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Differential Privacy



Privacy in Statistical Databases
Individuals Server/agency

x1

x2...
xn

A
(queries )

answers

Users
Government,  
researchers,  
businesses  

(or)   
Malicious  
adversary

• What information can be released?

• Two conflicting goals

Utility:Users can extract“global” statistics

Privacy: Individual information stays hidden

• How can these be made precise?

(How context-dependent must they be?)
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Secure Function Evaluation
•

•

•

Several parties, each with input xi,want to compute a  
function f(x1,x2,...,xn)

• Ideal world: all parties hand their inputs to a trusted

party who computes f(x1,...,xn) and releases the result

There exist secure protocols for this task

 Idea: a simulator can geneerate a dummy transcript given only  

the value of f

Privacy: use SFE protocols to jointly data mine

Horizontal vs vertical

Lots of papers

a.k.a.“multi-party  
computation”
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Why not use crypto definitions?
•

•

Attempt #1:
Def’n: For every entry i, no information about xi is leaked  

(as if encrypted)

Problem: no information at all is revealed!

Tradeoff privacy vs utility

Attempt #2:
Agree on summary statistics f(DB) that are safe
Def’n: No information except f(DB)

Problem: why is f(DB) safe to release?

Tautology trap
 (Also: how do you figure out what f is?)

C
C

CC
C

C
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A Problem Case

Question 1: How many people in this room have cancer?

Question 2: How many students in this room have 
cancer?

The difference (A1-A2) exposes my answer!



Why not use crypto definitions?
• Problem: Crypto makes sense in settings where the

line  between“inside” and“outside” is well-defined
E.g.psychologist:

• “inside” = psychologist and patient
• “outside” = everyone else

• Statistical databases: fuzzy line between inside and  
outside
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Straw Man #0

Omit ``Personally-Identifiable Information” and publish the 
data

e.g., Name, Social Security Number

This has been tried before….many time



xn-1  xn

M
x3
x2
x1

DB=

AdversaryA

query  
answer11

San M
query

¢ ¢ ¢ answerTT
random coins

Straw man #1: Exact Disclosure

• Def’n: safe if adversary cannot learn any entry exactly
 leads to nice (but hard) combinatorial problems
 Does not preclude learning value with 99% certainty or narrowing down  

to a small interval

• Historically:
 Focus: auditing interactivequeries

 Difficulty: understanding relationships between queries

 E.g. two queries with small difference
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Two Intuitions for Data Privacy
• “If the release of statistics S makes it possible to  

determine the value [of private information] more

accurately than is possible without access to S,a  
disclosure has taken place.” [Dalenius]

 Learning more about me should be hard

• Privacy is “protection from being brought to the  

attention of others.” [Gavison]

 Safety is blending into a crowd
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A Problem Example?

Suppose adversary knows that I smoke.

Question 0: How many patients smoke?

Question1: How many smokers have cancer?

Question 2: How many patients have cancer?

If adversary learns that smoking  cancer then he learns 
my health status.

Privacy Violation?



xn-1  xn

x3
M
x2
x1

DB=

AdversaryA

query  
answer11

San M
query

¢ ¢ ¢ answerTT
random coins

Preventing Attribute Disclosure

• Large class of definitions
 safe if adversary can’t learn “too much” about any entry

 E.g.:
•

•

Cannot narrow Xi down to small interval

For uniform Xi,mutual information I(Xi;San(DB) ) · ε

• How can we decide among these definitions?
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Differential Privacy

• Lithuanians example:

 Adv. learns height even ifAlice not in DB

• Intuition [DM]:
 “Whatever is learned would be learned regardless of whether or not Alice  

participates”

 Dual:Whatever is already known, situation won’t get worse

xn-1  xn

x3
M
x2
x1

DB=

AdversaryA

query  
answer11

San M
query

¢ ¢ ¢ answerTT
random coins
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Approach: Indistinguishability

x1

.
xn

xi
..2

local random  
coins

A (queries )
answers

x’ is a neighbor of x
if they differ in one row

.
xn

local random  
coins

A ( queries )
answers

x1

x..2

26



Approach: Indistinguishability

x1

.
xn

xi
..2

local random  
coins

A (queries )
answers

x’ is a neighbor of x
if they differ in one row

.
xn

local random  
coins

A ( queries )
answers

x1

x..2

Neighboring databases  
induce close distributions  
on transcripts

26



Approach: Indistinguishability
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Definition: A is 𝜀𝜀 –differentially private 
if,  for all neighbors x,x’,
for all subsets S of transcripts

Pr[A(x) ∈ S] ≤𝑒𝑒𝜀𝜀Pr[A(x!) ∈ S]

Neighboring databases
induce close distributions
on transcripts



Approach: Indistinguishability
• Note that ε has to be non-negligible here
Triangle inequality: any pair of databases at distance <εn
 If ε < 1/n then users get no info!

• Why this measure?
Statistical difference doesn’t make sense with ε > 1/n
E.g.choose random i and release i,xi

This compromises someone’s privacy w.p. 1

Definition: A is 𝜀𝜀 –differentially private 
if,  for all neighbors x,x’,
for all subsets S of transcripts

Pr[A(x) ∈ S] ≤𝑒𝑒𝜀𝜀Pr[A(x!) ∈ S]

Neighboring databases
induce close distributions
on transcripts
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Differential Privacy
• Another interpretation [DM]:

You learn the same things about me  
regardless of whether I am in the database

• Suppose you know I am the height of median Canadian
You could learn my height from database!

But it didn’t matter whether or not my data was part of it.
Has my privacy been compromised? No!

Definition: A is 𝜀𝜀 –differentially private 
if,  for all neighbors x,x’,
for all subsets S of transcripts

Pr[A(x) ∈ S] ≤𝑒𝑒𝜀𝜀Pr[A(x!) ∈ S]

Neighboring databases
induce close distributions
on transcripts



Graphs: Edge Adjacency
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G G’

Pr[A(G)∈ ] ≤eεPr[A(G’)∈ ] + δ

~

Presenter
Presentation Notes
If a mechanism A satisfies differential privacy then the mechanism must produce similar distributions over both graphs. 
Intuition: Johnny’s mom may be able tell if he watched an R-rated movie. 




Graphs: Edge Adjacency
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Johnny’s mom does not learn if he watched 
Saw from the output A(G). 

G G’

~

Presenter
Presentation Notes
If a mechanism A satisfies differential privacy then the mechanism must produce similar distributions over both graphs. 
Intuition: Johnny’s mom may be able tell if he watched an R-rated movie. 




Pr[A(G)∈ ] ≤e2εPr[A(G’’)∈ ] + 2δ

Privacy for Two Edges?

23
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G G’’

~



Limitations

Johnny’s mom may now be able tell if he 
watches R-rated movies from A(G). 
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… …

G Gt

~

Presenter
Presentation Notes
Now the graphs are not neighbors




Output Perturbation
Individuals Server/agency

x1
x2...
xn

A
“Tell me f(x)”

f(x) + noise

local random  
coins

• Intuition: f(x) can be released accurately when f  
is insensitive  to individual entries x1, x2, . . . ,xn

User
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Global Sensitivity

∆𝑄𝑄 ≔ max
𝐺𝐺~𝐺𝐺′

𝑄𝑄 𝐺𝐺 − 𝑄𝑄 𝐺𝐺′
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Global Sensitivity

∆𝑄𝑄 ≔ max
𝐺𝐺~𝐺𝐺′

𝑄𝑄 𝐺𝐺 − 𝑄𝑄 𝐺𝐺′

• What does G~G’ mean?
• Example: Change one attribute

• Q1(G) = #users who watched Lion King

• ∆𝑄𝑄1 = ?
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Global Sensitivity

∆𝑄𝑄 ≔ max
𝐺𝐺~𝐺𝐺′

𝑄𝑄 𝐺𝐺 − 𝑄𝑄 𝐺𝐺′

• What does G~G’ mean?
• Example: Change one attribute

• Q2(G) = #users who watched Toy Story

• ∆𝑄𝑄2 = 1
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Global Sensitivity

∆𝑄𝑄 ≔ max
𝐺𝐺~𝐺𝐺′

𝑄𝑄 𝐺𝐺 − 𝑄𝑄 𝐺𝐺′

• What does G~G’ mean?
• Example: Change one attribute

• Q(G) = Q1(G)+Q2(G)

• ∆𝑄𝑄2 = ?

29



Global Sensitivity

∆𝑄𝑄 ≔ max
𝐺𝐺~𝐺𝐺′

𝑄𝑄 𝐺𝐺 − 𝑄𝑄 𝐺𝐺′

• What does G~G’ mean?
• Example: Change one attribute

• Q1(G) = #users who watched Lion King

• ∆𝑄𝑄1 = ?
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Global Sensitivity

∆𝑄𝑄 ≔ max
𝐺𝐺~𝐺𝐺′

𝑄𝑄 𝐺𝐺 − 𝑄𝑄 𝐺𝐺′

• What does G~G’ mean?

• Example: Add/delete one row?
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Global Sensitivity

∆𝑄𝑄 ≔ max
𝐺𝐺~𝐺𝐺′

𝑄𝑄 𝐺𝐺 − 𝑄𝑄 𝐺𝐺′

• Example: Add/delete one row?
• Q(G) = Q1(G)+Q2(G)
• ∆𝑄𝑄 = ?
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Fact: The Laplacian Mechanism:

A 𝐺𝐺 = 𝑄𝑄 𝐺𝐺 + Lap
∆𝑄𝑄
𝜀𝜀

,

satisfies 𝜀𝜀, 0 -differential privacy.

Traditional Differential Privacy Mechanism
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𝑃𝑃𝑃𝑃𝑃𝑃𝐺𝐺 𝑥𝑥 ∝ 𝑒𝑒− 𝑥𝑥𝜀𝜀

𝑃𝑃𝑃𝑃𝑃𝑃𝐺𝐺′ 𝑥𝑥 ∝ 𝑒𝑒− (𝑥𝑥−1)𝜀𝜀
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Traditional Differential Privacy Mechanism

∆𝑸𝑸=1



∀𝑥𝑥,
𝑃𝑃𝑃𝑃𝑃𝑃𝐺𝐺 𝑥𝑥
𝑃𝑃𝑃𝑃𝑃𝑃𝐺𝐺′ 𝑥𝑥

=
𝑒𝑒− 𝑥𝑥𝜀𝜀

𝑒𝑒− (𝑥𝑥−1)𝜀𝜀 ≤ 𝑒𝑒−𝜀𝜀
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Traditional Differential Privacy Mechanism



Differential Privacy

xn-1  xn

x2  
0
M

x1

DB=

AdversaryA

San

query  
an1swer1

query
anTswerT

M

¢  ¢ ¢
random coins
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Examples of low global sensitivity
• Example: GSaverage = 1

n if x ∈ [0,1]n

diabetics) in underlying population, get sampling noise 1
√ n

• Many natural functions have low GS,e.g.:
Histograms and contingency tables
Covariance matrix
Distance to a property
 Functions that can be approximated from a random sample

• [BDMN] Many data-mining and learning algorithms access the  
data via a sequence of low-sensitivity questions
 e.g.perceptron,some“EM” algorithms,SQ learning algorithms

n
Comparison: to estimate a frequency (e.g.proportion of
Add noise Lap( 1 )
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Why does this help?
With relatively little noise:

•
•
•
•
•

Averages  

Contingency tables

Matrix decompositions  

Certain types of clustering

…
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Differential Privacy
Protocols

•

•

Output perturbation  
(Release f(x) + noise)

Sum queries
• [DiN’03,DwN’04,BDMN’05]

“Sensitivity” frameworks
• [DMNS’06,NRS’07]

Input perturbation  
(“randomized response”)

Frequent item sets [EGS’03]

(Various learning results)

•

•

•

Lower bounds
Limits on communication  
models

Noninteractive [DMNS’06]

“Local” [NSW’07]

Limits on accuracy
“Many” good answers  

allow reconstructing  
database

• [DiNi’03,DMT’07]

Necessity of“differential”  
guarantees [DN]
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Resources

$99

Free PDF: 
https://www.cis.upenn.edu/~aaroth/Papers/privacybook.pdf

https://www.cis.upenn.edu/%7Eaaroth/Papers/privacybook.pdf
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