
Cryptography
CS 555

Topic 7: Pseudorandom Functions and CPA-Security
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Recap

• Pseudorandom Generators G(s)
• Chosen Plaintext Attacks/CPA-Security
• Build CPA-secure encryption scheme

• Today’s Goal: Construct encryption scheme with CPA-security
• Recall: CPA-Security for single encryptions implies CPA-Security for 

multiple encryptions.
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CPA-Security (Single Message)
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m0,m1

Random bit b
K = Gen(.)

c = EncK(mb)

b’

m2

c2 = EncK(m2)

c3 = EncK(m3)
m3

…

∀𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴 ∃𝜇𝜇 (negligible) s. t
Pr 𝐴𝐴 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝑏𝑏′ = 𝑏𝑏 ≤

1
2

+ 𝜇𝜇(𝑛𝑛)



Pseudorandom Function (PRF)

A keyed function F: 0,1 ℓ𝑘𝑘𝑘𝑘𝑘𝑘 𝑛𝑛 × 0,1 ℓ𝑖𝑖𝑖𝑖 𝑛𝑛 → 0,1 ℓ𝑜𝑜𝑜𝑜𝑜𝑜 𝑛𝑛 , 
which “looks random” without the secret key k.

• ℓ𝑘𝑘𝑘𝑘𝑘𝑘 𝑛𝑛 - length of secret key k
• ℓ𝑖𝑖𝑖𝑖 𝑛𝑛 - length of input
• ℓ𝑜𝑜𝑜𝑜𝑜𝑜 𝑛𝑛 - length of output

• Typically, ℓ𝑘𝑘𝑘𝑘𝑘𝑘 𝑛𝑛 =ℓ𝑖𝑖𝑖𝑖 𝑛𝑛 =ℓ𝑜𝑜𝑜𝑜𝑜𝑜 𝑛𝑛 =n (unless otherwise specified)

• Computing FK(x) is efficient (polynomial-time)
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PRF vs. PRG

• Pseudorandom Generator G is not a keyed function

• PRG Security Model: Attacker sees only output G(r)
• Attacker who sees r can easily distinguish G(r) from 

random
• PRF Security Model: Attacker sees both inputs and outputs 

(ri,Fk(ri))
• In fact, attacker can select inputs ri
• Attacker Goal: distinguish F from a truly random function
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Truly Random Function

• Let Funcn denote the set of all functions 𝑓𝑓: 0,1 𝑛𝑛 → 0,1 𝑛𝑛.

• Question: How big is the set Funcn?
• Hint: Consider the lookup table.

• 2n entries in lookup table
• n bits per entry
• n2n bits to encode f∈Funcn

• Answer: Funcn = 2𝑛𝑛2𝑛𝑛 (by comparison only 2n n-bit keys)
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Truly Random Function

• Let Funcn denote the set of all functions 𝑓𝑓: 0,1 𝑛𝑛 → 0,1 𝑛𝑛.

• Can view entries in lookup table as populated in advance (uniformly)
• Space: n2n bits to encode f∈Funcn

• Alternatively, can view entries as populated uniformly “on-the-fly”
• Space: 2n×q(n) bits after q(n) queries

• To store past responses
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Oracle Notation

• We use Af(.) to denote an algorithm A with oracle access 
to a function f. 

• A may adaptively query f(.) on multiple different inputs 
x1,x2,… and A receives the answers f(x1),f(x2),…

• However, A can only use f(.) as a blackbox (no peaking at 
the source code in the box)
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PRF Security

Definition 3.25: A keyed function F: 0,1 𝑛𝑛 × 0,1 𝑛𝑛 → 0,1 𝑛𝑛 is a 
pseudorandom function if for all PPT distinguishers D there is a negligible 
function 𝜇𝜇 s.t. 

𝑃𝑃𝑃𝑃 𝐷𝐷𝐹𝐹𝑘𝑘(.) 1𝑛𝑛 − 𝑃𝑃𝑃𝑃 𝐷𝐷𝑓𝑓(.) 1𝑛𝑛 ≤ 𝜇𝜇 𝑛𝑛
Notes: 
• the first probability is taken over the uniform choice of 𝑘𝑘 ∈ 0,1 𝑛𝑛 as well 

as the randomness of D. 
• the second probability is taken over uniform choice of f ∈Funcnas well as 

the randomness of D. 
• D is not given the secret k in the first probability (otherwise easy to 

distinguish…how?)
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PRF-Security as a Game
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m1

Random bit b
K = Gen(.)
Truly random func R
ri = FK(mi)    if b=1

R(mi)    o.w

b’

m2

r2

r3

m3

…

∀𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴 ∃𝜇𝜇 (negligible) s. t
Pr 𝐴𝐴 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝑏𝑏′ = 𝑏𝑏 ≤

1
2

+ 𝜇𝜇(𝑛𝑛)

r1



CPA-Secure Encryption

• Gen: on input 1n pick uniform 𝑘𝑘 ∈ 0,1 𝑛𝑛

• Enc: Input 𝑘𝑘 ∈ 0,1 𝑛𝑛 and 𝑚𝑚 ∈ 0,1 𝑛𝑛

Output 𝑐𝑐 = 𝑟𝑟,𝐹𝐹𝑘𝑘 𝑟𝑟 ⨁𝑚𝑚 for uniform 𝑟𝑟 ∈ 0,1 𝑛𝑛

• Dec: Input 𝑘𝑘 ∈ 0,1 𝑛𝑛 and 𝑐𝑐 = 𝑟𝑟, 𝑠𝑠
Output 𝑚𝑚 = 𝐹𝐹𝑘𝑘 𝑟𝑟 ⨁𝑠𝑠

Theorem: If F is a pseudorandom function, then (Gen,Enc,Dec) is a CPA-
secure encryption scheme for messages of length n.
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How to begin proof?



Breaking CPA-Security (Single Message)

13

m0,m1

Random bit b
K = Gen(.)

𝑟𝑟,𝐹𝐹𝑘𝑘 𝑟𝑟 ⨁𝑚𝑚𝑏𝑏

b’

m2

𝑟𝑟,𝐹𝐹𝑘𝑘 𝑟𝑟 ⨁𝑚𝑚2

𝑟𝑟,𝐹𝐹𝑘𝑘 𝑟𝑟 ⨁𝑚𝑚3

m3

…

Assumption: ∃ PPT 𝐴𝐴, P (non − negligible) s. t
Pr 𝐴𝐴 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝑏𝑏′ = 𝑏𝑏 ≥

1
2

+ 𝑃𝑃(𝑛𝑛)



Security Reduction

• Step 1: Assume for contraction that we have a PPT attacker A that breaks 
CPA-Security.

• Step 2: Construct a PPT distinguisher D which breaks PRF security.
• Distinguisher DO (oracle O --- either f or Fk)

• Simulate A
• Whenever A queries its encryption oracle on a message m 

• Select random r
• Return 𝑐𝑐 = 𝑟𝑟,𝑂𝑂 𝑟𝑟 ⨁𝑚𝑚

• Whenever A outputs messages m0,m1
• Select random r and bit b
• Return 𝑐𝑐 = 𝑟𝑟,𝑂𝑂 𝑟𝑟 ⨁𝑚𝑚𝑏𝑏

• Whenever A outputs b’
• Output 1 if b=b’
• Output 0 otherwise
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Analysis: Suppose that O = f then

Pr D𝐹𝐹𝑘𝑘 = 1 = Pr 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴,Π
𝑐𝑐𝑐𝑐𝑐𝑐

= 1
Suppose that O = f then 

Pr D𝑓𝑓 = 1 =Pr 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴,�Π
𝑐𝑐𝑐𝑐𝑐𝑐

= 1

where �Π denotes the encryption scheme in which 
Fk is replaced by truly random f.



Security Reduction

• Step 1: Assume for contraction that we have a PPT attacker A that breaks 
CPA-Security.

• Step 2: Construct a PPT distinguisher D which breaks PRF security.
• Distinguisher DO (oracle O --- either f or Fk)

• Simulate A
• Whenever A queries its encryption oracle on a message m 

• Select random r
• Return 𝑐𝑐 = 𝑟𝑟,𝑂𝑂 𝑟𝑟 ⨁𝑚𝑚

• Whenever A outputs messages m0,m1
• Select random r and bit b
• Return 𝑐𝑐 = 𝑟𝑟,𝑂𝑂 𝑟𝑟 ⨁𝑚𝑚𝑏𝑏

• Whenever A outputs b’
• Output 1 if b=b’
• Output 0 otherwise
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Analysis: Suppose that O = Fk then  by PRF security, for 
some negligible function 𝜇𝜇, we have

Pr 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴,Π
𝑐𝑐𝑐𝑐𝑐𝑐

= 1 − Pr 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴,�Π
𝑐𝑐𝑐𝑐𝑐𝑐

= 1
= Pr[D𝐹𝐹𝑘𝑘 = 1] − Pr[D𝑓𝑓 = 1] ≤ 𝜇𝜇(𝑛𝑛)

Implies: Pr 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴,�Π
𝑐𝑐𝑐𝑐𝑐𝑐

= 1 ≥ Pr 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴,Π
𝑐𝑐𝑐𝑐𝑐𝑐

= 1 -𝜇𝜇(𝑛𝑛)



Security Reduction
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• Fact: Pr 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴,�Π
𝑐𝑐𝑐𝑐𝑐𝑐

= 1 ≥ Pr 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴,Π
𝑐𝑐𝑐𝑐𝑐𝑐

= 1 -𝜇𝜇(𝑛𝑛)

• Claim: For any attacker A making at most q(n) queries we have

Pr 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴,�Π
𝑐𝑐𝑐𝑐𝑐𝑐

= 1 ≤
1
2

+
𝑞𝑞(𝑛𝑛)

2𝑛𝑛

Conclusion: For any attacker A making at most q(n) queries we have

Pr 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴,Π
𝑐𝑐𝑐𝑐𝑐𝑐

= 1 ≤
1
2

+
𝑞𝑞 𝑛𝑛

2𝑛𝑛
+ 𝜇𝜇 𝑛𝑛

where 𝑞𝑞 𝑛𝑛
2𝑛𝑛

+ 𝜇𝜇 𝑛𝑛 is negligible.



Finishing Up

Claim: For any attacker A making at most q(n) queries we have

Pr 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴,�Π
𝑐𝑐𝑐𝑐𝑐𝑐

= 1 ≤
1
2

+
𝑞𝑞(𝑛𝑛)

2𝑛𝑛
Proof: Let m0,m1 denote the challenge messages and let r* denote the 
random string used to produce the challenge ciphertext 

𝑐𝑐 = 𝑟𝑟∗,𝑓𝑓 𝑟𝑟∗ ⨁𝑚𝑚𝑏𝑏

And let r1,…,rq denote the random strings used to produce the other 
ciphertexts 𝑐𝑐𝑖𝑖 = 𝑟𝑟𝑖𝑖 , 𝑓𝑓 𝑟𝑟𝑖𝑖 ⨁𝑚𝑚𝑏𝑏 . 
If r*≠ r1,…,rq then then c leaks no information about b (information 
theoretically). 
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Finishing Up

Claim: For any attacker A making at most q(n) queries we have

Pr 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴,�Π
𝑐𝑐𝑐𝑐𝑐𝑐

= 1 ≤
1
2

+
𝑞𝑞(𝑛𝑛)

2𝑛𝑛
Proof: If r*≠ r1,…,rq then then c leaks no information about b 
(information theoretically). We have 

Pr 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴,�Π
𝑐𝑐𝑐𝑐𝑐𝑐

= 1
≤ Pr 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴,�Π

𝑐𝑐𝑐𝑐𝑐𝑐
= 1|r∗ ≠ r1,…,rq + Pr r∗ ∈ r1,…,rq

≤
1
2

+
𝑞𝑞(𝑛𝑛)

2𝑛𝑛
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Conclusion

Enck(m) = 𝑟𝑟,𝐹𝐹𝑘𝑘 𝑟𝑟 ⨁𝑚𝑚

Deck( 𝑟𝑟, 𝑠𝑠 ) = 𝐹𝐹𝑘𝑘 𝑟𝑟 ⨁𝑠𝑠

For any attacker A making at most q(n) queries we have

Pr 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴,Π
𝑐𝑐𝑐𝑐𝑐𝑐

= 1 ≤
1
2

+
𝑞𝑞 𝑛𝑛

2𝑛𝑛
+ 𝜇𝜇 𝑛𝑛
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PRF Security



Are PRFs or PRGs more Powerful?

•Easy to construct a secure PRG from a PRF
G(s) = Fs(1)|…|Fs(ℓ)

•Construct a PRF from a PRG?
• Tricky, but possible… (Katz and Lindell Section 7.5)
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Construct PRF from PRG

Define: G(s)= G0(s)| G1(s)

PRF: 𝐹𝐹𝑘𝑘 𝑥𝑥 = 𝐺𝐺𝑥𝑥1 …𝐺𝐺𝑥𝑥𝑛𝑛−1 𝐺𝐺𝑥𝑥𝑛𝑛 𝑘𝑘

Recursive Definition: 𝐹𝐹𝑘𝑘 𝑥𝑥 = Hk(x) where
Hk(1): = G1(k)
Hk(0): = G0(k)
Hk(1|x): =G1(Hk(x))
Hk(0|x): = G0(Hk(x))
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Theorem: If G is a PRG then Fk is a PRF



Next Class

• Read Katz and Lindell 3.6.2-3.6.7
• Modes of Operation

• Stream-Cipher/Block-Cipher
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