {0,1}n-1

p 1‖𝑝𝑝𝑝
if isPrime(p) then

return p
return fail
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Can we do this in 
polynomial time?



Bertrand’s Postulate

Theorem 8.32. For any n > 1 the fraction of n-bit integers that are prime is at least ⁄1 3𝑛𝑛.

GenerateRandomPrime(1n)
For i=1 to 3n2:

p’ {0,1}n-1

p 1‖𝑝𝑝𝑝
if isPrime(p) then

return p
return fail
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Assume for now that we can run isPrime(p). What are the 
odds that the algorithm fails?

On each iteration the probability that p is not a prime is  
1 − 1

3𝑛𝑛

We fail if we pick a non-prime in all 3n2 iterations. The 
probability of failure is at most  

1 −
1
3𝑛𝑛

3𝑛𝑛2

= 1 −
1
3𝑛𝑛

3𝑛𝑛
𝑛𝑛

≤ 𝑒𝑒−𝑛𝑛



isPrime(p): Miller-Rabin Test

• We can check for primality of p in polynomial time in 𝑝𝑝 .

Theory: Deterministic algorithm to test for primality. 
• See breakthrough paper “Primes is in P”
• https://www.cse.iitk.ac.in/users/manindra/algebra/primality_v6.pdf

Practice: Miller-Rabin Test (randomized algorithm)
• Guarantee 1: If p is prime then the test outputs YES
• Guarantee 2: If p is not prime then the test outputs NO (except with 

negligible probability). 
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https://www.cse.iitk.ac.in/users/manindra/algebra/primality_v6.pdf


The “Almost” Miller-Rabin Test

Input: Integer N and parameter 1t

Output: “prime” or “composite”
for i=1 to t:

a  {1,…,N-1}
if 𝑎𝑎𝑁𝑁−1 ≠ 1 mod N then return “composite”

Return “prime”

Claim: If N is prime then algorithm always outputs “prime”
Proof: For any a ∈ {1,…,N−1} we have 𝑎𝑎𝑁𝑁−1 = 𝑎𝑎𝜙𝜙 𝑁𝑁 = 1 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁
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𝜙𝜙 𝑁𝑁 = 𝑁𝑁 − 1 for primes N



The “Almost” Miller-Rabin Test

Input: Integer N and parameter 1t

Output: “prime” or “composite”
for i=1 to t:

a  {1,…,N-1}  //random
if 𝑎𝑎𝑁𝑁−1 ≠ 1 mod N then return “composite”

Return “prime”

Fact: If N is composite and not a Carmichael number then the algorithm 
outputs “composite” with probability

1 − 2−𝑡𝑡
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Need a bit of extra work to 
handle Carmichael 

numbers (see textbook).



Miller-Rabin Primality Test

Input: Integer N and parameter 1t

Output: “prime” or “composite”
If Even(N) or PerfectPower(N) return “composite”
Else find 𝑢𝑢 (odd) and 𝑟𝑟 ≥ 1 s.t. N − 1 = 2𝑟𝑟𝑢𝑢
for j=1 to t:

pick 𝑎𝑎 in [2,N-2] randomly  
if 𝑎𝑎𝑢𝑢 ≠ ±1 mod N and 𝑎𝑎2𝑖𝑖𝑢𝑢 ≠ −1 mod N for all 1 ≤ 𝑖𝑖 ≤ 𝑟𝑟 − 1

return “composite”
Return “prime”
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Miller-Rabin Primality Test

Input: Integer N and parameter 1t

Output: “prime” or “composite”
If Even(N) or PerfectPower(N) return “composite”
Else find 𝑢𝑢 (odd) and 𝑟𝑟 ≥ 1 s.t. N − 1 = 2𝑟𝑟𝑢𝑢
for j=1 to t:

pick 𝑎𝑎 in [2,N-2] randomly  
if 𝑎𝑎𝑢𝑢 ≠ ±1 mod N and 𝑎𝑎2𝑖𝑖𝑢𝑢 ≠ −1 mod N for all 1 ≤ 𝑖𝑖 ≤ 𝑟𝑟 − 1

return “composite”
Return “prime”
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Lemma: If p is prime and
𝑥𝑥2 = 1 mod p then

𝑥𝑥 = ±1 mod p



Miller-Rabin Primality Test

Input: Integer N and parameter 1t

Output: “prime” or “composite”
If Even(N) or PerfectPower(N) return “composite”
Else find 𝑢𝑢 (odd) and 𝑟𝑟 ≥ 1 s.t. N − 1 = 2𝑟𝑟𝑢𝑢
for j=1 to t:

pick 𝑎𝑎 in [2,N-2] randomly  
if 𝑎𝑎𝑢𝑢 ≠ ±1 mod N and 𝑎𝑎2𝑖𝑖𝑢𝑢 ≠ −1 mod N for all 1 ≤ 𝑖𝑖 ≤ 𝑟𝑟 − 1

return “composite”
Return “prime”
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If N is prime then: 

𝑎𝑎2𝑟𝑟−1𝑢𝑢
𝟐𝟐

= 𝑎𝑎𝑁𝑁−1 mod N
= 1 mod N

𝑎𝑎2𝑖𝑖𝑢𝑢 − 𝟏𝟏 = 𝑎𝑎2𝑖𝑖−1𝑢𝑢 − 𝟏𝟏 𝑎𝑎2𝑖𝑖−1𝑢𝑢 + 𝟏𝟏



Miller-Rabin Primality Test

Input: Integer N and parameter 1t

Output: “prime” or “composite”
If Even(N) or PerfectPower(N) return “composite”
Else find 𝑢𝑢 (odd) and 𝑟𝑟 ≥ 1 s.t. N − 1 = 2𝑟𝑟𝑢𝑢
for j=1 to t:

pick 𝑎𝑎 in [2,N-2] randomly  
if 𝑎𝑎𝑢𝑢 ≠ ±1 mod N and 𝑎𝑎2𝑖𝑖𝑢𝑢 ≠ −1 mod N for all 1 ≤ 𝑖𝑖 ≤ 𝑟𝑟 − 1

return “composite”
Return “prime”
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If N is prime we won’t return composite
𝟎𝟎 = 𝑎𝑎2𝑟𝑟𝑢𝑢 − 𝟏𝟏 = 𝑎𝑎2𝑟𝑟−1𝑢𝑢 − 𝟏𝟏 𝑎𝑎2𝑟𝑟−1𝑢𝑢 + 𝟏𝟏

= ⋯ = 𝑎𝑎2𝑟𝑟−2𝑢𝑢 − 𝟏𝟏 𝑎𝑎2𝑟𝑟−2𝑢𝑢 + 𝟏𝟏 𝑎𝑎2𝑟𝑟−1𝑢𝑢 + 𝟏𝟏

𝑎𝑎2𝑖𝑖𝑢𝑢 − 𝟏𝟏 = 𝑎𝑎2𝑖𝑖−1𝑢𝑢 − 𝟏𝟏 𝑎𝑎2𝑖𝑖−1𝑢𝑢 + 𝟏𝟏



Miller-Rabin Primality Test

Input: Integer N and parameter 1t

Output: “prime” or “composite”
If Even(N) or PerfectPower(N) return “composite”
Else find 𝑢𝑢 (odd) and 𝑟𝑟 ≥ 1 s.t. N − 1 = 2𝑟𝑟𝑢𝑢
for j=1 to t:

pick 𝑎𝑎 in [2,N-2] randomly  
if 𝑎𝑎𝑢𝑢 ≠ ±1 mod N and 𝑎𝑎2𝑖𝑖𝑢𝑢 ≠ −1 mod N for all 1 ≤ 𝑖𝑖 ≤ 𝑟𝑟 − 1

return “composite”
Return “prime”
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𝑎𝑎2𝑖𝑖𝑢𝑢 − 𝟏𝟏 = 𝑎𝑎2𝑖𝑖−1𝑢𝑢 − 𝟏𝟏 𝑎𝑎2𝑖𝑖−1𝑢𝑢 + 𝟏𝟏

If N is prime we won’t return composite

𝟎𝟎 = 𝑎𝑎2𝑟𝑟𝑢𝑢 − 𝟏𝟏 = ⋯ = 𝑎𝑎𝑢𝑢 − 𝟏𝟏 �
𝒊𝒊=𝟎𝟎

𝒓𝒓−𝟏𝟏

𝑎𝑎2𝑖𝑖𝑢𝑢 + 𝟏𝟏



Miller-Rabin Primality Test

Input: Integer N and parameter 1t

Output: “prime” or “composite”
If Even(N) or PerfectPower(N) return “composite”
Else find 𝑢𝑢 (odd) and 𝑟𝑟 ≥ 1 s.t. N − 1 = 2𝑟𝑟𝑢𝑢
for j=1 to t:

pick 𝑎𝑎 in [2,N-2] randomly  
if 𝑎𝑎𝑢𝑢 ≠ ±1 mod N and 𝑎𝑎2𝑖𝑖𝑢𝑢 ≠ −1 mod N for all 1 ≤ 𝑖𝑖 ≤ 𝑟𝑟 − 1

return “composite”
Return “prime”
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𝑎𝑎2𝑖𝑖𝑢𝑢 − 𝟏𝟏 = 𝑎𝑎2𝑖𝑖−1𝑢𝑢 − 𝟏𝟏 𝑎𝑎2𝑖𝑖−1𝑢𝑢 + 𝟏𝟏

If N is prime we won’t return composite

𝟎𝟎 = 𝑎𝑎2𝑟𝑟𝑢𝑢 − 𝟏𝟏 = ⋯ = 𝑎𝑎𝑢𝑢 − 𝟏𝟏 �
𝒊𝒊=𝟎𝟎

𝒓𝒓−𝟏𝟏

𝑎𝑎2𝑖𝑖𝑢𝑢 + 𝟏𝟏

One of these factors must be 0 (mod N)



Miller-Rabin Primality Test

Input: Integer N and parameter 1t

Output: “prime” or “composite”
If Even(N) or PerfectPower(N) return “composite”
Else find 𝑢𝑢 (odd) and 𝑟𝑟 ≥ 1 s.t. N − 1 = 2𝑟𝑟𝑢𝑢
for j=1 to t:

if 𝑎𝑎𝑢𝑢 ≠ ±1 mod N and 𝑎𝑎2𝑖𝑖𝑢𝑢 ≠ −1 mod N for all 1 ≤ 𝑖𝑖 ≤ 𝑟𝑟 − 1
return “composite”

Return “prime”
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Claim: If N is composite then at most ¼ 
choices of random value a in [2,n-1] will 
pass the test



Miller-Rabin Primality Test

Input: Integer N and parameter 1t

Output: “prime” or “composite”
If Even(N) or PerfectPower(N) return “composite”
Else find 𝑢𝑢 (odd) and 𝑟𝑟 ≥ 1 s.t. N − 1 = 2𝑟𝑟𝑢𝑢
for j=1 to t:

if 𝑎𝑎𝑢𝑢 ≠ ±1 mod N and 𝑎𝑎2𝑖𝑖𝑢𝑢 ≠ −1 mod N for all 1 ≤ 𝑖𝑖 ≤ 𝑟𝑟 − 1
return “composite”

Return “prime”
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Claim: If N is composite then we return 
prime  with probability at most 𝟒𝟒−𝐭𝐭
Proof: (See textbook )



Back to RSA Key-Generation

KeyGeneration(1n)
Step 1: Pick two random n-bit primes p and q
Step 2: Let N=pq, 𝜙𝜙 𝑁𝑁 = (𝑝𝑝 − 1)(𝑞𝑞 − 1)
Step 3: Pick e > 1 such that gcd(e, 𝜙𝜙 𝑁𝑁 )=1
Step 4: Set d=[e-1 mod 𝜙𝜙 𝑁𝑁 ]      (secret key)
Return: N, e, d

• How do we find d? 
• Answer: Use extended gcd algorithm to find e-1mod 𝜙𝜙 𝑁𝑁 .

20



Back to RSA Key-Generation

KeyGeneration(1n)
Step 1: Pick two random n-bit primes p and q

Step 2: Let N=pq, 𝜙𝜙 𝑁𝑁 = (𝑝𝑝 − 1)(𝑞𝑞 − 1)
Step 3: Pick e > 1 such that gcd(e, 𝜙𝜙 𝑁𝑁 )=1
Step 4: Set d=[e-1 mod 𝜙𝜙 𝑁𝑁 ]      (secret key)
Return: N, e, d

• What is the probability that e-1mod 𝜙𝜙 𝑁𝑁 exists when we pick e randomly? 
• Hint: 𝜙𝜙 𝜙𝜙 𝑁𝑁 choices of e in ℤ𝜙𝜙 𝑁𝑁 have a multiplicative inverse mod 𝜙𝜙 𝑁𝑁 .
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Be Careful Where You Get Your “Random Bits!”

• RSA Keys Generated with weak PRG
• Implementation Flaw
• Unfortunately Commonplace

• Resulting Keys are Vulnerable
• Sophisticated Attack
• Coppersmith’s Method

22
The Return of Coppersmith's Attack: Practical Factorization of Widely Used RSA Moduli (CCS 2017)



(Plain) RSA Encryption

• Public Key: PK=(N,e)
• Message m ∈ ℤ

N EncPK(m) = 𝑚𝑚𝑒𝑒 mod N

• Remark: Encryption is efficient if we use the power mod algorithm.
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(Plain) RSA Decryption

• Secret Key: SK=(N,d)
• Ciphertext c ∈ ℤ

N DecSK(c) = 𝑐𝑐𝑚𝑚 mod N

• Remark 1: Decryption is efficient if we use the power mod algorithm.
• Remark 2: Suppose that m ∈ ℤ

N

∗ and let c=EncPK(m) = 𝑚𝑚𝑒𝑒 mod N

DecSK(c) = 𝑚𝑚𝑒𝑒 𝑚𝑚 mod N = 𝑚𝑚𝑒𝑒𝑚𝑚 mod N
= 𝑚𝑚[𝑒𝑒𝑚𝑚 𝑚𝑚𝑚𝑚𝑚𝑚 𝝓𝝓 𝑵𝑵 ] mod N

= 𝑚𝑚1 mod N = 𝑚𝑚
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Chinese Remainder Theorem

Theorem: Let N = pq (where gcd(p,q)=1) be given and let 𝑓𝑓:ℤ
N
→ ℤ𝑝𝑝 ×

ℤ𝑞𝑞 be defined as follows
𝑓𝑓 𝑥𝑥 = [𝑥𝑥 𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝], [𝑥𝑥 𝑚𝑚𝑚𝑚𝑚𝑚 𝑞𝑞]

then
• f is a bijective mapping (invertible)
• f and its inverse𝑓𝑓−1:ℤ𝑝𝑝 × ℤ𝑞𝑞 → ℤ

N
can be computed efficiently

• 𝑓𝑓 𝑥𝑥 + 𝑦𝑦 = 𝑓𝑓 𝑥𝑥 + 𝑓𝑓(𝑦𝑦)
• The restriction of f to ℤ

𝑁𝑁
∗ yields a bijective mapping to ℤ

𝑝𝑝
∗ × ℤ

𝑞𝑞
∗

• For inputs 𝑥𝑥, 𝑦𝑦 ∈ ℤ
𝑁𝑁
∗ we have 𝑓𝑓 𝑥𝑥 𝑓𝑓 𝑦𝑦 = 𝑓𝑓 𝑥𝑥𝑦𝑦
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RSA Decryption

• Secret Key: SK=(N,d)
• Ciphertext c ∈ ℤ

N DecSK(c) = 𝑐𝑐𝑚𝑚 mod N

• Remark 1: Decryption is efficient if we use the power mod algorithm.
• Remark 2: Suppose that m ∈ ℤ

N

∗ and let c=EncPK(m) = 𝑚𝑚𝑒𝑒 mod N then
DecSK(c) = 𝑚𝑚

• Remark 3: Even if m ∈ ℤ
N

\ ℤ
N

∗ and let c = EncPK(m) = 𝑚𝑚𝑒𝑒 mod N then
DecSK(c) = 𝑚𝑚

• Use Chinese Remainder Theorem to show this 
𝑒𝑒𝑚𝑚 = 1 + 𝑘𝑘 𝑝𝑝 − 1 𝑞𝑞 − 1

→ f 𝑐𝑐𝑚𝑚 = 𝑚𝑚𝑒𝑒𝑚𝑚 mod p , 𝑚𝑚𝑒𝑒𝑚𝑚 mod q = 𝑚𝑚1 mod p , 𝑚𝑚1 mod q
→ 𝑓𝑓−1 f 𝑐𝑐𝑚𝑚 = 𝑓𝑓−1 𝑚𝑚1 mod p , 𝑚𝑚1 mod q = 𝑚𝑚
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Plain RSA (Summary)

• Public Key (pk): N = pq, e  such that GCD e,𝜙𝜙 𝑁𝑁 = 1
• 𝜙𝜙 𝑁𝑁 = 𝑝𝑝 − 1 𝑞𝑞 − 1 for  distinct primes p and q

• Secret Key (sk): N, d such that ed=1 mod 𝜙𝜙 𝑁𝑁
• Encrypt(pk=(N,e),m) = 𝑚𝑚𝒆𝒆 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁
• Decrypt(sk=(N,d),c) = 𝑐𝑐𝒅𝒅 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁

• Decryption Works because
𝑐𝑐𝑚𝑚mod N = 𝑚𝑚𝑒𝑒𝑚𝑚mod N = 𝑚𝑚[𝑒𝑒𝑚𝑚 𝑚𝑚𝑚𝑚𝑚𝑚 𝝓𝝓 𝑵𝑵 ]mod N = 𝑚𝑚 mod N
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Factoring Assumption

Let GenModulus(1n) be a randomized algorithm that outputs 
(N=pq,p,q) where p and q are n-bit primes (except with negligible 
probability negl(n)).

Experiment FACTORA,n

1. (N=pq,p,q)  GenModulus(1n) 
2. Attacker A is given N as input
3. Attacker A outputs p’ > 1 and q’ > 1
4. Attacker A wins if N=p’q’.

28



Factoring Assumption

Experiment FACTORA,n

1. (N=pq,p,q)  GenModulus(1n) 
2. Attacker A is given N as input
3. Attacker A outputs p’ > 1 and q’ > 1
4. Attacker A wins (FACTORA,n = 1) if and only if N=p’q’.

∀𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴 ∃𝜇𝜇 (negligible) s. t Pr FACTORA,n = 1 ≤ 𝜇𝜇(𝑛𝑛)

29

• Necessary for security of RSA. 
• Not known to be sufficient.



RSA-Inversion Assumption

RSA-Experiment: RSA-INVA,n

1. Run KeyGeneration(1n) to obtain (N,e,d)
2. Pick uniform y ∈ ℤ

N
∗

3. Attacker A is given N, e, y and outputs x ∈ ℤ
N
∗

4. Attacker wins (RSA-INVA,n=1) if 𝑥𝑥𝑒𝑒 = y mod N

∀𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴 ∃𝜇𝜇 (negligible) s. t Pr RSA−INVA,n = 1 ≤ 𝜇𝜇(𝑛𝑛)
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RSA-Assumption

RSA-Experiment: RSA-INVA,n

1. Run KeyGeneration(1n) to obtain (N,e,d)
2. Pick uniform y ∈ ℤ

N
∗

3. Attacker A is given N, e, y and outputs x ∈ ℤ
N
∗

4. Attacker wins (RSA-INVA,n=1) if 𝑥𝑥𝑒𝑒 = y mod N

∀𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴 ∃𝜇𝜇 (negligible) s. t Pr RSA−INVA,n = 1 ≤ 𝜇𝜇(𝑛𝑛)

31

• Plain RSA Encryption behaves like a one-way function
• Attacker cannot invert encryption of random message



Discussion of RSA-Assumption

• Plain RSA Encryption behaves like a one-way-function

• Decryption key is a “trapdoor” which allows us to invert the OWF

• RSA-Assumption  OWFs exist
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Recap

• Plain RSA
• Public Key (pk): N = pq, e  such that GCD e,𝜙𝜙 𝑁𝑁 = 1

• 𝜙𝜙 𝑁𝑁 = 𝑝𝑝 − 1 𝑞𝑞 − 1 for  distinct primes p and q
• Secret Key (sk): N, d such that ed=1 mod 𝜙𝜙 𝑁𝑁
• Encrypt(pk=(N,e),m) = 𝑚𝑚𝒆𝒆 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁
• Decrypt(sk=(N,d),c) = 𝑐𝑐𝒅𝒅 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁

• Decryption Works because
𝑐𝑐𝑚𝑚mod N = 𝑚𝑚𝑒𝑒𝑚𝑚mod N = 𝑚𝑚[𝑒𝑒𝑚𝑚 𝑚𝑚𝑚𝑚𝑚𝑚 𝝓𝝓 𝑵𝑵 ]mod N = 𝑚𝑚 mod N
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Mathematica Demo

https://www.cs.purdue.edu/homes/jblocki/courses/555_Spring17/slid
es/Lecture24Demo.nb

http://develop.wolframcloud.com/app/

Note: Online version of mathematica available at 
https://sandbox.open.wolframcloud.com (reduced functionality, but 
can be used to solve homework bonus problems)
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(Toy) RSA Implementation in Mathematica

(* Random Seed 123456 is not secure, but it allows us to repeat the experiment *)
SeedRandom[123456]

(* Step 1: Generate primes for an RSA key *)
p = RandomPrime[{10^1000, 10^1050}];
q = RandomPrime[{10^1000, 10^1050}];
NN = p q;   (*Symbol N is protected in mathematica *)
phi = (p - 1) (q - 1);
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(Toy) RSA Implementation in Mathematica

(* Step 1.A: Find e *)
GCD[phi,7]

Output: 7
(* GCD[phi,7] is not 1, so he have to try a different value of e *)

GCD[phi,3]
Output: 1
(* We can set e=3 *)

e=3;
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https://www.cs.purdue.edu/homes/jblocki/courses/555_Spring17/slides/Lecture24Demo.nb

https://www.cs.purdue.edu/homes/jblocki/courses/555_Spring17/slides/Lecture24Demo.nb


(Toy) RSA Implementation in Mathematica

(* Step 1.B find d s.t. ed = 1 mod N by using the extended GCD algorithm *)
(* Mathematica is clever enough to do this automatically *)

Solve[e x == 1, Modulus->phi]
Output: 
{{x->36469680590663028301700626132883867272718728905205088...
…………………………………………………………………………………………………………
394069421778610209425624440980084481398131}}
(* We can now set d = x *) 

d=364696805…. 8131;
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(Toy) RSA Implementation in Mathematica

(* Double Check 1 = [ed mod 𝜙𝜙 𝑁𝑁 ] *)
Mod [e d, (p-1)(q-1)]

Output: 1
(* Encrypt the message 200, c= m^e mod N *)

m = 200;
PowerMod[m,e,NN]

Output: 8 000 000
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(Toy) RSA Implementation in Mathematica

(* Encrypt the message 200, c= m^e mod N *)
m = 200;
PowerMod[m,e,NN]

Output: 8 000 000
(* Hm...That doesn't seem too secure  *)

CubeRoot[PowerMod[m,e,NN]]
Output: 200

(* Moral: if 𝑚𝑚𝑒𝑒 < 𝑁𝑁 then Plain RSA does not hide the message m. *)

39



RSA Implementation in Mathematica

(* Encrypt a larger message, c= m^e mod N *)
SeedRandom[1234567];
m2= RandomInteger[{10^1500,10^1501}];
c=PowerMod[m2,e,NN]

Output: 405215834903772786……… 388068292685976133

(* Does it Decrypt Properly? *)
PowerMod[c,d, NN]-m2

Output: 0
(* Yes! *)
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CS 555: Week 10: Topic 2
Attacks on Plain RSA
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(Plain) RSA Discussion

• We have not introduced security models like CPA-Security or CCA-
security for Public Key Cryptosystems

• However, notice that (Plain) RSA Encryption is stateless and 
deterministic.
Plain RSA is not secure against chosen-plaintext attacks
• As we will see Plain RSA is also highly vulnerable to chosen-ciphertext 

attacks
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(Plain) RSA Discussion 

• However, notice that (Plain) RSA Encryption is stateless and deterministic.
Plain RSA is not secure against chosen-plaintext attacks

• Remark: In a public key setting the attacker who knows the public key 
always has access to an encryption oracle

• Encrypted messages with low entropy are particularly vulnerable to brute-
force attacks 

• Example: If 𝑚𝑚 < 𝐵𝐵 then attacker can recover 𝑚𝑚 from c = Encpk 𝑚𝑚 after at most 𝐵𝐵
queries to encryption oracle (using public key)
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Chosen Ciphertext Attack on Plain RSA

1. Attacker intercepts ciphertext 𝑐𝑐 = 𝑚𝑚𝑒𝑒 mod N
2. Attacker generates ciphertext c’ for secret message 2m as follows
3. c’ = 𝑐𝑐2𝑒𝑒 mod N
4. = 𝑚𝑚𝑒𝑒2𝑒𝑒 mod N
5. = 2𝑚𝑚 𝑒𝑒 mod N
6. Attacker asks for decryption of 𝑐𝑐2𝑒𝑒 mod N and receives 2m.
7. Divide by two to recover message
Above Example: Shows plain RSA is highly vulnerable to ciphertext-
tampering attacks
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More Weaknesses: Plain RSA with small e

• (Small Messages) If me < N then we can decrypt c = me mod N directly
e.g., m=c(1/e)

• (Partially Known Messages) If an attacker knows first 1-(1/e) bits of 
secret message m = m1‖? ? then he can recover m given 

𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐭𝐭 pk, m = 𝑚𝑚𝑒𝑒 mod N

Theorem[Coppersmith]:  If p(x) is a polynomial of degree e then in 
polynomial time (in log(N), 2e) we can find all m such that p(m) = 0 mod 
N and |m|<N(1/e)
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More Weaknesses: Plain RSA with small e

Theorem[Coppersmith]:  If p(x) is a polynomial of degree e then in 
polynomial time (in log(N), e) we can find all m such that p(m) = 0 mod 
N and |m|<N(1/e)

Example: e = 3, 𝑚𝑚 = 𝑚𝑚1‖𝑚𝑚2 and attacker knows 𝑚𝑚1 2𝑘𝑘 𝑏𝑏𝑖𝑖𝑏𝑏𝑏𝑏 and  𝒄𝒄 =
𝑚𝑚1‖𝑚𝑚2

𝑒𝑒mod N, but not 𝑚𝑚2 𝑘𝑘 𝑏𝑏𝑖𝑖𝑏𝑏𝑏𝑏
𝑝𝑝 𝑥𝑥 = 2𝑘𝑘𝑚𝑚1 + 𝑥𝑥 3 − 𝑐𝑐

Polynomial has a small root mod N at x= 𝑚𝑚2 and coppersmith’s method 
will find it!

46D. Coppersmith (1996). "Finding a Small Root of a Univariate Modular Equation".



More Weaknesses: Plain RSA with small e

Theorem[Coppersmith]:  Can also find small roots of bivariate 
polynomial p 𝒙𝒙𝟏𝟏,𝒙𝒙𝟐𝟐

• Similar Approach used to factor weak RSA secret keys N=q1q2

• Weak PRG  Can guess many of the bits of prime factors 
• Obtain �𝑞𝑞1 ≈ 𝑞𝑞1 and �𝑞𝑞2 ≈ 𝑞𝑞2

• Coppersmith Attack: Define polynomial p(.,.) as follows
p 𝒙𝒙𝟏𝟏,𝒙𝒙𝟐𝟐 = 𝒙𝒙𝟏𝟏 + �𝒒𝒒𝟏𝟏 𝒙𝒙𝟐𝟐 + �𝒒𝒒𝟐𝟐 − 𝑵𝑵

• Small Roots of p 𝒙𝒙𝟏𝟏,𝒙𝒙𝟐𝟐 :  𝑥𝑥1 = 𝑞𝑞1 −�𝑞𝑞1 and 𝑥𝑥2 = 𝑞𝑞2 − �𝑞𝑞2

47D. Coppersmith (1996). "Finding a Small Root of a Bivariate Integer Equation; Factoring with high bits known"
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A Side Channel Attack on RSA with CRT

• Suppose that decryption is done via Chinese Remainder Theorem for 
speed.

𝐃𝐃𝐃𝐃𝐄𝐄𝒔𝒔𝒔𝒔 𝒄𝒄 = 𝒄𝒄𝒅𝒅 𝒎𝒎𝒎𝒎𝒅𝒅 𝑵𝑵 ↔ 𝒄𝒄𝒅𝒅 𝒎𝒎𝒎𝒎𝒅𝒅 𝒑𝒑, 𝒄𝒄𝒅𝒅 𝒎𝒎𝒎𝒎𝒅𝒅 𝒒𝒒

• Attacker has physical access to smartcard
• Can mess up computation of 𝒄𝒄𝒅𝒅 𝒎𝒎𝒎𝒎𝒅𝒅 𝒑𝒑
• Response is R ↔ 𝒓𝒓, 𝒄𝒄𝒅𝒅 𝒎𝒎𝒎𝒎𝒅𝒅 𝒒𝒒
• R − m ↔ 𝒓𝒓 −𝒎𝒎𝒎𝒎𝒎𝒎𝒅𝒅 𝒑𝒑,𝟎𝟎𝒎𝒎𝒎𝒎𝒅𝒅 𝒒𝒒
• GCD(R-m,N)=q
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Recovering Encrypted Message faster than 
Brute-Force
Brute Force Attack: Suppose we know the secret message m < 2n 

We can recover m from ciphertext c=me mod N in time 2n

(Solution: Search from m’ < 2n s.t. c=m’e mod N)

Claim: Let m < 2n be a secret message. For some constant 𝛼𝛼 = 1
2

+ 𝜀𝜀.
We can recover m in in time 𝑃𝑃 = 2𝛼𝛼𝑛𝑛 with high probability. 

Roughly 𝐵𝐵 steps to find a secret message m < B
Similar to birthday attack
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Fixes for Plain RSA

• Approach 1: RSA-OAEP
• Incorporates random nonce r 
• CCA-Secure (in random oracle model)

• Approach 2: Use RSA to exchange symmetric key for Authenticated Encryption 
scheme (e.g., AES)

• Key Encapsulation Mechanism (KEM)
• Alice has public key (N,e)
• Bob picks random 𝑟𝑟 ∈ ℤ𝑁𝑁 and sends c = 𝑟𝑟𝑒𝑒 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁 to Alice
• Alice and Bob use the symmetric secret key K = H(𝑟𝑟) for authenticated encryption
• Intuition: 

• If attacker never queries H(𝑟𝑟) then 𝐾𝐾 can be viewed as truly random secret key (Random Oracle Model)
• If attacker does query H(𝑟𝑟) with non-negligible probability then we can win RSA-Inversion game using A

• More details in future lectures…stay tuned!
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Recap and Announcements

• Plain RSA
• Primality Tests and Key Generation
• Encryption/Decryption
• Factoring/RSA-Inversion
• Attacks on Plain RSA
• Fixes: RSA-OAEP, Key-Exchange + Authenticated Encryption (more coming)

• Announcements
• Quiz 4 released today (Due: Saturday (3/27) at 11:30PM on Brightspace)
• Homework 4 released (Due: April 8th at 11:59 PM on Gradescope)

• Q4: Programming Assignment
• Q2: Programming Assignment or Written Solution (You pick!)
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CS 555: Week 10: Topic 3
Discrete Log + DDH Assumption
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(Recap) Finite Groups

Definition: A (finite) group is a (finite) set 𝔾𝔾 with a binary operation ∘ (over 
G) for which we have
• (Closure:) For all g, h ∈ 𝔾𝔾 we have g ∘ h ∈ 𝔾𝔾
• (Identity:) There is an element e ∈ 𝔾𝔾 such that for all g ∈ 𝔾𝔾 we have 

g ∘ e = g = e ∘ g
• (Inverses:) For each element  g ∈ 𝔾𝔾 we can find h ∈ 𝔾𝔾 such that g ∘ h = e.  

We say that h is the inverse of g. 
• (Associativity: ) For all g1, g2, g3 ∈ 𝔾𝔾 we have

g1 ∘ g2 ∘ g3 = g1 ∘ g2 ∘ g3
We say that the group is abelian if 
• (Commutativity:) For all g, h ∈ 𝔾𝔾 we have g ∘ h = h ∘ g
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Finite Abelian Groups (Examples)

• Example 1: ℤ
𝑁𝑁

when ∘ denotes addition modulo N
• Identity: 0, since 0 ∘ x =[0+x mod N] = [x mod N].
• Inverse of x? Set x-1=N-x so that [x-1+x mod N] = [N-x+x mod N] = 0.

• Example 2: ℤ
𝑁𝑁
∗ when ∘ denotes multiplication modulo N

• Identity: 1, since 1∘ x =[1(x) mod N] = [x mod N].
• Inverse of x? Run extended GCD to obtain integers a and b such that

𝑎𝑎𝑥𝑥 + 𝑏𝑏𝑁𝑁 = gcd 𝑥𝑥,𝑁𝑁 = 1
Observe that: x-1 = a. Why?
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Cyclic Group

• Let 𝔾𝔾 be a group with order m = 𝔾𝔾 with a binary operation ∘ (over G) 
and let g ∈ 𝔾𝔾 be given consider the set

𝑔𝑔 = 𝑔𝑔0,𝑔𝑔1,𝑔𝑔2, …

Fact: 𝑔𝑔 defines a subgroup of 𝔾𝔾.
• Identity: 𝑔𝑔0

• Closure: 𝑔𝑔𝑖𝑖 ∘ 𝑔𝑔𝑗𝑗 = 𝑔𝑔𝑖𝑖+𝑗𝑗 ∈ 𝑔𝑔
• g is called a “generator” of the subgroup.

Fact: Let r = 𝑔𝑔 then 𝑔𝑔𝑖𝑖 = 𝑔𝑔𝑗𝑗 if and only if 𝑖𝑖 = 𝑗𝑗 𝑚𝑚𝑚𝑚𝑚𝑚 𝑟𝑟. Also m is divisible 
by r. 
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Finite Abelian Groups (Examples)

Fact: Let p be a prime then ℤ𝑝𝑝∗ is a cyclic group of order p-1. 
• Note: Number of generators g s.t. of 𝑔𝑔 = ℤ𝑝𝑝∗ is 𝜙𝜙 𝑝𝑝 − 1

Example (non-generator): p=7, g=2
<2>={1,2,4}

Example (generator): p=7, g=5
<2>={1,5,4,6,2,3}
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Discrete Log Experiment DLogA,G(n)

1. Run G(1n) to obtain a cyclic group 𝔾𝔾 of order q (with 𝑞𝑞 = 𝑛𝑛) and 
a generator g such that < g >= 𝔾𝔾.

2. Select h ∈ 𝔾𝔾 uniformly at random.
3. Attacker A is given 𝔾𝔾, q, g, h and outputs integer x.
4. Attacker wins (DLogA,G(n)=1) if and only if  gx=h.

We say that the discrete log problem is hard relative to generator G if
∀𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴 ∃𝜇𝜇 (negligible) s. t Pr DLogA,n = 1 ≤ 𝜇𝜇(𝑛𝑛)
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Diffie-Hellman Problems

Computational Diffie-Hellman Problem (CDH)
• Attacker is given h1 = 𝑔𝑔𝑥𝑥1 ∈ 𝔾𝔾 and h2 = 𝑔𝑔𝑥𝑥2 ∈ 𝔾𝔾.
• Attackers goal is to find 𝑔𝑔𝑥𝑥1𝑥𝑥2= h1

𝑥𝑥2 = h2
𝑥𝑥1

• CDH Assumption: For all PPT A there is a negligible function negl upper 
bounding the probability that A succeeds with probability at most negl(n).

Decisional Diffie-Hellman Problem (DDH)
• Let z0 = 𝑔𝑔𝑥𝑥1𝑥𝑥2 and let z1 = 𝑔𝑔𝑟𝑟, where x1,x2 and r are random
• Attacker is given 𝑔𝑔𝑥𝑥1, 𝑔𝑔𝑥𝑥2 and 𝑧𝑧𝑏𝑏 (for a random bit b)
• Attackers goal is to guess b
• DDH Assumption: For all PPT A there is a negligible function negl such that 

A succeeds with probability at most ½ + negl(n).
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Secure key-agreement with DDH

1. Alice publishes 𝑔𝑔𝑥𝑥𝐴𝐴 and Bob publishes 𝑔𝑔𝑥𝑥𝐵𝐵
2. Alice and Bob can both compute 𝐾𝐾𝐴𝐴,𝐵𝐵 = 𝑔𝑔𝑥𝑥𝐵𝐵 𝑥𝑥𝐴𝐴 but to Eve this key is 

indistinguishable from a random group element (by DDH) 

Remark: Protocol is vulnerable to Man-In-The-Middle Attacks if Bob 
cannot validate 𝑔𝑔𝑥𝑥𝐴𝐴.
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Can we find a cyclic group where DDH holds?

• Example 1: ℤ𝑝𝑝∗ where p is a random n-bit prime.
• CDH is believed to be hard
• DDH is *not* hard (Exercise 13.15)

• Theorem: 𝐿𝐿𝑒𝑒𝑏𝑏 p=rq+1 be a random n-bit prime where q is a large 𝜆𝜆-
bit prime then the set of rth residues modulo p is a cyclic subgroup of 
order q. Then 𝔾𝔾𝑟𝑟 = [ℎ𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝] ℎ ∈ ℤ𝑝𝑝∗ is a cyclic subgroup of ℤ𝑝𝑝∗ of 
order q.

• Remark 1: DDH is believed to hold for such a group
• Remark 2: It is easy to generate uniformly random elements of 𝔾𝔾𝑟𝑟
• Remark 3: Any element (besides 1) is a generator of 𝔾𝔾𝑟𝑟
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Can we find a cyclic group where DDH holds?

• Theorem: 𝐿𝐿𝑒𝑒𝑏𝑏 p=rq+1 be a random n-bit prime where q is a large 𝜆𝜆-bit 
prime then the set of rth residues modulo p is a cyclic subgroup of order q. 
Then 𝔾𝔾𝑟𝑟 = [ℎ𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝] ℎ ∈ ℤ𝑝𝑝∗ is a cyclic subgroup of ℤ𝑝𝑝∗ of order q.

• Closure: ℎ𝑟𝑟𝑔𝑔𝑟𝑟 = ℎ𝑔𝑔 𝑟𝑟

• Inverse of ℎ𝑟𝑟 is ℎ−1 𝑟𝑟 ∈ 𝔾𝔾𝑟𝑟
• Size ℎ𝑟𝑟 𝑥𝑥 = ℎ[𝑟𝑟𝑥𝑥 𝑚𝑚𝑚𝑚𝑚𝑚 𝑟𝑟𝑞𝑞] = ℎ𝑟𝑟 𝑥𝑥 = ℎ𝑟𝑟[𝑥𝑥 𝑚𝑚𝑚𝑚𝑚𝑚 𝑞𝑞] = ℎ𝑟𝑟 [𝑥𝑥 𝑚𝑚𝑚𝑚𝑚𝑚 𝑞𝑞]𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝

Remark: Two known attacks on Discrete Log Problem for 𝔾𝔾𝑟𝑟(Section 9.2). 
• First runs in time 𝑂𝑂 𝑞𝑞 = 𝑂𝑂 2𝜆𝜆/2

• Second runs in time 2𝑂𝑂
3 𝑛𝑛 log 𝑛𝑛 2/3
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Can we find a cyclic group where DDH holds?

Remark: Two known attacks (Section 9.2). 
• First runs in time 𝑂𝑂 𝑞𝑞 = 𝑂𝑂 2𝜆𝜆/2

• Second runs in time 2𝑂𝑂
3 𝑛𝑛 log 𝑛𝑛 2/3 , where n is bit length of p

Goal: Set 𝜆𝜆 and n to balance attacks 
𝜆𝜆 = 𝑂𝑂 3 𝑛𝑛 log𝑛𝑛 2/3

How to sample p=rq+1? 
• First sample a random 𝜆𝜆-bit prime q and 
• Repeatedly check if rq+1 is prime for a random n- 𝜆𝜆 bit value r
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Can we find a cyclic group where DDH holds?

Elliptic Curves Example: Let p be a prime (p > 3) and let A, B be 
constants. Consider the equation

𝑦𝑦2 = 𝑥𝑥3 + 𝐴𝐴𝑥𝑥 + 𝐵𝐵 𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝
And let 

𝐸𝐸 ℤ𝑝𝑝 = 𝑥𝑥,𝑦𝑦 ∈ ℤ𝑝𝑝2 𝑦𝑦2 = 𝑥𝑥3 + 𝐴𝐴𝑥𝑥 + 𝐵𝐵 𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝 ∪ 𝒪𝒪

Note: 𝒪𝒪 is defined to be an additive identity 𝑥𝑥,𝑦𝑦 + 𝒪𝒪 = 𝑥𝑥,𝑦𝑦

What is 𝑥𝑥1,𝑦𝑦1 + 𝑥𝑥2,𝑦𝑦2 ?
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Elliptic Curve Example

The line passing through 
𝒙𝒙𝟏𝟏,𝒚𝒚𝟏𝟏 and 𝒙𝒙𝟐𝟐,𝒚𝒚𝟐𝟐 has the 

equation
𝑦𝑦 = 𝑚𝑚 𝑥𝑥 − 𝑥𝑥1 + 𝑦𝑦1 𝑚𝑚𝑚𝑚𝑚𝑚 𝑃𝑃

Where the slope 
𝑚𝑚 =

𝑦𝑦1 − 𝑦𝑦2

𝑥𝑥1 − 𝑥𝑥2
𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝
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𝒙𝒙𝟏𝟏,𝒚𝒚𝟏𝟏

𝒙𝒙𝟐𝟐,𝒚𝒚𝟐𝟐 (x3,y3)

(x3,-y3)= 𝒙𝒙𝟏𝟏,𝒚𝒚𝟏𝟏 + 𝒙𝒙𝟐𝟐,𝒚𝒚𝟐𝟐



Elliptic Curve Example

Formally, let 
𝑚𝑚 =

𝑦𝑦1 − 𝑦𝑦2

𝑥𝑥1 − 𝑥𝑥2
𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝

Be the slope. Then the line 
passing through 𝒙𝒙𝟏𝟏,𝒚𝒚𝟏𝟏 and 
𝒙𝒙𝟐𝟐,𝒚𝒚𝟐𝟐 has the equation
𝑦𝑦 = 𝑚𝑚 𝑥𝑥 − 𝑥𝑥1 + 𝑦𝑦1 𝑚𝑚𝑚𝑚𝑚𝑚 𝑃𝑃

𝑚𝑚 𝑥𝑥 − 𝑥𝑥1 + 𝑦𝑦1
2

= 𝑥𝑥3 + 𝐴𝐴𝑥𝑥 + 𝐵𝐵 𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝 72

𝒙𝒙𝟏𝟏,𝒚𝒚𝟏𝟏

𝒙𝒙𝟐𝟐,𝒚𝒚𝟐𝟐

𝑥𝑥3 = [𝑚𝑚2 − 𝑥𝑥1 − 𝑥𝑥2𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝]
𝑦𝑦3 = [𝑚𝑚 𝑥𝑥3 − 𝑥𝑥1 + 𝑦𝑦1𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝]

(x3,y3)

(x3,-y3)= 𝒙𝒙𝟏𝟏,𝒚𝒚𝟏𝟏 + 𝒙𝒙𝟐𝟐,𝒚𝒚𝟐𝟐
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Elliptic Curve Example

74

No third point R on the elliptic curve.

P+Q = 0

(Inverse)



Elliptic Curve Special Cases

75

No third point R on the elliptic curve.

P+Q = 0

(Inverse)
Z+Z=0 Z



Elliptic Curve Special Cases

76

Z+Z=RZ
-R

R

How to find R?



Can we find a cyclic group where DDH holds?

Elliptic Curves Example: Let p be a prime (p > 3) and let A, B be constants. Consider 
the equation

𝑦𝑦2 = 𝑥𝑥3 + 𝐴𝐴𝑥𝑥 + 𝐵𝐵 𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝
And let 

𝐸𝐸 ℤ𝑝𝑝 = 𝑥𝑥,𝑦𝑦 ∈ ℤ𝑝𝑝2 𝑦𝑦2 = 𝑥𝑥3 + 𝐴𝐴𝑥𝑥 + 𝐵𝐵 𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝 ∪ 𝒪𝒪

Fact: 𝐸𝐸 ℤ𝑝𝑝 defines an abelian group 
• For appropriate curves the DDH assumption is believed to hold
• If you make up your own curve there is a good chance it is broken…
• NIST has a list of recommendations 
• Bad Elliptic Curves:

• Order is p, p+1, order divides 𝑝𝑝𝑘𝑘 − 1 for “small” k,…  
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Generic Group Model

• Suppose 𝑝𝑝 < 2𝑛𝑛 is a prime
• Fact: Every prime order group is isomorphic to  ℤ𝑝𝑝, +

• Random (injective mapping) 𝜏𝜏:ℤ𝑝𝑝 → 0,1 𝑛𝑛

• Access to Group via Two Oracles
• Mult 𝜏𝜏 𝑥𝑥 , 𝜏𝜏 𝑦𝑦 = 𝜏𝜏 𝑥𝑥 + 𝑦𝑦 mod p
• Inverse 𝜏𝜏 𝑥𝑥 = 𝜏𝜏 𝑝𝑝 − 𝑥𝑥

• Discrete Log Problem: Attacker is given g = 𝜏𝜏(1) and g = 𝜏𝜏 𝑥𝑥 for a random 0 ≤ x < 𝑝𝑝.
• Attacker Goal: Find x
• DDH Problem: Challenger picks random bit b and random values 0 ≤ x, y, r < 𝑝𝑝

• Attacker is given g = 𝜏𝜏 1 , g = 𝜏𝜏 𝑥𝑥 , g = 𝜏𝜏 𝑦𝑦 , and
• g = 𝜏𝜏 𝑟𝑟 if b=0
• g = 𝜏𝜏 𝑥𝑥𝑦𝑦 if b=1
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Generic Group Model
• Suppose 𝑝𝑝 < 2𝑛𝑛 is a prime

• Fact: Every prime order group is isomorphic to  ℤ𝑝𝑝, +

• Random (injective mapping) 𝜏𝜏:ℤ𝑝𝑝 → 0,1 𝑛𝑛

• Access to Group via Two Oracles
• Mult 𝜏𝜏 𝑥𝑥 , 𝜏𝜏 𝑦𝑦 = 𝜏𝜏 𝑥𝑥 + 𝑦𝑦 mod p
• Inverse 𝜏𝜏 𝑥𝑥 = 𝜏𝜏 𝑝𝑝 − 𝑥𝑥

• Discrete Log Problem: Attacker is given g = 𝜏𝜏(1) and g = 𝜏𝜏 𝑥𝑥 for a random 0 ≤ x < 𝑝𝑝.
• Attacker Goal: Find x
• Fact: Any attacker A making at most q queries to group oracles finds x with probability at most 

O(𝑞𝑞/2𝑛𝑛/2)
• Matching Attack: Birthday Bound
• Intuition: Suppose we know i input/output pairs (𝑥𝑥1, 𝜏𝜏 𝑥𝑥1 ), … (𝑥𝑥𝑖𝑖, 𝜏𝜏 𝑥𝑥𝑖𝑖 ) but x ≠ 𝑥𝑥1, … 𝑥𝑥𝑖𝑖

• Can view x as a yet to be sampled element from ℤ𝑝𝑝\ 𝑥𝑥1, … 𝑥𝑥𝑖𝑖
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Generic Group Model

• Suppose 𝑝𝑝 < 2𝑛𝑛 is a prime
• Fact: Every prime order group is isomorphic to  ℤ𝑝𝑝, +

• Random (injective mapping) 𝜏𝜏:ℤ𝑝𝑝 → 0,1 𝑛𝑛

• Access to Group via Two Oracles
• Mult 𝜏𝜏 𝑥𝑥 , 𝜏𝜏 𝑦𝑦 = 𝜏𝜏 𝑥𝑥 + 𝑦𝑦 mod p
• Inverse 𝜏𝜏 𝑥𝑥 = 𝜏𝜏 𝑝𝑝 − 𝑥𝑥

• DDH Problem: Challenger picks random bit b and random values 0 ≤ x, y, r < 𝑝𝑝
• Attacker is given g = 𝜏𝜏 1 , g = 𝜏𝜏 𝑥𝑥 , g = 𝜏𝜏 𝑦𝑦 , and

• g = 𝜏𝜏 𝑟𝑟 if b=0
• g = 𝜏𝜏 𝑥𝑥𝑦𝑦 if b=1

• Fact: Any attacker A making at most q queries to group oracles guesses b with 
probability at most 1

2
+ O(𝑞𝑞/2𝑛𝑛/2)
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Week 12 Topic 2: Formalizing 
Public Key Cryptography

81



Public Key Encryption: Basic Terminology

• Plaintext/Plaintext Space
• A message m ∈ ℳ

• Ciphertext c ∈ 𝒞𝒞
• Public/Private Key Pair 𝒑𝒑𝒔𝒔, 𝒔𝒔𝒔𝒔 ∈ 𝓚𝓚
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Public Key Encryption Syntax

• Three Algorithms
• Gen(1𝑛𝑛,𝑅𝑅) (Key-generation algorithm)

• Input: Random Bits R
• Output: 𝒑𝒑𝒔𝒔, 𝒔𝒔𝒔𝒔 ∈ 𝓚𝓚

• Encpk(𝑚𝑚) ∈ 𝒞𝒞 (Encryption algorithm)
• Decsk(𝑐𝑐) (Decryption algorithm)

• Input: Secret key sk and a ciphertex c
• Output: a plaintext message m ∈ ℳ

• Invariant: Decsk(Encpk(m))=m

Alice must run key generation 
algorithm in advance an publishes the 

public key: pk

Assumption: Adversary only gets to 
see pk (not sk)
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Chosen-Plaintext Attacks

• Model ability of adversary to control or influence what the honest 
parties encrypt.

• Historical Example: Battle of Midway (WWII). 
• US Navy cryptanalysts were able to break Japanese code by tricking Japanese 

navy into encrypting a particular message 

• Private Key Cryptography
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Recap CPA-Security (Symmetric Key Crypto)

85

m0,1,m1,1

Random bit b
K = Gen(.)

c1 = EncK(mb,1)

b’

m0,2,m1,2

c2 = EncK(mb,2)

c3 = EncK(mb,3)
m0,3,m1,3

…

∀𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴 ∃𝜇𝜇 (negligible) s. t
Pr 𝐴𝐴 𝐺𝐺𝑢𝑢𝑒𝑒𝑏𝑏𝑏𝑏𝑒𝑒𝑏𝑏 𝑏𝑏′ = 𝑏𝑏 ≤

1
2

+ 𝜇𝜇(𝑛𝑛)



Chosen-Plaintext Attacks

• Model ability of adversary to control or influence what the honest 
parties encrypt.

• Private Key Crypto
• Attacker tricks victim into encrypting particular messages

• Public Key Cryptography
• The attacker already has the public key pk
• Can encrypt any message s/he wants!
• CPA Security is critical!

86



CPA-Security (PubKA,Π
LR−cpa n )

87

𝑚𝑚0
1,𝑚𝑚1

1

Random bit b
(pk,sk) = Gen(.)

𝒄𝒄𝟏𝟏 = 𝐄𝐄𝐄𝐄𝐄𝐄𝒑𝒑𝒔𝒔 𝒎𝒎𝒃𝒃
𝟏𝟏

b’

𝒄𝒄𝟐𝟐 = 𝐄𝐄𝐄𝐄𝐄𝐄𝒑𝒑𝒔𝒔 𝒎𝒎𝒃𝒃
𝟐𝟐

𝒄𝒄𝟑𝟑 = 𝐄𝐄𝐄𝐄𝐄𝐄𝒑𝒑𝒔𝒔 𝒎𝒎𝒃𝒃
𝟑𝟑

𝑚𝑚0
3,𝑚𝑚1

3

…

∀𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴 ∃𝜇𝜇 (negligible) s. t
Pr PubKA,Π

LR−cpa n = 1 ≤
1
2

+ 𝜇𝜇(𝑛𝑛)

𝑚𝑚0
2,𝑚𝑚1

2

Public Key: pk



CPA-Security (Single Message)

88

m0,m1

Random bit b
K = Gen(.)

c = EncK(mb)

b’

m2

c2 = EncK(m2)

c3 = EncK(m3)
m3

…

∀𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴 ∃𝜇𝜇 (negligible) s. t
Pr 𝐴𝐴 𝐺𝐺𝑢𝑢𝑒𝑒𝑏𝑏𝑏𝑏𝑒𝑒𝑏𝑏 𝑏𝑏′ = 𝑏𝑏 ≤

1
2

+ 𝜇𝜇(𝑛𝑛)

𝐹𝐹𝑚𝑚𝑟𝑟𝑚𝑚𝑎𝑎𝐹𝐹𝐹𝐹𝑦𝑦, 𝐹𝐹𝑒𝑒𝑏𝑏 Π = 𝐺𝐺𝑒𝑒𝑛𝑛,𝐸𝐸𝑛𝑛𝑐𝑐,𝐷𝐷𝑒𝑒𝑐𝑐 𝑚𝑚𝑒𝑒𝑛𝑛𝑚𝑚𝑏𝑏𝑒𝑒 𝑏𝑏ℎ𝑒𝑒 𝑒𝑒𝑛𝑛𝑐𝑐𝑟𝑟𝑦𝑦𝑝𝑝𝑏𝑏𝑖𝑖𝑚𝑚𝑛𝑛 𝑏𝑏𝑐𝑐ℎ𝑒𝑒𝑚𝑚𝑒𝑒,
𝑐𝑐𝑎𝑎𝐹𝐹𝐹𝐹 𝑏𝑏ℎ𝑒𝑒 𝑒𝑒𝑥𝑥𝑝𝑝𝑒𝑒𝑟𝑟𝑖𝑖𝑚𝑚𝑒𝑒𝑛𝑛𝑏𝑏 𝑃𝑃𝑢𝑢𝑏𝑏𝐾𝐾𝐴𝐴,Π

𝐿𝐿𝐿𝐿−𝑐𝑐𝑝𝑝𝑐𝑐 𝑛𝑛 𝑎𝑎𝑛𝑛𝑚𝑚 𝑚𝑚𝑒𝑒𝑓𝑓𝑖𝑖𝑛𝑛𝑒𝑒 𝑎𝑎 𝑟𝑟𝑎𝑎𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚 𝑣𝑣𝑎𝑎𝑟𝑟𝑖𝑖𝑎𝑎𝑏𝑏𝐹𝐹𝑒𝑒

PubKA,Π
LR−cpa 𝑛𝑛 = �1 if 𝑏𝑏 = 𝑏𝑏′

0 𝑚𝑚𝑏𝑏ℎ𝑒𝑒𝑟𝑟𝑜𝑜𝑖𝑖𝑏𝑏𝑒𝑒

Π ℎ𝑎𝑎𝑏𝑏 𝑖𝑖𝑛𝑛𝑚𝑚𝑖𝑖𝑏𝑏𝑏𝑏𝑖𝑖𝑛𝑛𝑔𝑔𝑢𝑢𝑖𝑖𝑏𝑏ℎ𝑎𝑎𝑏𝑏𝐹𝐹𝑒𝑒 𝑒𝑒𝑛𝑛𝑐𝑐𝑟𝑟𝑦𝑦𝑝𝑝𝑏𝑏𝑖𝑖𝑚𝑚𝑛𝑛𝑏𝑏 𝑢𝑢𝑛𝑛𝑚𝑚𝑒𝑒𝑟𝑟 𝑎𝑎 𝑐𝑐ℎ𝑚𝑚𝑏𝑏𝑒𝑒𝑛𝑛 𝑝𝑝𝐹𝐹𝑎𝑎𝑖𝑖𝑛𝑛𝑏𝑏𝑒𝑒𝑥𝑥𝑏𝑏 𝑎𝑎𝑏𝑏𝑏𝑏𝑎𝑎𝑐𝑐𝑘𝑘
𝑖𝑖𝑓𝑓 𝑓𝑓𝑚𝑚𝑟𝑟 𝑎𝑎𝐹𝐹𝐹𝐹 𝑃𝑃𝑃𝑃𝑃𝑃 𝑎𝑎𝑚𝑚𝑣𝑣𝑒𝑒𝑟𝑟𝑏𝑏𝑎𝑎𝑟𝑟𝑖𝑖𝑒𝑒𝑏𝑏 𝐴𝐴, 𝑏𝑏ℎ𝑒𝑒𝑟𝑟𝑒𝑒 𝑖𝑖𝑏𝑏 𝑎𝑎 negligible function 𝜇𝜇 such that 

Pr[PubKA,Π
LR−cpa 𝑛𝑛 = 1] ≤ 1

2
+ 𝜇𝜇(𝑛𝑛)



Private Key Crypto

• CPA Security was stronger than eavesdropping security

EncK(m) = G(K)⨁𝑚𝑚

Vs.

EncK(m) = 𝑟𝑟,𝐹𝐹𝑘𝑘 𝑟𝑟 ⨁𝑚𝑚
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Public Key Crypto

• Fact 1: CPA Security and Eavesdropping Security are Equivalent
• Key Insight: The attacker has the public key so he doesn’t gain anything from being able to 

query the encryption oracle!

• Fact 2: Any deterministic encryption scheme is not CPA-Secure
• Historically overlooked in many real world public key crypto systems

• Fact 3: Plain RSA is not CPA-Secure
• Fact 4: No Public Key Cryptosystem can achieve Perfect Secrecy!

• Exercise 11.1
• Hint: Unbounded attacker can keep encrypting the message m using the public key to recover 

all possible encryptions of m.
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Encrypting Longer Messages

Claim 11.7: Let Π = 𝐺𝐺𝑒𝑒𝑛𝑛,𝐸𝐸𝑛𝑛𝑐𝑐,𝐷𝐷𝑒𝑒𝑐𝑐 denote a CPA-Secure public key 
encryption scheme and let  Π𝑝 = 𝐺𝐺𝑒𝑒𝑛𝑛,𝐸𝐸𝑛𝑛𝑐𝑐𝑝,𝐷𝐷𝑒𝑒𝑐𝑐𝑝 be defined such 
that 

𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐩𝐩′ 𝒎𝒎𝟏𝟏 ∥ 𝒎𝒎𝟐𝟐 ∥ ⋯ ∥ 𝒎𝒎ℓ = 𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐩𝐩 𝒎𝒎𝟏𝟏 ∥ ⋯ ∥ 𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐩𝐩 𝒎𝒎ℓ

Then Π𝑝 is also CPA-Secure.
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Chosen Ciphertext Attacks

• Models ability of attacker to obtain (partial) decryption of selected 
ciphertexts

• Attacker might intercept ciphertext c (sent from S to R) and send c’ 
instead.

• After that attacker can observe receiver’s behavior (abort, reply etc…)

• Attacker might send a modified ciphertext c’ to receiver R in his own 
name.

• E-mail response: Receiver might decrypt c’ to obtain m’ and include m’ in the 
response to the attacker
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Recap CCA-Security (Symmetric Key Crypto) 

93

m0,m1

Random bit b
K = Gen(.)

c = EncK(mb)

b’

m3

c2 = EncK(m2)

m3 = DecK(m3)
c3

…

“No Way!”
c4 =c

m-1
c-1 = EncK(m-1)

m-2 = DecK(c-2)
c-2 …

We could set m0 = m-1 or m1 = m-2

However, we could still flip 1 bit 
of c and ask challenger to decrypt



Recap CCA-Security 𝑃𝑃𝑟𝑟𝑖𝑖𝑣𝑣𝐾𝐾𝐴𝐴,Π
𝑐𝑐𝑐𝑐𝑐𝑐 𝑛𝑛

1. Challenger generates a secret key k and a bit b
2. Adversary (A) is given oracle access to Enck and Deck
3. Adversary outputs m0,m1
4. Challenger sends the adversary c=Enck(mb).
5. Adversary maintains oracle access to  Enck and Deck ,however the adversary is 

not allowed to query Deck(c).
6. Eventually, Adversary outputs b’.

𝑃𝑃𝑟𝑟𝑖𝑖𝑣𝑣𝐾𝐾𝐴𝐴,Π
𝑐𝑐𝑐𝑐𝑐𝑐 𝑛𝑛 = 1 if b = b′; otherwise 0.

CCA-Security: For all PPT A exists a negligible function negl(n) s.t.

Pr 𝑃𝑃𝑟𝑟𝑖𝑖𝑣𝑣𝐾𝐾𝐴𝐴,Π
𝑐𝑐𝑐𝑐𝑐𝑐 𝑛𝑛 = 1 ≤

1
2

+ 𝑛𝑛𝑒𝑒𝑔𝑔𝐹𝐹(𝑛𝑛)
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CCA-Security (PubKA,Π
cca n )

95

𝑚𝑚0 ,𝑚𝑚1

Random bit b
(pk,sk) = Gen(.)

𝒎𝒎−𝟏𝟏 = 𝐃𝐃𝐃𝐃𝐄𝐄𝒔𝒔𝒔𝒔 𝒄𝒄−𝟏𝟏

b’

𝒄𝒄𝒃𝒃 = 𝐄𝐄𝐄𝐄𝐄𝐄𝒑𝒑𝒔𝒔 𝒎𝒎𝒃𝒃

…

∀𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴 ∃𝜇𝜇 (negligible) s. t
Pr PubKA,Π

cca n = 1 ≤
1
2

+ 𝜇𝜇(𝑛𝑛)

𝒄𝒄−𝟏𝟏

…

𝒄𝒄𝒔𝒔
𝒎𝒎𝒔𝒔 = 𝐃𝐃𝐃𝐃𝐄𝐄𝒔𝒔𝒔𝒔 𝒄𝒄𝒔𝒔

Public Key: pk



Encrypting Longer Messages

Claim 11.7: Let Π = 𝐺𝐺𝑒𝑒𝑛𝑛,𝐸𝐸𝑛𝑛𝑐𝑐,𝐷𝐷𝑒𝑒𝑐𝑐 denote a CPA-Secure public key 
encryption scheme and let  Π𝑝 = 𝐺𝐺𝑒𝑒𝑛𝑛,𝐸𝐸𝑛𝑛𝑐𝑐𝑝,𝐷𝐷𝑒𝑒𝑐𝑐𝑝 be defined such that 

𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐩𝐩′ 𝒎𝒎𝟏𝟏 ∥ 𝒎𝒎𝟐𝟐 ∥ ⋯ ∥ 𝒎𝒎ℓ = 𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐩𝐩 𝒎𝒎𝟏𝟏 ∥ ⋯ ∥ 𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐩𝐩 𝒎𝒎ℓ
Then Π𝑝 is also CPA-Secure.

Claim? Let Π = 𝐺𝐺𝑒𝑒𝑛𝑛,𝐸𝐸𝑛𝑛𝑐𝑐,𝐷𝐷𝑒𝑒𝑐𝑐 denote a CCA-Secure public key encryption 
scheme and let  Π𝑝 = 𝐺𝐺𝑒𝑒𝑛𝑛,𝐸𝐸𝑛𝑛𝑐𝑐𝑝,𝐷𝐷𝑒𝑒𝑐𝑐𝑝 be defined such that 

𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐩𝐩′ 𝒎𝒎𝟏𝟏 ∥ 𝒎𝒎𝟐𝟐 ∥ ⋯ ∥ 𝒎𝒎ℓ = 𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐩𝐩 𝒎𝒎𝟏𝟏 ∥ ⋯ ∥ 𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐩𝐩 𝒎𝒎ℓ
Then Π𝑝 is also CCA-Secure.

Is this second claim true?
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Encrypting Longer Messages

Claim? Let Π = 𝐺𝐺𝑒𝑒𝑛𝑛,𝐸𝐸𝑛𝑛𝑐𝑐,𝐷𝐷𝑒𝑒𝑐𝑐 denote a CCA-Secure public key 
encryption scheme and let  Π𝑝 = 𝐺𝐺𝑒𝑒𝑛𝑛,𝐸𝐸𝑛𝑛𝑐𝑐𝑝,𝐷𝐷𝑒𝑒𝑐𝑐𝑝 be defined such 
that 

𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐩𝐩′ 𝒎𝒎𝟏𝟏 ∥ 𝒎𝒎𝟐𝟐 ∥ ⋯ ∥ 𝒎𝒎ℓ = 𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐩𝐩 𝒎𝒎𝟏𝟏 ∥ ⋯ ∥ 𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐩𝐩 𝒎𝒎ℓ

Then Π𝑝 is also CCA-Secure.

Is this second claim true?
Answer: No!
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Encrypting Longer Messages

Fact: Let Π = 𝐺𝐺𝑒𝑒𝑛𝑛,𝐸𝐸𝑛𝑛𝑐𝑐,𝐷𝐷𝑒𝑒𝑐𝑐 denote a CCA-Secure public key encryption scheme 
and let  Π𝑝 = 𝐺𝐺𝑒𝑒𝑛𝑛,𝐸𝐸𝑛𝑛𝑐𝑐𝑝,𝐷𝐷𝑒𝑒𝑐𝑐𝑝 be defined such that 

𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐩𝐩′ 𝒎𝒎𝟏𝟏 ∥ 𝒎𝒎𝟐𝟐 ∥ ⋯ ∥ 𝒎𝒎ℓ = 𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐩𝐩 𝒎𝒎𝟏𝟏 ∥ ⋯ ∥ 𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐩𝐩 𝒎𝒎ℓ
Then Π𝑝 is Provably Not CCA-Secure.

1. Attacker sets 𝒎𝒎𝟎𝟎 = 𝟎𝟎𝒏𝒏 ∥ 𝟏𝟏𝒏𝒏 ∥ 𝟏𝟏𝒏𝒏 and 𝒎𝒎𝟏𝟏 = 𝟎𝟎𝒏𝒏 ∥ 𝟎𝟎𝒏𝒏 ∥ 𝟏𝟏𝒏𝒏 and gets 𝒄𝒄𝒃𝒃 =
𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐩𝐩′ 𝒎𝒎𝒃𝒃 = 𝒄𝒄𝒃𝒃,𝟏𝟏 ∥ 𝒄𝒄𝒃𝒃,𝟐𝟐 ∥ 𝒄𝒄𝒃𝒃,𝟑𝟑

2. Attacker sets 𝒄𝒄𝑝 = 𝒄𝒄𝒃𝒃,𝟐𝟐 ∥ 𝒄𝒄𝒃𝒃,𝟑𝟑 ∥ 𝒄𝒄𝒃𝒃,𝟏𝟏 , queries the decryption oracle and gets 

𝐃𝐃𝐃𝐃𝐄𝐄𝐬𝐬𝐩𝐩′ 𝒄𝒄𝑝 = �𝟏𝟏𝒏𝒏 ∥ 𝟏𝟏𝒏𝒏 ∥ 𝟎𝟎𝒏𝒏 if b=𝟎𝟎
𝟎𝟎𝒏𝒏 ∥ 𝟏𝟏𝒏𝒏 ∥ 𝟎𝟎𝒏𝒏 𝒎𝒎𝒐𝒐𝒐𝒐𝒆𝒆𝒓𝒓𝒐𝒐𝒊𝒊𝒔𝒔𝒆𝒆
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Achieving CPA and CCA-Security

• Plain RSA is not CPA Secure (therefore, not CCA-Secure)

• El-Gamal (future) is CPA-Secure, but not CCA-Secure

• Tools to obtain CCA-Security in Public Key Setting
• RSA-OAEP, Cramer-Shoup
• Key Encapsulation Mechanism
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Key Encapsulation Mechanism (KEM)

• Three Algorithms
• Gen(1𝑛𝑛,𝑅𝑅) (Key-generation algorithm)

• Input: Random Bits R
• Output: 𝒑𝒑𝒔𝒔, 𝒔𝒔𝒔𝒔 ∈ 𝓚𝓚

• Encapspk(1𝑛𝑛,𝑅𝑅)
• Input: security parameter, random bits R
• Output: Symmetric key k ∈ 0,1 ℓ 𝑛𝑛 and a ciphertext c

• Decapssk(𝑐𝑐) (Deterministic algorithm)
• Input: Secret key sk ∈ 𝒦𝒦 and a ciphertex c
• Output: a symmetric key 0,1 ℓ 𝑛𝑛 or ⊥ (fail)

• Invariant: Decapssk(c)=k whenever (c,k) = Encapspk(1𝑛𝑛,𝑅𝑅)
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KEM CCA-Security (KEMA,Π
cca n )

101

𝒄𝒄𝟏𝟏 ≠ 𝒄𝒄

Random bit b
(pk,sk) = Gen(.)

𝒄𝒄,𝒔𝒔𝟎𝟎 = 𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐬𝐬𝒑𝒑𝒔𝒔 .
𝒔𝒔𝟏𝟏 ⟵ 𝟎𝟎,𝟏𝟏 𝒏𝒏

b’

𝐃𝐃𝐃𝐃𝐄𝐄𝐄𝐄𝐄𝐄𝐬𝐬𝒔𝒔𝒔𝒔 𝒄𝒄𝟏𝟏

…

∀𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴 ∃𝜇𝜇 (negligible) s. t
Pr KEMA,Π

cca = 1 ≤
1
2

+ 𝜇𝜇(𝑛𝑛)

…

𝒄𝒄𝟐𝟐 ≠ 𝒄𝒄
𝐃𝐃𝐃𝐃𝐄𝐄𝐄𝐄𝐄𝐄𝐬𝐬𝒔𝒔𝒔𝒔 𝒄𝒄𝟐𝟐

𝒑𝒑𝒔𝒔, 𝒄𝒄,𝒔𝒔𝒃𝒃



CCA-Secure Encryption from CCA-Secure KEM

𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐩𝐩 𝒎𝒎;𝑹𝑹 = 𝒄𝒄,𝐄𝐄𝐄𝐄𝐄𝐄𝐩𝐩∗ 𝒎𝒎
Where

• 𝒄𝒄,𝒔𝒔 ← 𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐬𝐬𝐄𝐄𝐩𝐩 𝟏𝟏𝒏𝒏;𝑹𝑹 ,
• 𝐄𝐄𝐄𝐄𝐄𝐄𝐩𝐩∗ is a CCA-Secure symmetric key encryption algorithm, and

• 𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐬𝐬𝐄𝐄𝐩𝐩 is a CCA-Secure KEM.

Theorem 11.14: 𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐩𝐩 is CCA-Secure public key encryption scheme. 
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CCA-Secure KEM in the Random Oracle Model

• Let (N,e,d) be an RSA key (pk =(N,e), sk=(N,d)).

Encapspk 1𝑛𝑛,𝑅𝑅 = 𝑟𝑟𝑒𝑒 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁, 𝑘𝑘 = 𝐻𝐻 𝑟𝑟

• Remark 1: k is completely random string unless the adversary 
can query random oracle H on input r.

• Remark 2: If Plain-RSA is hard to invert for a random input 
then PPT attacker finds r with negligible probability.
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Using a CCA-Secure KEM

• Let (N,e,d) be an RSA key (pk =(N,e), sk=(N,d)).

Encpk 𝑚𝑚;𝑅𝑅 = (𝑐𝑐, AEnck(𝑚𝑚)) where
𝑐𝑐 = Encapspk 1𝑛𝑛,𝑅𝑅

• Remark 1: k is completely random string unless the adversary 
can query random oracle H on input r.

• Remark 2: If Plain-RSA is hard to invert for a random input 
then PPT attacker finds r with negligible probability.
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RSA-OAEP 
(Optimal Asymmetric Encryption Padding)
• 𝐄𝐄𝐄𝐄𝐄𝐄𝒑𝒑𝒔𝒔 (𝑚𝑚; 𝑟𝑟) = [ 𝑥𝑥 ∥ 𝑦𝑦 𝑒𝑒 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁]
• Where 𝑥𝑥 ∥ 𝑦𝑦 ← OAEP(𝑚𝑚 ∥ 0𝑘𝑘1 ∥ 𝑟𝑟)
• 𝐃𝐃𝐃𝐃𝐄𝐄𝒔𝒔𝒔𝒔 𝑐𝑐 =
• �𝑚𝑚 ← [ 𝑐𝑐 𝑚𝑚 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁]
• If �𝑚𝑚 > 𝑛𝑛 return fail
• 𝑚𝑚 ∥ 𝑧𝑧 ∥ 𝑟𝑟 ← OAEP−1( �𝑚𝑚)
• If 𝑧𝑧 ≠ 0𝑘𝑘1 then output fail
• Otherwise output m
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Recap RSA-Assumption

RSA-Experiment: RSA-INVA,n

1. Run KeyGeneration(1n) to obtain (N,e,d)
2. Pick uniform y ∈ ℤ

N
∗

3. Attacker A is given N, e, y and outputs x ∈ ℤ
N
∗

4. Attacker wins (RSA−INV𝐴𝐴,𝑛𝑛=1) if 𝑥𝑥𝑒𝑒 = y mod N

∀𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴 ∃𝜇𝜇 (negligible) s. t Pr RSA−INV𝐴𝐴,𝑛𝑛 = 1 ≤ 𝜇𝜇(𝑛𝑛)

106



RSA-OAEP 
(Optimal Asymmetric Encryption Padding)
Theorem: If we model G and H as 
Random oracles then RSA-OAEP is
a CCA-Secure public key encryption scheme
(given RSA-Inversion assumption).

Bonus: One of the fastest in practice! 
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PKCS #1 v2.0

• Implementation of RSA-OAEP

• James Manger found a chosen-ciphertext attack.

• What gives?
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PKCS #1 v2.0 (Bad Implementation)

• 𝐄𝐄𝐄𝐄𝐄𝐄𝒑𝒑𝒔𝒔 (𝑚𝑚; 𝑟𝑟) = [ 𝑥𝑥 ∥ 𝑦𝑦 𝑒𝑒 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁]
• Where 𝑥𝑥 ∥ 𝑦𝑦 ← OAEP(𝑚𝑚 ∥ 0𝑘𝑘1 ∥ 𝑟𝑟)
• 𝐃𝐃𝐃𝐃𝐄𝐄𝒔𝒔𝒔𝒔 𝑐𝑐 =
• �𝑚𝑚 ← [ 𝑐𝑐 𝑚𝑚 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁]
• If �𝒎𝒎 > 𝒏𝒏 return Error Message 1
• 𝑚𝑚 ∥ 𝑧𝑧 ∥ 𝑟𝑟 ← OAEP−1( �𝑚𝑚)
• If 𝒛𝒛 ≠ 𝟎𝟎𝒔𝒔𝟏𝟏 then output Error Message 2
• Otherwise output m
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PKCS #1 v2.0 (Attack)

• Manger’s CCA-Attack recovers secret message
• Step 1: Use decryption oracle to check if 2 �𝑚𝑚 ≥ 2𝑛𝑛
• 𝑐𝑐 = [ �𝑚𝑚 𝑒𝑒 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁]2𝑒𝑒𝑐𝑐 = [ 2 �𝑚𝑚 𝑒𝑒 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁]

• Requires 𝑵𝑵 𝑞𝑞𝑢𝑢𝑒𝑒𝑟𝑟𝑖𝑖𝑒𝑒𝑏𝑏 𝑏𝑏𝑚𝑚 𝑚𝑚𝑒𝑒𝑐𝑐𝑟𝑟𝑦𝑦𝑝𝑝𝑏𝑏𝑖𝑖𝑚𝑚𝑛𝑛 𝑚𝑚𝑟𝑟𝑎𝑎𝑐𝑐𝐹𝐹𝑒𝑒.

• Attack also works as a side channel attack
• Even if error messages are the same the time to respond could be different in each 

case.
• Fix: Implementation should return same error message and should make 

sure that the time to return each error is the same.
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