
Cryptography
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Topic 4: Computational Security
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Recap

•Perfect Secrecy, One-time-Pads

Theorem: If (Gen,Enc,Dec) is a perfectly secret encryption 
scheme then

𝒦𝒦 ≥ ℳ
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What if we want to send a longer message?
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Enc𝑘𝑘𝑘 "𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐷𝐷, 𝐼𝐼 𝑤𝑤𝐷𝐷𝑤𝑤𝑤𝑤𝐷𝐷 𝑤𝑤𝑡𝐴𝐴𝑡𝑡 𝑝𝑝𝑤𝑤𝐷𝐷𝑝𝑝 𝑓𝑓𝑤𝑤𝐷𝐷 𝑦𝑦𝑤𝑤𝑦𝑦"

K1,K2,K3
K1,K2,K3

Enc𝑘𝑘𝑘 "𝑅𝑅𝑤𝑤𝑡𝑡𝐷𝐷𝑡𝑡 𝐷𝐷𝐷𝐷𝐷𝐷 𝐷𝐷𝐷𝐷𝑟𝑟, … . "

Enc𝑘𝑘𝑘 "𝐼𝐼 𝐷𝐷𝑝𝑝 𝑤𝑤𝑦𝑦𝑤𝑤 𝑤𝑤𝑓𝑓 𝑡𝑡𝑝𝑝𝐷𝐷𝐴𝐴𝐷𝐷, 𝑏𝑏𝑦𝑦𝑤𝑤 𝑤𝑤𝑡𝐷𝐷 𝐷𝐷𝐷𝐷𝑡𝑡𝑤𝑤 𝑤𝑤𝐷𝐷𝑡𝑡 𝐷𝐷𝑤𝑤𝐷𝐷𝑡𝑡𝑤𝑤𝑝𝑝𝐷𝐷"

Presenter
Presentation Notes
Alice doesn’t respond to Bob since they are out of one-time-pads so they stop talking. Can we save their relationship?



What if we want to send many messages?
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Enc𝑘𝑘𝑘 "𝑊𝑊𝑡𝐷𝐷𝑤𝑤𝑡𝑡 𝑦𝑦𝑝𝑝,𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐷𝐷? "

K1,K2,K3
K1,K2,K3

Enc𝑘𝑘𝑘 "𝑁𝑁𝑤𝑤𝑤𝑤 𝑤𝑤𝑤𝑤𝑤𝑤 𝑝𝑝𝑦𝑦𝐴𝐴𝑡,𝑦𝑦𝑤𝑤𝑦𝑦? "

Enc𝑘𝑘𝑘 "𝐽𝐽𝑦𝑦𝑡𝑡𝑤𝑤 𝐴𝐴𝑡𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑐𝑐𝑐𝑐 𝑤𝑤𝑦𝑦𝑤𝑤? "

Presenter
Presentation Notes
Alice doesn’t respond to Bob since they are out of one-time-pads so they stop talking. Can we save their relationship?



Can we save their relationship?
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Enc𝑘𝑘𝑘 "𝑊𝑊𝑡𝐷𝐷𝑤𝑤𝑡𝑡 𝑦𝑦𝑝𝑝,𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐷𝐷? "

K1,K2,K3 K1,K2,K3

Enc𝑘𝑘𝑘 "𝑁𝑁𝑤𝑤𝑤𝑤 𝑤𝑤𝑤𝑤𝑤𝑤 𝑝𝑝𝑦𝑦𝐴𝐴𝑡,𝑦𝑦𝑤𝑤𝑦𝑦? "

Enc𝑘𝑘𝑘 "𝐽𝐽𝑦𝑦𝑡𝑡𝑤𝑤 𝐴𝐴𝑡𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑐𝑐𝑐𝑐 𝑤𝑤𝑦𝑦𝑤𝑤? "

Presenter
Presentation Notes
Alice doesn’t respond to Bob since they are out of one-time-pads so they stop talking. Can we save their relationship?



Perfect Secrecy vs Computational Security

• Perfect Secrecy is Information Theoretic
• Guarantee is independent of attacker resources

• Computational Security 
• Security against computationally bounded attacker

• An attacker with infinite resources might break security
• Attacker might succeed with very small probability

• Example: Lucky guess  reveals secret key
• Very Small Probability: 2−𝑘00, 2−𝑘000, …
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Today’s Goal

• Define computational security in presence of eavesdropper who 
intercepts a single (long) message
If you don’t understand what you want to achieve, how can you possibly know 

when (or if) you have achieved it?

• Show how to build a symmetric encryption scheme with 
computational security in the presence of an eavesdropper.

• Define computational security against an active attacker who might 
modify the message

• Define computational security for multiple messages in presence of 
an eavesdropper
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Concrete Security

“A scheme is (t,ε)-secure if every adversary running for time 
at most t succeeds in breaking the scheme with probability 
at most ε”

• Example: t = 260 CPU cycles
• 9 years on a 4GHz processor
• < 1 minute on fastest supercomputer (in parallel)

• Full formal definition needs to specify “break”
• Important Metric in Practice

• Caveat 1: difficult to provide/prove such precise statements
• Caveat 2: hardware improves over time
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Asymptotic Approach to Security

A scheme is secure if every probabilistic polynomial 
time (ppt) adversary “succeeds” with negligible

probability. 

• Two Key Concepts
• Polynomial time algorithm
• Negligible Function 

Definition: A function 𝑓𝑓: ℕ⟶ ℝ≥0 is negligible if for every positive 
polynomial p there is an integer N>0 such that for all n > N we have

𝑓𝑓(𝑐𝑐) <
1

𝑝𝑝(𝑐𝑐)
9



Asymptotic Approach to Security

Definition: A function 𝑓𝑓: ℕ⟶ ℝ≥0 is negligible if for every positive 
polynomial p there is an integer N>0 such that for all n > N we have

𝑓𝑓(𝑐𝑐) <
1

𝑝𝑝(𝑐𝑐)

Intuition: If we choose the security parameter n to be sufficiently large 
then we can make the adversaries success probability very small 
(negligibly small).
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Asymptotic Approach to Security

Definition: A function 𝑓𝑓: ℕ⟶ ℝ≥0 is negligible if for every positive polynomial p there is 
an integer N>0 such that for all n > N we have

𝑓𝑓(𝑐𝑐) <
1

𝑝𝑝(𝑐𝑐)

Which functions below are negligible?
• 𝑓𝑓 𝑐𝑐 = 2−𝑛𝑛

• 𝑓𝑓 𝑐𝑐 = 𝑐𝑐−𝑘

• 𝑓𝑓 𝑐𝑐 = 2−𝑘0001000𝑐𝑐𝑘000

• 𝑓𝑓 𝑐𝑐 = 2𝑘002− 𝑛𝑛

• 𝑓𝑓 𝑐𝑐 = 2− log 𝑛𝑛
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Asymptotic Approach to Security

Definition: A function 𝑓𝑓: ℕ⟶ ℝ≥0 is negligible if for every positive polynomial p there is 
an integer N>0 such that for all n > N we have

𝑓𝑓(𝑐𝑐) <
1

𝑝𝑝(𝑐𝑐)

Which functions below are negligible?
• 𝑓𝑓 𝑐𝑐 = 2−𝑛𝑛

• 𝑓𝑓 𝑐𝑐 = 𝑐𝑐−𝑘

• 𝑓𝑓 𝑐𝑐 = 2−𝑘0001000𝑐𝑐𝑘000

• 𝑓𝑓 𝑐𝑐 = 2𝑘002− 𝑛𝑛

• 𝑓𝑓 𝑐𝑐 = 2− log 𝑛𝑛
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Asymptotic Approach to Security

Definition: An (randomized) algorithm A runs in polynomial time if 
there exists a polynomial p such that for every n-bit input x, A(x) 
terminates in at most p(n) steps in expectation.

Intuition: If an algorithm A does not run in polynomial time then, for 
sufficiently large n, it will quickly become impractical for any attacker to 
run the algorithm A. 
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Asymptotic Approach to Security

A scheme is secure if every probabilistic polynomial 
time (ppt) adversary “succeeds” with negligible

probability. 

• General Attack 1: Test all possible secret keys k′ ∈ 𝒦𝒦
• Doesn’t run in polynomial time, since 𝒦𝒦 = 2𝑛𝑛

• General Attack 2: Select random key k′ ∈ 𝒦𝒦, check if it is 
correct (otherwise output ⊥ for “fail”). 

• Only successful with negligible probability 2−𝑛𝑛
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Advantages of Asymptotic Approach

• Closure
• If subroutine B runs in polynomial time and algorithm A makes p(n) queries to B then 

A also runs in polynomial time.
• If f and g are negligible functions then h(n) = f(n)+g(n) is a negligible function
• If p is a positive polynomial, and f is a negligible function then the function 

g(n)=f(n)p(n) is also negligible.
• Church-Turing Thesis: “reasonable” model of computations are all 

polynomially equivalent. 
• Implication: No need to worry about different models of computation 

(circuits, random access machines, etc…)
• Disadvantage: Limited guidance on how big to make security parameter n 

in practice.
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Private Key Encryption Syntax (Revisited)

• Message Space: ℳ
• Key Space: 𝒦𝒦
• Three Algorithms

• Gen(𝟏𝟏𝒏𝒏;𝑅𝑅) (Key-generation algorithm)
• Input: 1n (security parameter in unary) + Random Bits R, 
• Output: Secret key k ∈ 𝒦𝒦

• Enck(𝑝𝑝;𝑹𝑹) (Encryption algorithm)
• Input: Secret key k ∈ 𝒦𝒦 and message m ∈ ℳ +   Random Bits R, 
• Output: ciphertext c

• Deck(𝐴𝐴) (Decryption algorithm)
• Input: Secret key k ∈ 𝒦𝒦 and a ciphertex c
• Output: a plaintext message m ∈ ℳ or ⊥ (𝒊𝒊.𝒆𝒆“Fail”)

• Invariant: Deck(Enck(m))=m

Typically picks k ∈ 𝒦𝒦
uniformly at random

Trusted Parties (e.g., Alice and Bob) 
must run Gen in advance to obtain 

secret k. 

Requirement: all three algorithms run 
in probabilistic polynomial time
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∀ Pr 𝐺𝐺𝑦𝑦𝐷𝐷𝑡𝑡𝑡𝑡𝐷𝐷𝑡𝑡 𝑏𝑏′ = 𝑏𝑏 ≤
1
2

+ 𝜇𝜇(𝑐𝑐)

Adversarial Indistinguishability Experiment

17

m0, m1

Random bit b
K = Gen(.)
c = EncK(mb)

c
b’

𝑝𝑝𝑝𝑝𝑤𝑤 𝐷𝐷𝑤𝑤𝑤𝑤𝐷𝐷𝐴𝐴𝑎𝑎𝐷𝐷𝐷𝐷 𝑐𝑐𝐷𝐷𝑐𝑐𝐴𝐴𝐴𝐴𝑐𝑐𝐴𝐴𝑏𝑏𝐴𝐴𝐷𝐷 𝑓𝑓𝑦𝑦𝑐𝑐𝐴𝐴𝑤𝑤𝐴𝐴𝑤𝑤𝑐𝑐



∀ Pr 𝐺𝐺𝑦𝑦𝐷𝐷𝑡𝑡𝑡𝑡𝐷𝐷𝑡𝑡 𝑏𝑏′ = 𝑏𝑏 ≤
1
2

+ 𝜇𝜇(𝑐𝑐)

Adversarial Indistinguishability Experiment

18

m0, m1

Random bit b
K = Gen(.)
c = EncK(mb)

c
b’

𝑝𝑝𝑝𝑝𝑤𝑤 𝐷𝐷𝑤𝑤𝑤𝑤𝐷𝐷𝐴𝐴𝑎𝑎𝐷𝐷𝐷𝐷 𝑐𝑐𝐷𝐷𝑐𝑐𝐴𝐴𝐴𝐴𝑐𝑐𝐴𝐴𝑏𝑏𝐴𝐴𝐷𝐷 𝑓𝑓𝑦𝑦𝑐𝑐𝐴𝐴𝑤𝑤𝐴𝐴𝑤𝑤𝑐𝑐

𝐹𝐹𝑤𝑤𝐷𝐷𝑝𝑝𝐷𝐷𝐴𝐴𝐴𝐴𝑦𝑦, 𝐴𝐴𝐷𝐷𝑤𝑤 Π = 𝐺𝐺𝐷𝐷𝑐𝑐,𝐸𝐸𝑐𝑐𝐴𝐴,𝐷𝐷𝐷𝐷𝐴𝐴 𝑟𝑟𝐷𝐷𝑐𝑐𝑤𝑤𝑤𝑤𝐷𝐷 𝑤𝑤𝑡𝐷𝐷 𝐷𝐷𝑐𝑐𝐴𝐴𝐷𝐷𝑦𝑦𝑝𝑝𝑤𝑤𝐴𝐴𝑤𝑤𝑐𝑐 𝑡𝑡𝐴𝐴𝑡𝐷𝐷𝑝𝑝𝐷𝐷,
𝐴𝐴𝐷𝐷𝐴𝐴𝐴𝐴 𝑤𝑤𝑡𝐷𝐷 𝐷𝐷𝑒𝑒𝑝𝑝𝐷𝐷𝐷𝐷𝐴𝐴𝑝𝑝𝐷𝐷𝑐𝑐𝑤𝑤 𝑃𝑃𝐷𝐷𝐴𝐴𝑃𝑃𝑃𝑃𝐷𝐷𝐷𝐷𝑃𝑃 𝐷𝐷𝑐𝑐𝑟𝑟 𝑟𝑟𝐷𝐷𝑓𝑓𝐴𝐴𝑐𝑐𝐷𝐷 𝐷𝐷 𝐷𝐷𝐷𝐷𝑐𝑐𝑟𝑟𝑤𝑤𝑝𝑝 𝑃𝑃𝐷𝐷𝐷𝐷𝐴𝐴𝐷𝐷𝑏𝑏𝐴𝐴𝐷𝐷

𝑃𝑃𝐷𝐷𝐴𝐴𝑃𝑃𝑃𝑃𝐴𝐴,Π
𝑒𝑒𝑒𝑒𝑒𝑒 = 1 𝐴𝐴𝑓𝑓 𝑏𝑏 = 𝑏𝑏′

𝑃𝑃𝐷𝐷𝐴𝐴𝑃𝑃𝑃𝑃𝐴𝐴,Π
𝑒𝑒𝑒𝑒𝑒𝑒 = 0 𝑤𝑤𝑤𝑤𝑡𝐷𝐷𝐷𝐷𝑤𝑤𝐴𝐴𝑡𝑡𝐷𝐷

Π 𝑡𝐷𝐷𝑡𝑡 𝐴𝐴𝑐𝑐𝑟𝑟𝐴𝐴𝑡𝑡𝑤𝑤𝐴𝐴𝑐𝑐𝑐𝑐𝑦𝑦𝐴𝐴𝑡𝑡𝑡𝐷𝐷𝑏𝑏𝐴𝐴𝐷𝐷 𝐷𝐷𝑐𝑐𝐴𝐴𝐷𝐷𝑦𝑦𝑝𝑝𝑤𝑤𝐴𝐴𝑤𝑤𝑐𝑐𝑡𝑡 𝐴𝐴𝑐𝑐 𝑤𝑤𝑡𝐷𝐷 𝑝𝑝𝐷𝐷𝐷𝐷𝑡𝑡𝐷𝐷𝑐𝑐𝐴𝐴𝐷𝐷 𝑤𝑤𝑓𝑓
𝐷𝐷𝑐𝑐 𝐷𝐷𝐷𝐷𝑃𝑃𝐷𝐷𝑡𝑡𝑟𝑟𝐷𝐷𝑤𝑤𝑝𝑝𝑝𝑝𝐷𝐷𝐷𝐷 𝐴𝐴𝑓𝑓 𝑓𝑓𝑤𝑤𝐷𝐷 𝐷𝐷𝐴𝐴𝐴𝐴 𝑃𝑃𝑃𝑃𝑃𝑃 𝐷𝐷𝑟𝑟𝑃𝑃𝐷𝐷𝐷𝐷𝑡𝑡𝐷𝐷𝐷𝐷𝑦𝑦 𝐴𝐴, 𝑤𝑤𝑡𝐷𝐷𝐷𝐷𝐷𝐷 𝐴𝐴𝑡𝑡 𝐷𝐷
Negligible function 𝜇𝜇 such that Pr[𝑃𝑃𝐷𝐷𝐴𝐴𝑃𝑃𝑃𝑃𝐴𝐴,Π

𝑒𝑒𝑒𝑒𝑒𝑒 = 1] ≤ 𝑘
𝑘

+ 𝜇𝜇(𝑐𝑐)



∀ Pr 𝐺𝐺𝑦𝑦𝐷𝐷𝑡𝑡𝑡𝑡𝐷𝐷𝑡𝑡 𝑏𝑏′ = 𝑏𝑏 ≤
1
2

+ 𝜇𝜇(𝑐𝑐)

Semantic Security

19

m0, m1

Random bit b
K = Gen(.)
c = EncK(mb)

c
b’

𝑝𝑝𝑝𝑝𝑤𝑤 𝐷𝐷𝑤𝑤𝑤𝑤𝐷𝐷𝐴𝐴𝑎𝑎𝐷𝐷𝐷𝐷 𝑐𝑐𝐷𝐷𝑐𝑐𝐴𝐴𝐴𝐴𝑐𝑐𝐴𝐴𝑏𝑏𝐴𝐴𝐷𝐷 𝑓𝑓𝑦𝑦𝑐𝑐𝐴𝐴𝑤𝑤𝐴𝐴𝑤𝑤𝑐𝑐

Presenter
Presentation Notes
Suppose we have m,m’,c’ s.t. Pr[EncK(m)= c’] > Pr[EncK(m’)=c’] then adversary can select m0= m, m1=m’. If the ciphertext challenge c=c’ then the adversary outputs guess b’ = 1. Otherwise, the adversary outputs random guess b’. 




Aside: Message and Ciphertext Length

• In the previous game we typically require that |m0|=|m1|. Why?

• It is impossible to support arbitrary length messages while hiding all 
information about plaintext length

• Limitation: When could message length be sensitive?
• Numeric data (5 figure vs 6 figure salary)
• Database Searches: number of records returned can reveal information about 

the query
• Compressed Data: Short compressed string indicates that original plaintext 

has a lot of redundancy. (CRIME attack on session cookies in HTTPS)

20



Implications of Indistinguishability

Theorem 3.10: Let (Gen, Enc, Dec) be a fixed-length private key 
encryption scheme for message of length ℓ that satisfies 
indistinguishability (prior definition) then for all PPT attackers A and 
any i ≤ ℓ we have

Pr 𝐴𝐴 1𝑛𝑛, Enc𝐾𝐾 𝑝𝑝 = 𝑝𝑝𝑖𝑖 ≤
1
2

+ negl(𝑐𝑐)

Where the randomness is taken over K ← Gen 1𝑛𝑛 , uniform m ∈
0,1 ℓ and the randomness of Enc and A. 
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Semantic Security

Definition 3.12: Let (Gen, Enc, Dec) be a fixed-length private key encryption 
scheme for message of length ℓ. We say that the scheme is semantically secure 
if for all PPT attackers A there exists a PPT algorithm A’ such that for any PPT 
algorithm Sample all any polynomial time computable functions f and h we have

|Pr 𝐴𝐴 1𝑛𝑛, Enc𝐾𝐾 𝑝𝑝 ,𝑡(𝑝𝑝) = 𝑓𝑓(𝑝𝑝)

22

A’ doesn’t even get to see an 
encryption of m! Just the length 

of m!

Example: 
f(m) = 1   if m > 100,000;
f(m) = 0   otherwise       .

h(m) background knowledge the 
attacker might have about m.



Semantic Security

Definition 3.12: Let (Gen, Enc, Dec) be a fixed-length private key encryption 
scheme for message of length ℓ. We say that the scheme is semantically secure 
if for all PPT attackers A there exists a PPT algorithm A’ such that for any PPT 
algorithm Sample all any polynomial time computable functions f and h we have

Pr 𝐴𝐴 1𝑛𝑛, Enc𝐾𝐾 𝑝𝑝 , 𝑡(𝑝𝑝) = 𝑓𝑓(𝑝𝑝) − Pr 𝐴𝐴′ 1𝑛𝑛, 𝑝𝑝 , 𝑡(𝑝𝑝) = 𝑓𝑓(𝑝𝑝)
≤ negl(𝑐𝑐)

Where the randomness is taken over K ← Gen 1𝑛𝑛 , m ← Samp 1𝑛𝑛 and the 
randomness of Enc, A and A’.

Theorem 3.13: Both security definitions (indistinguishable encryptions/semantic 
security) are equivalent.
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Coming Up…

• Before Next Class (Friday) 
• Read: Katz and Lindell 3.3
• Constructing Secure Encryption Schemes

• Homework 1 released Friday

24
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