
Cryptography
CS 555

Topic 7: Pseudorandom Functions and CPA-Security

1

Recap

• Pseudorandom Generators G(s)
• Chosen Plaintext Attacks/CPA-Security
• Build CPA-secure encryption scheme

• Today’s Goal: Construct encryption scheme with CPA-security
• Recall: CPA-Security for single encryptions implies CPA-Security for

multiple encryptions.

3

CPA-Security (Single Message)

4

m0,m1

Random bit b
K = Gen(.)

c = EncK(mb)

b’

m2

c2 = EncK(m2)

c3 = EncK(m3)
m3

…

∀𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴 ∃𝜇𝜇 (negligible) s. t
Pr 𝐴𝐴 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝑏𝑏′ = 𝑏𝑏 ≤

1
2

+ 𝜇𝜇(𝑛𝑛)

Pseudorandom Function (PRF)

A keyed function F: 0,1 ℓ𝑘𝑘𝑘𝑘𝑘𝑘 𝑛𝑛 × 0,1 ℓ𝑖𝑖𝑖𝑖 𝑛𝑛 → 0,1 ℓ𝑜𝑜𝑜𝑜𝑜𝑜 𝑛𝑛 ,
which “looks random” without the secret key k.

• ℓ𝑘𝑘𝑘𝑘𝑘𝑘 𝑛𝑛 - length of secret key k
• ℓ𝑖𝑖𝑛𝑛 𝑛𝑛 - length of input
• ℓ𝑜𝑜𝑜𝑜𝑜𝑜 𝑛𝑛 - length of output

• Typically, ℓ𝑘𝑘𝑘𝑘𝑘𝑘 𝑛𝑛 =ℓ𝑖𝑖𝑛𝑛 𝑛𝑛 =ℓ𝑜𝑜𝑜𝑜𝑜𝑜 𝑛𝑛 =n (unless otherwise specified)

• Computing FK(x) is efficient (polynomial-time)

5

PRF vs. PRG

• Pseudorandom Generator G is not a keyed function

• PRG Security Model: Attacker sees only output G(r)
• Attacker who sees r can easily distinguish G(r) from

random
• PRF Security Model: Attacker sees both inputs and outputs

(ri,Fk(ri))
• In fact, attacker can select inputs ri
• Attacker Goal: distinguish F from a truly random function

6

Truly Random Function

• Let Funcn denote the set of all functions 𝑓𝑓: 0,1 𝑛𝑛 → 0,1 𝑛𝑛.

• Question: How big is the set Funcn?
• Hint: Consider the lookup table.

• 2n entries in lookup table
• n bits per entry
• n2n bits to encode f∈Funcn

• Answer: Funcn = 2𝑛𝑛2𝑖𝑖 (by comparison only 2n n-bit keys)

7

Truly Random Function

• Let Funcn denote the set of all functions 𝑓𝑓: 0,1 𝑛𝑛 → 0,1 𝑛𝑛.

• Can view entries in lookup table as populated in advance (uniformly)
• Space: n2n bits to encode f∈Funcn

• Alternatively, can view entries as populated uniformly “on-the-fly”
• Space: 2n×q(n) bits after q(n) queries

• To store past responses

8

Oracle Notation

• We use Af(.) to denote an algorithm A with oracle access
to a function f.

• A may adaptively query f(.) on multiple different inputs
x1,x2,… and A receives the answers f(x1),f(x2),…

• However, A can only use f(.) as a blackbox (no peaking at
the source code in the box)

9

PRF Security

Definition 3.25: A keyed function F: 0,1 𝑛𝑛 × 0,1 𝑛𝑛 → 0,1 𝑛𝑛 is a
pseudorandom function if for all PPT distinguishers D there is a negligible
function 𝜇𝜇 s.t.

𝑃𝑃𝑃𝑃 𝐷𝐷𝐹𝐹𝑘𝑘(.) 1𝑛𝑛 − 𝑃𝑃𝑃𝑃 𝐷𝐷𝑓𝑓(.) 1𝑛𝑛 ≤ 𝜇𝜇 𝑛𝑛
Notes:
• the first probability is taken over the uniform choice of 𝑘𝑘 ∈ 0,1 𝑛𝑛 as well

as the randomness of D.
• the second probability is taken over uniform choice of f ∈Funcnas well as

the randomness of D.
• D is not given the secret k in the first probability (otherwise easy to

distinguish…how?)

10

PRF-Security as a Game

11

m1

Random bit b
K = Gen(.)
Truly random func R
ri = FK(mi) if b=1

R(mi) o.w

b’

m2

r2

r3

m3

…

∀𝑃𝑃𝑃𝑃𝑃𝑃 𝐴𝐴 ∃𝜇𝜇 (negligible) s. t
Pr 𝐴𝐴 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝑏𝑏′ = 𝑏𝑏 ≤

1
2

+ 𝜇𝜇(𝑛𝑛)

r1

CPA-Secure Encryption

• Gen: on input 1n pick uniform 𝑘𝑘 ∈ 0,1 𝑛𝑛

• Enc: Input 𝑘𝑘 ∈ 0,1 𝑛𝑛 and 𝑚𝑚 ∈ 0,1 𝑛𝑛

Output 𝑐𝑐 = 𝑃𝑃,𝐹𝐹𝑘𝑘 𝑃𝑃 ⨁𝑚𝑚 for uniform 𝑃𝑃 ∈ 0,1 𝑛𝑛

• Dec: Input 𝑘𝑘 ∈ 0,1 𝑛𝑛 and 𝑐𝑐 = 𝑃𝑃, 𝐺𝐺
Output 𝑚𝑚 = 𝐹𝐹𝑘𝑘 𝑃𝑃 ⨁𝐺𝐺

Theorem: If F is a pseudorandom function, then (Gen,Enc,Dec) is a CPA-
secure encryption scheme for messages of length n.

12

How to begin proof?

Breaking CPA-Security (Single Message)

13

m0,m1

Random bit b
K = Gen(.)

𝑃𝑃,𝐹𝐹𝑘𝑘 𝑃𝑃 ⨁𝑚𝑚𝑏𝑏

b’

m2

𝑃𝑃,𝐹𝐹𝑘𝑘 𝑃𝑃 ⨁𝑚𝑚2

𝑃𝑃,𝐹𝐹𝑘𝑘 𝑃𝑃 ⨁𝑚𝑚3

m3

…

Assumption: ∃ PPT 𝐴𝐴, P (non − negligible) s. t
Pr 𝐴𝐴 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝑏𝑏′ = 𝑏𝑏 ≥

1
2

+ 𝑃𝑃(𝑛𝑛)

Security Reduction

• Step 1: Assume for contraction that we have a PPT attacker A that breaks
CPA-Security.

• Step 2: Construct a PPT distinguisher D which breaks PRF security.
• Distinguisher DO (oracle O --- either f or Fk)

• Simulate A
• Whenever A queries its encryption oracle on a message m

• Select random r
• Return 𝑐𝑐 = 𝑃𝑃,𝑂𝑂 𝑃𝑃 ⨁𝑚𝑚

• Whenever A outputs messages m0,m1
• Select random r and bit b
• Return 𝑐𝑐 = 𝑃𝑃,𝑂𝑂 𝑃𝑃 ⨁𝑚𝑚𝑏𝑏

• Whenever A outputs b’
• Output 1 if b=b’
• Output 0 otherwise

14

Analysis: Suppose that O = f then

Pr D𝐹𝐹𝑘𝑘 = 1 = Pr 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴,Π
𝑐𝑐𝑐𝑐𝑐𝑐

= 1
Suppose that O = f then

Pr D𝑓𝑓 = 1 =Pr 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴,�Π
𝑐𝑐𝑐𝑐𝑐𝑐

= 1

where �Π denotes the encryption scheme in which
Fk is replaced by truly random f.

Security Reduction

• Step 1: Assume for contraction that we have a PPT attacker A that breaks
CPA-Security.

• Step 2: Construct a PPT distinguisher D which breaks PRF security.
• Distinguisher DO (oracle O --- either f or Fk)

• Simulate A
• Whenever A queries its encryption oracle on a message m

• Select random r
• Return 𝑐𝑐 = 𝑃𝑃,𝑂𝑂 𝑃𝑃 ⨁𝑚𝑚

• Whenever A outputs messages m0,m1
• Select random r and bit b
• Return 𝑐𝑐 = 𝑃𝑃,𝑂𝑂 𝑃𝑃 ⨁𝑚𝑚𝑏𝑏

• Whenever A outputs b’
• Output 1 if b=b’
• Output 0 otherwise

15

Analysis: Suppose that O = Fk then by PRF security, for
some negligible function 𝜇𝜇, we have

Pr 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴,Π
𝑐𝑐𝑐𝑐𝑐𝑐

= 1 − Pr 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴,�Π
𝑐𝑐𝑐𝑐𝑐𝑐

= 1
= Pr[D𝐹𝐹𝑘𝑘 = 1] − Pr[D𝑓𝑓 = 1] ≤ 𝜇𝜇(𝑛𝑛)

Implies: Pr 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴,�Π
𝑐𝑐𝑐𝑐𝑐𝑐

= 1 ≥ Pr 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴,Π
𝑐𝑐𝑐𝑐𝑐𝑐

= 1 -𝜇𝜇(𝑛𝑛)

Security Reduction

16

• Fact: Pr 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴,�Π
𝑐𝑐𝑐𝑐𝑐𝑐

= 1 ≥ Pr 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴,Π
𝑐𝑐𝑐𝑐𝑐𝑐

= 1 -𝜇𝜇(𝑛𝑛)

• Claim: For any attacker A making at most q(n) queries we have

Pr 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴,�Π
𝑐𝑐𝑐𝑐𝑐𝑐

= 1 ≤
1
2

+
𝑞𝑞(𝑛𝑛)

2𝑛𝑛

Conclusion: For any attacker A making at most q(n) queries we have

Pr 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴,Π
𝑐𝑐𝑐𝑐𝑐𝑐

= 1 ≤
1
2

+
𝑞𝑞 𝑛𝑛

2𝑛𝑛
+ 𝜇𝜇 𝑛𝑛

where 𝑞𝑞 𝑛𝑛
2𝑖𝑖

+ 𝜇𝜇 𝑛𝑛 is negligible.

Finishing Up

Claim: For any attacker A making at most q(n) queries we have

Pr 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴,�Π
𝑐𝑐𝑐𝑐𝑐𝑐

= 1 ≤
1
2

+
𝑞𝑞(𝑛𝑛)

2𝑛𝑛
Proof: Let m0,m1 denote the challenge messages and let r* denote the
random string used to produce the challenge ciphertext

𝑐𝑐 = 𝑃𝑃∗,𝑓𝑓 𝑃𝑃∗ ⨁𝑚𝑚𝑏𝑏

And let r1,…,rq denote the random strings used to produce the other
ciphertexts 𝑐𝑐𝑃𝑃 = 𝑃𝑃𝑖𝑖 , 𝑓𝑓 𝑃𝑃𝑖𝑖 ⨁𝑚𝑚𝑏𝑏 .
If r*≠ r1,…,rq then then c leaks no information about b (information
theoretically).

17

Finishing Up

Claim: For any attacker A making at most q(n) queries we have

Pr 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴,�Π
𝑐𝑐𝑐𝑐𝑐𝑐

= 1 ≤
1
2

+
𝑞𝑞(𝑛𝑛)

2𝑛𝑛
Proof: If r*≠ r1,…,rq then then c leaks no information about b
(information theoretically). We have

Pr 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴,�Π
𝑐𝑐𝑐𝑐𝑐𝑐

= 1
≤ Pr 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴,�Π

𝑐𝑐𝑐𝑐𝑐𝑐
= 1|r∗ ≠ r1,…,rq + Pr r∗ ∈ r1,…,rq

≤
1
2

+
𝑞𝑞(𝑛𝑛)

2𝑛𝑛

18

Conclusion

Enck(m) = 𝑃𝑃,𝐹𝐹𝑘𝑘 𝑃𝑃 ⨁𝑚𝑚

Deck(𝑃𝑃, 𝐺𝐺) = 𝐹𝐹𝑘𝑘 𝑃𝑃 ⨁𝐺𝐺

For any attacker A making at most q(n) queries we have

Pr 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴,Π
𝑐𝑐𝑐𝑐𝑐𝑐

= 1 ≤
1
2

+
𝑞𝑞 𝑛𝑛

2𝑛𝑛
+ 𝜇𝜇 𝑛𝑛

19

PRF Security

Are PRFs or PRGs more Powerful?

•Easy to construct a secure PRG from a PRF
G(s) = Fs(1)|…|Fs(ℓ)

•Construct a PRF from a PRG?
• Tricky, but possible… (Katz and Lindell Section 7.5)

20

Construct PRF from PRG

Define: G(s)= G0(s)| G1(s)

PRF: 𝐹𝐹𝑘𝑘 𝑥𝑥 = 𝐺𝐺𝑥𝑥1 …𝐺𝐺𝑥𝑥𝑖𝑖−1 𝐺𝐺𝑥𝑥𝑖𝑖 𝑘𝑘

Recursive Definition: 𝐹𝐹𝑘𝑘 𝑥𝑥 = Hk(x) where
Hk(1): = G1(k)
Hk(0): = G0(k)
Hk(1|x): =G1(Hk(x))
Hk(0|x): = G0(Hk(x))

21

Theorem: If G is a PRG then Fk is a PRF

Next Class

• Read Katz and Lindell 3.6.2-3.6.7
• Modes of Operation

• Stream-Cipher/Block-Cipher

22

	Cryptography�CS 555
	Recap
	CPA-Security (Single Message)
	Pseudorandom Function (PRF)
	PRF vs. PRG
	Truly Random Function
	Truly Random Function
	Oracle Notation
	PRF Security
	PRF-Security as a Game
	CPA-Secure Encryption
	Breaking CPA-Security (Single Message)
	Security Reduction
	Security Reduction
	Security Reduction
	Finishing Up
	Finishing Up
	Conclusion
	Are PRFs or PRGs more Powerful?
	Construct PRF from PRG
	Next Class

