Homework 1

Due date: Thursday, February $4^{\text {th }} 11: 59$ PM (Gradescope)

Question 1 (24 points)

Consider each of the the following encryption schemes and state whether the scheme is perfectly secret or not. Justify your answer by giving a detailed proof if your answer is Yes, a counterexample if your answer is No.

1. An encryption scheme whose plaintext space consists of the integers $\mathcal{M}=\{0, \ldots, 10\}$ and key generation algorithm chooses a uniform key from the key space $\mathcal{K}=\{0, \ldots, 11\}$. Suppose $\operatorname{Enc}_{\mathrm{k}}(\mathrm{m})=\mathrm{m}+\mathrm{k} \bmod 11$ and $\operatorname{Dec}_{\mathrm{k}}(\mathrm{c})=\mathrm{c}-\mathrm{k} \bmod 11$.
2. An encryption scheme whose plaintext space is $\mathcal{M}=\left\{m \in\{0,1\}^{\ell} \mid\right.$ the last bit of m is 0$\}$ and key generation algorithm chooses a uniform key from the key space $\{0,1\}^{\ell-1}$. Suppose $\operatorname{Enc}_{\mathrm{k}}(\mathrm{m})=\mathrm{m} \oplus(\mathrm{k} \| 1)$ and $\operatorname{Dec}_{\mathrm{k}}(\mathrm{c})=\mathrm{c} \oplus(\mathrm{k} \| 1)$.
3. Consider a encryption scheme in which $\mathrm{M}=\{\mathrm{a}, \mathrm{b}\}, K=\left\{K_{1}, K_{2}, \ldots, K_{4}\right\}$, and $C=$ $\{1,2,3,4,5,6\}$. Suppose that Gen selects the secret key k according to the following probability distribution:

$$
\operatorname{Pr}\left[k=K_{1}\right]=\operatorname{Pr}\left[k=K_{4}\right]=\frac{1}{6}, \operatorname{Pr}\left[k=K_{2}\right]=\operatorname{Pr}\left[k=K_{3}\right]=\frac{1}{3} .
$$

and the encryption matrix is as follows

	a	b
K_{1}	1	4
K_{2}	2	3
K_{3}	3	2
K_{4}	4	1

4. Suppose that we have an encryption scheme whose plaintext space is $\mathcal{M}=\{0,1\}^{2 n}$ and whose key space is $\mathcal{K}=\{0,1\}^{n}$. Suppose that $\operatorname{Enc}_{\mathrm{k}}(m)=m \oplus G(k)$ where $G:\{0,1\}^{n} \rightarrow\{0,1\}^{2 n}$ is a secure PRG.

Question 2 (16 points)

Prove or refute: An encryption scheme with message space \mathcal{M} is perfectly secret if and only if for every probability distribution over \mathcal{M} and every $c_{0}, c_{1} \in \mathcal{C}$ we have $\operatorname{Pr}\left[C=c_{0}\right]=$ $\operatorname{Pr}\left[C=c_{1}\right]$

Question 3 (20 points +5 points bonus)

Let $\epsilon>0$ be a constant. Say an encryption scheme, $\Pi=$ (Gen, Enc, Dec), is ϵ-perfectly secret if for every adversary \mathcal{A} it holds that:

$$
\operatorname{Pr}\left[\operatorname{PrivK} \mathcal{A}, \Pi_{\mathrm{eav}}^{\mathrm{eav}}=1\right] \leq \frac{1}{2}+\epsilon
$$

(See definition 2.5 page 31)

1. (20 points) Show that ϵ-perfect secrecy can be achieved with $|\mathcal{K}|<|\mathcal{M}|$ Hint: Start with a well known perfectly secret encryption scheme and consider reducing the keyspace.
2. (5 bonus points) Prove a lower bound on the size of \mathcal{K} in term of ϵ [Challenging]

Question 4 (20 points)

(a). Let G and H be a pseudorandom generator with expansion factor $\ell(n)$. In each of the for each of the following cases, say whether G^{\prime} is necessarily a pseudorandom generator. If yes, give a proof; if not, find a counter example.

1. Suppose that $\ell(n)>2 n$ and define $G^{\prime}\left(s_{1}, \cdots, s_{2 n}\right) \stackrel{\text { def }}{=} G\left(s_{1} \cdots s_{n}\right)$ where $\ell(n)>2 n$. Note: Each $s_{i} \in\{0,1\}$ is just a single bit of input.
2. Suppose that $\ell(n)>2 n$ and $G^{\prime}\left(s_{1}, \ldots, s_{\lceil n / 2\rceil}\right) \stackrel{\text { def }}{=} G\left(0^{n-\lceil n / 2\rceil} \| s\right)$.
3. Suppose that $\ell(n)=n+2$ and define $G^{\prime}(0 s) \stackrel{\text { def }}{=} G(s)$ and $G^{\prime}(1 s)=H(s)$.
(b). We say that a PRG $G:\{0,1\}^{n} \rightarrow\{0,1\}^{\ell(n)}$ is (t, ϵ)-secure if for all distinguishers \mathcal{D} running in time at most t we have

$$
\mathbf{A d}_{\mathcal{D}, G}=\left|\operatorname{Pr} r_{s \leftarrow\{0,1\}^{n}}[\mathcal{D}(G(s))=1]-P r_{r \leftarrow\{0,1\}^{(n)}}[\mathcal{D}(r)=1]\right| \leq \epsilon
$$

Suppose that G and H are both $\left(t, \epsilon_{t}=\frac{1.5 t}{2^{n}}\right)$-secure PRG for all $t \leq 2^{t}$.
For those schemes of part (a) which are secure PRG, determine $\left(t^{\prime}, \epsilon^{\prime}\right)$ for the resulting G^{\prime}. Your bounds should be as tight as possible e.g., a bound of the form $\left(t, 1.5 / 2^{n}\right)$-secure would be better than the bound $\left(t-100 n, 1.5 t / 2^{n}\right)$-secure. Similarly, the bound $\left(t-100 n, 1.5 t / 2^{n}\right)$ secure would better than a bound of the form $\left(t-100 n, 3 t / 2^{n}\right)$-secure which in turn would be better than a bound of the form $\left(\sqrt{t}, 3 t / 2^{n}\right)$-secure.

Question 5 (20 points)

Let $F:\{0,1\}^{n} \times\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ be a length-preserving pseudorandom function. For the following construction of keyed function $F^{\prime}:\{0,1\}^{n} \times\{0,1\}^{n-2} \rightarrow\{0,1\}^{2 n}$, state whether F^{\prime} is a pseudorandom function. If yes, prove it; if not, show an attack.

1. $F_{k}^{\prime} \stackrel{\text { def }}{=} F_{k}(00 \| x) \| F_{k}(01 \| x)$.
2. $F_{k}^{\prime} \stackrel{\text { def }}{=} F_{k}\left(00 \| x_{1} \cdots x_{n-3}| | \bar{x}_{n-2}\right) \| F_{k}(00 \| x)$, where $x=x_{1} \cdots x_{n-2} \in\{0,1\}^{n-2}$ and $\bar{x}_{i}=$ $x_{i}+1 \bmod 2$.
