
Cryptography
CS 555

Week 1: 
• Course Overview & What is Cryptography
• Historical Ciphers (& How to Break Them)
• Perfect Secrecy
• Computational Security

Readings: Katz and Lindell Chapter 1-2 + Appendix A.3 (background)
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Course Resources

Instructor: Jeremiah Blocki
Office Hours: Thursdays from 2-4PM

TA: Mohammad Hassan Ameri
Office Hours: TBD

Course Web Page: Slides, homeworks and schedule 
https://www.cs.purdue.edu/homes/jblocki/courses/555_Spring21/
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Technology

• Brightspace
• Syllabus (You are responsible for reading and understanding course policies)
• Recorded Lectures
• Quizzes

• Gradescope
• Submit homework assignments
• View Graded Assignments and Exams

• Piazza
• Course Discussion Board
• Announcements/Questions
• Preferred method of communication
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Grades

• Course Participation: 5%
• Homework: 35%
• Midterm Exam: 20%
• Final Exam: 25%
• Online Quizzes: 15%

Collaboration is permitted on homework assignments, but you completely 
understand your solutions and you must write the solutions entirely in your 
own words.

No collaboration on quizzes/exams
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Expected Background

• Basic Probability Theory
• Algorithms and Complexity

• Most security proofs involve reductions

• General Mathematical Maturity
• Quantifiers/Predicate Logic
• Understand what is (is not) a proper definition
• Know how to write a proof
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Course Goals

• Understand the mathematics underlying cryptographic algorithms 
and protocols

• Understand the power (and limitations) of common cryptographic 
tools

• Understand the formal approach to security in modern cryptography
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Topic 1: Course Overview & 
What is Cryptography
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What is Cryptography?

“the art of writing or solving codes” – Concise Oxford English Dictionary
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What is Cryptography?
“the art of writing or solving codes” – Concise Oxford English Dictionary

“The study of mathematical techniques for securing 
digital information, systems and distributed 

computation against adversarial attacks.” 
-- Intro to Modern Cryptography

Late 20th century
Art Science
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What is Cryptography?
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• Precise Mathematical 
Security Definitions

• Specific Algorithmic 
Assumptions

• Formal Security 
Reductions/Proofs

• Experience

• Intuition

• Creativity



What Does It Mean to “Secure Information” 

• Confidentiality (Security/Privacy)
• Only intended recipient can see the communication
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What Does It Mean to “Secure Information” 

• Confidentiality (Security/Privacy)
• Only intended recipient can see the communication

• Integrity (Authenticity)
• The message was actually sent by the alleged sender

Bob
Alice

I love you 
Alice… - Bob

We need to 
break up -Bob
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Two Attacker Models

• Passive Attacker (Eve)
• Attacker can eavesdrop 
• Protection Requires? 

• Confidentiality

• Active Attacker (Mallory)
• Has full control over communication channel
• Protection Requires? 

• Confidentiality & Integrity
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Steganography vs Cryptography

• Steganography
• Goal: Hide existence of a message

• Invisible Ink, Tattoo Underneath Hair, …

• Assumption: Method is secret
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Steganography vs Cryptography

• Steganography
• Goal: Hide existence of a message

• Invisible Ink, Tattoo Underneath Hair, …
• Assumption: Method is secret

• Cryptography
• Goal: Hide the meaning of a message
• Depends only on secrecy of a (short) key
• Kerckhoff’s Principle: Cipher method should 
not be required to be secret.
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Symmetric Key Encryption

• What cryptography has historically been all about (Pre 1970)
• Two parties (sender and receiver) share secret key

• Sender uses key to encrypt (“scramble”) the message before 
transmission

• Receiver uses the key to decrypt (“unscramble”) and recover the 
original message
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Encryption: Basic Terminology

• Plaintext
• The original message m

• Plaintext Space (Message Space)
• The set ℳ of all possible plaintext messages
• Example 1: ℳ = ′𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑘𝑘′,′ 𝑟𝑟𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑡𝑡′, ′ℎ𝑜𝑜𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
• Example 2: ℳ = 0,1 𝑛𝑛 --- all n-bit messages

• Ciphertext c ∈ 𝒞𝒞
• An encrypted (“scrambled”) message c ∈ 𝒞𝒞 (ciphertext space)

• Key/Keyspace k ∈ 𝒦𝒦
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Private Key Encryption Syntax

• Message Space: ℳ
• Key Space: 𝒦𝒦
• Three Algorithms Π = Gen, Enc, Dec

• Gen(𝑅𝑅) (Key-generation algorithm)
• Input: Random Bits R
• Output: Secret key k ∈ 𝒦𝒦

• Enck(𝑚𝑚) (Encryption algorithm)
• Input: Secret key k ∈ 𝒦𝒦 and message m ∈ ℳ
• Output: ciphertext c

• Deck(𝑐𝑐) (Decryption algorithm)
• Input: Secret key k ∈ 𝒦𝒦 and a ciphertex c
• Output: a plaintext message m ∈ ℳ

• Invariant: Deck(Enck(m))=m

Typically picks k ∈ 𝒦𝒦
uniformly at random

Trusted Parties (e.g., Alice and Bob) 
must run Gen in advance to obtain 

secret k. 

Assumption: Adversary does not get 
to see output of Gen
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Example: Shift Cipher

• Key Space: 𝒦𝒦={0,1,…,25}
• Message Space: ℳ={a,b,c,…,z}*

• Right Shift Operation
• RS1(a) = b
• RS1(b) = c
• ...
• RS1(z) = ?
• RSi+1(a)=RSi(b)
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Shift Cipher

• Key Space: 𝒦𝒦={0,1,…,25}
• Message Space: ℳ={a,b,c,…,z}*

• Right Shift Operation
• RS1(a) = b
• RS1(b) = c
• ...
• RS1(z) = a
• RSi+1(a)=RSi(b)

• Enck(𝑚𝑚1 ∘ ⋯∘ 𝑚𝑚𝑛𝑛) = 𝑅𝑅𝑅𝑅𝑘𝑘 𝑚𝑚1 ∘ ⋯∘ 𝑅𝑅𝑅𝑅𝑘𝑘 𝑚𝑚𝑛𝑛
• Each letter in plaintext message m = 𝑚𝑚1 ∘ ⋯∘ 𝑚𝑚𝑛𝑛 is right shifted k times RSk

• Question: what is ciphertext space 𝒞𝒞?
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Example: Shift Cipher (Multiple Characters)

• Key Space: 𝒦𝒦={0,1,…,25}
• Message Space: ℳ={a,b,c,…,z}*

Enck(𝑚𝑚1 ∘ ⋯∘ 𝑚𝑚𝑛𝑛) = 𝑅𝑅𝑅𝑅𝑘𝑘 𝑚𝑚1 ∘ ⋯ ∘ 𝑅𝑅𝑅𝑅𝑘𝑘 𝑚𝑚𝑛𝑛
Deck(𝑐𝑐1 ∘ ⋯ ∘ 𝑐𝑐𝑛𝑛) = 𝐿𝐿𝑆𝑆𝑘𝑘 𝑐𝑐1 ∘ ⋯ ∘ 𝐿𝐿𝑆𝑆𝑘𝑘 𝑐𝑐𝑛𝑛

• Note:
Deck Enck 𝑚𝑚1 ∘ ⋯∘ 𝑚𝑚𝑛𝑛 = 𝑚𝑚1 ∘ ⋯∘ 𝑚𝑚𝑛𝑛

since 
𝐿𝐿𝐿𝐿𝑘𝑘 𝑅𝑅𝑅𝑅𝑘𝑘 𝑚𝑚𝑖𝑖 = 𝑚𝑚𝑖𝑖
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Topic 2: Historical Ciphers (& 
How to Break Them)
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Cryptography History

• 2500+ years
• Ongoing battle

• Codemakers and codebreakers
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Shannon Entropy/Perfect Secrecy
(~1950)

Caesar Shift Cipher (50 BC)

Frequency Analysis
Cipher Machines (1900s)

1970s

Public Key Crypto/RSA

Formalization of 
Modern Crypto 
(1976+)



Who Uses Cryptography

• Traditionally: Militias
• Modern Times: Everyone!
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Revolutionary WarCaesar Shift Cipher (50 BC)
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Caesar Cipher
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Caesar adopted the shift cipher with secret key k=3

Three shall be the number of thy shifting and the 
number of thy shifting shall be three. Four shalt 
thou not shift, neither shift thou two, excepting 

that thou then proceed to three. Five is right 
out…..



Caesar Cipher (Example)
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BEGINTHEATTACKNOW 


EHJLQWKHDWWDFNQRZ

Caesar adopted the shift cipher with secret key k=3



Caesar Cipher (Example)
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BEGINTHEATTACKNOW 


EHJLQWKHDWWDFNQRZ

Immediate Issue: anyone who knows method can decrypt 
(since k=3 is fixed)



Modern Application: Avoid Spoilers (ROT13)
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Modern Application: Avoid Spoilers (ROT13)
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Shift Cipher: Brute Force Attack

• Ciphertext: “lwxrw ztn sd ndj iwxcz xh gxvwi?”
• k=1 m = “mxysx auo te oek jxyda yi hywxj?” 
• k=2 m=“nyzty bvp uf pfl kyzeb zj izxyk?”
• k=3 m=“ozauz cwq vg qgm lzafc ak jayzl?”
• k=4 m = “pabva dxr wh rhn mabgd bl kbzam?” 
• k=5 m=“qbcwb eys xi sio nbche cm lcabn?”
• k=6 m=“rcdxc fzt yj tjp ocdif dn mdbco?”
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Shift Cipher: Brute Force Attack

• Ciphertext: “lwxrw ztn sd ndj iwxcz xh gxvwi?”
• …
• k=7 m=“sdeyd gau zk ukq pdejg eo necdp?”
• k=8 m=“tefze hbv al vlr qefkh fp ofdeq?”
• k=9 m = “ufgaf icw bm wms rfgli gq pgefr?” 
• k=10 m=“vghbg jdx cn xnt sghmj hr qhfgs?”
• k=11m= “which key do you think is right?” 
• k=12 m= “xijdi lfz ep zpv uijol jt sjhiu?”
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Sufficient Key Space Principle

“Any secure encryption scheme must have a key space 
that is sufficiently large to make an exhaustive search 

attack infeasible.”
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Sufficient Key Space Principle

“Any secure encryption scheme must have a key space 
that is sufficiently large to make an exhaustive search 

attack infeasible.”

Question 1: How big is big enough? Complicated question….

Question 2: If the key space is large is the encryption scheme 
necessarily secure?
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Substitution Cipher

• Secret key K is permutation of the alphabet
• Example:

• A  B  C  D  E  F   G  H  I   J    K  L   M  N  O P  Q  R   S   T   U  V  W  X  Y  Z
• X  E  U  A  D  N  B  K  V  M  R  O  C   Q  F  S  Y   H  W  G  L   Z   I    J   P  T

• Encryption: apply permutation K to each letter in message
• TELLHIMABOUTME  GDOOKVCXEFLGCD

• Decryption: reverse the permutation
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Substitution Cipher

• Secret key K is a permutation of the alphabet
• Example:

• A  B  C  D  E  F   G  H  I   J    K  L   M  N  O P  Q  R   S   T   U  V  W  X  Y  Z
• X  E  U  A  D  N  B  K  V  M  R  O  C   Q  F  S  Y   H  W  G  L   Z   I    J   P  T

• Question: What is the size of the keyspace 𝒦𝒦?

𝒦𝒦 = 26! ≈ 288
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Frequency Analysis

41

• Observation 1: If e is mapped to d then every appearance of e in the plaintext results in the appearance of a 
d in the ciphertext

• Observation 2: Some letters occur much more frequently in English.

• Observation 3: Texts consisting of a few sentences tend to have a distribution close to average.

Step 1: Find letter in ciphertext that occurs with
frequency > 11%. This letter is probably e…



Vigenère Cipher

• Generalizes Shift Cipher
• K=k1,…,kt

• EncK(m) 
• Shift first letter right k1 times
• Shift second letter right k2 times
• …
• Shift tth letter right kt times 
• Shift t+1st letter right k1 times
• …

• Question: Size of key-space? 
• Answer: 26t (brute force may not be useful)
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Vigenère Cipher

• Still vulnerable to frequency analysis
• Good guess: Select K=k1,…,kt to maximize number of e’s in resulting 

ciphertext 
• See Katz and Lindell 1.3 for even more sophisticated heuristics.

• Attack works when the initial message m is sufficiently long 

• Vigenère is “perfectly secret” if the message m is at most t letters 
long.
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Conclusions

• Designing secure ciphers is hard

• Vigenère remained “unbroken” for a long time

• Complex schemes are not secure

• All historical ciphers have fallen

44

https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&ved=0ahUKEwjKvvL_r6TRAhXD44MKHW0dCxcQjRwIBw&url=https://www.pinterest.com/pin/452541462532324928/&bvm=bv.142059868,d.amc&psig=AFQjCNEmukcmKhN733GdOB1_PpPv1o-2xg&ust=1483477903267996


Homework 1 Released

• Due: Thursday, February 4th at 11:59 PM on Gradescope (2 weeks)

• Solutions should be typeset (preferably in Latex)

• You may collaborate with classmates, but you must write up your own 
solution and you must understand this solution

• Ask clarification questions on Piazza or during office hours

45



Topic 3: Perfect Secrecy + 
One-Time-Pads
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Principles of Modern Cryptography

• Need formal definitions of “security”
If you don’t understand what you want to achieve, how can you possibly know 
when (or if) you have achieved it?

• Attempt 1: Impossible/infeasible for attacker to recover secret key K
• Enck(m) = m

• Attempt 2: Impossible for attacker to recover entire plaintext from ciphertext?
• Ok to decrypt 90% of message?

• Attempt 3: Impossible for attacker to figure out any particular character of the 
plaintext from the ciphertext?

• [Too Weak] Does employee make more than $100,000 per year?
• [Too Strong] Lucky guess? Prior Information? (e.g., letters always begin “Dear ….”)
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Principles of Modern Cryptography

• Need formal definitions of “security”
If you don’t understand what you want to achieve, how can you possibly know 
when (or if) you have achieved it?

• Final Attempt: Regardless of information an attacker already has, a ciphertext 
should leak no additional information about the underlying plaintext.

• This is the “right” approach
• Still need to formalize mathematically

• Security definition includes goal and threat-model
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Principles of Modern Cryptography

• Proofs of Security are critical
• Iron-clad guarantee that attacker will not succeed (relative to 

definition/assumptions) 

• Experience: intuition is often misleading in cryptography
• An “intuitively secure” scheme may actually be badly broken.

• Before deploying in the real world
• Consider definition/assumptions in security definition
• Does the threat model capture the attackers true abilities?
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Perfect Secrecy Intuition

• Regardless of information an attacker already has, a 
ciphertext should leak no additional information 
about the underlying plaintext.

• We will formalize this intuition
• And show how to achieve it
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Private Key Encryption Syntax

• Message Space: ℳ
• Key Space: 𝒦𝒦
• Three Algorithms Π = Gen, Enc, Dec

• Gen(𝑅𝑅) (Key-generation algorithm)
• Input: Random Bits R
• Output: Secret key k ∈ 𝒦𝒦. 

• Enck(𝑚𝑚) (Encryption algorithm)
• Input: Secret key k ∈ 𝒦𝒦 and message m ∈ ℳ
• Output: ciphertext c

• Deck(𝑐𝑐) (Decryption algorithm)
• Input: Secret key k ∈ 𝒦𝒦 and a ciphertex c
• Output: a plaintext message m ∈ ℳ

• Invariant: Deck(Enck(m))=m

Typically picks k ∈ 𝒦𝒦
uniformly at random

Trusted Parties (e.g., Alice and Bob) 
must run Gen in advance to obtain 

secret k. 

Assumption: Adversary does not get 
to see output of Gen
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An Example

• Enemy knows that Caesar likes to fight in the rain and it is raining 
today

Pr 𝑚𝑚 = 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 = 0.3
Pr 𝑚𝑚 = 𝑎𝑎𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 0.7

• Suppose that Caesar sends c=EncK(m) to generals and that the 
attacker intercepts the ciphertext c and calculates

Pr 𝑚𝑚 = 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 |c=EncK(m) = 0.2
Pr 𝑚𝑚 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 |c=EncK(m) = 0.8

• Did the attacker learn anything useful?
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Perfect Secrecy

Definition 1: An encryption scheme Π = Gen, Enc, Dec with message space ℳ
is perfectly secret if for every probability distribution 𝒟𝒟 over ℳ, every message 
m ∈ ℳ and every ciphertext c ∈ 𝒞𝒞 for which Pr 𝐶𝐶 = 𝑐𝑐 > 0:

Pr 𝑀𝑀 = 𝑚𝑚|𝐶𝐶 = 𝑐𝑐 = Pr 𝑀𝑀 = 𝑚𝑚 .
(where 𝑀𝑀 ← 𝒟𝒟, 𝐾𝐾 = 𝐺𝐺𝐺𝐺𝐺𝐺(𝑅𝑅) and 𝐶𝐶 = EncK 𝑀𝑀 )

Definition 2: For every m, m′ ∈ ℳ and c ∈ 𝒞𝒞
Pr EncK 𝑚𝑚 = 𝑐𝑐 = Pr EncK 𝑚𝑚′ = 𝑐𝑐 .

(where the probabilities are taken over the randomness of Gen and Enc)

Lemma 2.4: The above definitions are equivalent.

53



Perfect Secrecy

Definition 1: An encryption scheme Π = Gen, Enc, Dec with message space ℳ
is perfectly secret if for every probability distribution 𝒟𝒟 over ℳ, every message 
m ∈ ℳ and every ciphertext c ∈ 𝒞𝒞 for which Pr 𝐶𝐶 = 𝑐𝑐 > 0:

Pr 𝑀𝑀 = 𝑚𝑚|𝐶𝐶 = 𝑐𝑐 = Pr 𝑀𝑀 = 𝑚𝑚 .
(where 𝑀𝑀 ← 𝒟𝒟, 𝐾𝐾 = 𝐺𝐺𝐺𝐺𝐺𝐺(𝑅𝑅) and 𝐶𝐶 = EncK 𝑀𝑀 )

Definition 2: For every m, m′ ∈ ℳ and c ∈ 𝒞𝒞
Pr EncK 𝑚𝑚 = 𝑐𝑐 = Pr EncK 𝑚𝑚′ = 𝑐𝑐 .

(where the probabilities are taken over the randomness of Gen and Enc)

Lemma 2.4: The above definitions are equivalent. 

54

Definition 1 is more compelling as a security definition (attacker gains no information).
Easier to prove an encryption scheme satisfied definition 2.



Proof (Def 1  Def 2): 

Suppose first that (Gen,Enc,Dec) does not satisfy definition 2. Then there exists m,m′ ∈ ℳ
and c ∈ 𝒞𝒞 such that 

Pr EncK 𝑚𝑚 = 𝑐𝑐 ≠ Pr EncK 𝑚𝑚′ = 𝑐𝑐 (1).

We will now prove that definition 1 does not hold. Define 𝒟𝒟 such that

Pr[M=m]=Pr[M=mʹ]=
1
2

Assume for the sake of contradiction that Definition 1 were satisfied then we would have 

Pr 𝑀𝑀 = 𝑚𝑚|𝐶𝐶 = 𝑐𝑐 = Pr 𝑀𝑀 = 𝑚𝑚 =
1
2

, and

Pr 𝑀𝑀 = 𝑚𝑚′|𝐶𝐶 = 𝑐𝑐 = Pr 𝑀𝑀 = 𝑚𝑚′ =
1
2

which implies 
𝑃𝑃𝑃𝑃 𝑀𝑀 = 𝑚𝑚|𝐶𝐶 = 𝑐𝑐 = 𝑃𝑃𝑃𝑃 𝑀𝑀 = 𝑚𝑚𝑚|𝐶𝐶 = 𝑐𝑐 (∗)
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Proof (Def 1  Def 2): 

Suppose first that (Gen,Enc,Dec) does not satisfy definition 2. Then there 
exists m,m′ ∈ ℳ and c ∈ 𝒞𝒞 such that 

Pr EncK 𝑚𝑚 = 𝑐𝑐 ≠ Pr EncK 𝑚𝑚′ = 𝑐𝑐 (1).

Define 𝒟𝒟 such that Pr[M=m]=Pr[M=mʹ]= 1
2

Bayes Rule (1)

Pr 𝑀𝑀 = 𝑚𝑚|EncK 𝑀𝑀 = 𝑐𝑐 =
Pr 𝐶𝐶 = 𝑐𝑐|𝑀𝑀 = 𝑚𝑚 Pr[M=m]

Pr[C=c]
=

1
2

Pr EncK 𝑚𝑚 = 𝑐𝑐
Pr[C=c]

(2)
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Proof (Def 1  Def 2): 

Suppose first that (Gen,Enc,Dec) does not satisfy definition 2. Then there 
exists m,m′ ∈ ℳ and c ∈ 𝒞𝒞 such that 

Pr EncK 𝑚𝑚 = 𝑐𝑐 ≠ Pr EncK 𝑚𝑚′ = 𝑐𝑐 (1).

Define 𝒟𝒟 such that Pr[M=m]=Pr[M=mʹ]= 1
2

Bayes Rule (2)

Pr 𝑀𝑀 = 𝑚𝑚′|EncK 𝑀𝑀 = 𝑐𝑐 =
Pr 𝐶𝐶 = 𝑐𝑐|𝑀𝑀 = 𝑚𝑚′ Pr[M=mʹ]

Pr[C=c]
=

1
2

Pr EncK 𝑚𝑚′ = 𝑐𝑐
Pr[C=c]

(3)
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Proof (Def 1  Def 2): 

Suppose first that (Gen,Enc,Dec) does not satisfy definition 2. Then there 
exists m,m′ ∈ ℳ and c ∈ 𝒞𝒞 such that 

Pr EncK 𝑚𝑚 = 𝑐𝑐 ≠ Pr EncK 𝑚𝑚′ = 𝑐𝑐 (1).

Define 𝒟𝒟 such that Pr[M=m]=Pr[M=mʹ]= 1
2

Combining equations (2) and (3), Bayes Rule implies that 

Pr 𝑀𝑀 = 𝑚𝑚′|EncK 𝑀𝑀 = 𝑐𝑐 =
1
2

Pr EncK 𝑚𝑚𝑚 = 𝑐𝑐
Pr[C=c]

≠
1
2

Pr EncK 𝑚𝑚 = 𝑐𝑐
Pr[C=c]

= Pr 𝑀𝑀 = 𝑚𝑚|EncK 𝑀𝑀 = 𝑐𝑐 (∗∗)
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Proof (Def 1  Def 2): 

Thus, Bayes Rule implies that 

Pr 𝑀𝑀 = 𝑚𝑚′|EncK 𝑀𝑀 = 𝑐𝑐 =
1
2

Pr EncK 𝑚𝑚𝑚 = 𝑐𝑐
Pr[C=c]

≠
1
2

Pr EncK 𝑚𝑚 = 𝑐𝑐
Pr[C=c]

= Pr 𝑀𝑀 = 𝑚𝑚|EncK 𝑀𝑀 = 𝑐𝑐 (∗∗)

We previously showed that definition 2 implies 
Pr 𝑀𝑀 = 𝑚𝑚|𝐶𝐶 = 𝑐𝑐 = Pr 𝑀𝑀 = 𝑚𝑚𝑚|𝐶𝐶 = 𝑐𝑐 (∗)

Contradiction! 
(Still need to prove Def 2  Def 1 --- See textbook for details)
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Proof (Def 2  Def 1): 

Assume that Definition 2 holds then for all messages m,m’ and ciphertexts we have 
Pr EncK 𝑚𝑚 = 𝑐𝑐 = Pr EncK 𝑚𝑚′ = 𝑐𝑐

Now to show that Definition 1 holds we fix any distribution D and any message m 
and ciphertext c for which Pr 𝐶𝐶 = 𝑐𝑐 > 0

(when C = EncK 𝑀𝑀 for a randomly sampled message M from D)

We need to prove that Pr 𝑀𝑀 = 𝑚𝑚|𝐶𝐶 = 𝑐𝑐 = Pr 𝑀𝑀 = 𝑚𝑚

Observation 1: If Pr 𝑀𝑀 = 𝑚𝑚 = 0 then Pr 𝑀𝑀 = 𝑚𝑚|𝐶𝐶 = 𝑐𝑐 = 0 = Pr 𝑀𝑀 = 𝑚𝑚
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Proof (Def 2  Def 1): 

We need to prove that Pr 𝑀𝑀 = 𝑚𝑚|𝐶𝐶 = 𝑐𝑐 = Pr 𝑀𝑀 = 𝑚𝑚
Observation 1: If Pr 𝑀𝑀 = 𝑚𝑚 = 0 then Pr 𝑀𝑀 = 𝑚𝑚|𝐶𝐶 = 𝑐𝑐 = 0 = Pr 𝑀𝑀 = 𝑚𝑚

Otherwise, define pc ≔ Pr 𝐶𝐶 = 𝑐𝑐|𝑀𝑀 = 𝑚𝑚 and notice that

Pr 𝐶𝐶 = 𝑐𝑐|𝑀𝑀 = 𝑚𝑚 = Pr EncK 𝑀𝑀 = 𝑐𝑐|𝑀𝑀 = 𝑚𝑚 = Pr EncK 𝑚𝑚 = 𝑐𝑐 (1)
For any other message m’ we have

Pr EncK 𝑚𝑚𝑚 = 𝑐𝑐 = Pr EncK 𝑚𝑚 = 𝑐𝑐 = Pr 𝐶𝐶 = 𝑐𝑐|𝑀𝑀 = 𝑚𝑚 = pc
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Proof (Def 2  Def 1): 

Pr 𝑀𝑀 = 𝑚𝑚|𝐶𝐶 = 𝑐𝑐 =
Pr 𝐶𝐶 = 𝑐𝑐|𝑀𝑀 = 𝑚𝑚 Pr[𝑀𝑀 = 𝑚𝑚]

Pr[𝐶𝐶 = 𝑐𝑐]
(Bayes Theorem)

=
Pr 𝐶𝐶 = 𝑐𝑐|𝑀𝑀 = 𝑚𝑚 Pr[𝑀𝑀 = 𝑚𝑚]

∑𝑚𝑚′Pr[𝑀𝑀 = 𝑚𝑚′]Pr[𝐶𝐶 = 𝑐𝑐|𝑀𝑀 = 𝑚𝑚𝑚]

=
pc Pr[𝑀𝑀 = 𝑚𝑚]

∑𝑚𝑚′Pr[𝑀𝑀 = 𝑚𝑚′]pc
=

Pr[𝑀𝑀 = 𝑚𝑚]
∑𝑚𝑚′ Pr[𝑀𝑀 = 𝑚𝑚′]

=
Pr[𝑀𝑀 = 𝑚𝑚]

1
= Pr 𝑀𝑀 = 𝑚𝑚

62QED

This is what we wanted to prove



Another Equivalent Definition (Game)

∀ Pr 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝑏𝑏′ = 𝑏𝑏 =
1
2

63

m0, m1

Random bit b
K  Gen(.)
c = EncK(mb)

c
b’



Another Equivalent Definition (Game)

∀ Pr 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝑏𝑏′ = 𝑏𝑏 =
1
2

64

m0, m1

Random bit b
K = Gen(.)
c = EncK(mb)

c
b’

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹, 𝑙𝑙𝑙𝑙𝑙𝑙 Π = 𝐺𝐺𝐺𝐺𝐺𝐺,𝐸𝐸𝐸𝐸𝐸𝐸,𝐷𝐷𝐷𝐷𝐷𝐷 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑡𝑡𝑡𝑡𝑡 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, and let A 
denote an eavesdropping  attacker. 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑡𝑡𝑡𝑡𝑡 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑡𝑡𝑡𝑡𝑡 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑎𝑎𝑎𝑎𝑎𝑎
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑎𝑎 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴,Π

𝑒𝑒𝑒𝑒𝑒𝑒 𝑎𝑎𝑎𝑎 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴,Π

𝑒𝑒𝑒𝑒𝑒𝑒= �1 if 𝑏𝑏 = 𝑏𝑏′(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)
0 otherwise(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖𝑖𝑖 𝑛𝑛𝑛𝑛𝑛𝑛 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)

Π ℎ𝑎𝑎𝑎𝑎 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑖𝑖𝑖𝑖 𝑡𝑡𝑡𝑡𝑡 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑜𝑜𝑜𝑜
𝑎𝑎𝑎𝑎 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑖𝑖𝑖𝑖 𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝐴𝐴 𝑤𝑤𝑤𝑤 ℎ𝑎𝑎𝑎𝑎𝑎𝑎

Pr 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴,Π
𝑒𝑒𝑒𝑒𝑒𝑒 = 1 =

1
2



Another Equivalent Definition (Game)

65

m0, m1

Random bit b
K  Gen(.)
c = EncK(mb)

c
b’

Suppose we have m,m’,c’ s.t. Pr[EncK(m)= c’] > Pr[EncK(m’)=c’] then the adversary 
can win the game w.p > ½. How?

What else do we need to establish to prove that the definitions are equivalent? 



One Time Pad [Vernam 1917]

66

Enc𝐾𝐾 𝑚𝑚 = 𝐾𝐾⨁𝑚𝑚 Dec𝐾𝐾 𝑐𝑐 = 𝐾𝐾⨁𝑐𝑐

𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄 = 𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏⨁0011 = ???

Theorem: The one-time pad encryption scheme is perfectly secret

The following calculation holds for any c, m 
Pr[EncK(m)=c] = Pr[𝐾𝐾⨁m =c] = Pr[K=c⨁m] = �1 𝒦𝒦 .

Thus, for any m, m’, c we have 
Pr[EncK(m)=c]= �1 𝒦𝒦 =Pr[EncK(m’)=c].



One Time Pad [Vernam 1917]

67

Enc𝐾𝐾 𝑚𝑚 = 𝐾𝐾⨁𝑚𝑚 Dec𝐾𝐾 𝑐𝑐 = 𝐾𝐾⨁𝑐𝑐

𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄 = 𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏⨁0011 = ???



One Time Pad 
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One Time Pad 
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Perfect Secrecy Limitations

Theorem: If (Gen,Enc,Dec) is a perfectly secret encryption 
scheme then

𝒦𝒦 ≥ ℳ

70



One Time Pad Limitations

71

• The key is as long as the message
• How to exchange long messages?
• Need to exchange/secure lots of one-time pads!

• OTPs can only be used once
• As the name suggests

• VENONA project (US + UK)
• Decrypt ciphertexts sent by Soviet Union which were mistakenly encrypted 

with portions of the same one-time pad over several decades

𝑐𝑐⨁𝑐𝑐′ = 𝑚𝑚⨁𝑘𝑘 ⨁ 𝑚𝑚′⨁𝑘𝑘 = 𝑚𝑚⨁𝑚𝑚𝑚



VENONA project
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Shannon’s Theorem

Theorem: Let (Gen,Enc,Dec) be an encryption scheme 
with 𝒦𝒦 = ℳ = 𝒞𝒞 . Then the scheme is perfectly 
secret if and only if:
1. Every key k ∈ 𝒦𝒦 is chosen with (equal) probability 

�1 𝒦𝒦 by the algorithm Gen, and
2. For every m ∈ ℳ and every c ∈ 𝒞𝒞 there exists a 

unique key k ∈ 𝒦𝒦 such that Enck(m)=c.
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An Important Remark on Randomness

• In our analysis we have made (and will
continue to make) a key assumption:
• We have access to  true “randomness” 
to generate a secret key K 

Example: K = one time pad
• Independent Random Bits 

• Unbiased Coin flips
• Radioactive decay?

74
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In Practice

75

• Hard to flip thousands/millions of coins

• Mouse-movements/keys
• Uniform bits?
• Independent bits?

• Use Randomness Extractors 
• As long as input has high entropy, we can extract (almost) 

uniform/independent bits
• Hot research topic in theory



In Practice

76

• Hard to flip thousands/millions of coins

• Mouse-movements/keys

• Customized Randomness Chip?



Caveat: Don’t do this!

• Rand() in C stdlib.h is no good for cryptographic 
applications

• Source of many real 
world flaws
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Perfect Secrecy 

• What capabilities do we assume the attacker has?
• Eavesdropping (Passive Adversary)
• That’s it!
• Implicit Assumption: No ability to tamper with messages!
Remark on One-Time Pads: If attacker has the ability to tamper with the 
ciphertext then s/he can easily flip the last bit of the message. How?
Answer: Flip the last bit of the intercepted ciphertext 𝑐𝑐 = 𝐾𝐾⨁𝑚𝑚 to obtain 
𝑐𝑐′ = 𝑐𝑐⨁00 … 01

Dec𝐾𝐾 𝑐𝑐′ = 𝐾𝐾⨁𝑐𝑐′ = 𝐾𝐾⨁𝑐𝑐 ⨁00 … 01 = 𝑚𝑚⨁00 … 01

78



Week 1: Topic 4: 
Computational Security

81



What if we want to send a longer message?

83

Enc𝐾𝐾1 "𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴, 𝐼𝐼 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑓𝑓𝑓𝑓𝑓𝑓 𝑦𝑦𝑦𝑦𝑦𝑦𝑦

K1,K2,K3
K1,K2,K3

Enc𝐾𝐾2 "𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑎𝑎𝑎𝑎𝑎𝑎 𝑟𝑟𝑟𝑟𝑟𝑟, … . "

Enc𝐾𝐾3 "𝐼𝐼 𝑎𝑎𝑎𝑎 𝑜𝑜𝑜𝑜𝑜𝑜 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, 𝑏𝑏𝑏𝑏𝑏𝑏 𝑡𝑡𝑡𝑡𝑡 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑤𝑤𝑤𝑤𝑤𝑤 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎



What if we want to send many messages?

84

Enc𝐾𝐾1 "𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 𝑢𝑢𝑢𝑢,𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴? "

K1,K2,K3

Enc𝐾𝐾2 "𝑁𝑁𝑁𝑁𝑁𝑁 𝑡𝑡𝑡𝑡𝑡𝑡 𝑚𝑚𝑚𝑚𝑚𝑚𝑚, 𝑦𝑦𝑦𝑦𝑦𝑦? "

Enc𝐾𝐾3 "𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑜𝑜𝑜𝑜𝑜𝑜𝑜

K1,K2,K3



Can we save their relationship?

85

Enc𝐾𝐾1 "𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 𝑢𝑢𝑢𝑢,𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴? "

K1,K2,K3 K1,K2,K3

Enc𝐾𝐾2 "𝑁𝑁𝑁𝑁𝑁𝑁 𝑡𝑡𝑡𝑡𝑡𝑡 𝑚𝑚𝑚𝑚𝑚𝑚𝑚, 𝑦𝑦𝑦𝑦𝑦𝑦? "

Enc𝐾𝐾3 "𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑜𝑜𝑜𝑜𝑜𝑜𝑜



Perfect Secrecy vs Computational Security

• Perfect Secrecy is Information Theoretic
• Guarantee is independent of attacker resources

• Computational Security 
• Security against computationally bounded attacker

• An attacker with infinite resources might break security
• Attacker might succeed with very small probability

• Example: Lucky guess  reveals secret key
• Very Small Probability: 2−100, 2−1000, …
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Current Goal

• Define computational security in presence of eavesdropper who 
intercepts a single (long) message
If you don’t understand what you want to achieve, how can you possibly know 

when (or if) you have achieved it?

• Show how to build a symmetric encryption scheme with 
computational security in the presence of an eavesdropper.

• Define computational security against an active attacker who might 
modify the message

• Define computational security for multiple messages in presence of 
an eavesdropper

87



Concrete Security

“A scheme is (t,ε)-secure if every adversary running for time 
at most t succeeds in breaking the scheme with probability 
at most ε”

• Example: t = 260 CPU cycles
• 9 years on a 4GHz processor
• < 1 minute on fastest supercomputer (in parallel)

• Full formal definition needs to specify “break”
• Important Metric in Practice

• Caveat 1: difficult to provide/prove such precise statements
• Caveat 2: hardware improves over time
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Asymptotic Approach to Security

A scheme is secure if every probabilistic polynomial 
time (ppt) adversary “succeeds” with negligible

probability. 

• Two Key Concepts
• Polynomial time algorithm
• Negligible Function 

Definition: A function 𝑓𝑓: ℕ⟶ ℝ≥0 is negligible if for every positive 
polynomial p there is an integer N>0 such that for all n > N we have

𝑓𝑓(𝑛𝑛) <
1

𝑝𝑝(𝑛𝑛)
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Asymptotic Approach to Security

Definition: A function 𝑓𝑓: ℕ⟶ ℝ≥0 is negligible if for every positive 
polynomial 𝑝𝑝 . > 0 there is an integer N>0 such that for all n > N we 
have

𝑓𝑓(𝑛𝑛) <
1

𝑝𝑝(𝑛𝑛)

Intuition: If we choose the security parameter n to be sufficiently large 
then we can make the adversaries success probability very small 
(negligibly small).
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Asymptotic Approach to Security
Definition: A function 𝑓𝑓: ℕ⟶ ℝ≥0 is negligible if for every positive polynomial p there is an integer 
N>0 such that for all n > N we have

𝑓𝑓(𝑛𝑛) <
1

𝑝𝑝(𝑛𝑛)

Which functions below are negligible?
• 𝑓𝑓 𝑛𝑛 = 2−𝑛𝑛

• 𝑓𝑓 𝑛𝑛 = 𝑛𝑛−5

• 𝑓𝑓 𝑛𝑛 = 2−10001000𝑛𝑛1000

• 𝑓𝑓 𝑛𝑛 = 21002− 𝑛𝑛

• 𝑓𝑓 𝑛𝑛 = 2− log 𝑛𝑛

• 𝑓𝑓 𝑛𝑛 = 𝑛𝑛− log 𝑛𝑛
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Asymptotic Approach to Security
Definition: A function 𝑓𝑓: ℕ⟶ ℝ≥0 is negligible if for every positive polynomial p there is an integer 
N>0 such that for all n > N we have

𝑓𝑓(𝑛𝑛) <
1

𝑝𝑝(𝑛𝑛)

Which functions below are negligible?
• 𝑓𝑓 𝑛𝑛 = 2−𝑛𝑛

• 𝑓𝑓 𝑛𝑛 = 𝑛𝑛−5

• 𝑓𝑓 𝑛𝑛 = 2−10001000𝑛𝑛1000

• 𝑓𝑓 𝑛𝑛 = 21002− 𝑛𝑛

• 𝑓𝑓 𝑛𝑛 = 2− log 𝑛𝑛

• 𝑓𝑓 𝑛𝑛 = 𝑛𝑛− log 𝑛𝑛
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Asymptotic Approach to Security

Definition: An (randomized) algorithm A runs in polynomial time if 
there exists a polynomial p(.) such that for every n-bit input x, A(x) 
terminates in at most p(n) steps in expectation.

Intuition: If an algorithm A does not run in polynomial time then, for 
sufficiently large n, it will quickly become impractical for any attacker to 
run the algorithm A. 
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Asymptotic Approach to Security

A scheme is secure if every probabilistic polynomial 
time (ppt) adversary “succeeds” with negligible

probability. 

• General Attack 1: Test all possible secret keys k′ ∈ 𝒦𝒦
• Doesn’t run in polynomial time, since 𝒦𝒦 = 2𝑛𝑛

• General Attack 2: Select random key k′ ∈ 𝒦𝒦, check if it is 
correct (otherwise output ⊥ for “fail”). 

• Only successful with negligible probability 2−𝑛𝑛
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Advantages of Asymptotic Approach

• Closure
• If subroutine B runs in polynomial time and algorithm A makes poly(n) queries to the 

subroutine B then A also runs in polynomial time.
• If f and g are negligible functions then h(n) = f(n)+g(n) is a negligible function
• If p(.) is a positive polynomial, and f(.) is a negligible function then the function 

g(n)=f(n)p(n) is also negligible.
• Church-Turing Thesis: “reasonable” model of computations are all 

polynomially equivalent. 
• Implication: No need to worry about different models of computation 

(circuits, random access machines, etc…)
• Disadvantage: Limited guidance on how big to make security parameter n 

in practice.
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Note: Asymptotic vs Concrete Security

• Theory of Cryptography: Often follows Asymptotic Approach
• Course Textbook (Katz-Lindell) follows the asymptotic approach
• Applied Cryptography: Concrete Security Analysis is more useful
• This Course: We will consider both approaches
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Private Key Encryption Syntax (Revisited)

• Message Space: ℳ
• Key Space: 𝒦𝒦
• Three Algorithms

• Gen(𝟏𝟏𝒏𝒏;𝑅𝑅) (Key-generation algorithm)
• Input: 1n (security parameter in unary) + Random Bits R, 
• Output: Secret key k ∈ 𝒦𝒦

• Enck(𝑚𝑚;𝑹𝑹) (Encryption algorithm)
• Input: Secret key k ∈ 𝒦𝒦 and message m ∈ ℳ +   Random Bits R, 
• Output: ciphertext c

• Deck(𝑐𝑐) (Decryption algorithm)
• Input: Secret key k ∈ 𝒦𝒦 and a ciphertex c
• Output: a plaintext message m ∈ ℳ or ⊥ (𝒊𝒊. 𝒆𝒆“Fail”)

• Invariant: Deck(Enck(m))=m

Typically picks k ∈ 𝒦𝒦
uniformly at random

Trusted Parties (e.g., Alice and Bob) 
must run Gen in advance to obtain 

secret k. 

Requirement: all three algorithms run 
in probabilistic polynomial time
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Quick Comment on Notation: 
K = Gen(𝟏𝟏𝒏𝒏;𝑅𝑅) vs.

K ← Gen(𝟏𝟏𝒏𝒏)
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• Key Space: 𝒦𝒦
• Three Algorithms

• Gen(𝟏𝟏𝒏𝒏;𝑅𝑅) (Key-generation algorithm)
• Input: 1n (security parameter in unary) + Random Bits R, 
• Output: Secret key k ∈ 𝒦𝒦

• Enck(𝑚𝑚;𝑹𝑹) (Encryption algorithm)
• Input: Secret key k ∈ 𝒦𝒦 and message m ∈ ℳ +   Random Bits R, 
• Output: ciphertext c
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• Output: a plaintext message m ∈ ℳ or ⊥ (𝒊𝒊. 𝒆𝒆“Fail”)
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Quick Comment on Notation: 
K = Gen(𝟏𝟏𝒏𝒏;𝑅𝑅) vs.

K ← Gen(𝟏𝟏𝒏𝒏)



∀ ∃𝜇𝜇 Pr 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝑏𝑏′ = 𝑏𝑏 ≤
1
2

+ 𝜇𝜇 (𝑛𝑛)

Adversarial Indistinguishability Experiment
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m0, m1

Random bit b
K  Gen(1n)
c  EncK(mb)

c
b’
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∀ Pr 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝑏𝑏′ = 𝑏𝑏 ≤
1
2

+ 𝜇𝜇(𝑛𝑛)

Adversarial Indistinguishability Experiment
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m0, m1

Random bit b
K = Gen(1n)
c = EncK(mb)

c
b’

𝑝𝑝𝑝𝑝𝑝𝑝 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹, 𝑙𝑙𝑙𝑙𝑙𝑙 Π = 𝐺𝐺𝐺𝐺𝐺𝐺,𝐸𝐸𝐸𝐸𝐸𝐸,𝐷𝐷𝐷𝐷𝐷𝐷 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑡𝑡𝑡𝑡𝑡 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑡𝑡𝑡𝑡𝑡 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑡𝑡𝑡𝑡𝑡 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑎𝑎𝑎𝑎𝑎𝑎

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑎𝑎 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴,Π
𝑒𝑒𝑒𝑒𝑒𝑒 1n 𝑎𝑎𝑎𝑎 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴,Π
𝑒𝑒𝑒𝑒𝑒𝑒 1n = �1 if 𝑏𝑏 = 𝑏𝑏𝑏

0 otherwise

Π ℎ𝑎𝑎𝑎𝑎 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑖𝑖𝑖𝑖 𝑡𝑡𝑡𝑡𝑡 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑜𝑜𝑜𝑜
𝑎𝑎𝑎𝑎 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑖𝑖𝑖𝑖 𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎 𝑃𝑃𝑃𝑃𝑃𝑃 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝐴𝐴, 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑎𝑎

negligible function 𝜇𝜇(. ) such that 
Pr[𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴,Π

𝑒𝑒𝑒𝑒𝑒𝑒 = 1] ≤ 1
2

+ 𝜇𝜇(𝑛𝑛)



∀ ∃𝜇𝜇 Pr 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝑏𝑏′ = 𝑏𝑏 ≤
1
2

+ 𝜇𝜇 (𝑛𝑛)

EAV-Secure
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m0, m1

Random bit b
K  Gen(1n)
c  EncK(mb)

c
b’
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∀ Pr 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝑏𝑏′ = 𝑏𝑏 ≤
1
2

+ 𝜀𝜀(𝑛𝑛)

𝑡𝑡 𝑛𝑛 , 𝜀𝜀 𝑛𝑛 -EAV-Secure (Concrete Version)
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m0, m1

Random bit b
K  Gen(1n)
c = EncK(mb)

c
b’

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑖𝑖𝑖𝑖 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑎𝑎𝑎𝑎 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑡𝑡(𝑛𝑛) 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
(same for all attackers)



Aside: Message and Ciphertext Length

• In the previous game we typically require that |m0|=|m1|. Why?

• It is impossible to support arbitrary length messages while hiding all 
information about plaintext length

• Limitation: When could message length be sensitive?
• Numeric data (5 figure vs 6 figure salary)
• Database Searches: number of records returned can reveal information about 

the query
• Compressed Data: Short compressed string indicates that original plaintext 

has a lot of redundancy (e.g., CRIME attack on session cookies in HTTPS)
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Implications of Indistinguishability

Theorem 3.10: Let (Gen, Enc, Dec) be a fixed-length private key 
encryption scheme for message of length ℓ that satisfies 
indistinguishability (prior definition) then for all PPT attackers A and 
any i ≤ ℓ we have

Pr 𝐴𝐴 1𝑛𝑛, Enc𝐾𝐾 𝑚𝑚 = 𝑚𝑚𝑖𝑖 ≤
1
2

+ negl(𝑛𝑛)

Where the randomness is taken over K ← Gen 1𝑛𝑛 , uniform m ∈
0,1 ℓ and the randomness of Enc and A. 

Remark: A bit weaker than saying eavesdropping attacker obtains ``no 
additional” information about message m.

105

ith bit of message



Semantic Security

Definition 3.12: Let Π = Gen, Enc, Dec be a fixed-length private key encryption 
scheme for message of length ℓ. We say that the scheme is semantically secure 
if for all PPT attackers A there exists a PPT algorithm A’ such that for any PPT 
algorithm Sample all any polynomial time computable functions f and h we have

|Pr 𝐴𝐴 1𝑛𝑛, Enc𝐾𝐾 𝑚𝑚 ,ℎ(𝑚𝑚) = 𝑓𝑓(𝑚𝑚)
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Semantic Security

Definition 3.12: Let Π = Gen, Enc, Dec be a fixed-length private key encryption 
scheme for message of length ℓ. We say that the scheme is semantically secure 
if for all PPT attackers A there exists a PPT algorithm A’ such that for any PPT 
algorithm Sample all any polynomial time computable functions f and h we have

|Pr 𝐴𝐴 1𝑛𝑛, Enc𝐾𝐾 𝑚𝑚 ,ℎ(𝑚𝑚) = 𝑓𝑓(𝑚𝑚)
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A’ doesn’t even get to see an 
encryption of m! Just the length 

of m!

Example: 
f(m) = 1   if m > 100,000;
f(m) = 0   otherwise       .

h(m) background knowledge the 
attacker might have about m.



Semantic Security

Definition 3.12: Let Π = Gen, Enc, Dec be a fixed-length private key encryption 
scheme for message of length ℓ. We say that the scheme is semantically secure if for 
all PPT attackers A there exists a PPT algorithm A’ such that for any PPT algorithm 
Sample all any polynomial time computable functions f and h we have

|Pr 𝐴𝐴 1𝑛𝑛, Enc𝐾𝐾 𝑚𝑚 , ℎ(𝑚𝑚) = 𝑓𝑓(𝑚𝑚)
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Another Interpretation of Semantic Security

• World 2: Perfect Secrecy (Attacker doesn’t even see ciphertext).
• For all attackers A’ (even unbounded) with background knowledge h(m) we have

Pr 𝐴𝐴𝐴 1𝑛𝑛, 𝑚𝑚 , ℎ(𝑚𝑚) = 𝑓𝑓(𝑚𝑚) = Pr 𝑓𝑓(𝑚𝑚)| ℎ 𝑚𝑚 , 𝑚𝑚

• World 1: Attacker is PPT and sees ciphertext
• Best World 1 attacker does no better than World 2 attacker

• Pr 𝐴𝐴 1𝑛𝑛, Enc𝐾𝐾 𝑚𝑚 , ℎ(𝑚𝑚) = 𝑓𝑓(𝑚𝑚) − Pr 𝐴𝐴𝐴 1𝑛𝑛, 𝑚𝑚 , ℎ(𝑚𝑚) = 𝑓𝑓(𝑚𝑚) ≤
negl(𝑛𝑛)

• What is probability over?
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