Course Business

- I am traveling April 25-May 3rd
 - Will still be available by e-mail to answer questions
- Final Exam Review on Monday, April 24th
- Guest Lectures on April 26 and 28 (TBD)
- Final Exam on Monday, May 1st (in this classroom)
 - Adib will proctor
- Practice Final Exam released soon

Cryptography CS 555

Topic 39: Password Hashing

Password Storage

Ę

Offline Attacks: A Common Problem

 Password breaches at major companies have affected millions of users.

Offline Attacks: A Common Problem

 Password breaches at major companies have affected millions of users.

A Dangerous Problem

charb 11111

rang

star

Lizizi daniele by record tigers fre

00

Attempt 1: Hash Iteration

• BCRYPT

• PBKDF2 LastPass **** Estimated Cost on ASIC: \$1 per billion password guesses [BS14]

Disclaimer: This slide is entirely for humorous effect. Don't take it too seriously

Goal: Moderately Expensive Hash Function

ERA.

Fast on PC and Expensive on ASIC?

Memory Costs: Equitable Across Architectures

Outline

Motivation

• Data Independent Memory Hard Functions (iMHFs)

- Graph Pebbling
- Measuring Pebbling Costs
- Desiderata
- Attacks on iMHF Constructions
- Constructing iMHFs
- Open Questions

Memory Hard Function (MHF)

Intuition: computation costs dominated by memory costs

iMHF Candidates

- Catena [FLW15]
 - Special Recognition at Password Hashing Competition
 - Two Variants: Dragonfly and Double-Butterfly
- Argon2 [BDK15]
 - Winner of the Password Hashing Competition
 - Argon2i (data-independent mode) is recommended for Password Hashing

- Balloon Hashing [BCS16]
 - Newer proposal (three variants in original proposal)

$$\mathsf{iMHF}(\mathsf{f}_{\mathsf{G},\mathsf{H}})$$

Defined by

- $H: \{0,1\}^{2k} \rightarrow \{0,1\}^k$ (Random Oracle)
- DAG G (encodes data-dependencies)
 - Maximum indegree: $\delta = O(1)$

Input: pwd, salt

$$L_1 = H(pwd, salt)$$

 $L_2 = H(L_2, L_1)$

 $L_1 = H(L_2, L_1)$

 $L_2 = H(L_2, L_1)$

Evaluating an iMHF (pebbling)

Pebbling Rules : $\vec{P} = P_1, ..., P_t \subset V$ s.t.

P_{i+1}⊂ P_i ∪ {x ∈ V | parents(x) ⊂ P_{i+1}} (need dependent values)
 n∈ P_t (must finish and output L_n)

$$1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5$$

 $P_1 = \{1\}$

$$1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5$$

 $P_1 = \{1\}$ $P_2 = \{1,2\}$

$$1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5$$

 $P_1 = \{1\}$ $P_2 = \{1,2\}$ $P_3 = \{3\}$

$$1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5$$

 $P_1 = \{1\}$ $P_2 = \{1,2\}$ $P_3 = \{3\}$ $P_4 = \{3,4\}$

$$1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5$$

 $P_{1} = \{1\}$ $P_{2} = \{1,2\}$ $P_{3} = \{3\}$ $P_{4} = \{3,4\}$ $P_{5} = \{5\}$

Pebbling Example (CC)

$$1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5$$

 $P_{1} = \{1\}$ $P_{2} = \{1,2\}$ $P_{3} = \{3\}$ $P_{4} = \{3,4\}$ $P_{5} = \{5\}$

$$CC(G) \le \sum_{i=1}^{5} |P_i|$$

= 1 + 2 + 1 + 2 + 1
= 7

Measuring Cost

• Cumulative Complexity (CC)

$$CC(G) = \min_{\vec{P}} \sum_{i=1}^{t_{\vec{P}}} |P_i|$$

Amortization [AS15]

 $CC(G,G) = 2 \times CC(G)$

Pebbling Example (CC)

$$1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5$$

 $P_{1} = \{1\}$ $P_{2} = \{1,2\}$ $P_{3} = \{3\}$ $P_{4} = \{3,4\}$ $P_{5} = \{5\}$

$$CC(G) \le \sum_{i=1}^{5} |P_i|$$

= 1 + 2 + 1 + 2 + 1
= 7

Pebbling Equivalence

Theorem [**AS15**] (**Informal**): High pebbling complexity of G implies high amortized memory complexity for the iMHF f_{G,H}.

Implication: Structure of the graph G is key to iMHF security

Desiderata

Find a DAG G on n nodes such that

1. Constant Indegree ($\delta = 2$)

2. $CC(G) \ge \frac{n^2}{\tau}$ for some small value τ .

Maximize costs for fixed n (Users are impatient)

Depth-Robustness: The Key Property

<u>Necessary</u> [AB16] and <u>sufficient</u> [ABP16] for secure iMHFs

Naïve Pebbling Algorithms

- Sequential Algorithm (Naïve)
 - Constraint: One new pebble per round
 - Every iMHF is defined via its Naïve algorithm
- Example Naïve (Pebble in Topological Order)
 - Never discard pebbles
 - Time: n
 - Average #pebbles: n/2.
 - $E_R(Naïve) = \theta(Rn + n^2)$

Amortized Attack Quality

Ę

$$Quality_{R}(A) = \frac{E_{R}(Naïve)}{E_{R}(A)} \times \#inst(A)$$

Example: Algorithm A evaluates 5 iMHF instances with total cost $E_R(A) = 100$ and $E_R(Naïve) = 40$

$$\text{Quality}_R(A) = \frac{40}{100} \times 5 = 2$$

Desiderata

Find a DAG G and a sequential pebbling algorithm N with

- 1. Constant Indegree ($\delta = 2$)
- 2. Quality_R(A) $\leq c$ for every adversary A (c small).
- 3. $E_{R}(Naive) \ge \frac{n^{2}}{\tau} + Rn$ for some small value τ .

Memory costs should dominate

Desiderata

Find a DAG G and a sequential pebbling algorithm N with

1. Constant Indegree ($\delta = 2$)

2. Quality_R(A) $\leq c$ for every adversary A (c small).

3. $E_{R}(Naive) \ge \frac{n^{2}}{\tau} + Rn$ for some small value τ .

Maximize costs for fixed n (Users are impatient)

c-Ideal iMHF

Find a DAG G and a sequential pebbling algorithm N with

- 1. Constant Indegree ($\delta = 2$)
- 2. Quality_R(A) $\leq c$ for every adversary A (c small).

3.
$$E_{R}(Naive) \geq \frac{n^{2}}{\tau} + Rn$$
 for $\tau = O(1)$.

Outline

- Motivation
- Data Independent Memory Hard Functions (iMHFs)

• Our Attacks

- General Attack on Non Depth Robust DAGs
- Existing iMHFs are not Depth Robust
- Ideal iMHFs don't exist
- Subsequent Results (Depth-Robustness is Sufficient)
- Open Questions

Depth-Robustness: The Key Property

<u>Necessary</u> [AB16] and <u>sufficient</u> [ABP16] for secure iMHFs

Depth Robustness

Definition: A DAG G=(V,E) is (e,d)-reducible if there exists $S \subseteq V$ s.t. $|S| \leq e$ and depth(G-S) \leq d.

Otherwise, we say that G is (e,d)-depth robust.

Example: (1,2)-reducible

Depth Robustness

Definition: A DAG G=(V,E) is (e,d)-reducible if there exists $S \subseteq V$ s.t. $|S| \leq e$ and depth(G-S) \leq d.

Otherwise, we say that G is (e,d)-depth robust.

Example: (1,2)-reducible

Attacking (e,d)-reducible DAGs

- Input: $|S| \leq e$ such that depth(G-S) = d, g > d
- Light Phase (g rounds): Discard most pebbles!
 - **Goal:** Pebble the next g nodes in g (sequential) steps
 - Low Memory (only keep pebbles on S and on parents of new nodes)
 - Lasts a ``long" time
- Balloon Phase (d rounds): Greedily Recover Missing Pebbles
 - Goal: Recover needed pebbles for upcoming light phase
 - Expensive, but quick (at most d steps in parallel).

Depth Robustness is Necessary

Theorem (Depth-Robustness is a necessary condition): If G is not (e,d)node robust then $CC(G) = O(en + \sqrt{n^3d})$. In particular, $CC(G) = o(n^2)$ for e,d=o(n).

Answer: No

• Catena [FLW15] is
$$\left(e, \tilde{O}\left(\frac{n}{e}\right)\right)$$
-reducible
 $CC = O(n^{1.62})$
• Balloon Hashing and Argon2i (old version) are $\left(e, \tilde{O}\left(\frac{n^2}{e^2}\right)\right)$ -reducible
 $CC = O(n^{1.71})$
• Argon2i (latest version) is $\left(e, \tilde{O}\left(\frac{n^3}{e^3}\right)\right)$ -reducible
 $CC = O(n^{1.77})$

• Similar picture for most other iMHF candidates [AGKKOPRRR16]

Argon2i [BDK]

• Argon2: Winner of the password hashing competition[2015]

 Authors recommend Argon2i variant (data-independent) for password hashing.

Argon2i

$1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow \cdots \rightarrow i \rightarrow n$

Indegree: $\delta = 2$

Argon2i: Reducing depth to \sqrt{n}

Argon2i: Reducing depth to \sqrt{n}

Definition: $S_2 = \{ v_i | v_{r(i)} \text{ and } v_i \text{ in same layer} \}$

Claim: S₂**is small**

Argon2i is a layered DAG (almost)

Let $S = S_1 + S_2$

Fact: Easy to reduce the depth of a path

Attack on Argon 2i-B is practical even for pessimistic parameter ranges (brown line).

Ideal iMHFs Don't Exist

Thm[AB16]: Any graph G (with constant in-degree) is at least somewhat depth-reducible.

Implication: If CC(G)= $\Omega(n^2)$ there is an attack A with high quality:

$$\text{Quality}_{R}(A) = \Omega\left(\frac{\log(n)}{\log\log(n)}\right)$$

But, we cannot rule them out in practice

Ę

- Motivation
- Data Independent Memory Hard Functions (iMHFs)
- Attacks
- Constructing iMHFs (New!)
 - Depth-Robustness is *sufficient*
- Conclusions and Open Questions

Depth-Robustness is Sufficient! [ABP16]

Key Theorem: Let G=(V,E) be (e,d)-depth robust then $CC(G) \ge ed$.

Proof: Let $P_1, ..., P_t$ denote an (optimal) pebbling of G. For 0< i < d define $S_i = P_i \cup P_{d+i} \cup P_{2d+i} \cup \cdots$

one of the sets S_i has size at most CC(G)/d. Now we claim that

 $d \ge depth(G-S_i)$

because any path in G-S_i must have been completely pebbled at some point. Thus, it must have been pebbled entirely during some interval of length d. Thus, G (CC(G)/d,d)-reducible. It follows that CC(G) $\ge ed$.

Depth-Robustness is Sufficient! [ABP16]

Key Theorem: Let G=(V,E) be (e,d)-depth robust then $CC(G) \ge ed$.

Implications: There exists a constant indegree graph G with (m^2)

$$CC(G) \ge \Omega\left(\frac{n^2}{\log n}\right).$$

Previous Best [AS15]:
$$\Omega\left(\frac{n^2}{\log^{10} n}\right)$$

[AB16]: We cannot do better (in an asymptotic sense).

Summary

- BCRYPT and PBKDF2 are no longer sufficient for password hashing
- Argon2i is an improvement over BCRYPT and PBKDF2
 - But still has its flaws [AB16,AB17]
- Current Recommendation: Argon2id
 - No side channel attacks? Resists known attacks
 - Side channel attacks reduce security to Argon2i

 Look for improvements in the near future using depth-robust graphs [ABP17]

Conclusions

- Depth-robustness is a necessary and sufficient for secure iMHFs
 - [AB16] [ABP16]
- Big Challenge: Improved Constructions of Depth-Robust Graphs
 - We already have constructions in theory [EGS77, PR80, ...]
 - But constants matter!

Passwords vs time: Look how far we've come

Source: Cormac's estimate

Biometrics

Ę

My voice is my password

Hardware Tokens

Hardware Tokens

Challenge: \$\$\$ + more stuff to carry around

Graphical Passwords

- Examples:
 - Passfaces, Cued Click Points, Windows 8

Graphical Passwords

Challenge: Multiple Passwords

Graphical Passwords: Hotspots

Graphical Passwords: Hotspots

Figure 7: Individual click-points "guessable" using hotspots from the PassPoints-field study on the Pool image

Password Managers

• Password Management Software

LastPass ****

The Last Password You'll Ever Need.

Stanford PwdHash
Site Address
ttp://www.example.com/
Site Password
Jolololololololol
Hashed Password
MPm8kRYQvmGg Generate
Version 0.8 (more versions)

Related Work

Challenge: Single point of failure

References

- Depth-Robust Graphs and Their Cumulative Memory Complexity. with Joel Alwen and Krzysztof Pietrzak. <u>EUROCRYPT 2017</u> (to appear). [<u>ePrint</u>]
- On the Computational Complexity of Minimal Cumulative Cost Graph Pebbling. with Samson Zhou. (Working Paper). [arXiv]
- Towards Practical Attacks on Argon2i and Balloon Hashing. with Joel Alwen. <u>EuroS&P 2017</u> (to appear). [<u>ePrint</u>]
- Efficiently Computing Data Independent Memory Hard Functions. with Joel Alwen. <u>CRYPTO 2016</u>. [Full Version]