Cryptography CS 555

Topic 8: Modes of Encryption, The Penguin and CCA security

Reminder: Homework 1

- Due on Friday at the beginning of class
- Please typeset your solutions

Recap

- Pseudorandom Functions
- CPA-Security

Today's Goals:

- Evaluate several modes of operation for stream-ciphers + blockciphers
- Introduce Chosen Ciphertext Attacks/CCA-Security
- Construct encryption scheme with CCA-Security

Chosen Ciphertext Attacks

- Sometimes an attacker has ability to obtain (partial) decryptions of ciphertexts of its choice.
- CPA-Security does not model this ability.

Examples:

- An attacker may learn that a ciphertext corresponds to an ill-formed plaintext based on the reaction (e.g., server replies with "invalid message").
- Monitor enemy behavior after receiving and encrypted message.
- Authentication Protocol: Send Enc_k(r) to recipient who authenticates by responding with r.

We could set $m_0 = m_{-1}$ or $m_1 = m_{-2}$ CCA-Security (Indm_1 $c_{-1} = Enc_{\kappa}(m_{-1})$ C_{-2} $m_{-2} = Dec_{\kappa}(c_{-2})$ m_{0}, m_{1} However, we could still flip 1 bit $c = Enc_{\kappa}(m_{b})$ of c and ask challenger to decrypt m_3 -...c_K(m₂, Random bit b C_2 $m_3 = Dec_k(m_3)$ K = Gen(.)c₄ =c "No Way!" b'

CCA-Security $(PrivK_{A,\Pi}^{cca}(n))$

- 1. Challenger generates a secret key k and a bit b
- 2. Adversary (A) is given oracle access to Enc_k and Dec_k
- 3. Adversary outputs m₀, m₁
- 4. Challenger sends the adversary $c=Enc_k(m_b)$.
- 5. Adversary maintains oracle access to Enc_k and Dec_k , however the adversary is not allowed to query $Dec_k(c)$.
- 6. Eventually, Adversary outputs b'.

 $PrivK_{A,\Pi}^{cca}(n) = 1$ if b = b'; otherwise 0.

CCA-Security: For all PPT A exists a negligible function negl(n) s.t.

$$\Pr\left[\operatorname{Priv} K_{A,\Pi}^{cca}(n) = 1\right] \leq \frac{1}{2} + \operatorname{negl}(n)$$

Definition 3.33: An encryption scheme Π is CCA-secure if for all PPT A there is a negligible function negl(n) such that $\Pr\left[PrivK_{A,\Pi}^{cca}(n) = 1\right] \leq \frac{1}{2} + negl(n)$

CPA-Security doesn't imply CCA-Security

 $\operatorname{Enc}_{k}(m) = \langle r, F_{k}(r) \oplus m \rangle$

Attacker: Selects $m_0 = 0^n$ and $m_1 = 1^n$ Attacker Receives: $c = \langle r, s \rangle$ where $s = F_k(r) \oplus m_b$ Attacker Queries: $Dec_k(c')$ for $c' = \langle r, s \oplus 10^{n-1} \rangle$ Attacker Receives: 10^{n-1} (if b=0) or 01^{n-1} (if b=1)

Example Shows: CCA-Security doesn't imply CCA1 Security (Why?)

Attacks in the Wild

- Padding Oracle Attack
- Length of plaintext message must be multiple of block length
- Popular fix PKCS #5 padding
 - 4 bytes of padding (0x04040404)
 - 3 bytes of padding (0x030303)
- "Bad Padding Error"
 - Adversary submits ciphertext(s) and waits to if this error is produced
 - Attacker can repeatedly modify ciphertext to reveal original plaintext piece by piece!

Example

M="hello...please keep this message secret"+0x030303 C = $\langle r, s = F_k(r) \oplus m \rangle$

•
$$C' = \langle r, F_k(r) \oplus m \oplus 0 \times 0000 \dots 30000 \rangle$$

Ask to decrypt C'

- If we added < 3 bits of padding C' can be decrypted.
- Otherwise, we will get a decryption error.

Once we know we have three bits of padding we can set $C'' = \langle r, s = F_k(r) \oplus 0x0000 \dots 30303 \oplus 0x0 \dots gg040404 \rangle$ If C'' decrypts then we can infer the last byte "t" from $gg \oplus 0x04$.

CCA-Security

- Gold Standard: CCA-Security is strictly stronger than CPA-Security
- If a scheme has indistinguishable encryptions under one chosenciphertext attack then it has indistinguishable multiple encryptions under chosen-ciphertext attacks.
- None of the encryption schemes we have considered so far are CCA-Secure ☺
- CCA-Security implies non-malleability (message integrity)
 - An attacker who modifies a ciphertext c produces c' which is either
 - Invalid, or
 - Decryptions to unrelated message

Back to CPA-Security

- We will build a CCA-Secure Encryption scheme later in the course
 - We will need to introduce additional tools (Message Authentication Codes)
- Remaining Lecture: Modes of Operation for Stream-Ciphers and Block-Ciphers

CPA-Secure Encryption

 $\operatorname{Enc}_{k}(m) = \langle r, F_{k}(r) \oplus m \rangle$

 $\operatorname{Dec}_{k}(\langle r, s \rangle) = F_{k}(r) \oplus s$

Drawbacks:

- Encryption is for fixed length messages only
- Length of ciphertext is twice as long as message
- Attacker can still tamper with ciphertexts to flip bits of plaintext

Stream Ciphers/Block Ciphers

Stream Ciphers Modes

- What if we don't know the length of the message to be encrypted a priori?
 - Stream Cipher: $G_{\infty}(s, 1^n)$ outputs n pseudorandom bits as follows
 - Initial State: st₀ = Initialize(s)
 - Repeat
 - (y_i,st_i)=GetBits(st_{i-1})
 - Output y_i

• Synchronized Mode

- Message sequence: m₁,m₂,...
- Ciphertext sequence: $c_i = m_i \bigoplus y_i$ (same length as ciphertext!)
- "CPA-like" security follows from cipher security (must stop after n-bits)
- Deterministic encryption, what gives???
- Requires both parties to maintain state (not good for sporadic communication)

Stream Ciphers Modes

- What if we don't want to keep state?
- Unsynchronized Mode
 - Message sequence: m₁,m₂,...
 - Ciphertext sequence: $c_i = \langle IV, m_i \oplus G_{\infty}(s, IV, 1^{|m_i|}) \rangle$
 - CPA-Secure if $F_k(IV) = G_{\infty}(k, IV, 1^n)$ is a (weak) PRF.
 - No shared state, but longer ciphertexts....

Pseudorandom Permutation

A keyed function F: $\{0,1\}^n \times \{0,1\}^n \rightarrow \{0,1\}^n$, which is invertible and "looks random" without the secret key k.

- Similar to a PRF, but
- Computing $F_k(x)$ and $F_k^{-1}(x)$ is efficient (polynomial-time)

Definition 3.28: A keyed function F: $\{0,1\}^n \times \{0,1\}^n \to \{0,1\}^n$ is a **strong pseudorandom permutation** if for all PPT distinguishers D there is a negligible function μ s.t. $\left| Pr\left[D^{F_k(.),F_k^{-1}(.)}(1^n) \right] - Pr\left[D^{f(.),f^{-1}(.)}(1^n) \right] \right| \le \mu(n)$

Pseudorandom Permutation

Definition 3.28: A keyed function F: $\{0,1\}^n \times \{0,1\}^n \rightarrow \{0,1\}^n$ is a **strong pseudorandom permutation** if for all PPT distinguishers D there is a negligible function μ s.t.

$$\left| Pr\left[D^{F_k(.),F_k^{-1}(.)}(1^n) \right] - Pr\left[D^{f(.),f^{-1}(.)}(1^n) \right] \right| \le \mu(n)$$

Notes:

- the first probability is taken over the uniform choice of $k \in \{0,1\}^n$ as well as the randomness of D.
- the second probability is taken over uniform choice of f ∈ Perm_nas well as the randomness of D.
- D is *never* given the secret k
- However, D is given oracle access to keyed permutation and inverse

Electronic Code Book (ECB) Mode

- Uses strong PRP $F_k(x)$ and $F_k^{-1}(x)$
- Enc_k
 - **Input**: m₁,...,m_ℓ
 - **Output**: $\langle F_k(m_1), ..., F_k(m_\ell) \rangle$
- How to decrypt?
- Is this secure?
- Hint: Encryption is deterministic.
 - Implication: Not CPA-Secure
 - But, it gets even worse

ECB Mode (A Failed Approach)

The Penguin Principle

If you can still see the penguin after "encrypting" the image something is very very wrong with the encryption scheme.

Cipher Block Chaining

• CBC-Mode (below) is CPA-secure if E_k is a PRP

Reduces bandwidth!

Message: 3n bits Ciphertext: 4n bits

Chained CBC-Mode

- First glance: seems similar to CBC-Mode and reduces bandwidth
- Vulnerable to CPA-Attack! (Set $m_4 = IV \oplus c_3 \oplus m'_1$ and $c_4 = c_1$ iff $m_1 = m_1'$)
- Moral: Be careful when tweaking encryption scheme!

Counter Mode

- Input: m₁,...,m_n
- Output: c = (ctr, c₁,c₂,...,c_n) where ctr is chosen uniformly at random
- **Theorem**: If E_k is PRF then counter mode is CPA-Secure
- Advantages: Parallelizable encryption/decryption

Next Class

- Read Katz and Lindell 4.1-4.2
- Message Authentication Codes (MACs) Part 1