Cryptography CS 555

Topic 7: Pseudorandom Functions and CPA-Security

Recap

- Pseudorandom Generators G(s)
- Chosen Plaintext Attacks/CPA-Security
- Build CPA-secure encryption scheme
- Today's Goal: Construct encryption scheme with CPA-security
- **Recall**: CPA-Security for single encryptions implies CPA-Security for multiple encryptions.

CPA-Security (Single Message)

Random bit b K = Gen(.)

 $\forall PPT \ A \ \exists \mu \text{ (negligible) s.t}$ $\Pr[A \ Guesses \ b' = b] \leq \frac{1}{2} + \mu(n)$

Pseudorandom Function (PRF)

A keyed function F: $\{0,1\}^{\ell_{key}(n)} \times \{0,1\}^{\ell_{in}(n)} \rightarrow \{0,1\}^{\ell_{out}(n)}$, which "looks random" without the secret key k.

- $\ell_{key}(n)$ length of secret key k
- $\ell_{in}(n)$ length of input
- $\ell_{out}(n)$ length of output
- Typically, $\ell_{key}(n) = \ell_{in}(n) = \ell_{out}(n) = n$ (unless otherwise specified)
- Computing F_κ(x) is efficient (polynomial-time)

PRF vs. PRG

Pseudorandom Generator G is not a keyed function

- PRG Security Model: Attacker sees only output G(r)
 - Attacker who sees r can easily distinguish G(r) from random
- PRF Security Model: Attacker sees both inputs and outputs (r_i, F_k(r_i))
 - In fact, attacker can select inputs r_i
 - Attacker Goal: distinguish F from a truly random function

Truly Random Function

- Let **Func**_n denote the set of all functions $f: \{0,1\}^n \to \{0,1\}^n$.
- Question: How big is the set Func_n?
- Hint: Consider the lookup table.
 - 2ⁿ entries in lookup table
 - n bits per entry
 - n2ⁿ bits to encode f∈**Func**_n
- Answer: $|Func_n| = 2^{n2^n}$ (by comparison only 2ⁿ n-bit keys)

Truly Random Function

- Let **Func**_n denote the set of all functions $f: \{0,1\}^n \to \{0,1\}^n$.
- Can view entries in lookup table as populated in advance (uniformly)
 - **Space:** n2ⁿ bits to encode f∈**Func**_n
- Alternatively, can view entries as populated uniformly "on-the-fly"
 - **Space:** 2n×q(n) bits after q(n) queries
 - To store past responses

Oracle Notation

- We use A^{f(.)} to denote an algorithm A with oracle access to a function f.
- A may adaptively query f(.) on multiple different inputs $x_1, x_2, ...$ and A receives the answers $f(x_1), f(x_2), ...$
- However, A can only use f(.) as a blackbox (no peaking at the source code in the box)

PRF Security

Definition 3.25: A keyed function F: $\{0,1\}^n \times \{0,1\}^n \rightarrow \{0,1\}^n$ is a pseudorandom function if for all PPT distinguishers D there is a negligible function μ s.t.

$$\left| Pr[D^{F_k(.)}(1^n)] - Pr[D^{f(.)}(1^n)] \right| \le \mu(n)$$

Notes:

- the first probability is taken over the uniform choice of $k \in \{0,1\}^n$ as well as the randomness of D.
- the second probability is taken over uniform choice of f ∈ Func_nas well as the randomness of D.
- D is not given the secret k in the first probability (otherwise easy to distinguish...how?)

PRF-Security as a Game

 $\forall PPT \ A \exists \mu \text{ (negligible) s.t}$ $\Pr[A \ Guesses \ b' = b] \leq \frac{1}{2} + \mu(n)$

Random bit b K = Gen(.) Truly random func R r_i = F_K(m_i) if b=1 R(m_i) o.w₁₁

CPA-Secure Encryption

- Gen: on input 1^n pick uniform $k \in \{0,1\}^n$
- Enc: Input $k \in \{0,1\}^n$ and $m \in \{0,1\}^n$ Output $c = \langle r, F_k(r) \oplus m \rangle$ for uniform $r \in \{0,1\}^n$
- Dec: Input $k \in \{0,1\}^n$ and $c = \langle r, s \rangle$ Output $m = F_k(r) \bigoplus s$

How to begin proof?

Theorem: If F is a pseudorandom function, then (Gen,Enc,Dec) is a CPA-secure encryption scheme for messages of length n.

Breaking CPA-Security (Single Message)

Random bit b

K = Gen(.)Assumption: $\exists PPT A, P (non - negligible) s.t$ $\Pr[A \ Guesses \ b' = b] \ge \frac{1}{2} + P(n)$

Security Reduction

- **Step 1:** Assume for contraction that we have a PPT attacker A that breaks CPA-Security.
- Step 2: Construct a PPT distinguisher D which breaks PRF security.
- Distinguisher D^{O} (oracle O --- either f or F_{k})
 - Simulate A
 - Whenever A queries its encryption oracle on a message m
 - Select random r
 - Return $c = \langle r, O(r) \oplus m \rangle$
 - Whenever A outputs messages m₀, m₁
 - Select random r and bit b
 - Return $c = \langle r, O(r) \oplus m_h \rangle$
 - Whenever A outputs b'
 - Output 1 if b=b'
 - Output 0 otherwise

Analysis: Suppose that O = f then

$$\begin{aligned} & \Pr[\mathsf{D}^{F_k} = 1] = \Pr[\textit{PrivK}_{A,\Pi}^{^{cpa}} = 1] \\ & \text{Suppose that O = f then} \\ & \Pr[\mathsf{D}^f = 1] = \Pr[\textit{PrivK}_{A,\widetilde{\Pi}}^{^{cpa}} = 1] \end{aligned}$$

where $\widetilde{\Pi}$ denotes the encryption scheme in which F_k is replaced by truly random f.

Security Reduction

- **Step 1:** Assume for contraction that we have a PPT attacker A that breaks CPA-Security.
- Step 2: Construct a PPT distinguisher D which breaks PRF security.
- Distinguisher D^O (oracle O --- either f or F_k)
 - Simulate A
 - Whenever A queries its encryption oracle on a message m
 - Select random r
 - Return $c = \langle r, O(r) \oplus m \rangle$
 - Whenever A outputs messages m₀,m₁
 - Select random r and bit b
 - Return $c = \langle r, O(r) \oplus m_b \rangle$
 - Whenever A outputs b'
 - Output 1 if b=b'
 - Output 0 otherwise

Analysis: Suppose that $O = F_k$ then by PRF security, for some negligible function μ , we have

$$\begin{vmatrix} \mathsf{Pr}[\operatorname{Priv} K_{A,\Pi}^{^{cpa}} = 1] - \mathsf{Pr}\left[\operatorname{Priv} K_{A,\widetilde{\Pi}}^{^{cpa}} = 1\right] \end{vmatrix}$$
$$= \left| \mathsf{Pr}[\mathsf{D}^{F_k} = 1] - \mathsf{Pr}[\mathsf{D}^{f} = 1] \right| \le \mu(n)$$

Implies:
$$\Pr\left[PrivK_{A,\widetilde{\Pi}}^{cpa} = 1\right] \ge \Pr\left[PrivK_{A,\Pi}^{cpa} = 1\right] - \mu(n)$$

Security Reduction • Fact: $\Pr\left[PrivK_{A,\widetilde{\Pi}}^{cpa} = 1\right] \ge \Pr\left[PrivK_{A,\Pi}^{cpa} = 1\right] - \mu(n)$

• Claim: For any attacker A making at most q(n) queries we have $\Pr\left[\operatorname{Priv}_{A,\widetilde{\Pi}}^{cpa} = 1\right] \leq \frac{1}{2} + \frac{q(n)}{2^n}$

Conclusion: For any attacker A making at most q(n) queries we have

$$\Pr\left[\operatorname{PrivK}_{A,\Pi}^{^{cpa}} = 1\right] \leq \frac{1}{2} + \frac{q(n)}{2^n} + \mu(n)$$

where $\frac{q(n)}{2^n} + \mu(n)$ is negligible.

Finishing Up

Claim: For any attacker A making at most q(n) queries we have $\Pr\left[\operatorname{Priv}_{A,\widetilde{\Pi}}^{cpa} = 1\right] \leq \frac{1}{2} + \frac{q(n)}{2^n}$

Proof: Let m_0, m_1 denote the challenge messages and let r* denote the random string used to produce the challenge ciphertext

 $c = \langle r^*, f(r^*) \oplus m_b \rangle$

And let $r_1, ..., r_q$ denote the random strings used to produce the other ciphertexts $c_i = \langle r_i, f(r_i) \oplus m_b \rangle$.

If $r^* \neq r_1, ..., r_q$ then then c leaks no information about b (information theoretically).

Finishing Up

Claim: For any attacker A making at most q(n) queries we have $\Pr\left[\operatorname{Priv} K_{A,\widetilde{\Pi}}^{cpa} = 1\right] \leq \frac{1}{2} + \frac{q(n)}{2^n}$

Proof: If $r^* \neq r_1, ..., r_q$ then then c leaks no information about b (information theoretically). We have

$$\Pr\left[\operatorname{Priv}_{A,\widetilde{\Pi}}^{cpa}=1\right] \leq \Pr\left[\operatorname{Priv}_{A,\widetilde{\Pi}}^{cpa}=1|\mathsf{r}*\neq\mathsf{r}_{1},...,\mathsf{r}_{q}\right] + \Pr\left[\mathsf{r}*\in\{\mathsf{r}_{1},...,\mathsf{rq}\}\right] \\ \leq \frac{1}{2} + \frac{q(n)}{2^{n}}$$

Conclusion

 $\operatorname{Enc}_{k}(m) = \langle r, F_{k}(r) \oplus m \rangle$ **PRF** Security $\text{Dec}_k(\langle r, s \rangle) = F_k(r) \oplus s$ For any attacker A making at most q(n) queries we have $\Pr[PrivK_{A,\Pi}^{cpa} = 1] \le \frac{1}{2} + \frac{q(n)}{2^n} + \mu(n)$

Are PRFs or PRGs more Powerful?

• Easy to construct a secure PRG from a PRF $G(s) = F_s(1) | \dots | F_s(\ell)$

Construct a PRF from a PRG?
Tricky, but possible... (Katz and Lindell Section 7.5)

Construct PRF from PRG

Define: G(s)= G₀(s) | G₁(s)
PRF:
$$F_k(x) = G_{x_1}\left(...G_{x_{n-1}}\left(G_{x_n}(k)\right)\right)$$

Recursive Definition: $F_k(x) = H_k(x)$ where

$$H_{k}(1) := G_{1}(k)$$

$$H_{k}(0) := G_{0}(k)$$

$$H_{k}(1|x) := G_{1}(H_{k}(x))$$

$$H_{k}(0|x) := G_{0}(H_{k}(x))$$

Theorem: If G is a PRG then F_k is a PRF

Next Class

- Read Katz and Lindell 3.6.2-3.6.7
- Modes of Operation
 - Stream-Cipher/Block-Cipher

