
Cryptography
CS 555

Topic 9: Message Authentication Codes

1

Reminder: Homework 1

• Due on Friday at the beginning of class

• Please typeset your solutions

2

Recap

• CPA-Security vs. CCA-Security
• PRFs

Today’s Goals:
• Introduce Message Authentication Codes (MACs)

• Key tool in Construction of CCA-Secure Encryption Schemes

• Build Secure MACs

3

What Does It Mean to “Secure Information”

• Confidentiality (Security/Privacy)
• Only intended recipient can see the communication

4

What Does It Mean to “Secure Information”

• Confidentiality (Security/Privacy)
• Only intended recipient can see the communication

• Integrity (Authenticity)
• The message was actually sent by the alleged sender

Bob
Alice

I love you
Alice… - Bob

We need to
break up -Bob

5

Message Authentication Codes

• CPA-Secure Encryption: Focus on Secrecy
• But does not promise integrity

• Message Authentication Codes: Focus on Integrity
• But does not promise secrecy

• CCA-Secure Encryption: Requires Integrity and Secrecy

6

What Does It Mean to “Secure Information”

• Integrity (Authenticity)
• The message was actually sent by the alleged sender
• And the received message matches the original

Bob
Alice

Pay robot
devil $50

Pay robot
devil $5,000

7

Presenter
Presentation Notes
Example: HTTP is stateless. Cookies can be stored on the client, but can the server trust the client not to modify the cookie?

Error Correcting Codes?

• Tool to detect/correct a small number of random errors in
transmission

• Examples: Parity Check, Reed-Solomon Codes, LDPC, Hamming Codes
…

• Provides no protection against a malicious adversary who can
introduce an arbitrary number of errors

• Still useful when implementing crypto in the real world (Why?)

8

Modifying Ciphertexts

Enck(m) = 𝑐𝑐 = 𝑟𝑟,𝐹𝐹𝑘𝑘 𝑟𝑟 ⨁𝑚𝑚

𝑐𝑐′ = 𝑟𝑟,𝐹𝐹𝑘𝑘 𝑟𝑟 ⨁𝑚𝑚⨁𝑦𝑦

Deck (𝑐𝑐′) = 𝐹𝐹𝑘𝑘 𝑟𝑟 ⨁𝐹𝐹𝑘𝑘 𝑟𝑟 ⨁𝑚𝑚⨁𝑦𝑦 = 𝑚𝑚⨁𝑦𝑦

If attacker knows original message he can forge c’ to decrypt to any
message he wants.
Even if attacker doesn’t know message he may find it advantageous to
flip certain bits (e.g., decimal places)

9

Message Authentication Code Syntax

Definition 4.1: A message authentication code (MAC) consists of three
algorithms

• Gen(1𝑛𝑛;𝑅𝑅) (Key-generation algorithm)
• Input: security parameter 1n (unary) and random bits R
• Output: Secret key k ∈ 𝒦𝒦

• Mack(𝑚𝑚;𝑅𝑅) (Tag Generation algorithm)
• Input: Secret key k ∈ 𝒦𝒦 and message m ∈ ℳ and random bits R
• Output: a tag t

• Vrfyk(𝑚𝑚, 𝑡𝑡) (Verification algorithm)
• Input: Secret key k ∈ 𝒦𝒦, a message m and a tag t
• Output: a bit b (b=1 means “valid” and b=0 means “invalid”)

• Invariant?

10

Message Authentication Code Syntax

Definition 4.1: A message authentication code (MAC) consists of three
algorithms

• Gen(1𝑛𝑛;𝑅𝑅) (Key-generation algorithm)
• Input: security parameter 1n (unary) and random bits R
• Output: Secret key k ∈ 𝒦𝒦

• Mack(𝑚𝑚;𝑅𝑅) (Tag Generation algorithm)
• Input: Secret key k ∈ 𝒦𝒦 and message m ∈ ℳ and random bits R
• Output: a tag t

• Vrfyk(𝑚𝑚, 𝑡𝑡) (Verification algorithm)
• Input: Secret key k ∈ 𝒦𝒦, a message m and a tag t
• Output: a bit b (b=1 means “valid” and b=0 means “invalid”)

• Invariant?

11

Message Authentication Code Syntax

Definition 4.1: A message authentication code (MAC) consists of three
algorithms Π = Gen, Mac, Vrfy

• Gen(1𝑛𝑛;𝑅𝑅) (Key-generation algorithm)
• Input: security parameter 1n (unary) and random bits R
• Output: Secret key k ∈ 𝒦𝒦

• Mack(𝑚𝑚;𝑅𝑅) (Tag Generation algorithm)
• Input: Secret key k ∈ 𝒦𝒦 and message m ∈ ℳ and random bits R
• Output: a tag t

• Vrfyk(𝑚𝑚, 𝑡𝑡) (Verification algorithm)
• Input: Secret key k ∈ 𝒦𝒦, a message m and a tag t
• Output: a bit b (b=1 means “valid” and b=0 means “invalid”)

Vrfyk(𝑚𝑚, Mack(𝑚𝑚;𝑅𝑅)) = 1

12

General vs Fixed Length MAC

ℳ = 0,1 ∗

versus

ℳ = 0,1 ℓ(𝑛𝑛)

13

Deterministic MACs

• Canonical Verification Algorithm

Vrfyk(𝑚𝑚, 𝑡𝑡) = �1 if 𝑡𝑡 = Mack(𝑚𝑚)
0 otherwise

• “All real-world MACs use canonical verification” – page 115

14

MAC Authentication Game (Macforge𝐴𝐴,Π(𝑛𝑛))

15

mq

K = Gen(.)

tq = MacK(mq)

Macforge𝐴𝐴,Π(𝑛𝑛) = Vrfyk(𝑚𝑚, 𝑡𝑡)
𝑚𝑚, 𝑡𝑡 s.t 𝑚𝑚 ∉ 𝑚𝑚1, … ,𝑚𝑚𝑞𝑞

m1
t1 = MacK(m1)

t2 = MacK (m2)
m2 …

∀𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴 ∃𝜇𝜇 (negligible) s. t
Pr Macforge𝐴𝐴,Π 𝑛𝑛 = 1 ≤ 𝜇𝜇(𝑛𝑛)

Discussion

• Is the definition too strong?
• Attacker wins if he can forge any message
• Does not necessarily attacker can forge a “meaningful message”
• “Meaningful Message” is context dependent
• Conservative Approach: Prove Security against more powerful attacker
• Conservative security definition can be applied broadly

• Replay Attacks?
• t=MacK(“Pay Bob $1,000 from Alice’s bank account”)
• Alice cannot modify message to say $10,000, but…
• She may try to replay it 10 times

16

Replay Attacks

• MACs alone do not protect against replay attacks
(they are stateless)

• Common Defenses:
• Include Sequence Numbers in Messages (requires

synchronized state)
• Can be tricky over a lossy channel

• Timestamp Messages
• Double check timestamp before taking action

17

Strong MACs

• Previous game ensures attacker cannot generate a valid tag for a new
message.

• However, attacker may be able to generate a second valid tag t’ for a
message m after observing (m,t)

• Strong MAC: attacker cannot generate second valid tag, even for a
known message

18

Strong MAC Authentication (Macsforge𝐴𝐴,Π(𝑛𝑛))

19

mq

K = Gen(.)

tq = MacK(mq)

Macsforge𝐴𝐴,Π(𝑛𝑛) = Vrfyk(𝑚𝑚, 𝑡𝑡)
m, t s.t m, t ∉ (m1, t1), … , (mq, t𝑞𝑞)

m1
t1 = MacK(m1)

t2 = MacK (m2)
m2 …

∀𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴 ∃𝜇𝜇 (negligible) s. t
Pr Macsforge𝐴𝐴,Π 𝑛𝑛 = 1 ≤ 𝜇𝜇(𝑛𝑛)

Strong MAC vs Regular MAC

Proposition 4.4: Let Π = Gen, Mac, Vrfy be a secure MAC that uses
canonical verification. Then Π is a strong MAC.

“All real-world MACs use canonical verification” – page 115

Should attacker have access to VrfyK(.) oracle in games?
(e.g., CPA vs CCA security for encryption)
Irrelevant if the MAC uses canonical verification!

20

Timing Attacks (Side Channel)

Naïve Canonical Verification Algorithm
Input: m,t’

t=MacK(m)
for i=1 to tag-length

if t[i] != t’[i] then
return 0

return 1

21

Example

t= 1 0 1 0 1 1 1 0
t’= 1 0 1 0 1 0 1 1

Returns 0 after 8 steps

Timing Attacks (Side Channel)

Naïve Canonical Verification Algorithm
Input: m,t’

t=MacK(m)
for i=1 to tag-length

if t[i] != t’[i] then
return 0

return 1

22

Example

t= 1 0 1 0 1 1 1 0
t’= 0 0 1 0 1 0 1 0

Returns 0 after 1 step

Timing Attack

• MACs used to verify code updates for Xbox 360

• Implementation allowed different rejection times (side-channel)

• Attacks exploited vulnerability to load pirated games onto hardware

• Moral: Ensure verification is time-independent

23

Improved Canonical Verification Algorithm

Input: m,t’

B=1
t=MacK(m)
for i=1 to tag-length

if t[i] != t’[i] then
B=0

else (dummy op)
return B

24

Example

t= 1 0 1 0 1 1 1 0
t’= 0 0 1 0 1 0 1 0

Returns 0 after 8 steps

Side-Channel Attacks

• Cryptographic Definition
• Attacker only observes outputs of oracles (Enc, Dec, Mac) and nothing else

• When attacker gains additional information like timing (not captured by
model) we call it a side channel attack.

Other Examples
• Differential Power Analysis
• Cache Timing Attack
• Power Monitoring
• Acoustic Cryptanalysis
• …many others

25

Next Class

• Read Katz and Lindell 4.3
• Message Authentication Codes (MACs) Part 2

• Constructing Secure MACs

26

	Cryptography�CS 555
	Reminder: Homework 1
	Recap
	What Does It Mean to “Secure Information”
	What Does It Mean to “Secure Information”
	Message Authentication Codes
	What Does It Mean to “Secure Information”
	Error Correcting Codes?
	Modifying Ciphertexts
	Message Authentication Code Syntax
	Message Authentication Code Syntax
	Message Authentication Code Syntax
	General vs Fixed Length MAC
	Deterministic MACs
	MAC Authentication Game (Macforge 𝐴,Π (𝑛))
	Discussion
	Replay Attacks
	Strong MACs
	Strong MAC Authentication (Macsforge 𝐴,Π (𝑛))
	Strong MAC vs Regular MAC
	Timing Attacks (Side Channel)
	Timing Attacks (Side Channel)
	Timing Attack
	Improved Canonical Verification Algorithm
	Side-Channel Attacks
	Next Class

