## Homework 2

Due date: Thursday , February $18^{\text {nd }}$

## Question 1 (20 points)

Define $(t(n), q(n), \epsilon(n))$-CPA security of $\Pi$ as the statement that any attacker running in time $t(n)$ and making at most $q(n)$ queries to the Left-Right encryption oracle wins the CPA security game with probability at most $\epsilon(n)$. Similarly, for the function $F_{K}:\{0,1\}^{n^{\prime}} \times$ $\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ (mapping $n^{\prime}$ bits of input to $n$ bits using the key $K$ of size $n$ ) we can define $\left(t_{P R F}(n), q_{P R F}(n), \epsilon_{P R F}(n)\right)$-PRF security, implying that for any distinguisher running in time $t_{P R F}(n)$ and making at most $q_{P R F}(n)$ queries to the PRF oracle distinguishes the $F_{K}(\cdot)$ from a truly random function with advantage at most $\epsilon_{P R F}(n)$.

- Part 1: Assume that $F_{K}$ is a $\left(t_{P R F}(n), q_{P R F}(n), \epsilon_{P R F}(n)\right)$-secure PRF mapping $n^{\prime}$ bit strings to $n$ bit strings. What is the concrete security bound of the encryption scheme $\operatorname{Enc}_{K}(m)=\left(r, F_{K}(r) \oplus m\right)$ ? Justify your answer.
- Part 2: In practice one often assumes that $q_{E N C}(n) \ll t_{E N C}(n)$ e.g., oftentimes one requires that secret keys are rotated after $2^{n / 4}$ encryptions. In this case we can sometimes save bandwidth by reducing the length of the nonce $r$. Suppose that $q_{E N C}(n)=2^{n / 4}$ and for any $t \leq 2^{n}$ that $F_{K}$ is a $\left(t, t, t / 2^{n}\right)$-secure PRF mapping $n^{\prime}$ bit nonces to $n$ bit outputs. If we want to ensure that our encryption scheme is $\left(t, 2^{n / 4}, 2^{-n / 4}+t 2^{-n+1}\right)$ CPA secure. How big does $n^{\prime}$ need to be? (Justify your answer)


## Answer: ...

## Resource and Collaborator Statement: ...

## Question 2 (20 points)

For any function $g:\{0,1\}^{n} \rightarrow\{0,1\}^{n}$, define $g^{\$}($.$) to be a probabilistic oracle that, on input$ $1^{n}$, choose uniform $r \in\{0,1\}^{n}$ and return $\left(r, g(r)\right.$ ) (On any other input $x \neq 1^{n}$ the oracle $g^{\$}(x)$ will simply return $\perp$ ). A keyed function F is a weak pseudorandom function if for all PPT algorithm D, there exists a negligible function negl such that:

$$
\begin{equation*}
\left|\operatorname{Pr}\left[D^{F_{k}^{\S}(\cdot)}\left(1^{n}\right)=1\right]-\operatorname{Pr}\left[D^{f^{\S}(\cdot)}\left(1^{n}\right)=1\right]\right| \leq \operatorname{neg}(n) \tag{1}
\end{equation*}
$$

where $k \in\{0,1\}^{n}$ and $f \in$ Func $_{n}$ and chosen uniformly.

1. Let $F^{\prime}$ be a pseudorandom function, and define

$$
\mathrm{F}_{\mathrm{k}}(\mathrm{x}) \stackrel{\text { def }}{=}\left\{\begin{array}{l}
\mathrm{F}_{\mathrm{k}}^{\prime}(\mathrm{x}) \text { if } \mathrm{x} \text { is even }  \tag{2}\\
\mathrm{F}_{\mathrm{k}}^{\prime}(\mathrm{x}+1) \text { if } \mathrm{x} \text { is odd }
\end{array}\right.
$$

Prove that F is weakly pseudorandom.
2. Is CTR-mode encryption using a weak pseudorandom function necessary CPA-secure? Does it necessarily have indistinguishable encryptions in the presence of an eavesdropper? Prove your answers.

Answer: ...

Resource and Collaborator Statement: ...

## Question 3 (20 points)

1. Show that the CBC, OFB, and CTR modes of operation do not yield CCA-secure encryption schemes (regardless of $F$ ). Briefly describe how an attacker could win the CCA-Security game with non-negligible advantage. (Hint: Suppose that we encrypt a message $m=\left(m_{1}, m_{2}, m_{3}\right)$ and get back a ciphertext $c=\left(c_{0}, c_{1}, c_{2}, c_{3}\right)$. What happens if we flip a bit in $c_{2}$ ?)
2. Let F be a pseudorandom permutation. Consider the mode of operation in which a uniform value $\operatorname{ctr} \in\{0,1\}^{n}$ is chosen, and the $i^{t h}$ ciphertext block $c_{i}$ is computed as $c_{i}:=F_{k}\left(\operatorname{ctr}+i+m_{i}\right)$. Show that this scheme does not have indistinguishable encryptions in the presence of an eavesdropper.
```
Answer: ...
```

Resource and Collaborator Statement: ...

## Question 4 (20 points)

In this question, we explore what happens when the basic CBC-MAC construction is used with messages of different lengths.

- Say the sender and receiver do not agree on the message length in advance (and so $\operatorname{Vrfy}_{k}(m, t)=1$ iff $t \stackrel{?}{=} \operatorname{Mac}_{k}(m)$, regardless of the length of m$)$, but the sender is careful to only authenticate messages of length 2 n . Show that an adversary can forge a valid tag on a message of length 4 n .
- Say the receiver only accepts 3 -block messages (so $\operatorname{Vrfy}_{k}(m, t)=1$ ) only if $m$ has length 3 n and $t=\operatorname{Mac}_{k}(m)$, but the sender authenticates messages of any length a multiple of $n$. Show that an adversary can forge a valid tag on a new message.


## Answer: ...

## Question 5 (20 points)

Let $\left(\operatorname{Gen}_{1}, H_{1}\right)$ and $\left(\operatorname{Gen}_{2}, H_{2}\right)$ be two hash functions. We define (Gen, $H$ ) as follow:

- Gen : runs Gen 1 and Gen 2 to obtain $s_{1}, s_{2}$
- $H^{s_{1}, s_{2}}(x)=H_{1}^{s_{1}}(x) \| H_{2}^{s_{2}}(x)$

Prove that if at least one of $\left(\mathrm{Gen}_{1}, H_{1}\right)$ and $\left(\mathrm{Gen}_{2}, H_{2}\right)$ is collision resistant, then $(\mathrm{Gen}, H)$ is collision resistant.

Answer: ...

Resource and Collaborator Statement: ...

