Cryptography CS 555

Topic 4: Computational Security

Perfect Secrecy, One-time-Pads

Theorem: If (Gen,Enc,Dec) is a perfectly secret encryption scheme then

$|\mathcal{K}| \geq |\mathcal{M}|$

What if we want to send a longer message?

K1,K2,K3

K1,K2,K3 $\operatorname{Enc}_{k_1}("\operatorname{Dear Alice}, I wrote this poem for you")$ Enc_{k2}("*Roses* are red,") Enc_{k3} ("I am out of space, but the rest was awesome")

What if we want to send many messages?

K1,K2,K3

Ę

Can we save their relationship?

K1,K2,K3

Ę

Enc_{k1}("Whats up, Alice?")

Enc_{k2}("Not too much, you?")

Enc_{k3}("Just chilling out?")

Perfect Secrecy vs Computational Security

- Perfect Secrecy is Information Theoretic
 - Guarantee is independent of attacker resources
- Computational Security
 - Security against computationally bounded attacker
 - An attacker with infinite resources might break security
 - Attacker might succeed with very small probability
 - Example: Lucky guess reveals secret key
 - Very Small Probability: 2⁻¹⁰⁰, 2⁻¹⁰⁰⁰, ...

Today's Goal

• Define computational security in presence of eavesdropper who intercepts a single (long) message

If you don't understand what you want to achieve, how can you possibly know when (or if) you have achieved it?

- Show how to build a symmetric encryption scheme with computational security in the presence of an eavesdropper.
- Define computational security against an active attacker who might modify the message
- Define computational security for multiple messages in presence of an eavesdropper

Concrete Security

"A scheme is (t, ϵ)-secure if **every** adversary running for time at most t succeeds in breaking the scheme with probability at most ϵ "

- Example: t = 2⁶⁰ CPU cycles
 - 9 years on a 4GHz processor
 - < 1 minute on fastest supercomputer (in parallel)
- Full formal definition needs to specify "break"
- Important Metric in Practice
 - **Caveat 1**: difficult to provide/prove such precise statements
 - Caveat 2: hardware improves over time

A scheme is secure if every probabilistic polynomial time (ppt) adversary "succeeds" with negligible probability.

- Two Key Concepts
 - Polynomial time algorithm
 - Negligible Function

Definition: A function $f: \mathbb{N} \to \mathbb{R}_{\geq 0}$ is negligible if for every positive polynomial p there is an integer N>0 such that for all n > N we have

$$f(n) < \frac{1}{p(n)}$$

Definition: A function $f: \mathbb{N} \to \mathbb{R}_{\geq 0}$ is negligible if for every positive polynomial p there is an integer N>0 such that for all n > N we have $f(n) < \frac{1}{p(n)}$

Intuition: If we choose the security parameter n to be sufficiently large then we can make the adversaries success probability very small (negligibly small).

Definition: A function $f: \mathbb{N} \to \mathbb{R}_{\geq 0}$ is negligible if for every positive polynomial p there is an integer N>0 such that for all n > N we have $f(n) < \frac{1}{p(n)}$

Which functions below are negligible?

- $f(n) = 2^{-n}$
- $f(n) = n^{-3}$
- $f(n) = 2^{-1000} 1000 n^{1000}$
- $f(n) = 2^{100} 2^{-\sqrt{n}}$
- $f(n) = 2^{-\log n}$

Definition: A function $f: \mathbb{N} \to \mathbb{R}_{\geq 0}$ is negligible if for every positive polynomial p there is an integer N>0 such that for all n > N we have $f(n) < \frac{1}{p(n)}$

Which functions below are negligible?

- $f(n) = 2^{-n}$
- $f(n) = n^{-3}$
- $f(n) = 2^{-1000} 1000 n^{1000}$
- $f(n) = 2^{100} 2^{-\sqrt{n}}$

• $f(n) = 2^{-\log n}$

Definition: An (randomized) algorithm A runs in polynomial time if there exists a polynomial p such that for every n-bit input x, A(x) terminates in at most p(n) steps in expectation.

Intuition: If an algorithm A does not run in polynomial time then, for sufficiently large n, it will quickly become impractical for any attacker to run the algorithm A.

A scheme is secure if every *probabilistic polynomial time* (ppt) adversary "succeeds" with *negligible* probability.

• General Attack 1: Test all possible secret keys $\mathbf{k}' \in \mathcal{K}$

• Doesn't run in polynomial time, since $|\mathcal{K}| = 2^n$

- General Attack 2: Select random key $k' \in \mathcal{K}$, check if it is correct (otherwise output \perp for "fail").
 - Only successful with negligible probability 2^{-n}

Advantages of Asymptotic Approach

• Closure

- If subroutine B runs in polynomial time and algorithm A makes p(n) queries to B then A also runs in polynomial time.
- If f and g are negligible functions then h(n) = f(n)+g(n) is a negligible function
- If p is a positive polynomial, and f is a negligible function then the function g(n)=f(n)p(n) is also negligible.
- Church-Turing Thesis: "reasonable" model of computations are all polynomially equivalent.
- Implication: No need to worry about different models of computation (circuits, random access machines, etc...)
- **Disadvantage:** Limited guidance on how big to make security parameter n in practice.

Private Key Encryption Syntax (Revisited)

- Message Space: ${\mathcal M}$
- Key Space: ${\mathcal K}$
- Three Algorithms
 - Gen(1ⁿ; R) (Key-generation algorithm)
 - Input: 1ⁿ (security parameter in unary) + Random Bits.
 - Output: Secret key $k \in \mathcal{K}$
 - Enc_k(*m*; **R**) (Encryption algorithm)
 - Input: Secret key $k \in \mathcal{K}$ and message $m \in \mathcal{M}$ + Randon
 - Output: ciphertext *c*
 - $\text{Dec}_k(c)$ (Decryption algorithm)
 - Input: Secret key $k \in \mathcal{K}$ and a ciphertex c
 - Output: a plaintext message $m \in \mathcal{M}$ or $\perp (i. e"Fail")$
- Invariant: Dec_k(Enc_k(m))=m

Requirement: all three algorithms run in probabilistic polynomial time

Adversarial Indistinguishability Experiment

Adversarial Indistinguishability Experiment

Formally, let $\Pi = (Gen, Enc, Dec)$ denote the encryption scheme, call the experiment $PrivK^{eav}$ and define a random variable

> $PrivK_{A,\Pi}^{eav} = 1$ if b = b' $PrivK_{A,\Pi}^{eav} = 0$ otherwise

 Π has indistinguishable encryptions in the presence of an eavesdropper if for all PPT adversary A, there is a Negligible function μ such that $\Pr[PrivK_{A,\Pi}^{eav} = 1] \leq \frac{1}{2} + \mu(n)$

om bit b n(.) c_κ(m_b)

Semantic Security

Aside: Message and Ciphertext Length

- In the previous game we typically require that $|m_0| = |m_1|$. Why?
- It is <u>impossible</u> to support arbitrary length messages while hiding all information about plaintext length
- Limitation: When could message length be sensitive?
 - Numeric data (5 figure vs 6 figure salary)
 - Database Searches: number of records returned can reveal information about the query
 - Compressed Data: Short compressed string indicates that original plaintext has a lot of redundancy. (CRIME attack on session cookies in HTTPS)

Implications of Indistinguishability

Theorem 3.10: Let (Gen, Enc, Dec) be a fixed-length private key encryption scheme for message of length ℓ that satisfies indistinguishability (prior definition) then for all PPT attackers A and any $i \leq \ell$ we have

$$\Pr[A(1^n, \operatorname{Enc}_K(m)) = m^i] \le \frac{1}{2} + \operatorname{negl}(n)$$

Where the randomness is taken over $K \leftarrow Gen(1^n)$, <u>uniform</u> $m \in \{0,1\}^{\ell}$ and the randomness of Enc and A.

S h(m) background knowledge the attacker might have about m. Definition 5.12: Let (Gen, En inxeu-rength private key encryption scheme for message of le antically secure ven get to see an if for all PPT attackers A t algorithm Sample all any t for any PPT ! Just the length encr 5n f and h we have $|\Pr[A(1^n, \operatorname{Enc}_{KV})]|$ $J_{T}(\Pi l)$ (m)

Semantic Security

Definition 3.12: Let (Gen, Enc, Dec) be a fixed-length private key encryption scheme for message of length ℓ . We say that the scheme is semantically secure if for all PPT attackers A there exists a PPT algorithm A' such that for any PPT algorithm Sample all any polynomial time computable functions f and h we have $\Pr[A(1^n, \operatorname{Enc}_K(m), h(m)) = f(m)] - \Pr[A'(1^n, |m|, h(m)) = f(m)]|$

 $|\Pr[A(1^{\circ}, Enc_{K}(m), n(m)) = f(m)] - \Pr[A(1^{\circ}, [m], n(m)) = f(m)]| \le negl(n)$

Where the randomness is taken over $K \leftarrow Gen(1^n)$, $m \leftarrow Samp(1^n)$ and the randomness of Enc, A and A'.

Theorem 3.13: Both security definitions (indistinguishable encryptions/semantic security) are equivalent.

Coming Up...

- Before Next Class (Friday)
 - Read: Katz and Lindell 3.3
 - Constructing Secure Encryption Schemes
- Homework 1 released Friday